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Abstract. 

Simula;ng low-likelihood high-impact extreme weather events in a warming world is a significant and challenging task for 

current ensemble forecas;ng systems. While these systems presently use up to 100 members, larger ensembles could enrich 

the sampling of internal variability. They may capture the long tails associated with climate hazards beVer than tradi;onal 

ensemble sizes. Due to computa;onal constraints, it is infeasible to generate huge ensembles (comprised of 1,000-10,000 

members) with tradi;onal, physics-based numerical models. In this two-part paper, we replace tradi;onal numerical 

simula;ons with machine learning (ML) to generate hindcasts of huge ensembles. In Part I, we construct an ensemble weather 

forecas;ng system based on Spherical Fourier Neural Operators (SFNO), and we discuss important design decisions for 

construc;ng such an ensemble. The ensemble represents model uncertainty through perturbed-parameter techniques, and 

it represents ini;al condi;on uncertainty through bred vectors, which sample the fastest growing modes of the forecast. 

Using the European Centre for Medium-Range Weather Forecasts Integrated Forecas;ng System (IFS) as a baseline, we 

develop an evalua;on pipeline composed of mean, spectral, and extreme diagnos;cs. UsingWith large-scale, distributed 

SFNOs with 1.1 billion learned parameters, we achieve calibrated probabilis;c forecasts. As the trajectories of the individual 

members diverge, the ML ensemble mean spectra degrade with lead ;me, consistent with physical expecta;ons. However, 

the individual ensemble members’ spectra stay constant with lead ;me. Therefore, these members simulate realis;c weather 

states during the rollout, and the ML ensemble thus passes a crucial spectral test in the literature. The IFS and ML ensembles 

have similar Extreme Forecast Indices, and we show that the ML extreme weather forecasts are reliable and discrimina;ng. 

hese diagnos;csyThese diagnos;cs ensure that the ensemble can reliably simulate the ;me evolu;on of the atmosphere, 

including low likelihood high-impact extremes. In Part II, we generate a huge ensemble ini;alized each day in summer 2023, 

and we characterize the sta;s;cssimula;ons of extremes. 
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1 Introduc;on 

Recent low-likelihood, high-impact events (LLHIs) have raised important and unanswered ques;ons about the drivers of these 

events and their rela;onship to anthropogenic climate change. For example, Hurricane Harvey in 2017 and the Summer 2021 

heatwave in the Pacific Northwest (PNW) are two high-impact events with no modern analog. Several threads mo;vate 

research on LLHIs. First, the IPCC states that "the future occurrence of LLHI events linked to climate extremes is generally 

associated with low confidence" (Seneviratne et al., 2021, pp. 1536). Second, the occurrence of recent LLHIs, such as as the 

Summer 2021 PNW heatwave, reveals that the abilityour abili;es to characterize, let alone an;cipate, such events isare 

currently incomplete (Bercos-HickeyBercosHickey et al., 2022; Zhang et al., 2024; Liu et al., 2024). 

LLHIs challenge the standard climate models that might be used to answer such ques;ons. Computa;onal costs make it 

infeasible to run the large ensembles of simula;ons that are necessary to make inferences about the sta;s;cs of extremely 

rare weather events. The climate modeling community has successfully constructed large ensembles of up to O(102)	

members, such as the Community Earth System Model 2 Large Ensemble (CESM2-LE). To examine the rarest of LLHIs, a larger 

sample size is necessary. For instance, McKinnon and Simpson (2022) note, "for very large events (e.g., exceeding 4.5σ	at a 

weather sta;on), only a small minority of CESM2-LE analogs in skewness/kurtosis space produce similarly extreme events." 

These challenges mo;vate the applica;on of en;rely new methodological approaches, such as those based on machine 

learning (ML). For the first ;me, it is now possible to generate massive ensembles using ML with orders-of-magnitude less 

computa;onal cost than tradi;onal numerical simula;ons (Pathak et al., 2022). Recent work has demonstrated the poten;al 

of determinis;c ML-based weather forecas;ng, which has comparable or superior root-mean squared error (RMSE) to the 

Integrated Forecas;ng System (IFS) at 0.25 degree horizontal resolu;on (Bi et al., 2023; Lam et al., 2023; Willard et al., 2024; 

ECMWF). Oliveg and Messori (2024) show that these determinis;c data-driven models also offer promising forecast skill on 

extremes, and Pasche et al. (2024) validate them on case studies of extreme events. As our ML architecture, we use Spherical 

