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Overview5

We sincerely thank the reviewers for their constructive comments and review of our paper. These comments6

will substantively improve our manuscript. We have included responses to the reviewers’ comments below,7

with the reviewer comments in black text and our response in green text.8

In this document, we will detail our planned revisions. Some of the reviewer comments require re-9

analyzing our ensemble simulation with additional variables, such as 10m north-south wind, 10m east-10

west wind, heat indices, and others. We request a short period of time due to the computational and data11

requirements of these comments. The ensemble simulations use O(1) TB per variable for a 58-member12

ensemble, and O(100) TB per variable for the huge ensemble. Upon completion of the analysis that the13

reviewers suggest, we will submit a revised version of the manuscript in mid-March 2025.14

For public reference, this is the second of a two-part manuscript on huge ensembles. We refer to part I15

as HENS Part I [Mahesh et al., 2024a], and we refer to part II has HENS Part II [Mahesh et al., 2024b].16

Comments from Reviewer #117

Part 1 and 2 are both interesting papers that document the development and use of a machine learned ensem-18

ble weather forecast model with an enormous number of ensemble members. The papers fit well into GMD,19

but I think that they should be revised following the comments below. The paper presents very interesting20

and useful information about how the huge ensemble is generated and how much effort it requires to run21

such a model.22

Thank you for this overview of our paper.23

However, the evaluation of the usefulness of a huge ensemble is rather weak as it is presenting the24

“easy” task of Gaussian predictions but avoids diagnostics that evaluate the “hard” tasks for a huge ensemble25

that could actually show the real usefulness. I am left a bit puzzled after reading the paper how the huge26

ensembles could actually become useful. I doubt that our current 50-member ensembles would greatly27

benefit from more ensemble members if we assume that we predict Gaussian distributions.28

Thank you. We wish to clarify two things:29

1. We do not assume that the ensemble distribution is Gaussian. This is an emergent property of the30

ensemble quantity we study in Figure 2 and Figure 4: the global land mean for each variable. The31

Gaussianity could arise from taking a large spatial mean over all land grid cells over the globe. We32

state,33
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For all variables, the HENS gain closely follows the theoretical Gaussian gain. This result is not com-34

pletely surprising: averaging over a large number of grid cells implies that a Central Limit Theorem35

should apply (even though the grid box values are neither independent nor identically distributed),36

wherein the global land averages behave similarly to a Gaussian random variable. In Section 3.1,37

we state why we choose to study this particular quantity:38

At a given time, there will likely be extreme conditions occurring somewhere on Earth, simply due to39

the spatial variation of weather. In our calculation of information gain, we do not consider the spatial40

distribution of extremes, which varies significantly within each ensemble member. Instead, we wish to41

assess the distribution across ensemble members. Therefore, we calculate the information gain on the42

global land mean values of each ensemble member. This allows us to assess the ensemble members in43

aggregate and how far each ensemble member is from the ensemble mean.44

2. For all other analysis, other than Figures 2 and Figures 4, we analyze statistics at the grid cell level.45

In particular, Figure 3 is a version of Figure 2 without making the Gaussian assumption or taking a46

land-mean. We make no assumption about the distribution of the quantity of interest, neither in the47

ensemble forecast nor in the verification ERA5 dataset.48

We have EMOS to improve predictions for 50-member ensembles, so no need for huge ensembles. How49

does the information gain of 4 compare against the IFS ensemble with EMOS?50

For our revised manuscript, we are working to obtain enough of an IFS model climatology to calculate51

this quantity. However, for SFNO-BVMC, we note that gain is convincingly a function of ensemble size,52

both with and without the Gaussian distribution at play, (Figure 2 and Figure 3).53

It seems to be of less relevance to have a prediction of the uncertainty range of the probability for an54

extreme prediction.55

We respectfully wish to highlight this as an important advantage of HENS. Taking our example heatwave56

in Shreveport, Louisiana, USA, a 58-member ensemble predicted that a heatwave could occur with 18%57

probability, but the 95th percentile confidence interval of this event was large, from 8.7% to 28% (Figure 958

and section 4.2). In the extreme event forecast, there is an uncertainty introduced by limited sampling: in the59

space of all possible ensemble members, which 58 members were selected? HENS reduces this sampling60

uncertainty significantly. For Shreveport, the confidence interval became narrower, ranging from 17.1% to61

