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Abstract. In Part I, we created an ensemble based on Spherical Fourier Neural Operators. As ini;al condi;on perturba;ons, 

we used bred vectors, and as model perturba;ons, we used mul;ple checkpoints trained independently from scratch. Based 

on diagnos;cs that assess the ensemble’s physical fidelity, our ensemble has comparable performance to opera;onal 

weather forecas;ng systems. However, it requires several orders of magnitude fewer computa;onal resources. Here in Part 

II, we generate a huge ensemble (HENS), with 7,424 members ini;alized each day of summer 2023. We enumerate the 

technical requirements for running huge ensembles at this scale. HENS has two primary applica;ons: (1) as a large dataset 

with which to study the sta;s;cs and drivers of extreme weather and (2) as a weather forecas;ng system. HENS precisely 

samples the tails of the forecast distribu;on and presents a detailed sampling of internal variability. For extreme climate 

sta;s;cs, HENS samples events 4σ	away from the ensemble mean. At each grid cell, HENS improvesincreases the skill of the 

most accurate ensemble member and enhances coverage of possible future trajectories. As a weather forecas;ng model, 

HENS issues extreme weather forecasts with be^er uncertainty quan;fica;on. It also reduces the probability of outlier 

events, in which the verifica;on value lies outside the ensemble forecast distribu;on. 

1 Introduc;on 

Ensemble forecasts are an invaluable tool in weather and climate forecas;ng. By characterizing the probability distribu;on 

of possible future outcomes, they improve decision-making in the face of uncertainty (Mankin et al., 2020). In opera;onal 

numerical weather predic;on, there has been significant progress in accurately represen;ng uncertainty to create 

probabilis;c ensemble predic;ons (Palmer, 2002; Leutbecher and Palmer, 2008). In climate science, large ensembles of 

climate simula;ons are essen;al to separate internal variability from forced trends (Deser et al., 2020; Kay et al., 2015). 

Notable examples include the 100-member Community Earth System Model Large Ensemble with 100 members, and the 
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1000-member Observa;onal Large Ensemble, which uses bootstrap resampling and signal processing methods to sta;s;cally 

characterize internal variability (McKinnon et al., 2017). 

Recent studies detec;ng and a^ribu;ng extreme events state that smallSmall sample sizes are a major challenge to 

characterizing and researching extremes in the observa;onal record (Thompson et al., 2017; Zhang et al., 2024; Bercos-Hickey 

et al., 2022; Philip et al., 2022). These low-likelihood high-impact events, such as heatwaves beyond 3 standard devia;ons 

away from the climatological mean (e.g. those characterized in Zhang and Boos (2023)), have significant implica;ons for 

human society and health. The observa;onal record is limited to approximately fiey years, based on the start of the satellite 

era. Ensembles of weather and climate simula;ons alleviate this challenge by providing a large sample size of plausible 

atmospheric states and trajectories. Finkel et al. (2023) characterize sudden stratospheric warming events using a large 

dataset of subseasonal-to-seasonal ensemble hindcasts. The UNprecedented Simulated Extreme ENsemble (UNSEEN) 

approach tests whether an ensemble predic;on system is fit for purpose by assessing its stability and fidelity (Kelder et al., 

2022b, a). Aeer they have been validated, ensembles have been used to quan;fy risk (Thompson et al., 2017), return-;me 

(Leach et al., 2024), trends (Kirchmeier-Young and Zhang, 2020), a^ribu;on to climate change (Leach et al., 2021), and future 

changes (Swain et al., 2020) of low-likelihood, high -impact extremes. 

Given the benefits of ensemble predic;ons, a core design decision is the number of ensemble members used in the 
ensemble. 

 The ensemble size has significant implica;ons for the forecast’s accuracy, uncertainty, and reliability. For climate 

simula;ons, Milinski et al. (2020) outline key steps and requirements to create ini;al condi;on ensemble. They present a 

framework to calculate the necessary number of ensemble members basedensembles. Based on a user-specified maximum 

threshold for acceptable error and uncertainty, they present a framework to calculate the required number of members. In 

weather forecas;ng, Leutbecher (2018) discuss the sampling uncertainty associated with finite sample sizes. They also assess 

how probabilis;c scores, such as the con;nuous ranked probability score, (CRPS), converge as a func;on of ensemble size. 

Using reliability diagrams, Richardson (2001) demonstrate that 50-member ensembles are more reliable than 20-member 

ones. Siegert et al. (2019) assess the effect of ensemble size if the forecast is converted to a normal distribu;on, using the 

mean and standard devia;on from the ensemble. In ensembles of up to 32 members, Buizza and Palmer (1998) characterize 

the effect of ensemble size on two metrics: (1) the skill of the best ensemble member at each gridpointgrid point and (2) the 

outlier sta;s;c. These two metrics reveal the benefit of larger ensembles, and we calculate these two sta;s;cs in a modern-

day huge ensemble. 

Due to their computa;onal costs, it is imprac;cal to run massive ensembles with numerical weather and climate models. 

In Part I, we introduced an ensemble based on Spherical Fourier Neural Operators, Bred Vectors, and Mul;ple Checkpoints 

trained from scratch (SFNO-BVMC). The ensemble is orders of magnitude faster than comparable numerical simula;ons, so 

it enables the genera;on of huge ensembles (HENS). We validatevalidated the fidelity of SFNO-BVMC extremes using mean, 

spectral, and extreme diagnos;cs. Here in Part II, we use SFNO-BVMC to generate ensemble hindcasts ini;alized on each 

day of summer 2023. We choose summer 2023 as our test period because it is the ho^est summer in the observed record 
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(Esper et al., 2024). Therefore, it is an important period to validate forecasts of extreme heatwaves and to analyze low-

likelihood high-impact heatwaves in a warming world. We use SFNO-BVMC to generate a huge ensemble with 7,424 

members; each ensemble member is run for 15 days. Throughout this manuscript, we refer to this par;cular set of huge 

ensemble hindcasts during summer 2023 as "HENS." We contextualize the size of HENS compared to other large ensembles 

in Figure 1. HENS has more members than the majority of ensembles used in the past. 

The central mo;va;on for HENS is to remove the limita;on of small sample size when studying and forecas;ng low 

likelihood, high-impact extremes. In this manuscript, we present the HENS dataset and framework as a tool to generate many 

 

 

Figure 1. Ensemble Sizes in Weather and Climate Predic:on. The le= panel shows the ensemble size of tradi:onal ensembles, which rely 

on numerical, physics-based simula:on. The right panel shows ensemble sizes from machine learning weather predic:on ensembles. Huge 

Ensembles (HENS) is the ensemble presented here, and it is highlighted with red. Bracketed numbers correspond to the numbered list of 

references for this figure provided in Sec:on A. 

plausible (yet counterfactual) reconstruc;ons of weather. This tool opens a variety of scien;fic ques;ons, so we assess 

whether HENS provides a trustworthy sample of extreme weather events at the tails of the forecast distribu;on. Since HENS 

offers a rich sampling of internal variability, we consider its u;lity for extreme sta;s;cs, and since HENS is based on an ML-

based weather predic;on model, we consider its u;lity for weather forecas;ng. 
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We present specific proper;es of HENS as a tool to study extremes. To demonstrate the behavior across all of summer 

2023, we calculate aggregate metrics, and we supplement a case study for extreme climate sta;s;cs and for weather 

forecas;ng. We organize the paper as follows: 

In this manuscript, we present three contribu;ons: 

1. We list the technical requirements and considera;ons of crea;ng ensemble sizes at this scale. 

2. We illustrate howAs a large hindcast of simulated weather extremes, HENS enables improved clima;c understanding 

of extreme weather events and their sta;s;cs. 

(a) HENS samples low-likelihood events at the tail of the forecast distribu;on. 

(a)(b) HENS provides a large sample size of counterfactual heat extremes. 

(b)(c) HENS produces be^er analogs to observed events as evidenced by at least 50% reduc;on inby reducing the 
error of the best ensemble member RMSE metric and its sampling uncertainty 

3. We assess HENS’s ability to forecast extreme heat events. 
(a) HENS finely samples the tailsprovides a finer sampling of the condi;onal forecast distribu;on with many 

ensemble members, given that the forecast values exceed a climatological extreme threshold 

(b) HENS reduces sampling uncertainty and results in ahas narrower confidence intervalintervals for extreme 
temperature forecasts 

(c) HENS captures heat extremes missed by smaller ensembles 

2 Genera;ng the Huge Ensemble 

2.1 Technical Setup 

In Part I, we used bred vectors to represent ini;al condi;on uncertainty, and we trained twenty-nine SFNO checkpoints from 

scratch to represent model uncertainty. Here, we combine these two perturba;on techniques to create a 7,424-member 

ensemble: 256 ini;al condi;on perturba;ons for each of the 29 SFNO checkpoints. Bred vectors, which are flow-dependent 

perturba;ons, are generated separately for each SFNO checkpoint and each forecast ini;al ;me. Given the massive scale of 

the ensemble, we assess the ensemble spread created by bred vectors and mul;-checkpoin;ng. In Sec;on F2, we assess the 

exchangeability of SFNO checkpoints, and we show that at a lead ;me of 10 days, the checkpoints are exchangeable with one 

another. 

The HENS forecasts are ini;alized on each day of June, July, August 2023 at 00:00 UTC, for a total of 92 ini;al dates. Each 

ensemble is run forward for 60 integra;on steps, or 360 hours. In summary, our HENS simula;on has the following 

dimensions: 
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1. Number of Saved Variables: 12 

2. Ini;al Time: 92 ini;al days 

3. Lead Time: 61 ;me steps (One perturbed ini;al condi;on followed by a 360-hour forecast rollout) 

4. Ensemble: 7424 ensemble members 

5. La;tude: 721 (0.25 degrees) 

6. Longitude: 1440 (0.25 degrees) 

Genera;ng and analyzing ensemble simula;ons at this scale is an important technical fron;er. This quan;ty of data 

challenges the capabili;es of exis;ng climate model analysis workflows. The la;tude and longitude dimensions are based on 

the 0.25-degree horizontal resolu;on of European Center for Medium-range Weather Forecasts Reanalysis v5 (ERA5) 

(Hersbach et al., 2020), which is the SFNO-BVMC training dataset (Hersbach et al., 2020).. The HENS simula;on output is 

saved in 32-bit floa;ng-point format. We store 12 variables and create a total dataset size of approximately 2 petabytes. Each 

variable in HENS thus takes 173 TB of space. Genera;ng the ensemble for each ini;al date requires 21 TB of space and 45 

minutes using 256 80GB NVIDIA A100 GPUs. With 92 ini;al ;mes, genera;ng HENS costs 18,432 GPU-hours (256 GPUs for 3 

days). This quan;ty of data challenges the capabili;es of exis;ng climate model analysis workflows. In Appendix B, we outline 

our post-processing strategy to analyze such large data volumes. If we stored all the channels in the ensemble (not our chosen 

subset of 12 channels), then the total size of the dataset would be approximately 25 petabytes. 

To create the HENS hindcasts, we run SFNO in inference mode, in which Pytorch’s automa;c differen;a;on is turned off. 

We use NVIDIA’s earth2mip library for inference. Our computa;ons run on Perlmu^er (Per), the high-performance computer 
Table 1. Subset of variableschannels saved by the huge ensemble. SFNO has 74 total prognos:c variableschannels (described in Part I). We 

save the following subset of variableschannels in our HENS run. Some of the saved variableschannels are derived from on a combina:on of 

prognos:c variableschannels; they are calculated inline on the GPU during the ensemble genera:on. 