Fourier Neural Operators (SFNO) (Bonev et al., 2023). SFNO has been proven to be efficient and powerful in modeling a wide 

range of chao;c dynamical systems, including turbulent flows and atmospheric dynamics, while remaining numerically stable 

over long autoregressive rollouts. Given these promising determinis;c results, we use ML to create ensemble forecasts, which 

provide probabilis;c weather predic;ons. A high-level design decision is whether to create the ensemble aler training the 

ML model or during the training itself. We use the former approach: we train ML models to minimize the determinis;c mean 

squared error (MSE) at each ;me step. Aler training, we create a calibrated ensemble by represen;ng ini;al condi;on and 

model uncertainty. Conversely, NeuralGCM (Kochkov et al., 2023), FuXi-ENS (Zhong et al., 2024), SEEDS (Li et al., 2024), and 

GenCast (Price et al., 2023) employ probabilis;c training objec;ves instead of determinis;c RMSE. 

In this two-part paper, we present a first-of-its-kind huge ensemble of weather extremes using an ML-based emulator of 

global numerical reanalyses. In Part I, we introduce the ML architecture and the ensemble design (Sec;on 2). In Table 1, we 

list the major design decisions of the ensemble, and we include pointers to the relevant sec;ons in the paper for 

understanding the decision-making criteria. We benchmark the ML performance against an opera;onal weather forecast, the 
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European Center for Medium-range Weather Forecast’s (ECMWF) Integrated Forecas;ng System ensemble (IFS ENS). We 

assess whether our ML ensemble is fit for purpose using a suite of diagnos;cs that assess the overall probabilis;c 

performance of the ensembleWe assess whether our 

 

Figure 1. Overview of ensemble architecture. The ensemble is constructed using two methods: ini;al condi;on perturba;ons and model 

perturba;ons. The ini;al condi;on perturba;ons are generated using bred vectors, to sample the fastest growing errors in the ini;al 

condi;on. Model perturba;ons consist of twenty-nine instances of the SFNO model trained independently from scratch. Bred vectors are 

generated separately for each SFNO checkpoint. Each bred vector creates two ini;al condi;on perturba;ons: one with the bred vector 

added to the ini;al condi;on, and one with the bred vector subtracted from the ini;al condi;on. For the small ensemble, we use N	=1	

bred vectors per checkpoint. For the huge ensemble in Part II, there are N	=128	bred vectors per checkpoint. 

ML ensemble is fit for purpose using a suite of diagnos;cs that assess the overall probabilis;c performance of the ensemble 

and its spectra. Because of our interest in LLHIs, we also present an extremes diagnos;cs pipeline that specifically assesses 

MLensemble extreme weather forecasts. In Part II, (Mahesh et al., 2024), we analyze a huge ensemble hindcast with hindcasts 

of 7,424 ensemble members. 

2 Designing ensembles with SFNO 

We adopt the SFNO training scheme presented in Bonev et al. (2023). SFNO is trained on the European Center for 

Mediumrange Weather Forecasts Reanalysis v5 (ERA5) (Hersbach et al., 2020) at the dataset’s 0.25-degree horizontal 

resolu;on. The weights of SFNO are op;mized to minimize the la;tude-weighted determinis;c MSE loss func;on. Each model 

is trained forWhen calcula;ng the loss, each variable is weighted by pressure and by the ;me tendency of the variable in the 

training dataset, similar to methods presented in Lam et al. (2023) and WaV-Meyer et al. (2023). 

70 epochs 

To create ensemble weather forecasts with SFNO, we mirror methods used in numerical weather predic;on. Figure 1 

provides an overview of our ensemble genera;on method. For weather forecasts, two major sources of uncertainty are ini;al 

condi;on uncertainty and model uncertainty. Ini;al condi;on uncertainty stems from the inaccuracies in observing the 

current meteorological state, while model uncertainty arises from the incompletely known and imperfect numerical 

representa;ons of physics that govern the atmosphere’s ;me evolu;on. To represent ini;al condi;on uncertainty, we use 

bred vectors, a method formerly used by the Global Ensemble Forecast System (GEFS) (Toth and Kalnay, 1993, 1997). Bred 

vectors are designed to sample the fastest growing direc;ons of the ensemble error paVerns. By crea;ng rapidly diverging 

ensemble trajectories, bred vectors are designed to create an ensemble that fully represents the probability of future weather 

states. Exis;ng work has shown that simple Gaussian perturba;ons do not yield a sufficiently dispersive ensembleML 

ensembles (Scher and Messori, 2021; Bülte et al., 2024): the ensemble spread from these perturba;ons is too small. Bred 
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vectors solvehelp address this problem by crea;ng a more dispersive ensemble which beVer reflects the full distribu;on of 

possible future states of the atmosphere. They agnos;cally amplify the fastest growing modes in athe model’s intrinsic 

dynamics. While bred vectors have been used to create ensemble forecasts from tradi;onal dynamical models, assessing how 

ML models respond to such perturba;ons is an important research fron;er. 

