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Abstract. Chemical reanalysis products have been produced by integrating various satellite observational data to provide com-

prehensive information on atmospheric composition. Five global chemical reanalysis datasets were used to evaluate the relative

impacts of assimilating satellite ozone and its precursor measurements on surface and free tropospheric ozone analyses for the

year 2010. Observing system experiments (OSEs) using the multiple reanalysis systems in similar settings were conducted to

examine the impacts of differences in reanalysis systems on observing system assessments. Without data assimilation, large5

discrepancies remained among the control runs owing to model biases. Data assimilation improved the consistency among the

systems, reducing the standard deviation by 72–88% in the lower troposphere through the lower stratosphere, while improving

agreement with independent ozonesonde observations. The OSEs suggested the importance of precursor measurements, espe-

cially from tropospheric NO2 columns, for improving ozone analysis in the lower troposphere, with varying influences among

the systems (+0.1% in GEOS-Chem and +7% in TCR-2, with only NO2 assimilation). Adjustments made by direct ozone as-10

similation showed similar vertical patterns between the TCR-2 and IASI-r systems, with increases of 6–22% and decreases of

2–21% in the middle and upper troposphere, respectively, reflecting the biases of the forecast models. These results suggest the

importance of considering the effects of the forecast model performance and data assimilation configurations when assessing

the observing system impacts to provide unbiased evaluations of satellite systems and to guide the design of future observing

systems.15
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1 Introduction

Tropospheric ozone plays a key role in climate systems as a short-lived climate forcer and in tropospheric photochemistry

as a determinant of oxidizing capacity and methane lifetime (Szopa et al., 2021). It is also a hazardous air pollutant that ad-

versely affects the human health, crop productivity, and ecosystems (Fleming et al., 2018; Mills et al., 2018). Tropospheric

ozone is chemically produced from precursor gases, including nitrogen oxides (NOx ≈ NO + NO2), carbon monoxide20

(CO), and volatile organic compounds (VOCs), and it is destroyed through the chemical reaction of O(1D) with water va-

por. Stratosphere–troposphere ozone exchange and dry deposition at the surface are also important ozone sources and sinks,

respectively.

The global tropospheric ozone distribution and its trends have been monitored in recent decades using various observation

networks, including surface in-situ networks, ozonesondes, ground-based remote sensing, aircrafts, and satellites (e.g., Schultz25

et al., 2017; Gaudel et al., 2018; Tarasick et al., 2019). In particular, a global picture of tropospheric ozone and its precursor

gases has been provided from satellite observations, such as Global Ozone Monitoring Experiment (GOME) (Burrows et al.,

1999), Measurements of Pollution in the Troposphere (MOPITT) (Drummond et al., 2010), Scanning Imaging Absorption

SpectroMeter for Atmospheric Chartography (SCIAMACHY) (Callies et al., 2000), Ozone Monitoring Instrument (OMI)

(Levelt et al., 2006), Tropospheric Emission Spectrometer (TES) (Beer, 2006), and Microwave Limb Sounder (MLS) (Waters30

et al., 2006), GOME-2 (Callies et al., 2000), Infrared Atmospheric Sounding Interferometer (IASI) (August et al., 2012), and

Tropospheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012). A recent study indicated that the complex impacts

of various precursors on tropospheric ozone variability at regional to global scales depend on ozone chemical regimes and

dynamical factors qualitatively, based on satellite and in-situ observations (Elshorbany et al., 2024). The combined use of

satellite observations of tropospheric ozone and its precursors remains a quantitative challenge because of the non-linear35

transport and chemistry processes involved with tropospheric ozone.

Several chemical reanalysis products have been developed by integrating various observational datasets with chemical trans-

port models using data assimilation techniques. These reanalysis products provide physically and chemically consistent long-

term records of atmospheric composition, including tropospheric ozone. Chemical reanalysis products have been produced

using multi-species satellite observations, such as the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis (CAM-40

SRA) (Inness et al., 2019), the Tropospheric Chemistry Reanalysis version 2 (TCR-2) (Miyazaki et al., 2020a), and the Real-

time Air Quality Modeling System (RAQMS) (Pierce et al., 2009). For CAMSRA and TCR-2, analyses of tropospheric ozone

and related species have been validated using independent observations (Huijnen et al., 2020; Park et al., 2020; Ryu and Min,

2021). In experimental reanalysis, a smaller number of measurements are assimilated, such as tropospheric ozone in the IASI-r

(Emili and El Aabaribaoune, 2021) and tropospheric NO2 in the GEOS-Chem-adjoint systems (Qu et al., 2020).45

The International Global Atmospheric Chemistry (IGAC) Tropospheric Ozone Assessment Report Phase II (TOAR-II)

Chemical Reanalysis Focus Working Group (WG) summarizes the current status of chemical reanalysis to understand its

capacity in various scientific applications. One of the important questions to be addressed is the relative impacts of individual

satellite observations of stratospheric and tropospheric ozone and its precursors on surface and free tropospheric ozone anal-
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yses. Resolving this question is essential for formulating future satellite missions and comprehending our understanding of50

the atmospheric chemistry and climate systems. Observing system experiments (OSEs), that separately assimilate individual

measurements, have been widely used in meteorological studies to optimize the data assimilation frameworks, and they have

contributed to the observing system development. In atmospheric composition research, the individual impacts of satellite ob-

servations of tropospheric ozone and its precursor gases (e.g., NO2 and CO) have been evaluated using data assimilation and

chemical reanalysis frameworks (e.g., Barré et al., 2015; Miyazaki et al., 2019; Zhang et al., 2019; Emili and El Aabaribaoune,55

2021; Inness et al., 2022; Naus et al., 2022; Sekiya et al., 2022).

Nevertheless, the implications of OSE results can be strongly affected by the the forecast model performance because of

the perfect model assumption. They are also influenced by the data assimilation configurations, such as the data assimilation

technique and choice of data version or satellite product level. Model-independent implications can be obtained using multi-

model approaches in a common OSE framework. In a pioneering study of multi-model chemical data assimilation, Miyazaki60

et al. (2020b) assessed the combined impacts of assimilating multi-constituent observations into multiple models using the

Multi-mOdel Multi-cOnstituent Chemical data assimilation (MOMO-Chem) framework and showed strong model dependence

on emission estimates and model response to the posteriori emissions. Similarly, OSEs using a variety of chemical reanalysis

systems allow for observational impact assessments that are less dependent on the characteristics of individual forecast models

and data assimilation systems. Such OSE results can support the developments of chemical reanalysis and future satellite65

missions.

Therefore, based on the work of the IGAC TOAR-II Chemical Reanalysis WG activity, this study utilized five global chemi-

cal reanalysis systems, CAMSRA, TCR-2, IASI-r, GEOS-Chem, and RAQMS, to evaluate the combined and individual impacts

of assimilating multiple satellite observations on tropospheric ozone analysis. Although the assimilated measurements varied

between the reanalysis systems, we performed additional OSEs in closer settings across the systems to examine the relative70

impacts of satellite ozone and precursor measurements and their dependence on reanalysis systems.