 

 

 Type Variable Pressure Levels (hPa) Prognos:c 
 temperature 850, 500 ✓ 

Atmospheric Variables geopoten:al 500, 300 ✓ 
 2m air temperature surface ✓ 

 2m dewpoint temperature surface ✓ 

Surface Variables total column water vapor surface ✓ 
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 sea level pressure surface ✓ 

 surface pressure surface ✓ 

 integrated vapor transport - ✗ 

Derived 

 10m wind speed surface ✗ 
at the Na;onal Energy Research Scien;fic Compu;ng Center (NERSC). For op;mal I/O, the ensemble is wri^en to scratch on 

Perlmu^er’s Lustre solid state scratch file system. At the ;me of genera;on, our scratch disk storage alloca;on was 100 TB, 

which is not large enough to hold all 2 petabytes of the ensemble at once. Scratch is meant to serve as a temporary high-

bandwidthhighbandwidth file storage solu;on, where data can be stored for up to 8 weeks. Therefore, the HENS simula;ons 

need to be transferred to larger, long-term storage on NERSC’s Community File System (CFS). We use Globus to transfer the 

ensemble from scratch to CFS. Since Globus leverages load-op;mized, parallel file transfers via GridFTP (Ananthakrishnan et 

al., 2014), it is much faster than na;ve Linux commands for copying data. The transfers run on dedicated nodes on Perlmu^er 

and occur concurrently with ensemble genera;on. Due to the computa;onal efficiency of ML weather forecasts, it is feasible 

to generate 256 ensemble members (each running on 1 GPU) in parallel per minute. This introduces new data transfer 

considera;ons to ensure the data can be moved to its storage loca;on in ;me. 

Next, weWe present an example of the ensemble genera;on workflow. We first generate the ensemble ini;alized on June 

1, 2023 at 00:00 UTC. Aeer it completes, the Globus transfer from scratch to CFS begins. While this transfer is occurring, we 

begin genera;ng the huge ensemble ini;alized on June 2, 2023 at 00:00 UTC. Aeer the June 1 ensemble transfer completes, 

it is deleted from scratch. Crucially, the Globus transfers have 25 GB/s speeds, so they transfer each ini;al date’s 21 TB 

ensemble in approximately 15 minutes. With a na;ve Linux command, the transfer took approximately 4 hours. Unlike the 

Linux commands, Globus transfers the ensemble in less ;me than it takes to generate the ensemble for the current ini;al 

date (45 minutes). Using simultaneous data genera;on and data transfer, we do not exceed our scratch disk storage alloca;on, 

since there is never. At any given ;me, no more than two ini;al days’ worth of ensembles are stored at onceon scratch. Our 

computa;onal alloca;on goes en;rely towards data genera;on rather than data transfer, and GPUs are nevernot idle while 

the transfer from scratch to CFS occurs. 

2.2 Regenera;ng the Ensemble 

Tradi;onally, climate simula;ons and weather hindcasts are stored on large servers, such as the Earth System Grid Federa;on 

(ESG) for the Climate Model Intercomparison Project (Eyring et al., 2016) or the MARS server at the European Center for 

Medium-range Weather (MAR) forecasts. As computa;onally inexpensive ML-based weather forecas;ng models are 

increasingly adopted, the volume of simula;on output may grow substan;ally. It may be infeasible to store, share, and 

transfer huge ensemble simula;ons (e.g. using open FTP data transfer servers). In this manuscript, it would be par;cularly 

challenging to create a data portal for 2 to 25 petabytes of HENS output. Depending on the data transfer resources available, 

2m heat index surface ✗ 



 

7 

transferring the en;re 2 petabyte dataset from one loca;on to another may require a prohibi;ve amount of ;me and 

resources. 

ML’s computa;onal efficiency can lead to a different paradigm of data transfer. Instead of sharing the simula;on output, it 

may be more prac;cal to share the trained ML model weights.1 This removes the requirement to save the data on a public, 

high-bandwidth storage loca;on. By sharing the model weights, other scien;fic users can regenerate the en;re ensemble or 

a par;cular subset of members that simulate a par;cular extreme event of interest. 

To ensure reproducibility, we designed HENS based on a random seed. During inference, this random seed determines the 

ini;al condi;on perturba;on, which is created by ini;ally adding spherical random noise to Z500 to start the breeding cycle 

(see Part I). During inference, we set the seed for the random number generator. Aeer the comple;on of the HENS simula;on, 

we validate that we can regenerate specific ensemble members. We open-source our ML model weights and inference code 

for others to regenerate ensemble members of interest. We save the 12 variables listed in Table 1. One could regenerate 

specific ensemble members to save more variables to assess other atmospheric phenomena during the simula;on. In this 

way, ML model weights provide a data compression mechanism to avoid storing the data produced from massive ensembles. 

However, there are two shortcomings of the seed-based reproducibility. First, the random-number-genera;on approach may 

change in the future as Pytorch and other scien;fic packages are upgraded. Second, non-determinism on individual GPUs 

(e.g. bit-level soe errors, in which the in-memory state of the model could change during the simula;on) or in specific 

frameworks (e.g. Vonich and Hakim (2024))) pose a challenge for reproducibility. Although we can reproduce our simula;ons 

on our compu;ng environment, bit-for-bit reproducibility is an important direc;on for future research, especially across 

different hardware and compu;ng systems. To assess whether either of these two problems has occurred, checksums of the 

original ensemble output can be used to ensure that the ensemble regenera;on occurred successfully. 

3 Climate and Extreme Sta;s;cs 

3.1 Sampling the Forecast Distribu;on with Huge Ensembles 

In Part I, we validated a 58-member SFNO-BVMC ensemble using the con;nuous ranked probability score (CRPS), 

spreaderrorCRPS, spread-error ra;o, threshold-weighted CRPS (twCRPS), reliability diagram, and Receiver Opera;ng 

Characteris;c (ROC) curve. On these metrics, SFNO-BVMC performs comparably to the Integrated Forecast System (IFS), a 

leading ensemble numerical weather predic;on model based on tradi;onal physics solvers. These metrics show that SFNO-

BVMC has a realis;c, reliable, and well-calibrated ensemble spread.  

These are prerequisite characteris;cs for running huge ensembles. If they are not met, the forecast distribu;on would not 

provide useful probabilis;c informa;on. Sampling the tails of such a forecast distribu;on would not yield realis;c es;mates 

of internal variability. In this sec;on, we analyze the sampling proper;es of the HENS forecasts. 

 
1 ML model weights refer to the learned parameters of the architecture: during training, an ML model uses an op?miza?on algorithm to update these 

weights to minimize the loss func?on. At the end of training, the ML model weights can be shared and readily used for inference. 
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We explore the large sample behavior of HENS at a 10-day lead ;me. We present three reasons for this choice of lead ;me. 

First, at 10 days, the spread-error ra;o has reached approximately 1 for all variables (shown in Figure 8 of Part I), indica;ng 

that the ensemble has a reasonable representa;on of its uncertainty. Second, 10-day forecasts can be validated against 

observa;ons because they are within the predictability limit of approximately 14 days. The 10-day ensemble mean root mean 

squared error (RMSE) is s;ll lower than the climatology RMSE. Therefore, the HENS trajectories are s;ll dependent on the 

ini;al condi;ons, and they are realis;c possible outcomes from the ini;al condi;ons. Aeer the predictability limit is breached, 

the ensemble distribu;on should more closely represent the climatological distribu;on. In this scenario, the model becomes 

freerunningfree-running, since its forecast is no longer directly ;ed to the ini;al condi;ons. At 10 days, we can s;ll directly 

compare the forecasts to the observa;ons, and thiswe do not have to rely on comparison serves as a powerful way to 

validateof the predic;ons from new en;rely ML-based weather models.climatological characteris;cs of the free-running 

model (e.g. comparison of the probability density func;ons across space and ;me). Third, aeer 10 days, the ensemble 

trajectories have diverged due to uncertainty in synop;c-scale atmospheric mo;on. This greater ensemble dispersion allows 

for a more thorough characteriza;on of different future outcomes from the ini;al ;me. 

To demonstrate the benefit of larger ensembles, we calculate the informa;on gain, Gn, for an ensemble of size n. Gn	
measures the maximum number of standard devia;ons from the ensemble mean that is sampled by any ensemble member. 

Mathema;cally, this is defined as 

, 
 (1) 

where 

. 

Here, Xi	is the global land mean value of a given variable for ensemble member i, where i	goes from 1 to n. Intui;vely, Gn	

measures an ensemble’s ability to sample the tails of the forecast distribu;on. We assess the expected informa;on gain, i.e., 

E[Gn], as a func;on of n. 

If the tails of the forecast distribu;on were Gaussian, sampling 4 standard devia;onsdevia;on events from the ensemble 

mean would require approximately 7,000 members. Sec;on F3G3 theore;cally derives the expected informa;on gain for 

samples from a Gaussian distribu;on. The theore;cal Gaussian gain is shown by the do^ed line in Figure 2. We use this 

es;mate of 7,000 to guide our choice of ensemble size for HENS. We are constrained by available memory, computa;onal 

resources, and data movement ;me from scratch to rota;ng disk file storage. Based on these constraints, we determine that 

we have the computa;onal budget for 7,424 members: 256 members each for 29 trained SFNO checkpoints. (See Sec;on 2.2 

of Part I for more informa;on. an empirical jus;fica;on of our choice of 29 checkpoints.) 
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Figure 2. Informa:on Gain from Huge Ensembles (HENS). Informa:on gain is the maximum number of standard devia:ons from the mean 

that are sampled by the ensemble. The mean and standard devia:on are calculated from the ensemble distribu:on itself. Gain is calculated 

for the ensemble predic:ons of the global land-mean value of each variable. For a Gaussian distribu:on, the theore:cal informa:on gain 

as a func:on of ensemble size is shown with the do]ed black line. Using the HENS hindcasts from a 7,424-member ensemble ini:alized 

each day of boreal summer 2023, the empirical gain for each variable is shown as a func:on of ensemble size. Results are shown for a 240-

hour lead :me (forecast day 10). Note the use of a logarithmic scale on the x-axis. 

We calculate the informa;on gain of HENS GbnHENS in a Monte Carlo sense (here and throughout, “b·” denotes a sta;s;cal 

es;mate). For a given ensemble size, the informa;on gain is the mean of 2000 bootstrap random samples. For r	=	1,...,2000	

and a given ensemble size n, we: 

1. Calculate Xi, the global land mean value of ensemble member i	for a given variable, 

2. Randomly sample n	values from {Xi	:	i	=	1,...,7424}, and 

3. Calculate Gn(r)	from Equa;on 1. 

Then . We consider the following variables: 2m temperature, total column water vapor, 850hPa 

temperature, 500hPa geopoten;al, and 10m zonal wind. Due to the nature of the instantaneous atmospheric flow, each 

ensemble member predicts mean condi;ons at some loca;ons and extreme condi;ons at other loca;ons. At a given ;me, 
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there will likely be extreme condi;ons occurring somewhere on Earth, simply due to the spa;al varia;on of weather. In our 

calcula;on of informa;on gain, we do not consider the spa;al distribu;on of extremes, which varies significantly within each 

ensemble member. Instead, we wish to assess the distribu;on across ensemble members. Therefore, we calculate the 

informa;on gain on the global land mean values of each ensemble member. This allows us to assess the ensemble members 

in aggregate and how far each ensemble member is from the ensemble mean. 

 

Figure 2 shows the informa;on gain as a func;on of ensemble size. The 7,424-member ensemble has an informa;on gain 

of 4. This means that HENS is large enough to have at least one ensemble member that is 4 standard devia;ons away from 

Figure 3. Informa:on Gain from Huge Ensembles (HENS) at each grid cell. Informa:on gain is calculated using the same method as Figure 

2, but it is calculated at each grid cell, instead of on the global land mean value. (a) Informa:on gain for huge ensembles (7424 members). 

(b) Informa:on gain for 50-member ensembles. Gain is calculated for 2m temperature at a lead :me of 10 days and across all forecasts 

ini:alized in summer 2023. 

the global land mean values of each ensemble member. This allows us to assess the ensemble members in aggregate and 

how far each ensemble member is from the ensemble mean. 