To represent model uncertainty, we train mul;ple SFNO models from scratch. We refer to each trained SFNO instance as a 

"checkpoint." At the start of training, each checkpoint is ini;alized with different random weights. During training, SFNO 

itera;vely updates its weights to minimize a loss func;on: in this case, the loss func;on is the mean-squared error between 

the model predic;ons and the ERA5 training data. During each epoch of training, SFNO iterates through the en;re training 

dataset and updates its weights to minimize the loss. We train SFNO for 70 total epochs. By the end of training, the models 

converge to a different local op;mum of learned weights. The resul;ng ensemble of the different trained SFNO checkpoints 

represents the uncertainty in the SFNO model weights itself. Each resul;ng checkpoint represents an equivalently plausible 

set of weights that can model the ;me evolu;on of the atmosphere from an ini;al state. With mul;ple checkpoints, we create 

an ensemble with a spread of forecasts, yet each ensemble member has the same skill.. Weyn et al. (2021) use mul;ple 

checkpoints to create an ensemble of forecas;ng models for medium-range and subseasonal predic;on. They reduce 

computa;onal costs by saving mul;ple model checkpoints from each training run and training the last few epochs 

independently for each model. This approach requires several addi;onal design decisions: how should the learning rate for 

the op;miza;on during these last retrained epochs be adjusted? How many extra epochs should each checkpoint train for? 

At what point during training should the checkpoints diverge? To minimize the ensemble’s dependence on these 

hyperparameters, we opt to retrain each checkpoint completely from scratch. 

We create an ensemble called SFNO-BVMC: Spherical Fourier Neural Operators with Bred Vectors and Mul;ple 

Checkpoints. In Table 1, we present a list of hyperparameters and their associated criteria that we use to guide our choice of 

ensemble design. We use a train-valida;on-test set paradigm. SFNO is trained on the years 1979-2016. We use the year 2018 

as a valida;on year, on which we tune mul;ple aspects of the ensemble, such as the amplitude of the bred vectors and the 

number of SFNO checkpoints. Because these ensemble parameters are tuned using the year 2018, we cannot use 2018 for 

unbiased evalua;on of the final ensemble. For our overall diagnos;cs, the year 2020 is used as an out-of-sample, held-out 

test set This year is used in the test set on the WeatherBench 2 (Rasp et al., 2024) plarorm, allowing for simplified comparison 

of SFNO-BVMC with other ML-based ensemble weather forecas;ng systems.. To evaluate the skill for extreme weather, we 

use boreal summer 2023 (June, July, August) because it iswas the hoVest summer in recorded history at the ;me (Esper et 

al., 2024). In Part II, we present a deep dive on a huge ensemble of forecasts from this 

Table 1. Ensemble Design Decisions. A list of ensemble design decisions used to create the ML ensemble. The pointer to the sec;on in the 
paper includes a more in-depth explana;on of each decision and the criteria for making the choice. 

Name Value Paper Sec;on 

Architecture Spherical Fourier Neural Operators v0.1.0 Part I, Sec;on 2.1 



 

5 

Training Dataset 1979-2015 Part I, Sec;on 2 

Valida;on Dataset 2018 Part I, Sec;on 2 

Test Dataset 2020 Part I, Sec;on 2 

Forecast Time Step 6 hours Part I, Sec;on 2 

Horizontal Resolu;on 0.25 degrees Part I, Sec;on 2 

Embedding Dimension 620 Part I, Sec;on 2.1 

Scale Factor 2 Part I, Sec;on 2.1 

Autoregressive Fine-tuning None Part I, Sec;on 3.2 
 Training Time 16 hours on 256 A100 GPUs per checkpoint Part I, Sec;on 2.1 

Inference Time 1 second per 6 hour ;mestep on 1 NVIDIA A100 GPU Part I, Sec;on 2.1 

Variable Set 
73 channels from Bonev et al. (2023) and 2m dewpoint temperature. 
The pressure variables are represented on 13 pressure levels. 