The remainder of this paper is organized as follows. Section 2 describes the considered chemical reanalysis data and in-

dependent observational data for the validation. Section 3 compares the five chemical reanalysis products and validates them

using independent observations. Section 4 presents the assessment results on the impacts of assimilating individual observa-

tions on tropospheric ozone analysis. Section 5 discusses future chemical reanalysis developments and satellite constellation75

designs. Section 6 summarizes this study.

2 Data

2.1 Reanalysis systems

Table 1 summarizes the chemical reanalysis products used in this study. Data assimilation calculations and validations were

conducted for 2010, because a greater number of satellite observations were available compared with other years. Brief de-80

scriptions of these systems are provided as below.
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2.1.1 CAMS reanalysis (CAMSRA)

CAMS (Peuch et al., 2022), operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf

of the European Commission, provides daily analyses and 5-day forecasts of atmospheric composition in near-real time as

well as a reanalysis of atmospheric composition going back to 2003, known as the CAMSRA (Inness et al., 2019). CAMSRA85

consists of three-dimensional time-consistent atmospheric composition fields, including aerosols and chemical species. It builds

on the experience gained during the production of the earlier Monitoring Atmospheric Composition and Climate (MACC)

reanalysis (Inness et al., 2013) and CAMS interim reanalysis (Flemming et al., 2017). Satellite retrievals of the total column CO,

tropospheric column NO2, aerosol optical depth, and ozone (O3) were assimilated for CAMSRA with ECMWF’s Integrated

Forecasting System. The O3 retrievals assimilated in CAMSRA were total column fields from SCIAMACHY, OMI, GOME-290

and TROPOMI, ozone layers from SBUV/2, and ozone profiles from MIPAS and MLS. Offline or reprocessed retrievals were

used until 2016 and near-real time retrievals were used from 2017 onwards. More details can be found in Inness et al. (2019)

and in the reanalysis validation reports available at https://atmosphere.copernicus.eu/eqa-reports-global-services.

CAMSRA has a horizontal resolution of about 80 km and provides 3-hourly 3D analysis fields and forecast fields, 3-hourly

forecast fields as well as hourly surface forecast fields. It was produced with ECMWF’s incremental 4-dimensional variational95

(4D-Var) data assimilation system (Courtier et al., 1994), with 12-hour assimilation windows from 09 UTC to 21 UTC and

21 UTC to 09 UTC and two minimisations at spectral truncations T95 (∼210 km) and T159 (∼110 km). Several atmospheric

composition fields (i.e. O3, CO, NO2 and total aerosol mass mixing ratio) were included in the control vector and minimized

together with the meteorological control variables, by adjusting the initial conditions. Emissions were not optimised. The

background errors for O3 were calculated with the National Meteorological Center (NMC) method (Parrish and Derber, 1992)100

and are univariate; i.e. the error covariance matrix between ozone and the other chemical and dynamical fields is diagonal.

The chemical mechanism of the IFS used in CAMSRA was a modified and extended version of the CB05 (Yarwood et al.,

2005) chemical mechanism for the troposphere, as implemented in the chemical transport model (CTM) TM5 (Huijnen et al.,

2010). CB05 describes the tropospheric chemistry with 55 species and 126 reactions. Stratospheric ozone chemistry was

parameterized by a “Cariolle-scheme” (Cariolle and Déqué, 1986; Cariolle and Teyssèdre, 2007). Ozone and aerosol fields105

were used interactively in the numerical weather prediction (NWP) radiation scheme of CAMSRA.

The anthropogenic emissions used in CAMSRA came from the MACCity inventory (Granier et al., 2011), with modifications

to increase winter-time road traffic emissions over North America and Europe following the correction of Stein et al. (2014).

Biomass burning emissions were taken from the Global Fire Assimilation System (GFAS v1.2; Kaiser et al., 2012). Monthly

mean biogenic emissions simulated by the MEGAN2.1 model following Sindelarova et al. (2014) were used for the period110

2003–2017, and in the later years a monthly-mean climatology derived from the 2003–2017 simulations was applied.

The validation in Inness et al. (2019) showed that the CAMSRA has smaller biases compared with observations than the

previous two reanalyses (MACC and CAMS interim) and is more consistent in time, especially compared to the MACC

reanalysis (e.g., Inness et al., 2019; Wagner et al., 2021). Evaluation of more recent years can be found in the validation reports
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at https://atmosphere.copernicus.eu/eqa-reports-global-services. In addition to CAMSRA, CAMS also produced a control run115

which used the same meteorology as CAMSRA but did not assimilate any atmospheric composition data.

2.1.2 TCR-2

The TCR-2 products (Miyazaki et al., 2020a) were obtained from the assimilation of the OMI, SCIAMACHY, GOME-2 NO2

QA4ECV v1.1 products (Boersma et al., 2017a, b, c), the TES V6 ozone profile, the MLS v4.2 ozone and HNO3 (Livesey

et al., 2018), the MOPITT CO v7 TIR/NIR product (Deeter et al., 2017), and the OMI PBL SO2 product (Li et al., 2013). The120

reanalysis calculation was conducted at a horizontal resolution of T106 (∼1.1◦×1.1◦) with 32 vertical layers up to an altitude

of 40 km using the MIROC-Chem global chemical transport model (Sekiya et al., 2018) and an ensemble Kalman filter (EnKF)

technique.

The forecast model calculates tracer transport, emissions, deposition, and chemical processes, including the ozone-HOx-

NOx-CO-VOCs system (92 chemical species and 262 chemical reactions). The meteorological fields calculated in the dynam-125

ical and physical modules of MIROC-Chem were nudged to the 6-hourly ERA-Interim reanalysis (Dee et al., 2011) and used

in the chemical module at every model time step (4–8 min).

The TCR-2 reanalysis system employs the local ensemble transform Kalman filter (LETKF) technique (Hunt et al., 2007).

The state vector includes the surface emissions of NOx, CO, and SO2, and lightning NOx sources, as well as the concentrations

of 35 chemical species. Surface and lightning emissions were estimated based on a state argumentation method (e.g., Evensen,130

2009), which used the relationship between emissions and concentrations in the background error covariance matrix generated

based on ensemble model simulations. In the analysis step, the standard deviation of the emission ensembles was inflated to a

predefined minimum value obtained through sensitivity calculations (i.e., 56% of the a priori emissions) to prevent covariance

underestimation.

A priori emissions were obtained from the HTAP v2.2 inventory for the anthropogenic sources (Janssens-Maenhout et al.,135

2015) and the GFED v4.1 inventory for the biomass burning (Randerson et al., 2018), while those from soil NOx were based

on the GEIA inventory (Graedel et al., 1993).

A control model simulation without any data assimilation, which was evaluated by Miyazaki et al. (2020a), was used as the

baseline in this study.

2.1.3 IASI-r140

IASI-r (Emili and El Aabaribaoune, 2021) is a year long reanalysis experiment conceived to demonstrate the added value of

assimilating ozone sensitive infrared measurements from the Infrared Atmospheric Sounding Interferometer (August et al.,

2012). It was prepared based on previous experience in assimilating IASI Level 2 ozone retrievals (Emili et al., 2014; Peiro

et al., 2018) and Level 1 radiances (Emili et al., 2019; Aabaribaoune et al., 2021).