Figure 2 shows the informa;on gain as a func;on of ensemble size. The 7,424-member ensemble has an informa;on gain 

of 4. This means that HENS is large enough to have at least one ensemble member that is 4 standard devia;ons away fromthe 

ensemble mean (on average). For all the ensemble mean (on average). For all global land-means of these variables, the HENS 

gain closely follows the theore;cal Gaussian gain. This result is not completely surprising: averaging over a large number 

ofmany grid cells implies that a Central Limit Theorem should apply (even though the grid box values are neither independent 

nor iden;cally distributed), wherein the global land averages behave similarly to a Gaussian random variable. We use this 

theore;cal Gaussian behavior to inform our choice of ensemble size. In any case, withWith such a large empirical informa;on 

gain for the full n	=	7,424	ensemble, we can be confident that, HENS is an effec;ve way to sample the tails of the forecast 

distribu;on, and it includes ensemble members that simulate trajectories of low-likelihood events. To sample ensemble 

members that are 5 standard devia;ons away from the mean, O(106)	ensemble members arewould be necessary according 

to the Gaussian approxima;on. This ensemble size would require a large compute expenditure and inline ensemble pruning. 
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Since it would not be prac;cal to save the en;re ensemble, it would be necessary to only save the ensemble members that 

simulate the rarest of extreme events (Webber et al., 2019). We 

To complement our analysis of the gain of the global land means, we also assess the gain of huge ensembles at each grid 

cell. While the gain of the global-land mean value closely follows the Gaussian approxima;on, there are significant devia;ons 

from Gaussianity at the local level. In Figure 3, we visualize the informa;on gain at each grid cell in Figure 3. At the grid-cell 

level, there is a devia;on from the Gaussian behavior. In the HENS ensemble, some grid cells depart from the expected 

Gaussian value of approximately 4. Similarly, in a 50-member ensemble, the grid cells depart from the expected Gaussian 

value of approximately 2. At all loca;ons, HENS is be^er able to sample extreme events, compared to a 50-member ensemble. 

Using the full HENS distribu;on, we calculate the ensemble mean, standard devia;on, and 0.1th, 10th, 90th, and 99.9th 

percen;les of global land-mean 2m temperature. (Note that the 0.1th and 99.9th percen;les represent the 1000-day extreme 

low and high thresholds, respec;vely.) Figure 4 comparesassesses the degree to which smallerability of different ensemble 

sizes can accurately to emulate these sta;s;cs accurately. For each ensemble size, we take 2,000 bootstrap random samples 

are taken from HENS, and the resul;ng sta;s;cs and their uncertainty are shown rela;ve to the corresponding sta;s;c from 

the full ensemble. We provide a detailed descrip;on of calcula;ng these sta;s;cs in Sec;on F4.3. In Sec;on F4.1 and Figure 

F3, we present Gaussian theory for how the percen;les should change with ensemble size n. We use this theory to calculate 

the "analy;c uncertainty" do^ed lines in Figure 4. In Sec;on F4.2, we use extreme value theory to calculate theore;cal 

es;mates of the extreme percen;les in Figure 4. Addi;onally, 

 

Figure 4. Large Sample Behavior of Huge Ensembles (HENS). The ensemble mean, standard devia:on, 0.1th, 10th, 90th, and 99.9th percen:les 

of global land-mean 2m temperature are shown for different ensemble sizes. For comparison across ini:al :mes, all sta:s:cs are normalized 

by the full ensemble standard devia:ons calculated separately for each forecast ini:al date. Sta:s:cs are averaged over 92 ini:al :mes 

(one for each day of boreal summer 2023 at 00:00 UTC). The “true” sta:s:c is calculated from the full 7,424-member huge ensemble; the 
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solid green line and shading indicate the mean and 95 percent confidence interval of the difference from the truth, respec:vely, calculated 

from bootstrap random samples from the ensemble. Sta:s:cs are shown for a 240-hour lead :me (forecast day 10). 

are shown rela;ve to the corresponding sta;s;c from the full ensemble. We provide a detailed descrip;on of calcula;ng 

these sta;s;cs in Sec;on G4.3. In Sec;on G4.1 and Figure G3, we present Gaussian theory for how the percen;les should 

change with ensemble size n. We use this theory to calculate the "analy;c uncertainty" do^ed lines in Figure 4. in Sec;on 

F5In Sec;on G4.2, we use extreme value theory to calculate theore;cal es;mates of the extreme percen;les in Figure 4. 

Addi;onally, in Sec;on G5, we discuss how the normalized uncertainty is calculated. Because of the seasonal cycle in the 

ensemble spread across summer 2023 (not shown),, we normalize the sta;s;cs by the uncertainty from the full HENS 

forecast at each ini;al date. This enables comparison of the sampling characteris;cs across all forecasts from summer 2023. 

For all sta;s;cs, smaller ensemble sizes result in large uncertain;es and, in some cases, large biases rela;ve to the full 

ensemble. Es;mates of the HENS mean are unbiased (i.e., the empirical bias is near zero) with as few as 10 members and the 

HENS standard devia;on with as few as 200 members. However, these es;mates are associated with large sampling 

uncertainty, well in excess ofexceeding six ;mes the uncertainty of the full ensemble. Larger ensembles are necessary for 

unbiased es;ma;on of the 10th and 90th percen;les, on the order of n	=	1000. For ensembles smaller than 1000, the sign of 

the bias is notable: es;mates of the 10th and 90th percen;le are too large and too small, respec;vely, highligh;ng the under-

sampling of even these moderate percen;les for smaller ensembles. Even with 1000 members, there is s;ll sampling 

uncertainty associated with moderate percen;les, nearly three ;mes that of the full ensemble, and larger ensembles are 

necessary to reduce this uncertainty. For the most extreme percen;les, represen;ng 1000-day events, nearly the full 

ensemble is needed to obtain empirical es;mates that are unbiased. In Sec;on F4G4.2, we present extreme value methods 

to calculate the 0.1th1st and 99.9th percen;les based on an ensemble with a given number of members.. Compared to directly 

calcula;ng the percen;les from the given ensemble, extreme value theory leads to be^er es;ma;on of the extremes (Figure 

4): es;mates are unbiased for ensembles as small as 3000, which is a significant improvement rela;ve to empirical es;mates 

which require n	=	7000. However, as with the 10th and 90th percen;les, for smaller ensembles both the empirical and extreme 

value theory es;mates are not extreme enough, again illustra;ng that smaller ensembles do not properly sample the extreme 

tails of the distribu;on. 

Across all sta;s;cs considered here, larger ensembles lead to significantly more confident es;ma;on of each property of 

the large ensemble.full 7,424-member HENS ensemble. These results are robust across different lead ;mes (Figure F1 and 

for a different variable (see the sampling behavior of 10m wind speed in Figure F2). This is a key value-add of HENS: it enables 

confident characteriza;on of both the mean and extreme sta;s;cs of the forecast distribu;on, and it quan;fies the 

uncertainty associated with smaller ensemble sizes. Using this informa;on, the users can select a desired ensemble size based 

on their use case and an acceptable level of uncertainty. 

While Figures 2 and 4 characterize the global land mean of each ensemble member, weFor these analyses (and all future 

analyses in this manuscript), we note that we do not assume the ensemble distribu;on is Gaussian. Gaussianity was an 
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emergent property of the global land means, so for these spa;al averages, Gaussian theory served as a good es;mate of the 

analy;c uncertainty of the ensemble sta;s;cs and the informa;on gain. However, at each grid cell, there are significant 

devia;ons from Gaussianity (Figure 3). For both global and local forecasts, HENS can robustly sample farther into the tail of 

the forecast distribu;on, compared to a 50-member ensemble. In the next sec;ons, we empirically assess the u;lity of huge 

ensembles for weather forecasts and for calcula;ng extreme sta;s;cs, and we do not make assump;ons about the shape of 

the distribu;ons. 

We present a demonstra;on of the ensemble forecasts at a specific loca;on during a heatwave in the USA Midwest. Kansas 

City, Missouri, USA had a significant heat-humidity event on August 23, 2023 at 18:00 UTC. According to ERA5, the 2m 

temperature and dewpoint reached 307 K and 298 K, respec;vely. A key benefit of our SFNO configura;on is that it includes 

2m dewpoint temperature as a prognos;c variable. To consider the combined effect of both temperature and humidity at 

the surface, we calculate the heat index introduced by Lu and Romps (2022). This ), which updates the heat index has been 

updatedpresented in Steadman (1979) to account for par;cularly hot and humid events, during which the standard heat 

index is undefined. At this ;me, the heat index in Kansas City was 316 K (43 C). 

Figure 5a shows the HENS forecasts of the heat index, as a func;on of ini;al ;me. Despite the significantly larger size of 

HENS, its ensemble range spread becomes narrower with lead ;me. Therefore,This indicates that HENS doesis not 

overpredictoverpredic;ng extreme values for its forecasts at all lead ;mes; its forecasts s;ll have coherent spread as a 

func;on of lead ;me. At a 10-day lead ;me, both IFS and HENS predicted a warmer than average temperature. However, the 

verifica;on air temperature and dewpoint temperature lieslie at the tailtails of both ensemble’sensembles’ forecast 

distribu;ons (Figure 5b). At a ten-day lead ;me, none of the IFS members successfully capture the magnitude of both 2m air 

temperature and 2m dewpoint temperature. However, HENS does include members that capture the simultaneous intensity 

of both these values (Figure 5b). With the large sample size from HENS, it would be possible to study the precursors, drivers, 

and sta;s;cs of the observed extreme. The huge ensemble can more accurately sample the tails of the distribu;on, so at a 

10-day lead ;me, it includes ensemble members that are sufficiently hot and humid to capture the observed extreme. Figure 

5 uses the same method to visualize large ensembles as Li et al. (2024), though it uses 2m dewpoint temperature instead of 

total column water vapor.). 



 

14 

 

Figure 5. Demonstra:on of using Huge Ensembles for heatwave forecasts in Kansas City, Missouri, USA. (a) Box plot of ensemble forecast 

of heat index, as a func:on of ini:al :me. Blue denotes HENS forecasts and red denotes IFS forecasts. Range of box and whisker plots 

indicates ensemble minimum and maximum the farthest data points within 1.5x the interquar:le range. (b) 2D density plot for 10-day 

forecasts of 2m dewpoint and 2m air temperature. The outermost contour interval is the 95th percen:le kernel density es:mate of the 

ensemble distribu:on. Contour intervals decrease at intervals of 10 percent. Blue dots indicate forecasts of individual HENS members; 

magenta triangles indicate forecasts from IFS ensemble members; the black star is ERA5 (the verifica:on dataset for HENS); and the gray 

star is opera:onal analysis (the verifica:on dataset of IFS). The dashed line is the climatological average temperature at this loca:on. 

The HENS ensembleHENS also enables explora;on of counterfactual reali;es. If the forecast is reliable, it can be used to 

quan;fy the probability of the extreme event as a func;on of all possible outcomes. Some HENS members projected that the 

heatwave could have been warmer and drier, with a higher air temperature and a lower dewpoint temperature (Figure 5b). 

Alternately, otherOther HENS members indicate that the heatwave may have not occurred altogether, as they predict 2m 

temperatures near or below the climatological mean. These different counterfactuals can result in different climate impacts: 

hot and humid extremes can be par;cularly challenging for human health, while hot, dry extremes can have adverse impacts 

on crop yields and create condi;ons conducive to wildfire spread. IFS does not contain any sampling of the counterfactual 

hot, dry version of the event beyond 311 K air temperature and 291 K dewpoint. Because HENS thoroughly represents the 

forecast distribu;on of future outcomes, one couldWe hypothesize that HENS can be used to characterize the dynamical 

drivers and physical processes associated with each outcome. In par;cular, HENS could enable a clustering analysis of the 

drivers and large-scale meteorological pa^erns that would result in the observed hot, humid heatwave; a hot, dry heatwave; 

or no heatwave at all. Furthermore, the sta;s;cal likelihood of each cluster can beIf HENS is reliable and well-calibrated for 

a given type of extreme, HENS can also be used to study the condi;onal probability (given the ini;al condi;ons) of different 

outcomes on medium-range weather ;me scales. 
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characterized in light of all possible future outcomes. Thus, HENS provides a thorough representa;on of internal variability, 

and it is a valuable tool for studying the clima;c sta;s;cs of extremes. 