Part I, Sec;on 2.1 

Bred Vector Amplitude 0.35 * SFNO Determinis;c RMSE at 48 hours Part I, Sec;on 2.3 

Centered Bred Vectors Each bred vector is added to and subtracted from the ini;al condi;on Part I, Sec;on 2.3 

Hemispheric Rescaling for Bred 
Vectors 

Perturba;ons are rescaled separately polewards of 20 degrees. A linear 
interpola;on is used for rescaling in the tropics. 

Part I, Sec;on 2.3 

Ini;al Noise for Bred Vectors Adding spherical noise (correlated on 500 km length scales) to z500 Part I, Sec;on 2.3 

Number of Model Checkpoints 29 Part I, Sec;on 2.2 

Number of Perturba;ons per Model 
Checkpoint (Benchmark Ensemble) 

2, with 1 centered (1 bred vector perturba;on that is added to and 
subtracted from the 
ini;al condi;on) 

Part I, Sec;on 3 

Number of perturba;ons per Model 
Checkpoint (Huge Ensemble) 

256, with  (128 centered bred vector perturba;ons, each added to and 
subtracted from the ini;al condi;on) 

Part II 

 Total size of huge ensemble 7424 members Part II 

Lead Time to Analyze 
Extreme Sta;s;cs 3–52 days, 4 days, 10 days Part I, Sec;on 3.3 

Derived Variables in Huge Ensem- 
ble 

Integrated Vapor Transport, 10m wind speed, heat index Part II 

dive on a huge ensemble of forecasts from this ;me period. No SFNO training or ensemble design decisions were made using 

the year 2020 or 2023. This setup with different training, valida;on, and test sets is crucial to avoid data leakage. 

2.1 Selec;ng an emulator 
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SFNO is an ML architecture built on neural operators (Li et al., 2020), which are designed to learn mappings between func;on 

spaces. They can be used for different discre;za;ons and grids, and they have broad applicability to various par;al differen;al 

equa;on (PDE) problems. SFNO is a special instance of a Neural Operator, which uses the Spherical Harmonic Transform to 

represent operators ac;ng on func;ons defined on the sphere. The spherical formula;on leads to a strong induc;ve bias, 

respec;ng underlying symmetriesthe geometry and symmetry of the problemsphere. This reduces error buildup and leads 

to stableduring autoregressive rollouts, making the methods ideally suited for PDE problems on the sphere.. We use the 

open-source version of SFNO v0.1.0 released in the modulus-makani Python repository (Bonev et al., 2024).  

We provide a brief overview of the SFNO architecture; for a more detailed explana;on, refer to Bonev et al. (2023). The 

SFNO architecture consists of three main components: the encoder, the SFNO blocks, and the decoder. 

1. Encoder: The encoder employs mul;-layer perceptrons (MLPs) at each grid cell to map the input fields into a 

higherdimensional latent space. MLPs are fully connected neural networks that apply nonlinear transforma;ons to 

their inputs. 

2. SFNO Blocks: The processor incorporates 8 SFNO blocks, opera;ng in the latent space, each performing two main 

opera;ons: 

(a) A spherical convolu;on with a learned filter encoded in the spectral domain. The signal is transformed into the 

spectral domain and back via a spherical harmonic transform (SHT) and its inverse. In the spectral domain, the 

convolu;on opera;on becomes a pointwise mul;plica;on. 

(b) An MLP applies nonlinear transforma;ons to the latent features. 

The output of each SFNO block serves as the input to the subsequent block. The first block downsamples the input 

resolu;on by a specified "scale factor," while the last block upsamples back to the original resolu;on. 

3. Decoder: The decoder maps the latent space back into physical space using MLPs. 

SFNO encodes an operator that maps func;ons defined on the sphere to other func;ons on the sphere. This learned map 

is parameterized by the weights of the MLPs, spectral filters, encoder, and decoder. These weights of SFNO are op;mized 

during training. 

The input to SFNO consists of seventy-four channels comprising the meteorological state at a given ;me. (Table 2). The 

model then predicts those same seventy-four channels at a future ;me of six hours, which also determines in the ;me step 

of the SFNO-BVMC ensemblefuture. In addi;on to the prognos;c channels, we add three extra input channels: the cosine of 

the solar zenith angle, orography, and land-sea mask. 