18.9%; see Figure 10 for the results of this analysis across the entire period.62

HENS and the 58-member ensemble are almost equally reliable (Figure C1), but HENS has narrower63

confidence intervals. In this way, HENS is a more useful forecast. We propose that reducing the error64

bounds on extreme event forecasts is a highly valuable benefit of huge ensembles.65

I also do not think that an ensemble range that predicts temperatures between 295 and 320K will be66

of any assistance for a decision maker (as seen in Figure 5). To have a couple of members from a 1000-67

member ensemble close to the truth will not trigger any decisions for a forecast. The same is true for the68

outcome-weighted CRPS discussion. If we assume that the distributions of variables that are of interest are69

non-Gaussian, in particular for extremes, the huge ensembles may be extremely useful to sample the tails of70

the distribution.71

We agree: if a couple of members from a huge ensemble are close to the truth, that will not trigger decisions72

for a forecast because we do not know which members those will be ahead of time. For an operational73
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decision-maker, the benefit of a huge ensemble is that it reduces the error bounds on the probability of74

extreme (see point above), and that it has a reduced outcome-weighted CRPS (owCRPS). owCRPS directly75

measures how well the forecast distribution resolves events that are above the extreme threshold, and it76

does not rely on the Gaussian assumption. It measures the performance of the ensemble at the tail of the77

verification distribution (ERA5).78

While a huge ensemble has a large temperature range by design, an operational decision-maker can use79

the probabilities associated with these temperatures to inform their decisions. In particular, they can use80

the huge ensemble if they are particularly concerned about low-likelihood events or to reduce the sampling81

uncertainty associated with extreme events. In the paragraph above, we discuss HENS’s performance at the82

tail of the verification distribution (ERA5). In addition to this, HENS directly samples the tail of the forecast83

distribution with higher fidelity (e.g. Figure 9). This allows HENS to sample events that are low-likelihood84

in the forecast. These low-likelihood events do occur: 3% of events in summer 2023 were low-likelihood85

enough that they were completely out of the bounds of the IFS 10-day forecast (Figure 11b). HENS can86

sample these events (Figure 11a) without a degradation in CRPS or reliability. This means that HENS87

offers a way to directly simulate events that are out of the bounds of IFS. For these events, it provides a88

better estimate of low-likelihood events that exist at the tail of the forecast distribution. By simulating these89

events, HENS also offers a dataset with a large sample size to study the dynamics of these low-likelihood90

events (at the tail of the forecast distribution) post-hoc.91

We also emphasize that HENS can be used beyond the context of operational meteorological decision-92

making. It can be used to study the drivers and statistics of extreme events in a retrospective hindcast93

mode. For this purpose, HENS offers many promising improvements over smaller ensembles, including a94

reduced likelihood of missed events (Figure 11 and 12), a better ability to have ensemble members represent95

the true value (Figure 6), and better information gain to sample low-likelihood events that occur at the96

tail of the ensemble distribution (Figure 1,3). These metrics ensure that a large ensemble provides more97

information than a small one, and they verify that the ensemble does not collapse where each member98

provides duplicative information. The trajectories that correctly capture the true outcome can be used to99

study the dynamics and drivers of extremes: a similar process has been used in Mo et al. [2022], Millin100

and Furtado [2022], Leach et al. [2024]. It can be used to study counterfactuals, such as the probability101

of avoiding the 2023 Kansas City heatwave (Figure 5 HENS Part II). And it can be used to create a large102

dataset with many samples of events that exist at the tail of the IFS distribution, which would only have103

limited samples of the event or would be missed entirely.104

But in this case, we would need to still show that the ensemble is actually representing the tails of the105

distribution correctly. This should be evaluated but it is a very hard problem, not only for the ensemble106

system, but also for the evaluation as you would need a very long test period to sample extreme events to107

understand the real quality of the ensemble when representing a 4-sigma event for, say, precipitation with108

enough statistics. This may not be possible without overlap between training and testing datasets.109