3.2 Sampling the Observed Distribu;on with Huge Ensembles 

In the previous sec;on, we discussed using HENS to study tail events of the forecast distribu;on. Next, we assess HENS’ ability 

to characterize tail events of the observed distribu;on. A suitable model for this task must meet two key requirements: (1) it 

must provide a large sample size, and (2) it must accurately simulate the observed events. 

(1) it must provide a large sample size, and (2) it must accurately simulate the observed events. 
Boxplot grouped by Z Score Integer 

 

Figure 6. Number of Ensemble Members for Each ERA5 Event. From June 1, 2023 to August 31, 2023, the number of ensemble members 

that have a Z score at least as high as the ERA5 Z score are shown. At each grid cell and :me, the Z score represents how many standard 

devia:ons the ERA5 data point is from the mean. The mean and standard devia:on are calculated separately for each month and each hour 

of the day, using the ERA5 climatological periods from 1993 to 2016. Results are shown for day-10 forecasts (240, 246, 252, and 258 hour 

lead :mes) and are averaged over forecasts ini:alized on each date in June, July, August 2023 

First, for each grid cell in ERA5, we calculate the climatological mean and standard devia;on using a 24-year climatology 

from 1992-2016. The climatological mean and standard devia;on are calculated for each month for each hour. This is similar 

to the defini;on of extreme thresholds used in Part I, and this defini;on allows the climatology to change for the seasonal 

and 
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diurnal cycles. (Note that this is dis;nct from Sn	and X	in Equa;on 1 above, which use the mean and standard devia;on of the 

ensemble distribu;on, not the climatological distribu;on.) 

At each grid cell and ;me in summer 2023, we convert the ERA5 value into its Z score. Figure 6 shows that HENS provides 

large sample sizes for the ERA5 events that occurred in summer 2023. In the majority of cases, HENS includes mul;ple 

ensemble members that simulate an event that is at least as extreme as the verifica;on value in ERA5. For even the most 

rarerarest events that are 4 standard devia;ons away from their climatological mean, HENS usually includes at least O(10)	

samples of events with at least that magnitude. For events that are 2 and 3 standard devia;ons away, there are hundreds of 

ensemble members in HENS that meet or exceed the ERA5 value. We note that there are very few instances where HENS 

misses an event en;rely: wethese instances correspond to the whiskers of each event having 0 samples. We quan;fy this 

occurrence for heat extremes in Sec;on 4. 

The second requirement for calcula;ng robust sta;s;csusing HENS to study rare observed events is that at least some 

ensemble members should accurately simulate the true event. This is necessary to calculateWith these accurate members 

probability of the observed outcome compared to other, it is possible to study the event’s likelihood and the physical drivers, 

in comparison to counterfactual outcomes. To assess the suitability of HENS for this requiremen^hese types of analyses, we 

calculate the RMSE of the best ensemble member. Buizza and Palmer (1998) originally introduced this metric for ensembles 

with up to 32 members. At each grid cell, they choose the ensemble member with the smallest RMSE across all members. 

AcrossUsing mul;ple ini;alized forecasts and lead ;mes, they quan;fy the RMSE of this best member. 

 

Figure 7. Skill of the Best Ensemble Member. For each grid cell, the best ensemble member of a forecast is the ensemble member with the 

lowest RMSE. The RMSE of the best ensemble member is shown as a func:on of ensemble size. The dashed gray line shows the RMSE of 

the best ensemble member, averaged over all grid cells and forecasts. Colored lines show the result for specific σ	values at certain :mes, 

from 0σ	to 4σ	events. At each loca:on, σ	represents the number of climatological standard devia:ons away the ERA5 value is from the 

climatological mean. Shaded es:mates are the 95 percen:le confidence interval calculated from 100 bootstrap random samples at each 

ensemble size. All results are for day-10 forecasts (240, 246, 252, and 258 hour lead :mes) and are averaged over forecasts ini:alized on 
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each date in June, July, August 2023. Results are spread across 2 panels for be]er visualiza:on of the shaded es:mates associated with 

each σ	event. 

This metric is ac;vely used in the study of extreme weather events to iden;fy possible drivers for extreme weather events. 

In an opera;onal ensemble weather forecast, Mo et al. (2022) iden;fy the members that had the most accurate forecasts of 

the 2021 Pacific Northwest Heatwave. These best members correctly forecast the extent and inland loca;on of a warm-

season atmospheric river, which served as a source of latent heat for the heatwave. Leach et al. (2024) also examine the 

ensemble member that is nearest to the observed temperatures. They show that ensemble members that predicted warmer 

temperatures were associated with low cloud cover and a high geopoten;al height anomaly. As a func;on of ensemble size, 

this For other types of extreme weather, Millin and Furtado (2022) iden;fy the ECMWF ensemble members that most 

accurately simulated a cold air outbreak, and they show that these members correctly forecast two wave breaks, which were 

dynamical drivers of the event. With HENS, these types of analyses can be conducted at scale. 

HENS reduces the RMSE of the best ensemble member; with larger ensembles, this metric systema;cally decreases by up 

to 50% (Figure 7). With larger ensembles, thereCompared to smaller ensembles, HENS more thoroughly covers the space of 

possible future outcomes. In this metric, the HENS improvement is greater for more extreme observed events, indica;ng the 

benefits of using HENS to study LLHIs. These results are more members that closely approximate the observed value.robust 

across lead ;me (Figure F3) and for a different variable (Figure F4). This opens the door for future analysis to determine why 

these members correctly forecast the event and to validate whether they forecast the right value for the right reasons. 

 

Figure 8: HENS Con;nuous Ranked Probability (CRPS) Scores}.  (a) shows overall CRPS scores.  (b) shows threshold-weighted 

CRPS scores for 95th percen;le events.  (c) shows outcome-weighted CRPS scores for 959th percen;le events. All scores are 

calculated at lead ;mes of 4 days, 7 days, and 10 days.  The scores are the global mean and are averaged over 92 ini;al dates, 

one for each day in June, July, August 2023. 

 Addi;onally, the sta;s;cs of the best ensemble members can be compared with the full spread of the ensemble to assess 

the likelihood of the event. We note that the minimum ensemble RMSE metric is not useful in making weather forecasts: 

while huge ensembles virtually guaranteehelp ensure that at least one member will reasonably match the observa;ons, there 

is no way of knowing ahead of ;me which member that will be. 

4 Valida;ng Huge Ensemble Weather Forecasts 
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4.1Sampling Metrics based on the bulken;re distribu;on and metrics based on the condi;onal distribu;on 

Next, we discuss opportuni;es for using HENS to improve extreme weather forecasts. The CRPS is an overall summary sta;s;c 

for evalua;ng with larger ensembles. We compare the 58-member ensemble forecasts. Allen et al. (2023); Gnei;ng and 

Ranjan (2011) discuss varia;ons of CRPS that focus on extreme weather and the tailsin Part I to the 7,424-member HENS. 

Even though HENS includes more detailed sampling of the forecast distribu;on. One varia;on is the , its overall CRPS and 

threshold-weighted CRPS (twCRPS).) scores do not change significantly. We provide a theore;cal basis and a case study to 

understand the invariance of these two scores with ensemble size. These scores are calculated using the en;re forecast 

distribu;on, but HENS is beneficial for sampling the condi;onal distribu;on, given that the forecast is greater than a 

climatological percen;le. We quan;fy this benefit through the outcome-weighted CRPS (owCRPS). 

On the CRPS and twCRPS scores, HENS performs slightly be^er than the 58-member ensemble, but the improvement is 

less than approximately five percent (Figure 8a and b). We note that we are not using versions of CRPS that are debiased with 

respect to ensemble size (Zamo and Naveau, 2017). The twCRPS is calculated analogously to CRPS except all values of the 

ensemble forecast below a pre-specified threshold are converted to the threshold itself (Allen et al., 2023). In Part I, we 

showed that SFNO-BVMC and IFS have comparable CRPS and twCRPS2023). As a func;on of ensemble size, these scores 

appear to have largely converged with 58 members.  scores. In this sec;on, we discuss the effect of ensemble size on twCRPS 

and CRPS, and we go beyond these metrics to directly consider the tail of the forecast distribu;on. 

Because of HENS’s ability to sample low likelihood events in the forecast distribu;on, we assess the CRPS values of HENS 

and the 58 member SFNO-BVMC from Part I in Figure 8. For this sec;on, we use the 58-member ensemble as a benchmark 

ensemble, because it is the standard configura;on used in Part I for all diagnos;cs. It uses all 29 checkpoints, with 2 ini;al 

condi;on perturba;ons per checkpoint (one bred vector added to and subtracted from the ini;al condi;on). Based on the 

CRPS and twCRPS scores, HENS is slightly be^er than the 58-member ensemble due to its larger ensemble size, but these 

scores do not show large percent changes for HENS compared to the 58-member ensemble (Figure 8a and b). The CRPS and 

twCRPS scores improve by less than five percent. These scores have mostly converged for ensembles with 58 members. 

CRPS and twCRPS compare the CDF of the ensemble forecast to the verifica;on value. See (see Equa;ons 1 and 3 of Part I for 
the equa;ons for CRPS and twCRPS. CRPS and twCRPS scores are calculated based on ). 

The CDFs that use all members of the ensemble forecast. CRPS uses all members of the raw forecast distribu;on, and twCRPS 

uses all ensemble members, but the ensemble is transformed such that all members below the threshold are set to have a 

value at the thresholdare constructed from all members of the ensemble. The Dvoretzky–Kiefer–Wolfowitz (DKW) inequality 

(Massart, 1990) quan;fies the maximum difference between a true popula;on PDFCDF and an empirical CDF constructed 

from n	samples. Here, we use the HENS ensemble forecast as the popula;on CDF, and 

Here, the HENS forecast is the popula;on CDF, and the 58-member ensemble would beis the sample empirical CDF. The 
difference  

 
between these two CDFs scales with a factor of 
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 1/	n	(Appendix Sec;on G). Therefore,H). With this scaling factor, a 58-member CDF closely approximates a 7,424-member 

CDF, so we expect the 58-member ensemble CDFcorresponding CRPS and twCRPS to closely approximate the HENS CDF, 

which uses 7,424 members.be very similar. Based on this argument, we also would not expect the Extreme Forecast Index, 

which is also calculated from a CDF based on the en;re ensemble (see equa;on 2 of Part I), to change considerably when 

usingbe very similar in HENS, instead of and the 58-member ensemble. Equa;on 2 of Part I shows that the EFI calcula;on 

also heavily relies on the ensemble CDF calcula;on. 

A key value-add ofHowever, HENS is that it provides more ensemble members to calculatehas an advantage in resolving 

the ensemble’s condi;onal distribu;on, given that the forecastensemble is above thea climatological threshold. This 

condi;onal distribu;on is created by trunca;ng the ensemble forecast distribu;on at the climatological 95th percen;le. 

When calcula;ng the CRPS is calculated using thisthe condi;onal distribu;on, the scoreit is calledreferred to as the outcome-

weighted CRPS  

(owCRPS). Mathema;cally, owCRPS is 

owCRPS(F, y, w) =	w(y)CRPS(Fw,y)	 (2) 

where w	is the weigh;ng func;on, y	is the verifica;on value from ERA5, and Fw	is the CDF of the condi;onal ensemble 

distribu;on: 

 (3) 

where X	is a random variable from the ensemble CDF. We use the weighing func;on w(y)	=	1{y	>	t}, based on a 
thresholdthresh- 

old t. Here, we use , which is the 95th99th percen;le of 24-year ERA5 climatology as the threshold. 

We show the CDF of HENS and the 58-member SFNO-BVMC inIn Figure 9a., we show a case study of the full ensembles’ CDFs 
at Shreveport, Louisiana, USA. Due to its smaller size, there is more noise in the 

 58-member CDF compared to the HENS CDF. In Figures 9b, c, and d, we compare the distribu;ons that are used to calculate 

 CRPS, twCRPS, and owCRPS. These three scores use the raw ensemble distribu;on, the transformed ensemble distribu;on 

(described above),, and the condi;onal ensemble distribu;on, respec;vely. twCRPS results in a point mass being placed at 

the threshold (Figure 9c), since all ensemble members below the threshold are converted to having a value at the threshold 

itself. owCRPS is created from the condi;onal distribu;on truncated at. Figures 9b, c, and d mirror the thresholdschema;c in 

Figure 1 of Allen et al. (2023), which demonstrates calcula;ng CRPS, twCRPS, and owCRPS. 