The chemical transport model being used was MOCAGE (Josse et al., 2004), and it was setup on a 2x2 degrees global145

grid with 60 vertical levels up to 0.1 hPa and using meteorological forcing from ERA-interim (Dee et al., 2011). The IASI-r

configuration employs a linearized ozone chemistry thorough the entire atmosphere (Cariolle and Teyssèdre, 2007), with the
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ozone in the middle and lower troposphere being relaxed to a static zonal climatology. This relatively light model configuration

is meant to run long term ozone reanalyses (Peiro et al., 2018), with assimilated observations providing the main spatio-

temporal constraint on tropospheric ozone distribution.150

IASI-r assimilates both ozone-sensitive radiances (Level 1) from IASI (980-1100 cm−1) and stratospheric level 2 profiles

from the Microwave Limb Sounder (MLS) using a 3-dimensional variational (3D-Var) data assimilation algorithm and hourly

windows. Background and observation error covariances were either diagnosed (Aabaribaoune et al., 2021) or specified as a

function of the vertical layer, tropopause height, and local ozone concentration (Emili and El Aabaribaoune, 2021). With the

given setup, only ozone concentrations can be corrected by the data assimilation. Due to the limited vertical sensitivity of155

the assimilated observations and the simplified model configuration, little information is provided by IASI-r on ground-level

ozone. Hence, the main target of IASI-r is ozone in the free and upper troposphere.

2.1.4 GEOS-Chem

We used the GEOS-Chem adjoint model (Henze et al., 2007) v35k to assimilate tropospheric NO2 observations from OMI

and simulate global ozone concentrations using the posterior NOx emissions at the 2◦×2.5◦ resolution for 2005–2016. The160

GEOS-Chem model is driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2)

meteorological fields from the NASA Global Modeling and Assimilation Office (GMAO). Prior anthropogenic emissions of

NOx, SO2, NH3, CO, NMVOCs (non-methane volatile organic compounds), and primary aerosols were obtained from the

HTAP 2010 inventory version 2 (Janssens-Maenhout et al., 2015). We also obtained 3-hourly wildfire emissions from GFED4

(Giglio et al., 2013). The other emissions and setups follow those of Qu et al. (2017, 2019a, b, 2020).165

The OMI Level 2 NO2 retrieval from the NASA product OMNO2 version 3 (Krotkov et al., 2017) was used for the assimi-

lation. We screened all OMI NO2 retrievals using data quality flags and by the criteria of positive tropospheric column, cloud

fraction of < 0.2, solar zenith angle < 75◦, and viewing zenith angle of < 65◦. All retrievals that are affected by row anomalies

were excluded. GEOS-Chem NO2 vertical column densities (VCDs) were converted to slant column densities (SCDs) using

scattering weight from the OMI retrievals and then compared the GEOS-Chem SCDs with the SCDs retrieved from OMI. A170

cost function was defined as the observation-error-weighted differences between the simulated and retrieved NO2 SCDs plus

the prior emissions error-weighted departure of the emission scaling factors from the prior estimates. The GEOS-Chem adjoint

model minimizes the cost function using the quasi-Newton L-BFGS-B gradient-based optimization technique (Byrd et al.,

1995; Zhu et al., 1994), in which the gradient of the cost function with respect to the control parameter is calculated using the

adjoint method. Details of the assimilation of NO2 SCDs, how vertical sensitivities of satellite retrievals are accounted for, and175

the hybrid 4D-Var/mass balance inversion of NOx emissions are described in Qu et al. (2017).

2.1.5 RAQMS

The RAQMS chemical reanalysis uses satellite trace gas and aerosol retrievals from the NASA satellites (Terra, Aqua, and

Aura) covering 2006 through 2016. The operational grid point statistical interpolation (GSI) 3d variational analysis system

(Wu et al., 2002) was used to assimilate retrievals from the Aura Ozone Monitoring Instrument (OMI) cloud cleared total180
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column ozone (McPeters et al., 2008), Microwave Limb Sounder (MLS) (Froidevaux et al., 2008) stratospheric ozone profiles,

OMI tropospheric column NO2 (Boersma et al., 2007), Terra and Aqua Moderate Resolution Imaging Spectrometer (MODIS)

aerosol optical depth (AOD) (Remer et al., 2005), and Atmospheric Infrared Sounder (AIRS) carbon monoxide (Yurganov et al.,

2008) at three-hour intervals. Analysis increments from the OMI tropospheric column NO2 assimilation were used for off-line

adjustment of the a priori 2010 Hemispheric Transport of Air Pollution (HTAP, 2010) anthropogenic emission inventories185

following an offline mass balance approach similar to East et al. (2022). RAQMS biomass burning emissions used Terra and

Aqua MODIS fire detections following Soja et al. (2004). The dynamical core of RAQMS is the UW-Hybrid model (Schaack

et al., 2004). RAQMS-Aura meteorological predictions were initialized at 6-hour intervals with archived analyses from the

National Center for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) (Kleist et al., 2009).

2.2 Observing system experiments (OSEs)190

The assimilated measurements were largely different among the systems, which increased the difficultiy of implementing

common OSE settings. The categorization of the assimilated measurements can be simplified into the three groups: strato-

spheric ozone (S), including total ozone column retrievals derived from backscatter ultraviolet (UV) instruments and ozone

profile retrievals using microwave instruments; tropospheric ozone (T), consisting of ozone profiles obtained from infrared

(IR) instruments; and ozone precursors (P), including tropospheric NO2 column retrievals from UV/visible sensors and total195

CO column and profile retrievals derived from IR instruments. As summarized in Table 2, five chemical reanalysis datasets

and additional OSEs were divided into the following three types: (1) simultaneous assimilation of ozone and its precursors

(S+T+P and S+P), (2) direct ozone assimilation (S+T, S, and T), and (3) assimilation of ozone precursor gases such as NO2

and CO (P). We also performed OSEs using the TCR-2 and IASI-r chemical reanalysis systems, including four TCR-2 OSEs

that assimilated MLS stratospheric ozone and HNO3 profiles (hereinafter TCR-2-S, type 2), TES tropospheric ozone profile200

(TCR-2-T, type 2), OMI, SCIAMACHY, and GOME-2 NO2 (TCR-2-P_NO2, type 3), and MOPITT CO (TCR-2-P_CO, type

3); and an IASI-r OSE for the IASI L1 radiance sensitive to tropospheric ozone profile (IASI-r-T, type 2).