The exis;ng implementa;on of SFNO from Bonev et al. (2023) makes forecasts for seventy-three total prognos;c variables. 
channels. 
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In this study, we add ERA5 2-meter (2m) dewpoint temperature as another variable; for our SFNO training dataset, we obtain 

the 2m dewpoint temperature field from ERA5. Together, 2m dewpoint temperature and 2m air temperature provide an 

es;mate of heat and humidity at the surface. Since we have trained SFNOs to predict both these variables, we can 

assesssimulate LLHI heat-humidity events. It is vital to assess the combina;on of both heat and humidity to characterize heat 

stress and LLHIs in a warming world (Vargas Zeppetello et al., 2022). Oliveg and Messori (2024) evaluate determinis;cWhile 

some ML-based extreme weather forecasts, but they use models have 1000 -hPa specific humidity as a proxy for surface 

humidity. They, Pasche et al. (2024) note that this approxima;on has limita;ons in predic;ng the surface heat stress and heat 

 
index. We build on theirTherefore, we add 2m dewpoint to more directly characterize moisture near the surface. In future 

work by crea;ng a model that predicts 2m temperature and dewpoint; also, while they analyze determinis;c forecasts, our 

diagnos;cs pipeline is designed for extreme weather forecasts from ensembles. The, the addi;on of 2m dewpoint also 

enablescould enable es;ma;ng Convec;ve Available Poten;al Energy in the forecasts from SFNO. By quan;fying the buildup 

of convec;ve instability, this variable is useful for studying convec;ve storms and thunderstorms. In total, we train SFNO to 

predict 74 meteorological variables, which are listed in Table 2. 

We choose SFNO because its spherical design is well-suited for problems in earth science, and theThe SFNO architecture 

includes scalable model parallel implementa;ons, in which the model is split across mul;ple GPUs during training (Bonev et 

al., 2023; Kurth et al., 2023). Since SFNO can be split across mul;ple GPUs during training, we canWe train large SFNOs and 

assess the effect of the SFNO size on the ensemble dispersion. 

 SFNO contains a number of hyperparameters that determine the total size of the model and its ensemble performance. 

Two such hyperparameters are the scale factor and the embedding dimension. The scale factor controls the level of spectral 

downsampling ofspecifies how much the input field. is spectrally downsampled when crea;ng the latent representa;on. With 

larger downsampling,more aggressive downsampling, SFNO internally represents the input atmospheric state with reduced 

resolu;on. We speculate that this may reduce the effec;ve resolu;on of the SFNO decreases, and finer predic;ons (Brenowitz 

et al., 2024). With a reduced effec;ve resolu;on, small-scale perturba;ons are blurred out. These perturba;ons would not 

grow appreciably during the model rollout, so the model spread and propagate upscale. Instead, they would be blurred out, 

and they would not cover the range of future weather states. Thus, we expect a model with a lower scale factor (less 

downsampling) to have largerresult in increased spread among ensemble spreadmembers. The embedding dimension 

determines the size of the learned representa;on of the input fields (Pathak et al., 2022). A larger embedding dimension 

increases the number of learnable parameters in the SFNO, thereby requiring more GPU memory. 

 

We compare three combina;ons of these hyperparameters: a small SFNO, a medium SFNO, and a large SFNO. The small 

SFNO has a scale factor 6 and embedding dimension of 220, the medium-sized model has a scale factor of 4 and embedding 

850 hPa Temperature Lagged Ensemble 
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Figure 2. Comparing different versions of SFNO. (a) The 850 hPa temperature spread-error ra;os are compared for lagged ensembles. A 

lagged ensemble is created by using nine adjacent ;me steps as ini;al condi;ons, and the spread-error is shown for each SFNO 

configura;ons. (b) Rela;ve power spectra at a lead ;me of 360 hours (colored lines) for 850 hPa temperatures for a large SFNO (with a 

scale factor of 2 and an embed dimension of 620), a medium-sized SFNO (scale factor 4 and embed dimension 384), and a small SFNO 

(scale factor 6 and embed dimension 220). Spectra are computed rela;ve to the ERA5 spectrum (horizontal black line). 

 dimension of 384, and the large model has a scale factor of 2 and embedding dimension of 620. The small, medium, and 

large SFNOs have 48 million learned weights, 218 million learned weights, and 1.1 billion learned weights, respec;vely. Based 

on the number of weights, the large SFNOs are among the largest ML-based weather forecas;ng models currently available. 