In this case study, HENS shows small improvements in CRPS and twCRPS show small percent improvements with larger 

ensemble size. This is because they, which use the en;re ensemble to calculate distribu;on, but it shows a large improvement 

in the score. On the other hand, owCRPS, which uses the condi;onal distribu;on; it constructs the CDF only from the 
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members above the threshold. Figure 1 of Allen et al. (2023) provides a demonstra;on of calcula;ng CRPS, twCRPS, and 

owCRPS using an idealized Gaussian. We mirror their demo in Figures 9b, c, and d using real HENS forecasts at a sample 

loca;on in Shreveport, Louisiana. 

. In Figure 9d, the 58-member ensemble had 10 members above the threshold, and HENS had 1340 members above the 

threshold. While twCPRS and CRPS use allIncreasing the ensemble size from 10 to 1340 members, yields a greater sampling 

improvement than increasing the owCRPS score only uses theensemble size from 58 to 7424 members above the threshold.. 

In this instancecase study, 10 members doare not enough to adequately characterize the tail of the forecast distribu;on 

(Figure 9d). The Because of the significant sampling uncertainty, the small ensemble has a significantly different condi;onal 

distribu;on than HENS’s condi;onal distribu;on. For the smaller ensemble, the owCRPS score has not yet converged as a 

func;on of ensemble size, and HENS shows a marked improvement in owCRPS: itHENS reduces the CRPSowCRPS from 0.63 

K to 0.5 K (a rela;ve reduc;on of about 20%). Unlike CRPS and twCRPS, the number of ensemble members used in the 

owCRPS varies for each forecast at each grid cell: it depends on how many members are above the threshold. 

The owCRPS is calculated only when the extreme event actually occurs, so it is not a sta;s;cally proper scoring rule. Proper 

scoring rules are minimized when the forecast distribu;on matches the distribu;on from which the observa;on is drawn 

(Gnei;ng and Raeery, 2007). They cannot be hedged by overpredic;ng extremes (Seesee Part 1 for a discussion on the 

rela;onship between CRPS and proper scoring rules for extreme forecasts.) If a system overpredicted). Since the owCRPS is 

only calculated when extremes, it would falsely 
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Figure 9. Visualiza:on of CRPS, threshold-weighted CRPS, and outcome-weighted CRPS. Sample forecasts from HENS and the 58member 

SFNO-BVMC (which is described in Part 1). Forecasts are for 2m air temperature near Shreveport, Louisiana, USA, ini:alized on August 13, 

2023 00:00 UTC and valid on August 23, 2023 00:00 UTC. (a) shows the CDFs of the HENS forecast and the 58-member forecast. (b) shows 

the forecast distribu:ons from these two ensembles used to calculate the overall CRPS. (c) shows the distribu:ons used to calculate the 

threshold-weighted CRPS. The threshold-weighted CRPS is calculated using the forecast distribu:on, transformed such that all members 

below the 95th percen:le are set to have the value of the 95th percen:le itself. (d) shows the forecast distribu:ons used to calculate the 

outcome-weighted CRPS. The outcome-weighted CRPS is calculated using the condi:onal forecast distribu:on, condi:oned on the forecasts 

being greater than the 95th percen:le threshold. For CRPS, twCRPS, and owCRPS, the numbers in the top le= correspond to the scores 

achieved by the 58-member ensemble and HENS for this forecast. Note the different y axes for (b), (c), and (d) due to the use of different 

distribu:ons in the CRPS, twCRPS, and owCRPS. 

appear reliable. Since the owCRPS is only calculated when extremes actually occur, thea forecast would that overpredicts 

extremes could falsely appear reliable (Lerch et al., 2017). This is the essence of the forecaster’s dilemma (see Part I for a 



 

22 

deeper discussion).). However, HENS does not appear to be overpredic;ng extremes, which could result in an be^er owCRPS 

score. HENS  and hedging its scores because it has a comparable (and slightly be^er) CRPS and twCRPS as the 58-member 

ensemble. If HENS got an improved owCRPS by overpredic;ng extremes, then the CRPS, twCRPS, reliability, and the spread-

error ra;o would significantly as the 58-member ensemble. If HENS were overpredic;ng extreme weather, then these scores 

would degrade. In Figure C1 and Figure C2C3, we validate that HENS has comparable reliability and spread-error ra;o as the 

58-member ensemble. With a be^er owCRPS, HENS characterizes the condi;onal tail distribu;on be^er, but it does not come 

at a cost of overpredic;ng extremes and obtaining worse performance on the other scores. 

Using all forecasts ini;alized during summer 2023 (Figure 8c), the HENS owCRPS is approximately 20% be^er than the 58-

member ensemble at lead ;mes of 4, 7, and 10 days. This indicates that HENS has a more accurate condi;onal distribu;on 

than that from a smaller 58-member ensemble. The key value-add of HENS is represen;ng these condi;onal distribu;ons 

with more fine-grained probabili;es. Based on Figure 8b, HENS does not improvemoderately improves the ability to sample 

the bulk distribu;on. 58 members are (e.g. through the reduced noise in Figure 9), and this could result in the small 

improvements to CRPS and twCRPS. In many cases, a 58-member ensemble is adequate to represent the bulk distribu;on, 

and so the 58-member ensemble and HENS have similar CRPS scores.. Indeed, ensembles of approximately 50 members have 

been responsible for the tremendous skill of exis;ng ensemble weather forecasts and have created a quiet revolu;on in 

numerical weather predic;on (Bauer et al., 2015). However, for characterizing. To characterize the ensemble distribu;on 

condi;oned on being aboveexceeding a threshold, only a subset of members can contribute to the condi;onal CDF. In this 

scenario, HENS offersprovides a significant improvementadvantage over tradi;onal ensemble sizes. 

4.2 Confidence Intervals of Extreme Forecasts 

Leutbecher (2018) discuss the effect of sampling uncertainty on ensemble forecasts. This sampling uncertainty comes from 

the fact that there is a finite ensemble being used to approximate an underlying forecast distribu;on. We assess this sampling 

uncertainty in the context of extreme weather forecasts. 

One way to generate an extreme forecast is to binarize the ensemble at a given threshold. For instance, if 10 out of 58 

members predict a climatological 99th percen;le temperature event, then the ensemble forecasts a 17% probability of 

extreme temperature. In this probabilis;c predic;on, there is uncertainty induced by finite sample size. The forecast depends 

on which 58 members are sampled out of all possible ensemble members. Bootstrap sampling (sampling with replacement) 

can be used to approximate the sampling uncertainty. Using the 2.5 and 97.5 percen;les across many bootstrap samples, one 

can bootstrap a 95 percent confidence interval. This confidence interval represents the uncertainty due to finite sample size. 

In the example from Shreveport in Figure 9, the sampling uncertainty has important implica;ons for making the ensemble 

forecasts. The HENS forecast issues an 18% probability of an extreme weather event, since 1340 out of the 7424 members 

are above the threshold. At a sample size of 7424, the HENS 95 percent confidence interval is 17.1% to 18.9%; this confidence 

interval was obtained from taking 2000 bootstrap random samples of the HENS forecast. On the other hand, with an 
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ensemble size of 58, the probability of an extreme event is 17%. However, the 95 percent confidence interval ranges from 

8.6% to 28%. This interval is significantly wider, indica;ng that there is more uncertainty with the 58-member ensemble’s 

forecast. This uncertainty is an order of magnitude larger than the sampling uncertainty from 7,424 members. 

In summer 2023, overacross all 10-day nonzero extreme forecasts at all grid cells, the confidence intervals are an order of 

magnitude narrower than those from small ensembles (Figure 10). This result is robust across different lead ;mes: Figure D1 

calculates the same confidence interval width at lead ;mes of 4 days and 7 days. With less sampling uncertainty for extreme 

forecasts, there could be more informed disaster readiness and more targeted plans. However, even with narrower 

confidence intervals, we note that it is s;ll of course possible to have uncertain forecasts. For instance, if half the ensemble 

members predict extreme weather, the chance of extreme would s;ll be 50%. HENS shrinks the confidence intervals because 

it thoroughlyThis probability is rooted in ini;al condi;on and model uncertainty. HENS does not alleviate these uncertain;es; 

it reduces the sampling uncertainty of the forecast distribu;on. Therefore, with HENS, the 95 percent confidence interval 

around the 50% es;mate would be narrower. 

 

 
Width of Extreme Temperature Probability Confidence Interval (%) 

Figure 10. Effect of Ensemble Size on Forecast Confidence Intervals. An extreme forecast is issued by binarizingcategorizing each ensemble 

member as "extreme" or "not extreme," using the 99th percen:le 2m temperature at each loca:on. The extreme temperature forecast is 

the percent of ensemble members that are above the threshold. For each ensemble size, a confidence interval for the extreme forecast is 

calculated from 100 bootstrap random samples from the ensemble. AcrossFor all nonzero extreme forecasts issued in summer 2023 at all 

loca:ons, the histogram of confidence interval widths is shown for different ensemble sizes. All forecasts have a lead :me of 10 days. On 

the y-axis, the counts are mul:plied by a factor of 108, since the histograms are calculated over all grid cells and 92 ini:al :mes. 

represents the forecast distribu;on and reduces sampling uncertainty. However, even with narrower confidence intervals, we 

note that it is s;ll of course possible to have uncertain forecasts. For instance, if half the ensemble members predict extreme 
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weather, the chance of extreme would s;ll be 50%. With HENS, the 95 percent confidence interval around the 50% es;mate 

would be narrower. 

4.3 Missed Events in HENS and IFS 

The outlier sta;s;c measures the ability of an ensemble to capture athe true eventverifica;on value (Buizza and Palmer, 

1998). The outlierThey define this sta;s;c measuresas the propor;on of cases in which an observed even^he verifica;on 

lies outside the bounds of the ensemble forecast. Using HENS, we calculate this sta;s;c as a func;on of ensemble size. For 

each ensemble size, we take 100 bootstrap random samples from HENS. At each grid cell, if the ERA5 value lies within ninety-

five percent of the bootstrapped ensembles, then the ensemble size is deemed sa;sfactory. for capturing the event. 

Otherwise, the ERA5 value is classified as an outlier. The outlier sta;s;c is the propor;on of grid cells that are outliers for a 

given ensemble size. By taking 100 bootstrap random samples, we consider sampling uncertainty in the outlier sta;s;c. 

Figure 11 shows larger ensembles reduce the probability of an outlier. At a lead ;me of 10 days, the 7,424 member 

ensemble is sa;sfactory for represen;ng almost 99% of the ERA5 values. The reduc;on in the outlier sta;s;c is robust across 

lead ;mes of 4 days, 7 days, and 10 days. Larger ensembles can greatly increase the coverage of all the possible solu;ons of 

how the weather at each grid cell can evolve. Regardless of ensemble size, we note thatThe 10 -day forecasts have a 

systema;cally lower outlier sta;s;c than 7-day and 4-day forecasts because they have the best spread-error ra;o (see Part 

1). 

 

Figure 11. Outlier Sta:s:c. An outlier occurs when anthe ERA5 value lies outside the ensemble range in ninety-five percent of bootstrap 

ensemble samples (samples from the ensemble with replacement). The outlier sta:s:c is the propor:on of the globe that is covered by 

outliers. For mul:pledifferent ensemble sizes, the outlier sta:s:c is calculated forusing all forecasts ini:alized in summer 2023 for lead 

:mes of 240, 246, 2524 days, 7 days, and 258 hours10 days. 