2.3 Validation data

2.3.1 OMI-MLS satellite observations

For the validation, we used global distributions of the tropospheric ozone column (TOC) derived from OMI-MLS (Ziemke205

et al., 2006), which is a relatively independent data product that was not used in three of the chemical reanalysis systems (but

both OMI total ozone column and MLS ozone profiles were assimilated in CAMSRA and RAQMS). The TOC from OMI-MLS

was produced using the tropospheric ozone residual method, which subtracted the MLS stratospheric ozone column from the

OMI total ozone column. The OMI-MLS TOC was derived using tropopause pressure determined from NCEP analyses with

the 2 K km−1 vertical temperature gradient criterion of the World Meteorological Organization (WMO). The 1σ precision for210

the monthly-mean TOC was estimated to be approximately 1.3 DU (Ziemke et al., 2019). For comparison with the OMI-MLS

TOC, the same tropopause data from NCEP analyses were applied to the chemical reanalysis products.
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2.3.2 Ozonesonde observations

The vertical profiles of the ozone analyses were validated against independent ozonesonde observations obtained from the

World Ozone and Ultraviolet Data Center (WOUDC; http://www.woudc.org). The measurement precision was better than 5%,215

and the accuracy was within 5–10% (Smit et al., 2007). We used 261 profiles for the northern high latitudes (60–90◦N), 1284

profiles for the northern mid-latitudes (30–60◦N), 349 profiles for the tropics (30◦N–30◦N), 123 profiles for the southern mid-

latitudes (30–60◦S), and 196 profiles for the southern high latitudes (60–90◦S) from 2010. The observed and analyzed vertical

profiles were compared at ozonesonde locations in the 29 vertical pressure bins from 1013.25 to 70 hPa.

2.3.3 Surface in situ observations220

The TOAR global surface ozone database (Schultz et al., 2017) for 2010 was used to evaluate the surface ozone analyses. A

globally consistent TOAR database was constructed by combining almost 10,000 sites, characterizing the measurement sites,

and applying consistent quality control. The total uncertainty in modern ozone measurements (1990–2014) at a mean level

of 30 nmol mol−1 was estimated at <2 nmol mol−1 (Tarasick et al., 2019). The TOAR database provides annual, seasonal,

and monthly statistics for both urban and rural sites. All the reanalysis systems have relatively coarse horizontal resolutions;225

therefore, they can not resolve ozone variability in urban areas. Thus, we used 2◦×2◦ monthly-mean ozone concentrations at

the rural sites in 2010. For the comparison, all the ozone analysis fields were regridded from the original grid points onto a

2◦×2◦ grid.

3 Comparison of multiple chemical reanalysis products

3.1 Data assimilation impacts230

Figure 1 presents the vertical and latitudinal distributions of annual mean ozone concentrations obtained from the chemical

reanalysis products, control runs, and their differences for 2010. Large discrepancies in ozone concentrations between different

models were found in the lower stratosphere and troposphere, with the standard deviations of 27% in the global mean in the

upper troposphere and lower stratosphere (UTLS, 70–250 hPa), 8% in the middle troposphere (400–600 hPa), and 9% in the

lower troposphere (below 800 hPa).235

Data assimilation increased the annual mean ozone concentrations in the UTLS in 2010 by 10–40% in CAMSRA and by

more than 100% in RAQMS, except in the tropics, and it decreased the concentrations by 5–30% in TCR-2 and IASI-r. In the

middle troposphere, data assimilation increased the global mean ozone in all the reanalysis products in most cases, with larger

increases in TCR-2, IASI-r, and RAQMS (by 15–50%) than in CAMSRA and GEOS-Chem (by up to 5%). This discrepancy

reflects the large inter-system differences in assimilation increments over the tropics. In the lower troposphere, data assimilation240

increased the ozone concentration by 5–30% in CAMSRA, TCR-2, and RAQMS, whereas it only had minor impacts (< 5%) in

IASI-r and GEOS-Chem. Data assimilation also improved the consistency in ozone concentrations among the multiple systems,
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with the standard deviation of the global mean ozone between different reanalysis systems reduced to 3.2% in the UTLS, 1.7%

in the middle troposphere, and 2.5% in the lower troposphere.

Similar reductions in the multi-model spread were observed for near-surface ozone (Fig. 2). The standard deviations of the245

control runs were 22%, 11%, and 14% for the southern extratropics (25–90◦S), the tropics (25◦N–25◦S), and the northern

extratropics (25–90◦N), respectively. Data assimilation increased the near-surface annual mean ozone by 2–8 nmol mol−1 in

CAMSRA, TCR-2, and RAQMS. The impact of assimilation on surface ozone was small in the IASI-r and GEOS-Chem. Data

assimilation reduced the standard deviation of ozone analyses between the reanalysis systems to 14%, 6%, and 11% over the

southern extratropics, tropics, and northern extratropics, respectively.250

3.2 Validation using independent observations

3.2.1 OMI-MLS satellite observations

Figure 3 compares the tropospheric ozone column (TOC) between the chemical reanalysis products and control runs with OMI-

MLS TOC observations. All the control runs captured the observed general features. However, the CAMSRA and GEOS-Chem

control runs underestimated the TOC near 60◦N and 60◦S by up to 10 DU and overestimated the TOC from the tropics to the255

subtropics in both hemispheres by 5–10 DU. In contrast, the TCR-2 control run overestimated the TOC over the northern

mid-latitudes by approximately 5 DU and the IASI-r control run overestimated the TOC over the southern mid-latitudes by

2–4 DU, whereas both models underestimated the TOC over the tropics and subtropics by 5–15 DU. The RAQMS control run

overestimated the TOC over the tropical land areas and the Atlantic by approximately 5 DU and underestimated the TOC over

the Pacific and the Southern Oceans by up to 10 DU. The spatial correlation coefficients of the observed vs. simulated TOC260

ranged from 0.69 to 0.89.

After data assimilation, all the chemical reanalysis products commonly revealed positive biases of 5–10 DU from the tropics

to the mid-latitudes of both hemispheres. However, the spatial correlation coefficients were improved to > 0.83 in all the

systems. Thus, good consistency was observed among the reanalysis products. The remaining biases in the reanalysis products

indicate the difficulty of correcting tropospheric ozone through data assimilation of precursors and stratospheric profiles or265

column measurements of ozone. This could be related to model errors near the surface (e.g., excessive chemical production

of ozone from precursors), differences in procedures for computing TOC between the observations and models (e.g., vertical

discretization around the tropopause), and positive biases of OMI-MLS against ozonesonde observations (Gaudel et al., 2024).

In the IASI-r and TCR-2 systems, tropospheric ozone profiles were assimilated. However, common positive biases against

OMI-MLS can partly be affected by positive biases in the assimilated tropospheric ozone retrievals (Boxe et al., 2010; Dufour270

et al., 2012).

3.2.2 Ozonesondes

Figure 4 presents the vertical distributions of mean biases and root-mean-square errors (RMSEs) for the reanalysis products

and control runs relative to ozonesonde observations, over five latitude bands in 2010. As summarized in Table 3, in the UTLS
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(70–250 hPa), large positive and negative ozone biases in the control runs varied among the models over all the latitude bands.275

The multi-model average RMSE against ozonesonde observations was 55±17% globally (44–61% for the five latitude bands).

In the middle troposphere (400–600 hPa), the model biases in the control runs were negative over the southern mid-latitudes

and the northern mid-latitudes and high latitudes, whereas the biases varied among the models over the southern high latitudes

and the tropics. The multi-model average RMSE was 28±4% (25–34% between the different latitude bands).

In the lower troposphere (800–900 hPa), model biases in the control runs differed between models over the southern mid-280

latitudes, high latitudes, and tropics, whereas the model biases were commonly negative over the northern mid-latitudes and

high latitudes. The RMSE for ozone obtained from the multiple forecast models was 27±5% (20–43% over the five latitude

bands).

Data assimilation reduced the mean biases in the UTLS to −3 to 9% over all the latitude bands relative to the control runs.