To select an SFNO architecture, we assess how these hyperparameters affect lagged ensemble spread-error ra;o and 

spectral degrada;on. A lagged ensemble creates an ensembleis created by using nine adjacent ;me steps as ini;al condi;ons 

(Brankovic et al., 1990). Brenowitz et al. (2024) analyze the spread-error ra;o of lagged ensembles to assess the intrinsic 

dispersion of determinis;c ML weather models to assess their intrinsic dispersiveness. A spread-error ra;o can be calculated 

from this ensemble.. Ordinarily, benchmarking the ensemble performance would require genera;ng and tuning thea full set 

of ensemble parameters (e.g. amplitude of perturba;ons, number of checkpoints, form of perturba;ons) separately for each 

architecture. This process is ;me-consuming, memory-intensive, and computa;onally demanding. Lagged ensembles readily 

enable comparison of different determinis;c architectures without separatelywith minimal tuning ensembling methods for 

each architecture.parameters. In Figure 2a, the lagged ensemble spread-error ra;o for 850 hPa temperature is highestclosest 

to 1 for the large model, indica;ng that this model is best-suited for ensemble forecas;ng. The spread-error ra;o 

systema;cally improves for the larger models. Brenowitz et al. (2024) find complementary results; they show that smaller 

scale factors favorably enhance dispersion.improve the spread-error ra;o. Here, we consider the combined effect of changing 

both scale factor and embedding dimension. 

We compare assess the extent to which the small, medium, and large SFNOs’ spectra, and we assess the extent to which 

theySFNOs fully resolve the spectrum of the underlying ERA5 training data. A known problem with determinis;c ML models 
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is that the small wavelengths are blurry (Kochkov et al., 2023). We aVempt to suppress this blurring as much as possible by 

using a small scale factor and a large embedding dimension. In addi;on, we inten;onally avoid using autoregressive training 

(Lam et al., 2023; Pathak et al., 2022; Keisler, 2022). In this method (some;mes called "mul;step finetuning" or "mul;step 

loss"), the ML model weights are op;mized over mul;ple ;mesteps, not just a 1-step predic;on. The goal of this method is 

to improve the forecast performance by training the ML model to perform well when autoregressively rolled out with its own 

predic;ons. Brenowitz et al. (2024) and Lang et al. (2024) hypothesize that autoregressive training could contribute to spectral 

degrada;on. This method may effec;vely increase the ;me step of the model, making it more similar to an ensemble mean 

(Lang et al., 2024). Many determinis;c models’ ini;al 1-step forecasts are blurry, and with this method, their forecasts get 

increasingly blurry with lead ;me. Because we do not use autoregressive finetuning, we hypothesize that SFNO has spectra 

that stay constant with lead ;me (see Sec;on 3.2 for more discussion). 

With this design decision, we also reduce the computa;onal requirements of training SFNO. Autoregressive fine-tuning 

requires significant GPU memory and computa;on ;me because it calculates gradients across mul;ple model steps. With 

these computa;onal savings, we train large SFNOs with a small scale factor and a large embedding dimension. These design 

choices allow our configura;on of SFNO to hold as much high-resolu;on informa;on in its internal representa;on as possible. 

Figure 2b shows that the larger models (with lower scale factors and larger embed dimension) have less spectral degrada;on 

and are beVer able to preserve the spectra of ERA5. Based on these two testsFigure 2a and b, we useselect the large version 

of SFNO, with a scale factor as our final set of 2 and embed dimension of 620hyperparameters. This version of SFNO trains in 

16 hours on 256 80GB NVIDIA A100 GPUs. It leverages data parallelism, in which the batch size of 64 is split up across different 

GPUs, and spa;al model parallelism, in which the input field is divided into four la;tude bands. These four bands are split 

across four GPUs (one GPU per sec;on), and the SFNO architecture is distributed to train with spa;al model parallelism. Each 

SFNO checkpoint trains for 70 epochs using a pressure-weighted mean squared error loss func;on (Lam et al., 2023). 

We note that there are many possible combina;ons of the scale factor, embedding dimension, and other training 

hyperparameters. We do not conduct comprehensive hyperparameter tuning via a grid search. Such an experiment would be 

very computa;onally expensive, due to the large number of hyperparameter combina;ons. Instead, we op;mize the scale 

factor and embedding dimension because of their direct relevance to spectral degrada;on. Instead ofRather than 

hyperparameter tuning, we choose to expend our compute budget on training as many checkpoints as possible. With mul;ple 

checkpoints, we aim to try to span the model space of all possible SFNO checkpoints that have our chosen architecture and 

hyperparameters. By having as . With many SFNO checkpoints as possible, we hope to increase our coverage of extreme 

weather events with a thorough representa;on of model uncertainty. 