By taking 100 bootstrap random samples, we modify the calcula;on of the original sta;s;c presented in Buizza and Palmer 

(1998). Buizza and Palmer (1998) only consider one possible ensemble for each ensemble size, so they do not characterize 

sampling uncertainty in the outlier sta;s;c. With bootstrap samples, it is easier for a grid cell to be an outlier. Therefore, the 
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outlier sta;s;c increases, since a given ensemble size cannot simply capture the event with just one member. It must capture 

the event in 95 percent of bootstrap random samples. For a more direct comparison with the Buizza and Palmer (1998) 

method, we also calculate the propor;on of cases in which the verifica;on dataset is greater than the ensemble max., as in 

Figure 11. We do not consider ensemble sampling uncertainty, and this is analogous to theonly analyze warm side end of 

their outlier sta;s;c. We choose to focus only on the warm endoutliers because summer 2023 was the ho^est summer on 

record, and we par;cularly assessfocus on the ability of HENS to represent extreme heatwaves. 

Figure 12 compares the abili;es of IFS and HENS to include warm events within their ensembles. For the warm side of the 

distribu;on (Z scores > 0), we calculate the la;tude-weighted propor;on of cases in which the opera;onal analysis exceeds 

the IFS ensemble max. We label these instances "IFS busts." For those IFS busts, we assess whether the HENS maximum 

exceeds the ERA5 value. Figure E1 shows a demo of the calcula;on presented for one forecast at one ini;al ;me. 

Across all of summer 2023, Figure 12a shows that the bulk of the distribu;on lies above the 1-to-1 line, indica;ng that the 

HENS maximum successfully captures the heat extremes that IFS missed. Figure 12a is subsampled to assessonly assesses the 

performance of HENS during instances of IFS busts. Figure 12b characterizes the rela;ve occurrences of IFS busts and HENS 

busts using a confusion matrix. For the majority of cases (96%), both HENS and IFS capture the event: most of the ;me, they 

both have an ensemble member that is at least as large as the verifica;on. However, in 3.5% of cases in summer 2023, IFS 

did not have a member with a sufficiently large 2m temperature value. For the vast majority of those casesthese IFS busts, 

HENS did capture the true event. We note that there is a small por;on of cases (0.32%) where HENS missed an event that IFS 

successfully captured. This is the topic of further research and could be due to cases where the HENS ensemble mean is 

biased. 

 

As shown in Figure 12, many of the IFS busts occur around events that have a Z score of approximately 2. For these events 

and other even rarer events, IFS cannot successfully sample the extremes. HENS can capture these events, yet it s;ll maintains 

its CRPS (Figure 8), reliability (Figure C1), ensemble mean RMSE (Figure C2), ensemble spread (Figure C2), and spread-error 

ra;o (Figure C3) of the corresponding 58-member SFNO-BVMC ensemble. 
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Figure 12. IFS and HENS Comparison of Missed Warm 2m Temperature Events. An IFS bust occurs when the opera:onal analysis is greater 

than the IFS ensemble max. A HENS bust occurs when ERA5 is greater than the HENS max. (Le=) 2D Histogram of IFS busts. At :mes and 

loca:ons of IFS busts, the histogram shows the corresponding Z Score of the HENS maximum and the ERA5 Z Score. Z scores are calculated 

for each grid cell using the ERA5 climatological mean and standard devia:on. (Right) Confusion matrix showing propor:on of IFS busts, IFS 

successes, HENS busts, and HENS successes. 

5 Discussion and Conclusion 

In total, HENS includes 10,245,120	simulated days, or 28,050	simulated years (7424 ensemble members ×	15 day rollout per 

ensemble member ×	92 forecast ini;aliza;on days). With such a large sample size, we demonstrate the value-add of HENS: 

sampling events that are 4 standard devia;ons away from the ensemble mean, accurately es;ma;ng the tails of the 

ensemble, improvingeleva;ng the skill of the best member, and reducing the likelihood of outliers. Based on its superior 

owCRPS scores and its narrow confidence intervals for extreme weather forecasts, HENS samples the tails of the forecast and 

observed distribu;ons. 

HENS can reduce uncertainty in extreme weather forecasts. Future research is necessary to associate these improved 

scores (e.g., in the outlier sta;s;c or owCRPS) with an economic value. Based on end users’ specific use cases, cost-loss 

models are guided by economic principles. They can be used to quan;fy the benefits of improved forecasts and reduced 

uncertainty (Wilks and Hamill, 1995; Palmer, 2002). This analysis would enable a detailed considera;on of whether huge 

ensembles are appropriate and necessary for a given stakeholder. 

For opera;onal analysis of HENS, it is crucial to validate that the simulated weather events are trustworthy. We evaluate 

our HENS simula;ons on the medium-range ;mescale, up to the predictability limit of approximately 14 days. On these ;me 

scales, it is possible to directly compare the forecast with observa;ons. The suite of NWP metrics provides insights into the 

realism of the ensemble forecast. If the ensemble members are exchangeable with each other and with the observa;ons, the 

spread-error ra;o (presented in Part I) should be close to 1. We show that SFNO-BVMC has a spread-errorspread-error ra;o 

that is close to 1, especially by a lead ;me of 10 days. Similarly, HENS has compe;;ve scores on CRPS and twCRPS, which 

evaluate probabilis;c forecasts against the true observed trajectories from ERA5. Addi;onally, Figure 12a shows that 

increasing the ensemble size allowed HENS to capture real events that were missed in the IFS ensemble. With its larger 

ensemble size, HENS reduced the number of instances where the verifica;on dataset was greater than the ensemble max 

(Figure 12b). Increasing the ensemble size elevatedincreased the skill of the best ensemble member (Figure 7). With larger 

ensembles, at least one member be^er approximates the verifica;on dataset. By increasing the sample size, the ensemble 

be^er simulates real extreme events, as measured through owCRPS. While maintaining the overall standard CRPS score, 

HENS improved its performance on these metrics focused on extremes (such as the outlier sta;s;c, skill of the best member, 

and owCRPS), but it maintains its CRPS score.). This increases trust in the ensemble predic;ons. To further validate whether 

the simula;ons realis;cally represent the dynamics of the Earth’s atmosphere, future research can validate the HENS 

predic;ons on idealized test cases (Hakim and Masanam, 2024; Mahesh et al., 2023; Mamalakis et al., 2022). 
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A fundamental constraint with simula;ng LLHIs is that these events are rare by defini;on, and there are limited 

observa;onal samples with which to benchmark ensemble forecas;ng systems. With machine learning, this challenge is 

further complicated, since forty years of observa;ons are reserved for training. Here, we demonstrate that huge ensembles 

of ML-based forecas;ng systems offer promising results for summer 2023. Future research is necessary to validate these 

ensemble systems on more LLHIs. In par;cular, the climate community can invest computa;onal resources in crea;ng large 

ensembles of physics-based simula;ons with high horizontal, ver;cal, and temporal resolu;on. These simula;ons would 

extend ML and LLHI science in mul;ple ways. In perfect model experiments, they can be used as addi;onal out-of-sample 

simula;ons with which to validate ML weather predic;on models. Alterna;vely, these simula;ons can be used to train the 

ML emulators, and all years of the observa;onal record can be used as an out-of-sample valida;on set. 

HENS is not a replacement for tradi;onal numerical weather predic;on. Due to computa;onal costs and energy 

requirements, it is not feasible to scale tradi;onal ensemble weather forecasts to 7,424 members. HENS is a computa;onally 

efficient way to inflate the ensemble size to study and forecast extreme weather events at the tail of the forecast distribu;on. 

For issuing opera;onal weather forecasts, a combina;on of exis;ng methods and larger ML-based ensembles can be used. 

Addi;onally, HENS relies on ERA5 reanalysis as its training dataset, so it s;ll needs ensemble data assimila;on and numerical 

models for its forecasts. 

An important future direc;on is to consider the effect of ensemble size in tandem with horizontal resolu;on. All our results 

here are based on 0.25-degree horizontal resolu;on, which is the resolu;on provided by ERA5. A key tradeoff in climate 

science is whether the compute budget is be^er spent on larger ensembles or finer resolu;on (Schneider et al., 2024). 

Because of their minimal computa;onal cost, SFNO enables analysis of both ques;onsop;ons. Future work is necessary to 

train ML ensembles to emulate kilometer-scale climate datasets (e.g. SCREAM (Caldwell et al., 2021)). This emula;on can 

guide decisions on the tradeoff between ensemble size and horizontal resolu;on. 

For analyzing large To analyze simula;ons with large data volumes, an important technical fron;er is the inline calcula;on 

of diagnos;cs. Tradi;onally, the simula;on output is saved to disk during the forecast rollout, and then the saved data is 

loaded ininto a separate offline diagnos;c analysis pipeline. On the other hand, inline diagnos;cs could be calculated during 

the ML ensemble genera;on itself. Offline diagnos;c calcula;on is feasible for smaller ensembles that produce less data, but 

for HENS, it poses significant challenges due to I/O and disk storage space limits. Inline diagnos;cs could help alleviate the 

I/O and memory challenges associated with analyzing petabytes of simula;on output. In par;cular, for climate analysis 

applica;ons at scale, I/O can serve as the primary constraint for model analysis. In this manuscript, we save the en;re 

simula;on output and calculate our diagnos;cs offline, aeer the simula;on is complete. We discuss the challenges and post-

processing necessary for this in Sec;on B. Inline diagnos;cs are an important fron;er for future development with large data 

volumes from ML-based weather forecasts. 

Due to their cheap computa;onal cost, ML-based forecasts present an opportunity to study the dynamics and sta;s;cs of 

extreme events. This opens the door for robust characteriza;on of the drivers of extreme events, such as the heatwave drivers 

listed in Domeisen et al. (2022). With large dataset sizes, it becomes possiblemore feasible to apply causal analysis 



 

28 

frameworks (Runge et al., 2019) to iden;fy these drivers. For studying the sta;s;cs and drivers of rare events, a larger sample 

size is crucial. As a database of simulated weather events that is orders of magnitude larger than the observa;onal record, 

HENS samples the tails of the weather forecast distribu;ons and is a new resource for analyzing extreme weather. 

Code and data availability. The code, datasets, and models are all stored at h]ps://doi.org/10.5061/dryad.2rbnzs80n. The code is 

integrated with Zenodo: h]ps://doi.org/10.5281/zenodo.14710345. at the prior DOI. We include the code to train SFNO, conduct ensemble 

inference with bred vectors and mul:ple checkpoints, and scoring and analysis code. We also open-source the model weights of the trained 

SFNO. See the README of the former DOI for informa:on on how to use the codebase and for the permissive license associated with the 

code and data. The code is available via the Lawrence Berkeley Lab BSD variant license, and the data is available with a CC0 license. For 

convenience, the webpage of our project is h]ps://github.com/ankurmahesh/earth2mip-fork. 

A References for Ensembles Listed in Figure 1 

1. Weyn et al. (2019) 

2. Scher and Messori (2021) 

3. Weyn et al. (2021) 

4. Pathak et al. (2022) 

5. Hu et al. (2023) 

6. Bi et al. (2023) 

7. Kochkov et al. (2023) 

8. Zhong et al. (2024) 

9. Price et al. (2023) 

10. Baño-Medina et al. (2024) 

11. Guan et al. (2024) 

12. Li et al. (2024). (They also include a demo of a 16,384 member ensemble at one loca;on and lead ;me.) 
13. Frame et al. (2008) 

14. Hazeleger et al. (2010) 
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15. Jeffrey et al. (2013) 

16. Rodgers et al. (2015) 

17. Kay et al. (2015) 

18. Sanderson et al. (2015) 

19. Kirchmeier-Young et al. (2017) 

20. Sun et al. (2018) 

21. Maher et al. (2019) 

22. Kelder et al. (2022b) 

23. Gessner et al. (2021) 

24. Leach et al. (2022) 

25. Craig et al. (2022) 

26. Miranda et al. (2023) 

27. Fischer et al. (2023) 

28. Ye et al. (2024) 

B Post-processing Data to Improve Technical Analysis of the Huge Ensemble 

Analysis of petabyte-scale data volumes is challenging and nontrivial. A key challenge relates to the storage of the ensemble 

in memory. For certain analysis below, we perform reduc;ons on the ensemble dimension: axor each ini;al ;me, lead ;me, 

la;tude, and longitude, we calculate the ensemble mean, maximum, minimum, standard devia;on, 99th percen;le, 

bootstrap random sample, or CRPS. However, for a given ini;al ;me, HENS generates one file per ensemble member. This 

creates the following dimension ordering of the data in its storage in memory: (ensemble, lead ;me, la;tude, longitude). For 

a given ini;al ;me, lead ;me, la;tude, and longitude, the ensemble members are stored in separate loca;ons in memory, 

not in a con;guous chunk. With our analysis workflow, this is subop;mal for performing ensemble reduc;ons. It leads to 

prohibi;ve I/O read ;mes to load each ensemble member and rearrange the data in memory such that the ensemble 

dimension can be reduced. Addi;onally, loading in the ensemble members in parallel and communica;ng via the Message 

Passing Interface (MPI) requires a significant number of concurrent processes and has prohibi;ve memory demands. 
Reliability at Predic:ng 95th Percen:le 2m Temperature 
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 Lead Time: 10 days 

 

Figure C1. Effect of Ensemble Size on Reliability Diagram. The reliability diagram is compared for a 58-member ensemble (purple) and a 

huge ensemble (yellow). Results are shown for predic:ng the 95th percen:le 2m temperature, where the 95th percen:le is calculated 

from a 24-year climatology. See Part I for more details. Results are shown for a 10-day lead :me for all forecasts in summer 2023. 