Over the tropics, the mean bias in TCR-2 was increased by 3% owing to data assimilation. Nevertheless, large positive and285

negative biases above and below 150 hPa were largely reduced by data assimilation, compared to the control runs in TCR-2.

Data assimilation decreased the RMSEs of the multi-system mean and spread obtained from the reanalysis systems to 30±7%

relative to global ozonesonde observations in the UTLS (18–40% over the five latitude bands).

In the middle troposphere, data assimilation increased the mean biases to 5–15% in TCR-2, IASI-r, and RAQMS over the

southern high latitudes relative to the control runs, although it decreased the mean biases in CAMSRA to less than 2%. Data290

assimilation also reduced the mean biases over the southern mid-latitudes (except for IASI-r), the tropics, and the northern mid-

latitudes and high latitudes. The multi-system RMSE mean and spread were also decreased by data assimilation to 23±3%,

compared to the control runs over the globe (21–28% over all the latitude bands).

In the lower troposphere, in contrast to the middle troposphere, the mean biases in TCR-2, IASI-r, and RAQMS were reduced

by up to 88% over the southern high latitudes, compared to the control runs, while the mean bias in CAMSRA was increased.295

Over the tropics, data assimilation increased the mean biases by 54% in TCR-2 and a factor of 4.4 in RAQMS. Over the

southern mid-latitudes and northern mid-latitudes and high latitudes, data assimilation decreased the mean biases in all the

reanalysis systems. The multi-system RMSE mean and spread were also reduced to 25±5% compared to global ozonesonde

observations (18–42% over all the latitudes bands).

3.2.3 Surface in situ networks300

Figure 5 shows the model biases of the annual mean surface ozone against the TOAR database (Schultz et al., 2017) over the

United States, Western Europe, and Northeast Asia for 2010. Over the United States, the control runs showed positive biases

relative to the TOAR database, ranging from 2.4 to 16.2 nmol mol−1. The spatial correlation coefficients and RMSEs in the

control runs were 0.13–0.54 and 5.3–16.7 nmol mol−1 compared to the TOAR database, respectively. After data assimilation,

the positive model biases were increased by up to a factor of 2.5. The spatial correlation coefficients were decreased by 0.01–305

0.05, except for TCR-2, whereas the RMSEs were increased by up to 31%.

Over Western Europe, surface ozone model biases in the control runs were 2.5–15.1 nmol mol−1 relative to the TOAR

database. The spatial correlation coefficients and RMSEs were 0.37–0.55 and 5.7–15.8 nmol mol−1 compared to the TOAR
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database, respectively. Data assimilation increased the positive model biases by a factor of up to two. The spatial correlation

coefficients were slightly decreased by 0.005–0.01 in CAMSRA and GEOS-Chem, whereas the spatial correlation coefficients310

were increased by 0.02–0.06 in TCR-2 and RAQMS. The RMSEs were increased by 1–35%.

Over Northeast Asia, surface ozone model biases in the control runs were positive (4.2–17.8 nmol mol−1) compared to

the TOAR database. The spatial correlation coefficients ranged from 0.01 to 0.5 among the models. The RMSEs against the

TOAR database were 7.6–18.8 nmol mol−1. Through data assimilation, the model biases were increased by up to 42% in all

the systems. The spatial correlation coefficients were decreased by 0.03 in RAQMS but improved by 0.02–0.07 in CAMSRA,315

TCR-2, and GEOS-Chem. The RMSEs were increased by up to 23% for all the systems.

Overall, the positive model bias of surface ozone against all available observations (0.3–12.8 nmol mol−1) was increased by

data assimilation by up to a factor of 4. The spatial correlation coefficients were slightly decreased by data assimilation from

0.11–0.59 to 0.08–0.58, except for TCR-2. The RMSEs were increased by up to 18% for all the reanalysis products. Satellite

data assimilation reduced negative model biases in the free troposphere, whereas propagation of the ozone increments to the320

surface increased surface ozone biases. These results indicate a misrepresentation of physical and chemical model processes

near the surface in the current global forecast models (Parrington et al., 2009; Travis et al., 2016) and highlight the need to

incorporate surface observations into the current global chemical reanalysis data (Hanea et al., 2004; Huang et al., 2013).

4 Relative impacts of satellite ozone and its precursor observations

4.1 OSE results325

OSEs were used to evaluate the relative impacts of individual assimilated measurements, as summarized in Table 2. In par-

ticular, we focused on three groups: (1) simultaneous assimilation of ozone and its precursors (S+T+P or S+P), (2) direct

assimilation of stratospheric and tropospheric ozone (S+T, S, or T), and (3) assimilation of ozone precursors including NOx

and CO on ozone analysis (P(NO2) or P(CO)). As shown in Figs. 1, 2, 6, and 7, the effects of assimilation varied from system to

system. Nevertheless, similarities in the general patterns were observed. System-dependent differences in ozone increments can330

be attributed to differences in model biases, data assimilation configurations (e.g., concentration and/or emission optimization),

and assimilated measurements.

For the simultaneous assimilation cases (S+T+P or S+P), in the UTLS, the global mean ozone concentrations increased

in CAMSRA (S+P) and RAQMS (S+P) by 18–61% but decreased in TCR-2 (S+T+P) by 21%. The discrepancy in the

increments reflects opposite model biases (c.f., Section 3.2.2). In the middle and lower troposphere, ozone concentrations335

commonly increased over the extratropics but varied in magnitudes, ranging from 3% (CAMSRA) to 20% (TCR-2). Increases

in ozone near the surface were also common, with larger increases over remote areas than over the polluted and biomass-

burning areas. The increases in ozone concentrations obtained from the systems with emission optimization (by 11–27% in

TCR-2 and RAQMS) tended to be larger than those without optimization (by 4–11% in CAMSRA).

The direct ozone assimilation cases (S+T, S, or T) showed similar latitudinal and vertical patterns in the effects of data340

assimilation in the middle to upper troposphere (Fig. 6), reflecting similar model biases in the MIROC-Chem and MOCAGE
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models. The maximum changes in the tropical middle and lower troposphere was more than 40%. TCR-2-S (S), TCR-2-T (T),

IASI-r (S+T), and IASI-r-T (T) increased the ozone concentration in the middle troposphere (by 6–22%) and decreased it in

the UTLS (by 2–21%). Decreases in UTLS ozone in the assimilation of stratospheric ozone profiles (TCR-2-S (S) and IASI-r

(S+T)), were commonly larger than those in the assimilation of tropospheric ozone only (TCR-2-T (T) and IASI-r-T (T)). The345

effects on the tropical lower stratosphere and lower troposphere differed between TCR-2 and IASI-r. These different patterns

may reflect differences in assimilated observations (TES vs. IASI) as well as model biases. Near the surface, direct ozone

assimilation in TCR-2 showed large data assimilation impacts of up to 7%, 13%, and 8% in the southern extratropics, tropics,

and northern extratropics, respectively (Fig. 7). The surface ozone change was smaller in IASI-r, partly because the prescribed

background error covariance (by 10%) in IASI-r in the lower troposphere was smaller than the ensemble spread of the ozone350

first guess (typically by 15–17%) in TCR-2. Other reasons for significant differences near the surface could be related to the

altitude-dependent sensitivities of the assimilated observations (i.e., averaging kernels).