2.2 Selec;ng a number of checkpoints for the ensemble 

We train 34 SFNO checkpoints from scratch, at which point we determineddetermine that 29 checkpoints adequately sample 

the ensemble spread as described below.. We considerexperiment with using different numbers of checkpoints in the size of 

the ensemble, from 4 checkpoints to 34 checkpoints, at intervals of 5 checkpoints. For each ensemble size, we conduct 100 
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bootstrap samples with replacement from the 34 checkpoints. Figure 3 shows the ensemble resul;ng ensemble spread 

obtained from these bootstrap samples. The ensemble spread is calculated as the global mean ensemble variance at each 

grid cell; it is calculated for a 120-hour lead ;me and averaged over forecasts ini;alized at 52 ini;aliza;on dates (one 

ini;aliza;on per week of 2018). We choose 120 hours because this ;mescale allows for synop;c-scale errors to grow, and 

given its importance for weather forecas;ng, we hope to represent model uncertainty for this ;me period as accurately as 

possible. Figure 3 shows that the ensemble spread asymptotes at approximately twenty-nine checkpoints. We conclude that 

twenty-nine checkpoints adequately sample the underlying popula;on of all possible SFNO checkpoints with our selec;on of 

hyperparameters. In our ensemble results for the remainder of this paper, we use twenty-nine checkpoints. We open-source 

all 

 

Figure 3. Ensemble spread from different numbers of checkpoints. Ensemble spread is calculated as the square root of ;me-mean, 

globalmean variance (For;n et al., 2014). A correc;on factor of N-1 is applied to account for different ensemble sizes in the unbiased 

es;mator of variance. At a lead ;me of five days, ensemble spread is averaged over forecasts from fidy-two ini;al condi;ons in the 

valida;on set (one per week star;ng 01-02-2018).  Ensemble spread is shown for total column water vapor (led), 10m wind speed (middle), 

and 2m temperature (right). For each number of SFNO checkpoints, 200 es;mates of ensemble spread are obtained by taking 100 bootstrap 

random samples of the SFNO checkpoints. The box-and-whiskers visualize the distribu;on of these 200 trials: the middle of the box is the 

median, the ends of the box are the first and third quar;le of the data, and the ends of the box are correspond to the minimum and 

maximum. 

34 model checkpoints (each with 1.1 billion learned weights) as a resource to the community, to explore further the benefit 

of mul;ple SFNOs on forecas;ng atmospheric phenomena. 

2.3 Bred vectors with SFNO 

Bred vectors are a computa;onally efficient way to sample the fastest growing modes of the atmosphere (Toth and Kalnay, 

1993). In Figure 4, we generate bred vectors using the following methodology: 

1. Generate spherical random noise correlated on 500 km length scales. Add this noise as a perturba;on to 500 hPa 
geopoten;al at ;me t−32 
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1.2. Generate a perturbed 
forecast using(with the perturbed input) and a control forecast using(with the unperturbed input.). 

2.3. Subtract the control forecast from the perturbed forecast. Use this difference as the perturba;on. (Unlike the ini;al 

noise in Step 1, this perturba;on is applied to all variables and pressure levels, not just Z500.) 

3.4. Rescale the perturba;on in each hemisphere to the target amplitude of the perturba;on. 

4.5. Repeat steps (2)-(4) for t−2,t−1,	and t0. 

 The resul;ng perturba;on iscan be added to or subtracted from t0. Using this perturbed ini;al condi;on, SFNO generates 

a 360hour360-hour forecast, which serves a perturbed member in the ensemble. 

The amplitude of the bred vectors is determined by the determinis;c RMSE of SFNO at 48 hours, mul;plied by a scaling 

factor of 0.35. At early lead ;mes, the determinis;c and ensemble mean RMSE of an ensemble forecast are similar. This factor 

is a tuning parameter. Since this parameter is less than 1, it reduces the perturba;on amplitude. At early lead ;mes, the 

determinis;c and ensemble mean RMSE of an ensemble forecast are similar. To sa;sfy criteria for 

 Figure 4. Diagram of genera;ng bred vectors. This diagram details the process of genera;ng bred vectors used for developing ini;al 

condi;on perturba;ons at t0. First, using the input three ;me steps before t0	(denoted t−2), random noise is added to 500 hPa geopoten;al 

(z500). This noise respects spherical geometry and has a spa;al correla;on length scale of 500 km. With t−2	as the ini;al condi;on, the 

perturbed forecast is subtracted from the control forecast. This difference is rescaled and used as a new perturba;on, which is added to 

t−1. This process is repeated for t0. For each variable during every step of the breeding process, the amplitude of the perturba;on is scaled 

to be 0.35 * the determinis;c RMSE of SFNO at 48 hours 

. 