To analyze the ensemble, we post-process 2m temperature and the heat index to be stored in con;guous chunks in 

memory. Our post-processing amounts to a matrix transpose. During the simula;on, the data is stored with the following 

array order: (ensemble, lead ;me, la;tude, longitude). We transpose this to (lead ;me, la;tude, ensemble, longitude). 

Through this transpose, for a given lead ;me and la;tude, all 7424 ensemble members at all 1440 longitudes can be analyzed 

in a con;guous 43 MB chunk of memory. This one-;me post-processing enables faster analysis workflows that reduce the 

ensemble dimension; this is because all the ensemble members are stored together in memory. For more op;mal I/O, we 

use file striping on NERSC’s scratch system. The post-processed file is split such that mul;ple servers can read the file in 

parallel. We perform all ensemble analysis using mpi4py (MPI for Python) and h5py. These tools scale well for dataset sizes 

of this magnitude, and they are well-op;mized for high-performance compu;ng centers and their file systems. 

C Effect of Ensemble Size on Reliability Diagrams and Spread Error Ra;o 

D Effect of ensemble size on confidence intervals 

In Figure D1, the effect of ensemble size on confidence intervals is calculated at lead ;mes of 4 days (96-114 hours) and 7 

days (168-186 hours). 

E Example of IFS Busts and HENS Busts 

Figure E1a shows the ERA5 Z score values at each grid point. These values are calculated from the climatological mean and 

standard devia;on of 2m temperature in August at 18:00 UTC. Figure E1b shows the instances where ERA5 was greater than 
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the maximum ensemble member in HENS. These instances are HENS busts, because HENS was unable to capture the true 

event. Figure E1c shows the instances of the opera;onal analysis being greater than the IFS ensemble max, which are 
Summer 2023 2m Temperature Spread Error Growth 

 

Figure C2. Effect of Ensemble Size on Ensemble Mean RMSE and Ensemble Spread. The ensemble spread and the ensemble mean RMSE is 

compared for a 58-member ensemble (purple) and a huge ensemble (yellow). Results are shown for all forecasts ini:alized during summer 

2023. Note that results are only shown for lead :mes of 4 days, 7 days, and 10 days. 

Summer 2023 2m Temperature Spread-Error Ra:o 

Figure C3.Reliability at Predic:ng 95th Percen:le 2m Temperature 
 Lead Time: 10 days 
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Figure C2. Effect of Ensemble Size on Spread-Error Ra:o. The spread-error ra:o is compared for a 58-member ensemble (purple) and a 

huge ensemble (yellow). Results are shown for all forecasts ini:alized during summer 2023. Note that results are only shown for lead 

:mes of 4 days, 7 days, and 10 days. 

Effec;veanalogously busts for IFS. Figure E1b and c show that HENS has a smaller propor;on of cases with a bust. In Figure 

12, we show the aggregate results from performing this calcula;on over all forecasts from all 92 ini;al ;mes, ini;alized in 

summer of 2023. 

 

C  of Ensemble Size on Reliability Diagrams and Spread Error Ra;o 

DC Effect of ensemble size on confidence intervals 

In Figure D1, the effect of ensemble size on confidence intervals is calculated at lead ;mes of 4 days (96-114 hours) and 7 

days (168-186 hours). 
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Figure D1. Same as Figure 10, but for 4 day lead :mes (le=) and 7 day lead :mes (right). 

 

Figure E1. Walkthrough of HENS Misses and IFS misses. ERA5 2m temperature on August 23, 2023, converted to Z Scores using the 24-year 

climatological mean and standard devia:on. Climatological mean and standard devia:on calculated for the month (August) and hour 

(18:00) UTC. Forecast busts are loca:ons where the verifica:on dataset is greater than the ensemble max. Forecast busts are shown for 

HENS (middle) and IFS (right). HENS and IFS are ini:alized on August 13, 2023 at 00:00 UTC and valid on August 23, 2023 at 18:00 UTC :me. 

Black contours indicate all loca:ons where there is a forecast bust. 

F Assessing Robustness of HENS Across Lead Times and Variables 

EC Example of IFS Busts and HENS Busts 

Figure E1a shows the ERA5 Z score values at each gridpoint. These values are calculated from the climatological mean and 

standard devia;on of 2m temperature in August at 18:00 UTC. Figure E1b shows the instances where ERA5 was greater than 

the maximum ensemble member in HENS. These instances are HENS busts, because HENS was unable to capture the true 

event. Figure E1c shows the instances of the opera;onal analysis being greater than the IFS ensemble max, which are 

analogously busts for IFS. Figure E1b and c show that HENS has a smaller propor;on of cases with a bust. In Figure 12, we 

show the aggregate results from performing this calcula;on over all forecasts from all 92 ini;al ;mes, ini;alized in summer 

of 2023. 
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Figure F1. Large Sample Behavior of Huge Ensembles (HENS). This figure is the same as Figure 4, but it compares day-2, day-4, and day-10 

forecasts of 2m temperature. 

 

Figure F2. Large Sample Behavior of Huge Ensembles (HENS). This figure is the same as Figure 4, but for 10m wind speed at a lead :me of 

4 days. 
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Figure F3. Skill of the Best Ensemble Member. This figure is the same as Figure 7, but for a lead :me of 4 days. 

 

Figure F4. Skill of the Best Ensemble Member. This figure is the same as Figure 7, but for 10m wind speed at a lead :me of 4 days. 

G.        Sta;s;cal proper;es of the ensemble 

G1 Setup and nota;on 

Define a sample of random variables X1,...,XN	that are independent and iden;cally distributed (IID) according to a probability 

density func;on f(x). Similarly, define a cumula;ve distribu;on func;on . We later take the {Xi	:	i	=	1,...,N}	
to be the day-10 global land-averages of an output variable from the HENS experiment for a given ini;aliza;on date, such 

that N	=	7,424. 

G2 Exchangeability 
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We first assess the extent to which there is a “signature” of the model checkpoints in the day-10 forecasts, i.e., are the output 

of the different model checkpoints interchangeable? This is commonly (in sta;s;cs) referred to as exchangeability. One way 

to assess the rela;ve differences between model checkpoints is to propose a sta;s;cal model that compares the between- 

 

model (or inter-model) variability and the within-model (or intra-model) variability. If we re-index the HENS output to be {Xij	

:	i	=	1,...,29;j	=	1,...,256}, where i	=	1,...29	indexes the individual model checkpoints and j	=	1,...,256	indexes the ensemble 

members for each checkpoint (yielding 29×256	=	7,424), the sta;s;cal model assumes 

Xij	∼	N(mi,τ2),	 mi	∼	N(m,σ2); 

 

i.e., each ensemble member arises from a Gaussian distribu;on with checkpoint-specific mean and variance τ2	(within-model 

variance the same for all models), and the mean of each model checkpoint arises from a different Gaussian distribu;on with 

an overall mean and variance σ2. Here σ2	describes the between-model variance. Note that this framework is robust to the 

specific distribu;on assumed in Eq. G1 (McCulloch and Neuhaus, 2011). The broader assump;on is that the specific 256 

ensemble members for each model are representa;ve of a poten;ally much larger pool of draws from that model; 

furthermore, that the 29 models come from a broader popula;on of models that could have been used. In any case, we are 

then interested in the so-called “exchangeability ra;o” R	=	σ/τ	to assess the rela;ve magnitude of the inter- and intra-model 

spread. If R	>	1, then this suggests the models are more different from one another than the individual ensemble members 

from a given model 

 

Figure G1. Exchangeability Ra:o. Using the global land mean values of each ensemble, the ensemble spread between SFNO checkpoints is 

compared to the ensemble spread within one checkpoint. The ra:o of the inter- and intra- model spread is shown for 2m temperature 

(t2m), total column water vapor (tcwv), 850hPa temperature (t850), 500hPa geopoten:al height (z500), and 10m wind zonal wind (u10m). 

Exchangeability ra:os are shown for 10-day lead :me across forecasts ini:alized in summer 2023. The ver:cal lines denote the 95% 

confidence interval for this ra:o. 
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are; if R	<	1, this suggests the within-model spread dominates the between-model spread. In other words, R	<	1	 implies 

exchangeability. We can also calculate a 95% confidence interval on this ra;o (Longmate et al., 2023, Appendix A). 

G3 Expected informa;on gain 

Define the informa;on gain for a sample of n	random variables to be 

 (G2) 

where 

. 

Our goal is to assess the expected informa;on gain, i.e., E[Gn], as a func;on of n. 

G3.1 Special case: Gaussian 

If we assume the {Xi	:	i	=	1,...,n}	are drawn from a standard Normal distribu;on with mean zero and standard devia;on one, 

Equa;on G2 reduces to 

. 

We now seek to derive the expected informa;on gain E[Gn]	for the Gaussian case. The cumula;ve distribu;on func;on of 

Gn	is    

P(Gn	≤	x) = P(|X1|	≤	x,...,|Xn|	≤	x) (the max is ≤	x	if and only if all values are ≤	x) 
(by independence) (because iden;cally distributed). 

Also,   

P(|Xi|	≤	x) = P(−x	≤	Xi	≤	x) 

 = P(Xi	≤	x)−P(Xi	≤	−x) 

 = P(Xi	≤	x)−(1−P(Xi	≤	x)) 

 
= 2P(Xi	≤	x)−1	≡	2Φ(x)−1 
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where Φ(·)	 is the cumula;ve distribu;on func;on of the standard normal. Hence, for Gaussian data, the cumula;ve 

distribu;on func;on of Gn	is 

. 

To calculate the expected gain, E[Gn], we need to calculate the probability density func;on of Gn: 

, 

where  is the probability density func;on of the standard normal. Then 

 (G3) 

which can be solved with numerical integra;on. A plot of the expected gain for Gaussian data is shown in Figure G2 for values 

of n	ranging from 10	to 100,000. As a sanity check, Figure G2 also shows a Monte Carlo es;mate of the expected Gain for 

Gaussian data. 

G3.2 Informa;on gain for HENS output 

For the HENS output, we calculate the expected informa;on gain GbnHENS in a Monte Carlo sense: for r	=	1,...,2000	and a given 

n, 

1. Randomly sample n	values from {Xi	:	i	=	1,...,N}. 

2. Calculate Gn(r)	from Equa;on G2. 

Then . 
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Figure G2. Expected gain E[Gn]	as a func:on of the ensemble size n, showing the theore:cal calcula:on from Equa:on G3 as well as a 

Monte Carlo es:mate for comparison. Note that the x-axis is on the log10	scale. 

G4 Large-sample behavior of ensemble sta;s;cs 

We derive a theory for the large-sample behavior of seven ensemble sta;s;cs: 

1. Mean 

2. Standard devia;on 

3-7. 100α	Percen;les for α	=	0.001,0.1,0.5,0.9,0.999	(note that α	=	0.5	corresponds to the median). 