The assimilation of ozone precursor gases (P(NO2) or P(CO)) increased the ozone concentrations in the lower and middle

troposphere in the OSEs using TCR-2 and GEOS-Chem. The TCR-2 OSE results indicated a larger impact on the surface and

lower tropospheric ozone from the assimilation of NO2 (by +7%) than from the assimilation of CO (by +1.5%). The impacts of355

tropospheric NO2 assimilation varied among the systems, ranging from 0.1% (GEOS-Chem) to 7% (TCR-2). This discrepancy

may be related to the smaller increments in NOx emissions in the GEOS-Chem adjoint calculation when assimilating the

OMNO2 NASA standard product than those when assimilating the DOMINO and QA4ECV products (Qu et al., 2020). This

discrepancy can also be caused by the different sensitivities of ozone to changing NOx emissions between GEOS-Chem and

MIROC-Chem (Miyazaki et al., 2020b) and the simultaneous corrections of NOx emissions and concentrations in TCR-2360

(Miyazaki et al., 2012b). Meanwhile, the positive responses of ozone to MOPITT CO assimilation were consistently reported

by Gaubert et al. (2016).

4.2 Validation against ozonesonde observations

As shown in Figs. 8 and 9, the chemical reanalysis products and OSEs were validated using ozonesonde observations. In the

extratropical UTLS, model biases were largely reduced by more than 67% by the simultaneous assimilation in CAMSRA365

(S+P), TCR-2 (S+T+P), and RAQMS (S+P). Over the tropics, model biases were also reduced by up to 74% in the lower

stratosphere (70–150 hPa) and 44% in the upper troposphere (150–250 hPa), respectively (Fig. 9). The OSEs suggested the

importance of the direct assimilation of stratospheric ozone profiles in IASI-r (S+T) and TCR-2-S (S), with bias reductions

of 73–95% over the extratropics. Although the mean bias in the tropical UTLS (70–250 hPa) was increased in TCR-2-S, the

positive and negative biases were improved by 60% in the lower stratosphere and by 86% in the upper troposphere.370

In the middle troposphere, the model bias was reduced by 88% in CAMSRA (S+P) over the southern high latitudes, whereas

it was increased by 3–21% in TCR-2 (S+T+P) and RAQMS (S+P). Over the other four latitude bands, the simultaneous

assimilation (S+T+P or S+P) improved the model biases compared to ozonesonde by 24–99%. The direct ozone assimilation

of TES tropospheric ozone profile in TCR-2-T (T) showed bias reductions of 67% and 89% over the southern mid- and high

latitudes, respectively. In contrast, model biases were increased by the IASI tropospheric ozone assimilation in IASI-r (S+T).375
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Over the tropics, the model biases were reduced by 45–73% in TCR-2-T (T) and IASI-r (S+T) in the northern mid-latitudes

and high latitudes. The assimilation of ozone precursor measurements in TCR-2-P_NOx and TCR-2-P_CO (P) reduced the

model biases by 34–97% over all the latitude bands, with the exception of TCR-2-P_CO over the southern high latitudes.

In the lower troposphere, the simultaneous assimilation reduced the model biases over the southern high latitudes by up

to 88% in TCR-2 (S+T+P) and RAQMS (S+P), except for CAMSRA (S+P). Over the tropics, the CAMSRA remained380

essentially unchanged (by 2%), whereas the other simultaneous assimilations increased model biases. Over the southern mid-

latitudes, and northern mid-latitudes and high latitudes, all the simultaneous assimilation (S+T+P and S+P) reduced the

negative model biases by 24–81%. Over the extratropics, the direct tropospheric ozone assimilation (S+T and T) reduced

the model biases by up to 82%. Compared with these improvements, the assimilation of precursor measurements (P) showed

comparable or larger bias reductions of 33–90% over the extratropics. Over the tropics, however, improvements in model385

biases were not found for the direct ozone assimilation or precursor assimilation (S+T, T, and P), except for IASI-r (by 59%).

These results could partly be affected by biases in the assimilated measurements (Boxe et al., 2010), a lack of observational

constraints on biogenic VOCs (De Smedt et al., 2018; Wells et al., 2022), and missing model processes, such as tropospheric

halogen chemistry (Sherwen et al., 2016; Sekiya et al., 2020).

5 Discussion390

The results obtained from multi-system OSEs have important implications for the development of a future satellite constel-

lations. Multi-system OSE comparisons broadly suggested that integrating measurements of ozone and its precursors is an

effective way to improve the entire profile of ozone in the troposphere and lower stratosphere. This has been commonly sug-

gested by previous single-system OSE studies (e.g., Miyazaki et al., 2019), and indicates the great value of the current satellite

constellation. Furthermore, the present study shows that the spread of data assimilation impacts among multiple systems can395

be used to evaluate whether the observing system impacts are dependent on the reanalysis system. These findings should lead

to more robust assessments of the observing system impacts. The impact of assimilating OMI tropospheric NO2 on lower

tropospheric ozone varied from +0.1% to +7%. These results indicate that the assessment of observing system impacts is

sensitive to the choice of data assimilation system. This difference reflects a variety of factors, including systematic biases

among products derived from different retrieval algorithms (Qu et al., 2020), inappropriate data assimilation settings to fully400

exploit observational information (e.g., underestimation of background errors), and different model biases among systems.

However, even with improved observing systems, the impact of data assimilation will be limited because of the different

complexities of chemical mechanisms (Huijnen et al., 2019; Miyazaki et al., 2020b), deposition processes (Hardacre et al.,

2015; Young et al., 2018), and model physics, such as cloud formation and convective transport. Furthermore, VOCs such

as formaldehyde (De Smedt et al., 2018) and isoprene (Wells et al., 2022) have not commonly been assimilated in the cur-405

rent chemical reanalysis systems. The lack of observations on important factors that determine chemical ozone formation

underscores the need to fully exploit available observational information and causes underestimates of the value of the current

observational system in the reanalysis framework.
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Current chemical reanalysis systems employ various data assimilation techniques, including 3D-Var, 4D-Var, and EnKF.

These approaches differ in their assumptions and concepts and therefore in their performance (Lorenc and Rawlins, 2005;410

Kalnay et al., 2007). 4D-Var and EnKF exhibit comparable performance for both meteorological (Miyoshi et al., 2010) and

chemical data assimilation (Wu et al., 2008; Skachko et al., 2014). A specific challenge in chemical data assimilation that differs

from NWP is that chemical systems are stiff, stable, and highly dependent on input parameters, such as emissions and kinetic

parameters (Carmichael et al., 2008; Miyazaki et al., 2012a). Therefore, the optimization of precursor emissions is considered

as an essential component of ozone analysis and OSE to provide a more meaningful evaluation of the current observing system.415

The feasibility and performance of emissions optimization using satellite observations, which have limited sensitivity to the

lower troposphere, depends on data assimilation approaches. Nevertheless, optimizing precursor emissions using either online

(i.e., simultaneous optimization of concentrations and emissions of various species) or offline (e.g., independent mass balance

of a single species) approaches is important for improving the performance of OSE and reanalysis.