We fully agree that there is limited observational data. This is a fundamental constraint. In the face110

of these limits, we note that we validate HENS against IFS on extreme diagnostics to the maximal extent111

possible on the time periods available. We hope that HENS, as well as future model improvements, lead to112

a model with comparable trustworthiness as physics-based models.113

We validate HENS on the tails of the observational distribution. This validation is limited by the length114

of the observational dataset. But we also validate on HENS on its ability to sample the tails of the forecast115

distribution. For instance, HENS gives us a better estimate of the 99th percentile of all the ensemble mem-116

bers. This test of HENS does not require a large observational dataset, but rather requires comparing the117

large ensemble to the small ensemble.118
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HENS represents a first-of-its-kind experiment. If it yields promising results in understanding extreme119

statistics and drivers, perhaps it can be used as motivation for the weather and climate community to invest in120

huge ensembles of physics-based simulations. At the very least, if HENS were trained on purely simulated121

data, this would enable saving all the observed data for validation, and there could also be other perfect122

model experiments, in which HENS is validated against a large set of physics-based simulations.123

If you represent all possible weather situations at day 10, this can well indicate that your model is all124

over the place when it is basically uncorrelated with the real-world trajectory.125

Thank you for raising this point: this is a crucial aspect to validate. The HENS CRPS is similar to the126

58-member SFNO-BVMC CRPS at day 4, indicating that the huge ensemble is providing skillful forecasts127

at early lead times (Figure 8a). The same is also true for the HENS spread-error ratio (Figure C2). If the128

HENS forecasts were entirely unreliable, then we would expect these scores to be significantly degraded.129

We will also provide HENS ensemble mean RMSE scores and include calculation of statistics at earlier lead130

times, as discussed below.131

It would be a much stronger statement if you see the same at day 2 or 5. It also smells a bit like cherry-132

picking when the evaluation is focusing on day 10+ as you see a good spread-error ratio here. I would like133

to see evaluations of earlier lead times (in particular for Figure 4, 6, 7).134

Thank you very much for this feedback. We greatly appreciate this comment, as it will help strengthen our135

paper. We will perform this analysis at an earlier lead time. We note that while the spread-error ratio is at136

1 at day 10, it’s reasonably close to 1 at earlier lead times (Figure C2). In our revised manuscript, will also137

include the HENS ensemble mean RMSE and spread as a function of lead time. For these two reasons, the138

results from Figure 10 and Figure 11 hold up at earlier lead times (see Figure D1 and Figure 11 itself.)139

We emphasize that we are not cherry-picking a lead time of 10 days. We choose to validate this lead140

time because of our scientific interest in counterfactual trajectories. Forecasts at 10 day lead times are still141

correlated with the initial conditions, and they are still, on average, more skillful than climatology. At this142

lead time, we can look at a large trajectory of possible future weather states, accounting for synoptic-scale143

uncertainty. Still, at 10-days, we can rigorously validate that the results are realistic using medium-range144

weather diagnostics. For lead times longer than a few weeks, the chaotic limit of predictability requires other145

climatological diagnostics to be used, since the model is no longer conditioned on the initial conditions.146

Since ML emulators are new, we chose to focus on medium-range diagnostics for direct, rigorous validation147

that the ensemble output is trustworthy.148

It would also be good if you could show results for more challenging quantities such as precipitation as149

well.150

Thank you for raising this issue. Precipitation is excluded as a variable because of the challenges in obtaining151

a global training dataset with high-spatiotemporal resolution. Some ML model groups have a “lack of152

confidence in the quality of ERA5 precipitation data” [Price et al., 2024] and exclude the precipitation results153

from the main evaluation [Lam et al., 2023]. In addition to the training dataset challenge, the spatial statistics154

and long tails that are present in precipitation datasets, in some cases, indicate that further architectural155

changes are necessary for ML models [Pathak et al., 2022]. Precipitation is not included in the original156

SFNO [Bonev et al., 2023]. We note that the exclusion of precipitation is a common feature across many157

data-driven weather prediction models [Bi et al., 2023, Keisler, 2022, Chen et al., 2023a,b, Ramavajjala,158