Specifically, we derive the uncertainty in each of these sta;s;cs as a func;on of the ensemble size n. 

G4.1 Analy;c uncertainty in ensemble sta;s;cs 

To derive the theore;cal or analy;c uncertainty in various sta;s;cs, we assume that the HENS output arises from a Normal 

distribu;on with known “popula;on” mean and standard devia;on calculated from the full ensemble, i.e., 

 IID 2 
Xi	∼	N(µ,σ	), 
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Distribu;on of sample mean. For a sample of size n, sta;s;cal theory says that the sampling distribu;on of 
is 

. 

Hence, the analy;c uncertainty in the sample mean is 

.	 (G4) 

Distribu;on of sample standard devia;on. For a sample of size n, sta;s;cal theory says that the sampling distribu;on of 

 is 

, 

where Γ(·)	is the gamma func;on. The analy;c uncertainty in the sample standard devia;on is 

.	 (G5) 

Distribu;on of sample percen;les. Define the order sta5s5cs to be the sample arranged in increasing order, i.e., 

X(1)	≤	X(2)	≤	···	≤	X(n). 

Sta;s;cal theory tells us that the probability density func;on of the jth order sta;s;c, X(j),j	=	1,...,n, is 

.	 (G6) 

For large enough n, the 100αth sample percen;le from a sample of size n, denoted Xn(α), can be well-approximated by 

Xn(α)	=	X([nα]), 

where [y]	is the nearest integer to y. We can use numerical integra;on to calculate the expected value of Xn(α)	as well as its 

uncertainty: 

Expected value:  



 

41 

Z 

Second moment: E[Xn(α)2]	=	 x2f([nα])(x)dx 
−∞ 

 

Uncertainty: SD[Xn(α)]	=	pE[Xn(α)2]−E[Xn(α)]2.	 (G7) Two points should be noted: first, in prac;ce, calcula;on of the 

probability density func;on f([nα])(x)	can be problema;c when n	is very large and α	is not too close to zero and not too close 

to one because of the factorial terms in  (i.e., this factorial term will be computa;onally equal to ∞). Second, if n	

is small and α	is close to one, there will be significant differences between Xn(α)	(the percen;le) and X([nα])	(the order sta;s;c) 

due to rounding nα. As such, the uncertainty in Equa;on G7 may not be representa;ve of the actual uncertainty in the 

percen;le. For both reasons, we turn to asympto;c theory to approximate SD[Xn(α)]	when n	is very large using the central 

limit theorem. As the sample size n	→	∞, one can show that 

.	 (G8) 

Note that we can calculate this explicitly when we know the underlying f(·)	and F(·)	 from which the {Xi}	are drawn. For 

example, again consider the case where the random variables {Xi}	are drawn from a standard Normal distribu;on. Figure G3 

shows the uncertainty as a func;on of n	for five different percen;les. The non-smooth trajectories are due to the process of 

rounding nα	when n	is small and α	is close to one (as noted above). Also, the combinatorial term prevents us from calcula;ng 

the expecta;on for large n	and 0.001	<	α	<	0.999. 

In Figure G3, we see that the approximate uncertain;es (circles) agree quite well with the true values for the median even 

for n	=	10. Note, however, that we cannot calculate the analy;c uncertainty in the median for n	>	500. For the 0.1 and 0.9 

quan;les, the uncertain;es align for n	≥	100; for the 0.001 and 0.999 quan;les, the uncertain;es do not align un;l n	≥	500. 

Hence, for results, we will show the analy;c uncertain;es when possible (i.e., when they can be calculated as numerically 

finite) and leverage the CLT uncertain;es otherwise. 

G4.2 Extreme value theory for “extreme” percen;les 

In prac;ce, one does not know the “true” distribu;on (f(·)	and F(·)) from which data are drawn. Since the density in Equa;on 

G6 involves the CDF raised to the power of n	and j, any errors in es;ma;ng the CDF will compound for large n, making 

empirical es;mates untenable. Furthermore, we oeen wish to extrapolate to percen;les beyond 1−1/n	when n	is not too 

large, which is effec;vely impossible to do empirically. For both reasons, for “extreme” percen;les (those that are very close 

to zero or very close to one) we turn to extreme value theory and approximate asympto;c uncertain;es. 
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Es;ma;ng percen;les (i.e., return levels) using the Generalized Pareto distribu;on. For a sufficiently large threshold u, 

extreme value theory tells us that the cumula;ve distribu;on func;on F(y)	 of Y	=	X	−u	 (condi;onal on X	 >	 u) is the 

Generalized Pareto Distribu;on (GPD): 

 for ξ	

̸=	0	  for ξ	=	0.	From the CDF, it follows that, for x	>	u, 

; 

 

Figure G3. Uncertainty in empirical percen:les from data drawn from a standard normal distribu:on, as calculated in Equa:on G7 (solid 

lines). Approximate uncertain:es from Equa:on G8 are shown with empty circles. Note that the x-axis is on the log10	scale. 

hence 

, 

where θu	=	P(X	>	u). Therefore, for α	close to 1, the 100α	percen;le of f(x)	is the solu;on of 

. 

Re-arranging, we obtain a formula for the 100α	percen;le 
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for ξ	̸=	0 
(G9) for ξ	=	0, 

assuming α	is sufficiently close to one. The percen;le could alterna;vely be framed as the m-observa;on return level, where 

m	=	1/(1−α). 

Central limit theorem for es;ma;ng percen;les with the generalized Pareto distribu;on. The Central limit theorem says 

that maximum likelihood es;mates σ,	 of the three parameters σ,ξ,θu	in Equa;on G9 have an asympto;cally Normal 
√  

distribu;on, wherein the uncertain;es scale with 1/	n. Sta;s;cal theory allows us to derive the approximate standard error 

of an es;mate of the 100α	percen;le based on n	data points, denoted Xbn(α). No;ng that the es;mate is a func;on of σ,ξ,θu	
as given in Equa;on G9, i.e., 

,	 (G10) 

the delta method says that 

 (G11) 

where V	 is the variance-covariance matrix of  (obtained from the Hessian of the GPD likelihood, evaluated at the 

maximum likelihood es;mate) and 

	. 

√  

As a central limit theorem, this implies that uncertain;es in Xbn(α)	will also scale with 1/	 n. 

G4.3 Es;ma;ng ensemble sta;s;cs and uncertain;es 

To es;mate the sta;s;cs of the ensemble and assess uncertain;es as a func;on of ensemble size, we use Monte Carlo 

techniques similar to Sec;on G3.2. We es;mate all sta;s;cs empirically and, for the 0.001 and 0.999 quan;les, addi;onally 

using extreme value theory. For an arbitrary sta;s;c Z(·), the empirical calcula;on proceeds as follows: for r	=	1,...,2000	and 

a given n, 

1. Randomly sample n	values from {Xi	:	i	=	1,...,N}	with replacement, denoted Xrn	=	(X1∗,...,Xn∗). 

2. Calculate . 

Then, the Monte Carlo empirical es;mate and empirical uncertainty are 
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. 

For the 0.001 and 0.999 quan;les, we obtain extreme value theory Monte Carlo es;mates in a similar manner: for r	=	

1,...,2000	and a given n, 

1. Randomly sample n	values from {Xi	:	i	=	1,...,N}	with replacement, denoted Xrn	=	(X1∗,...,Xn∗). 

2. Fit a GPD and calculate  from Equa;on G10 and  from Equa;on G11. 

Then, the Monte Carlo GPD es;mate and empirical uncertainty are 

. 
G5 Aggrega;on 

Lastly, we want to aggregate over all 92 days in the HENS simula;on for each of the variables. However, there is clear 

seasonality in the ensemble mean and standard devia;on for most (if not all) of the variables. To obviate these systema;c 

differences, we summarize all quan;;es in terms of standard devia;ons. The expected informa;on gain quan;ty is already 

in units of standard devia;ons, so we can simply average the expected informa;on gain calculated for each ini;aliza;on date. 

Furthermore, the exchangeability ra;o R	in Sec;on G2 is also unitless and can hence be averaged over all ini;aliza;on dates. 

For the ensemble sta;s;cs, we normalize things as follows. All uncertain;es are normalized by the analy;c uncertainty cal- 
√  

culated from the en;re ensemble (N	=	7,424): σ/	N	for the mean, SD[SN]	for the standard devia;on, and SD[XN(α)]	for the 

quan;les (approximated using the central limit theory for α	=	0.1,0.5,0.9). The es;mates are similarly normalized by first 

subtrac;ng off the popula;on quan;ty and then dividing by the analy;c uncertain;es for the en;re ensemble. To summarize 

all days, we can now simply plot the average of the normalized quan;;es: Monte Carlo es;mates plus and minus the Monte 

Carlo uncertain;es, and the zero line plus and minus the analy;c uncertain;es. For all plots, the y-axis has a convenient 

interpreta;on: the mul;plica;ve uncertainty rela;ve to the en;re ensemble. In prac;ce, one could choose the ensemble size 

n	based on how much larger they can tolerate the uncertainty rela;ve to the “smallest possible” uncertainty from a huge 

ensemble of N	=	7,424. 

H Uncertain;es in EFI, ROC, and twCRPS metrics due to finite sample size 

The ques;on of how uncertain;es in the Extreme Forecast Index (EFI) and CRPS metrics scale with ensemble size can be 

answered by determining how the uncertain;es in the empirical es;mates of cumula;ve distribu;on func;ons (ECDFs), 

which govern all three metrics, scale with sample size n	rela;ve to the "true" CDFs in the limit n	→	∞. The Dvoretzky–Kiefer–

Wolfowitz (DKW) (Massart, 1990) inequality provides the mechanism for quan;ta;ve es;mates of these uncertain;es. 
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Let Fn(x)	denote the finite-sample es;mate of one of the ECDFs in ques;on (in EFI, ROC, or twCRPS metrics) and F(x) the 

true corresponding CDF. For a sample of n	samples (X1,X2,...,XN)	with Xi	∈	R, the expression for Fn(x)	is 

 

where Θ(x)	is the Heaviside func;on. The DKW inequality then states that the probability that the difference between Fn(x)	

and F(x) exceeds a given ϵ	for any x obeys the following constraint: 

Pr  

If we evaluate this at ϵ+dϵ, we get 

Pr  
Differencing the second from the first equa;on gives 

Pr  

which, aeer dividing both sides by dϵ, yields the probability density of uncertain;es in Fn(x)	as: 

Pr  (H1) 

Let’s denote the quan;;es that depend on Fn, i.e., the EFI, ROC, and twCRPS, by a generic func;on g(Fn)	of Fn	and denote 

the deriva;ve of g(Fn)	with respect to Fn	by g′(Fn). 

Then the uncertainty in g(Fn)	due to finite sample size n	is δg	

=	g′(Fn)δFn 

The expecta;on value ⟨δg⟩	is then 
Z 

⟨δg⟩	=	 g′(Fn)δFnPr(δFn)dδFn. 

By sezng ϵ	=	δFn, this expecta;on value may be wri^en as: 
Z 

⟨δg⟩	=	g′(Fn)	 ϵPr(δFn	=	ϵ)dϵ 

Following subs;tu;on of Eq. H1 into Eq. H2, we get 

(H2) 
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 (H3) 

since the DKW probability is an upper bound, because it governs the maximum absolute values of uncertain;es, and since 

0	≤	ϵ	≤	1. 

Using the Leibniz product rule 

1 

 
which implies 

 

we can set q	=	2	exp(−2nϵ2)	and rewrite Eq. H3 as 

 
This yields the uncertainty in g(Fn)	due to finite sample size n: 

 (H4) 

  (H5) 

In the limit of n	≫	1, the first terms in the asympto;c expansion of the error func;on are: 

erf 	. 

Following subs;tu;on of this expansion into Eq. H5, the uncertainty simplifies to 

 

which in this limit is approximately 

 

 

 

Actually, this limit is a^ained to within 1% for modest values of n, specifically when n	≥	3. 
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