The OSEs presented in this study have important implications for improving the integration of future observations, including420

geostationary orbit (GEO) satellites and surface observations, in addition to low Earth orbit (LEO) satellites. The multi-system

analysis suggested that the model bias at the surface is hardly reduced by the assimilation of any satellites. This highlights

the importance of the data assimilation in surface observations (Kong et al., 2021) and machine learning (ML)-based bias

corrections (He et al., 2022). However, obtaining sufficient global coverage for surface observing system remains a challenge.

The simultaneous assimilation of LEO and GEO satellites, such as GEMS, TEMPO, and Sentinel-4, is expected to improve425

our understanding of nonlinear ozone chemistry and its diurnal cycles at the urban scale across different regions. Moreover,

such assimilation will allow us to estimate uncertain model parameters, such as diurnal emission profiles, kinetic reactions, and

photolysis rates (Zoogman et al., 2014; Timmermans et al., 2019; Quesada-Ruiz et al., 2020; Shu et al., 2023). Advanced data

assimilation techniques such as 4D-Var and EnKF are required to simultaneously and effectively assimilate observations from

different platforms.430

6 Summary and conclusion

The IGAC TOAR-II Chemical Reanalysis WG activities summarized the capabilities of current chemical reanalysis products

for various scientific applications. In this study, we evaluated the relative impacts of the assimilating satellite measurements of

ozone and its precursors on surface and free tropospheric ozone analysis using five global chemical reanalysis systems, namely,

CAMSRA, TCR-2, IASI-r, GEOS-Chem, and RAQMS, for 2010. The use of multiple reanalysis systems allows for observing435

system impact assessments that are less dependent on the performance of individual forecast models and the configurations of

individual data assimilation systems. Without data assimilation, large standard deviations in the ozone concentrations between

the different models were found in the control runs. For example, the standard deviations were 27%, 8%, and 9% for UTLS,

middle troposphere, and lower troposphere, respectively. Data assimilation improved the inter-system agreement and reduced

the standard deviation to 3.2%, 1.7%, and 2.5% for UTLS, middle troposphere, and lower troposphere, respectively. In most440

cases, the consistency with independent ozonesonde observations was also improved by data assimilation. The RMSEs against
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global ozonesonde observations were reduced from 27 to 56% in the UTLS, middle troposphere, and lower troposphere to

23 to 30% by data assimilation. However, biases against surface in situ observations showed limited improvements after data

assimilation in any of the reanalysis systems. This finding was probably because of the common positive biases of surface

ozone in global models (e.g., Turnock et al., 2020) and the low sensitivity of satellite observations to surface ozone.445

Although the assimilated observations varied among the reanalysis systems, we examined the relative impacts of satellite

ozone and precursor measurements and their dependence on reanalysis systems with additional OSEs in similar settings across

some of the systems. These OSEs suggested the importance of including precursor measurements, especially for NOx, to

improve ozone analysis for the middle and lower troposphere. In addition, the impact of these measurements varied widely

between the systems, ranging from +0.1% (GEOS-Chem) to +7% (TCR-2). The impacts of direct ozone assimilation showed450

qualitatively similar latitudinal and vertical patterns between IASI-r and TCR-2, with increases by 6–22% and decreases by

2–21% in the middle troposphere and UTLS, respectively. The consistency with the ozonesonde observations was improved by

the assimilation of ozone and its precursors, with bias reductions of up to 68% over the tropical middle troposphere and up to

89% over the middle troposphere over the northern mid-latitudes, respectively. The impacts of direct ozone assimilation were

dominant for the UTLS, with bias reductions of up to 91±9% over the northern mid-latitudes.455

In conclusion, the simultaneous assimilation of satellite measurements of stratospheric and tropospheric ozone, and its pre-

cursors is an effective way to improve the overall tropospheric ozone analysis. The UTLS and middle tropospheric ozone

analyses were consistently improved by satellite observations of the stratospheric and tropospheric ozone profiles, and the

middle and lower tropospheric ozone analyses were also improved by the satellite observations of the ozone precursors. The

impacts of assimilating satellite observations on ozone analysis varied widely among the different reanalysis systems. Fur-460

ther investigation of the model dependence of the assimilating ozone precursor observations with more reanalysis systems is

required to assess the uncertainties in the background error covariance between concentrations and emissions. These results

indicate the importance of considering the effects of the forecast model performance and data assimilation configurations on

the observing system impact assessments in order to provide an unbiased basis for the discussion of future observing system

designs.465

GEOS-Chem-adjoint top-down NOx emission data are available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/470

DVN/HVT1FO.
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Reanalysis

Control simulation

Reanalysis - control simulation

Figure 1. Latitude-pressure level cross sections of annual mean tropospheric ozone concentrations obtained from reanalysis products (top),

control simulations (middle), and their differences (bottom) in 2010. The first through fifth columns present data from CAMSRA, TCR-2,

IASI-r (MOCAGE), GEOS-Chem-adjoint, and RAQMS Aura reanalysis, and the sixth and seventh columns present multi-system average and

spread normalized by the mean-system average data, respectively. The difference in the multi-system spread is defined as (stdev(reanalysis)

- stdev(control)) / stdev(control) × 100, where stdev represents standard deviation. The units of ozone concentrations and the differences

between reanalysis products and control simulations are mole fraction in air (nmol mol−1) and percentage (%), respectively. The unit of

multi-system spread is percentage (%).
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Figure 2. Global distribution of annual mean surface ozone concentrations obtained from the reanalysis products (top), control simulations

(middle), and their differences (bottom) in 2010. The first through fifth columns represent data from CAMSRA, TCR-2, IASI-r, GEOS-

Chem-adjoint, and RAQMS Aura reanalysis, and the sixth and seventh columns present multi-system average and spread normalized by

the mean-system average data, respectively. The difference in the multi-system spread is defined as (stdev(reanalysis) - stdev(control)) /

stdev(control) × 100, where stdev represents standard deviation. The units of ozone concentrations and the differences between reanalysis

products and control simulations are mole fraction in air (nmol mol−1) and percentage (%), respectively. The unit of multi-system spread is

percentage (%).
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Figure 3. Global distributions of tropospheric ozone column (TOC) derived from the OMI-MLS observations (first column) and mean bias

of the CAMSRA (second column), TCR-2 (third column), IASI-r (fourth column), the GEOS-Chem-adjoint (fifth column), the RAQMS

Aura reanalysis (sixth column), and multi-system mean bias (seventh column) relative to OMI-MLS. Top and bottom panels are the control

simulations and reanalysis products, respectively. The unit is the Dobuson unit (DU). The spatial correlation coefficient (r) between OMI-

MLS and the reanalysis/control simulation is also shown below the map.
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Bias