2024, Cachay et al., 2024, Bodnar et al., 2024], many of which are leading models listed on WeatherBench.159
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The addition of precipitation is very much an important challenge at the forefront of data-driven weather160

prediction. In future research, we certainly wish to emulate precipitation to forecast LLHI precipitation161

events and will include it as a variable in our ensemble: however, for this work, we focus on the development162

of ensembles and study surface temperature events (with other variables forthcoming) to our analysis.163

The first part that outlines how a huge ensemble can be run and what hardware is needed is very inter-164

esting. However, it would be good if you could put the results a bit better into perspective. The data pipeline165

that you describe seems to bring a machine of the size of Perlmutter to its limits. A 25 GB/s connection166

is rather expensive to maintain. This does not go down well with the claim the ML models are orders of167

magnitude cheaper when compared to conventional models?168

Thank you for raising this interesting point of comparison and discussion. Regarding computational cost,169

we are not considering data transfer. Because ML models generate an ensemble member so quickly (one170

hour for IFS on 96 CPUs, one minute for SFNO on 1 GPU), it is more feasible to run them in huge ensemble171

configurations. The data transfer stresses are relevant largely because ML makes it reasonable to create 256172

ensemble members simultaneously. For instance, in the data pipeline we describe, it was possible for us to173

access 256 GPUs to generate 256 ensemble members per minute simultaneously (Section 2.1 of HENS Part174

II). It would be more challenging to request 24,576 CPUs (96 CPUs per ensemble member * 256 members)175

at once to create 256 members at one time. Even then, each member would take one hour, not one minute,176

so the data transfer requirements would not be as high. We agree that these new capabilities require new,177

fast, and expensive data transfer connections. But now these costs also open new science questions around178

huge ensemble datasets that were impractical to explore with traditional models.179

Would it be possible to compare the huge ensemble also against other ML ensemble systems that are180

published in the literature?181

In future work, we agree it would be interesting to compare huge ensembles from multiple ML architectures.182

However, the core of this study is to assess the effect of ensemble size. The central analysis necessary to183

perform this goal is to benchmark our huge ensemble against smaller ensembles (58 members) from the184

same model, and against IFS. Assessing the performance against other ML ensembles is out of the scope of185

this study, especially since we do not have access to another huge ML ensemble.186

Minor comments: P6: How large is the model if you want to send it around instead of the data?187

The SFNO checkpoint model weights are 8.4 GB per checkpoint.188

How does climate change enter the discussion around huge ensembles?189

We choose to run our huge ensemble in summer 2023, the hottest summer on record [Esper et al., 2024].190

This allows us to study alternate trajectories that could have occurred due to internal variability in one of the191

warmest summers on record. However, we do not explicitly model the influence of CO2 in our forecasts, as192

other emulators have recently added this capability [Watt-Meyer et al., 2024].193

Figure 11 seems to have an error in the caption with 240, 246, 252. . . not fitting to day 4,7,10.194

We have fixed this error, thank you very much.195
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Comments from Reviewer #2196

In Part 1, the integrated system was validated, while in Part 2, the focus shifted to simulating extreme weather197

events, particularly those exceeding 4 standard deviations from the mean. The creation and analysis of 7,424198

ensemble members using a range of probabilistic metrics is impressive and represents a significant advance-199

ment in ensemble-based forecasting. This large ensemble approach has substantial potential for improving200

the prediction and assessment of extreme weather events, offering valuable insights into their likelihood and201

associated uncertainties. Moreover, the integration of artificial intelligence, specifically through Spherical202

Fourier Neural Operators, presents a promising new direction for weather forecasting, combining compu-203

tational efficiency with robust performance. However, several concerns need to be addressed, as outlined204

in the detailed comments below. With these revisions, we believe the manuscript will be well-prepared for205

publication.206

Thank you for your review of our paper.207

Major Comments 1. The authors do not demonstrate whether the error accumulates and spreads as the208

lead time progresses, and the explanation for this omission is unclear. Since the perturbations are based on209

bred vectors, the lack of error accumulation could potentially result from deviations introduced by the initial210

bred vector itself. Therefore, including an analysis of the variance and characteristics of the bred vector211

would enhance the validity of the results and provide a more convincing argument.212

Thank you for this comment: we will clarify this in our upcoming manuscript. In Figure C2 of our213

manuscript, we show that the spread-error ratio is approximately 1 for HENS (the 7,424 huge ensemble)214

and for a 58-member ensemble. This is an important benchmark metric that indicates that the ensemble215

spread and the ensemble mean RMSE are comparable. We show the ensemble mean RMSE in part I of216

our manuscript (Figure 9) for the 58-member ensemble; it grows as a function of lead time. In our revised217

manuscript, we will show that the ensemble mean RMSE and variance (with the reasonable spread-error218

ratio in Figure C2) for HENS also grows with lead time.219

2. The authors have only analyzed temperature, but with the availability of u10m data, further analysis of220

wind gusts could be conducted. Limiting the results to temperature alone restricts the reliability of the study.221

Additional analyses of other extreme events using different variables would strengthen the manuscript. If it222

is feasible to modify the deep learning model to simulate precipitation, I would recommend including it. If223

not, at the very least, wind gust analysis should be explored and discussed.224

Thank you for raising this suggestion. We will include an analysis of wind in our results in our revised225

manuscript. It is not possible to modify the deep learning model to simulate precipitation (see the manuscript226

comments for Part I), as that is not one of the variables in the backbone of SFNO and many other data-driven227

weather prediction models.228

3.The study focuses exclusively on heat waves from June to August. However, cold waves represent the229

opposite end of temperature extremes and are equally important. If the authors can demonstrate that their230

system is capable of reproducing cold waves, it would significantly enhance the reliability of the model in231

predicting a broader range of temperature extremes.232

Thank you for raising this possibility. We evaluated the cold tail of the ensemble distribution in the calcu-233

lation of ensemble gain (Eqn F2, Figure 1-3), the large sample behavior of the 0.1st and 10th percentiles234
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(Figure 4), and in the calculation of the outlier statistic (Figure 11). We believe that this analysis of the235

cold tails is sufficient for our core scientific questions, and we respectfully suggest that further evaluation of236

cold waves would not further the core of this manuscript on huge ensembles. We do not intend to further237

evaluate cold waves in our huge ensemble simulation, as we only have one season of data (June-July-August238

2023). This would not be enough data to evaluate cold waves in midlatitude land. We intentionally selected239

this season to study for very specific reasons because it was one of the warmest seasons on record [Esper240

et al., 2024], and we believe that further analysis of cold waves could happen in future work, particularly241

simulations of other seasons.242

Minor Comments 1. Perturbations were applied using both bred vectors and checkpoints. One question243

that arises is which of these two methods is more sensitive to an increased perturbation. A brief analysis244

and discussion on this point would be valuable for readers to better understand the relative impact of each245

approach.246

We compare the relative influence of multi-checkpointing and bred vectors in our Part I manuscript, Figure247

6. We discuss this behavior in Part I as it is a fundamental question about our ensemble setup, rather248

than something intrinsic in the HENS run in summer 2023, which is the main topic of Part II. Our current249

discussion on the topic is as follows:250

As a model perturbation, multi-checkpointing does not represent the uncertainty arising from an imperfect251

initial condition. Therefore, the multi-checkpoint ensemble is underdispersive at early lead times. On the252

other hand, the ensemble composed only of bred vectors is underdispersive on synoptic time scales (3-5253

days) when representing model uncertainty also becomes important for obtaining good calibration.254

Furthermore, we show that multi-checkpointing (beyond the 29 checkpoints we use) is not sensitive to255

increased perturbation. Increasing the multi-checkpointing perturbation would mean creating an ensemble256

with more than 29 checkpoints. As a function of the number of checkpoints, we show that the ensemble257

spread has converged (for t2m in the current manuscript, and with other variables in the next version) by 29258

checkpoints (Figure 3, HENS Part I).259

2. There are typos in plural and singular, please find and correct them.260

Thank you. We will do so.261
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