RMSE

Figure 4. Vertical profiles of bias (top) and RMSE (bottom) for the reanalysis products and the control simulations compared to ozonesonde

observations in 2010. The first through fifth columns present the southern high latitudes (60–90◦S), the southern mid-latitudes (30–60◦S), the

tropics (30◦S–30◦N), the northern mid-latitudes (30–60◦N), and the northern high latitudes (60–90◦N). The blue line indicates CAMSRA,

the red line indicates IASI-r, the green line indicates TCR-2, the orange line indicates the RAQMS Aura reanalysis, and the black line

indicates multi-system averages. The solid and dashed lines indicate the reanalysis products and the control simulations, respectively. The

unit is percentage (%).
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Figure 5. Bias of annual mean surface ozone relative to the TOAR database (nmol mol−1) in CAMSRA (first column), TCR-2 (second

column), GEOS-Chem-adjoint (third column), and the RAQMS Aura reanalysis (fourth column) in 2010. The first, third, and fifth rows

are the control simulations without data assimilation, and the second, fourth, and sixth rows are the reanalysis products. The “rural_mean”

aggregated data were used for the comparison. The model and reanalysis output was mapped onto the 2◦×2◦ grid.
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Direct ozone assimilatoin (S or T)

TCR-2-S analysis-control (S) TCR-2-T analysis-control (T) IASI-r-T analysis-control (T)

Ozone precursor assimilatoin (P)

TCR2-P_NO2 analysis-control (P) TCR2-P_CO analysis-control (P)

Figure 6. Latitude-pressure level cross sections of changes in annual mean ozone concentrations owing to data assimilation obtained from

the OSEs in 2010. The top row presents the direct ozone assimilation (S and T): TCR-2-S (left), TCR-2-T (center), and IASI-r-T (right); and

the bottom row presents the assimilation of ozone precursors (P): TCR-2-P_NOx (left), and TCR-2-P_CO (center). The units are percentage

(%).
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Figure 7. Global distribution of changes in annual mean surface ozone concentrations owing to data assimilation obtained from OSEs in

2010. The top row presents the direct ozone assimilation (S and T): TCR-2-S (left), TCR-2-T (center), and IASI-r-T (right); and the bottom

row presents the assimilation of ozone precursors (P): TCR-2-P_NOx (left), and TCR-2-P_CO (center). The unit is percentage (%).

Table 1. List of chemical reanalysis systems used in this study.

Reanalysis

system
Resolution Scheme

Assimilated observations

ReferenceStratospheric ozone (S)
Tropospheric ozone (T) Precursor gases (P)

Total column
Profile

/Partial column

CAMSRA 0.75◦×0.75◦ 4D-Var

OMI GOME2,

SCIAMACHY,

TROPOMI, OMPS

SBUV, MLS,

MIPAS

MOPITT (CO),

OMI (NO2)
Inness et al. (2019)

TCR-2 1.1◦×1.1◦ EnKF MLS TES

MOPITT (CO),

OMI, SCIAMACHY,

GOME-2 (NO2)

Miyazaki et al. (2020a)

IASI-r 2◦×2◦ 3D-Var MLS IASI (L1) Emili and El Aabaribaoune (2021)

GEOS-Chem 2◦×2.5◦ 4D-Var OMI (NO2) Qu et al. (2020)

RAQMS 1◦×1◦ 3D-Var OMI MLS
AIRS (CO),

OMI (NO2)
Pierce et al. (2009)
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UTLS (70-250 hPa)

MT (400-600 hPa)

LT (800-900 hPa)

Figure 8. Relative changes in the absolute value of the mean bias (%) due to data assimilation in the reanalysis products and OSEs. These

changes are calculated as follows: (|MBDA| − |MBCTL|) / |MBCTL| × 100, where MB is mean bias. Upper row is the upper troposphere and

lower stratosphere (UTLS, 70–250 hPa), middle row is the middle troposphere (MT, 400–600 hPa), and bottom row is the lower troposphere

(LT, 800–900 hPa) in 2010. First through fifth columns present the southern high latitudes (60–90◦S), the southern mid latitudes (30–

60◦S), the tropics (30◦N–30◦S), the northern mid latitudes (30–60◦N), and the north high latitudes (60–90◦N). The black bars indicate the

simultaneous assimilation of ozone and its precursors (S+T+P and S+P): CAMSRA, TCR-2, and the RAQMS Aura reanalysis. The red

bars indicate the direct ozone assimilation (S+T, S, and T): IASI-r, TCR-2-S, and TCR-2-T, and the blue bars indicate the assimilation of

ozone precursors (P): TCR-2-P_NOx and TCR-2-P_CO.
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Simultaneous assimilation (S+T+P and S+P)

Ozone precursor assimilation (P)

Direct ozone assimilation (S+T, S, and T)

Figure 9. Vertical profiles of the bias for the data assimilation (solid lines) and the control simulations (dashed lines) relative to ozonesonde

observations in 2010. Top panels are the simultaneous assimilation (S+T+P and S+P), middle panels are the direct ozone assimilation (S+T,

S, and T), and bottom panels are the ozone precursors assimilation (P). First through fifth columns present the southern high latitudes (60–

90◦S), the southern mid-latitudes (30–60◦S), the tropics (30◦S–30◦N), the northern mid-latitudes (30–60◦N), and the northern high latitudes

(60–90◦N). The blue line indicates CAMSRA, the green line indicates TCR-2, the orange line indicates the RAQMS Aura reanalysis, the

red line indicates IASI-r, the sky-bule line indicates TCR-2-S, the brown line is TCR-2-T, the pink line is TCR-2-P_NOx, and the purple line

indicates TCR-2-P_CO. The unit is percentage (%).
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Table 2. List of experiments used in this study. S, T, and P represent the assimilation of satellite observations of stratospheric and tropospheric

ozone and its precursors, respectively). CTL represents the control simulations without any data assimilation. XF denotes the assimilation

of full set of observations for each system.

Ozone+Precursor Ozone Precursor

Reanalysis S+T+P S+P S+T S T P(NO2) P(CO) CTL

CAMSRA XF X

TCR-2 XF X X X X X

IASI-r XF X X

GEOS-Chem XF X

RAQMS XF X

Table 3. Mean bias (MB) ranges between different systems and root-mean-square errors (RMSEs) multi-system mean and spread for the

reanalysis [control simulation in the square brackets] against ozonesonde observations in the upper troposphere (UTLS), middle troposphere

(MT), and lower troposphere (LT) over five latitude bands. The unit is percentage (%).

60–90◦S 30–60◦S 30◦S–30◦N 30–60◦N 60–90◦N Global

UTLS (70–250 hPa)
MB 5–9 [-40–64] 5–7 [-32–49] 6–8 [-16–12] -3–2 [-48–28] -3–(-0.6) [-59–26] -1–2 [-47–30]

RMSE 31±8 [62±17] 30±6 [57±12] 40±5 [48±6] 31±7 [52±16] 18±4 [44±18] 30±7 [55±17]

MT (400–600 hPa)
MB 1–15 [-12–13] -0.5–6 [-10–(-2)] 2–12 [-32–8] -7–1 [-20–(-8)] -4–0.4 [-16–(-5)] -3–1 [-18–(-6)]

RMSE 25±6 [25±4] 27±3 [28±3] 28±5 [34±8] 22±2 [26±4] 21±3 [25±2] 23±3 [28±4]

LT (800–900 hPa)
MB -3–34 [-24–34] -3–13 [-22–14] 2–31 [-5–20] -14–3 [-17–(-3)] -7–1 [-19–(-4)] -7–3 [-14–(-2)]

RMSE 29±10 [31±12] 22±5 [25±5] 42±10 [43±10] 22±4 [24±5] 18±3 [20±4] 25±5 [27±5]
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