2. Using SFNO, subtract the 
perturbed forecast from control 
forecast. 

 3. Use result from step 2 as new 
perturbaCon.  Repeat 3 Cmes 
for t-1, and t0 

4. For all variables, the perturbaCon amplitude is 
rescaled to be the determinisCc RMSE at an early 
lead Cme. 

1. Add spaCally correlated spherical 
noise to Z500 to t-2 

4. 
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 sta;s;cal exchangeability, the ensemble spread should match its ensemble mean RMSE. Thus, weWe use the determinis;c 

RMSE (with a tuning parameter) as a proxy for the desired spread level at early lead ;mes. This approach provides a clear 

guide for the amplitude of each variable at each pressure level. TuningManually tuning these amplitudes across variables and 

levels would be challenging, since there are seventy-four different input variables. Figure A1B1 shows the actual amplitude 

for each of the seventy-four variables. 

We adopt two design choices from Toth and Kalnay (1997) and Toth and Kalnay (1993): centered perturba;ons and 

hemispheric-dependent amplitudes. For each learned bred vector, we both add it to and subtract it tofrom the ini;al 

condi;on; this creates two separate perturba;ons (one posi;ve and one nega;ve).. Centered perturba;ons improved the 

performance of the ensemble mean RMSE on the 2018 valida;on set (not shown).. Addi;onally, we rescale the amplitudes 

separately for the Northern Hemisphere extratropics and the Southern Hemisphere extratropics. To prevent jump 

discon;nui;es in the perturba;on amplitudes near 20◦	N and 20◦	S, a linearly interpolated rescaling factor is used in the 

tropics. Hemispheric rescaling prevents one hemisphere from domina;ng the perturba;on amplitude. All perturba;ons are 

clipped to ensure that total column water vapor and specific humidity cannot be nega;ve. See Appendix Sec;on E for a note 

about our implementa;on of bred vectors. 

 In Step 2 of Figure 4, we add correlated spherical noise to 500 hPa geopoten;al (Z500). The noise has a correla;on length 

scale of 500 km, and it has the same structure as noise of the Stochas;c Perturbed Parameterized Tendency scheme used at 

ECMWF (Leutbecher and Palmer, 2008). We only add the ini;al noise to Z500, to avoid perturbing different fields in opposing 

and possibly contradictory direc;ons. For instance, posi;vely perturbing total column water vapor but nega;vely perturbing 

specific humidity at 1000, 925, and 850 hPaon the lower pressure levels would likely be unphysical. Z500 is a natural choice 

of ini;al field to perturb because it is the steering flow in the extratropics. BecauseSince it is a smooth field on an isobaric 

surface, correlated spherical noise is an appropriately structured addi;ve perturba;on. On the other hand, correlated 

spherical noise would not serve well as an addi;ve perturba;on to surface fields, which have sharp discon;nui;es due to 

orography and land sea contrasts. We design the bred vectors with the goal of keeping the perturbed input as close to the 

training dataset as possible. We minimize the extent 

. 

of directly prescribed perturba;ons, and the majority of the perturba;on structure is generated from the breeding process 

with SFNO itself. To start the breeding cycle, the ini;al perturba;on is applied to Z500, but for all subsequent cycles, all 74 

input variables are perturbed. In this manner, we develop a mutually consistent way of perturbing all input channels. 

We test our bred vectors by evalua;ng spread-error performance on the valida;on year: 2018. Figure 5 visualizes sample 

bred vectors for various input fields and channels. These perturba;ons contain some desirable quali;es. First, they contain a 

land-sea contrast for surface fields such as 10m wind speed and 2m temperature. For these surface fields, perturba;ons have 

dis;nct amplitudes and spa;al scalesIn this example, the 2m temperature perturba;on has an amplitude of 0.56 K over the 
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land and 0.27 K over the ocean., and the 10m wind speed perturba;on has an amplitude of 0.45 m/s over land and 0.66 m/s 

over the ocean. The specific humidity perturba;ons are stronger in the tropics than at the poles, in line with a strongthe 

equator-to-pole moisture gradient. This isThese physical quali;es of bred vectors are a benefit of using bred vectors, 

compared to perturbing mul;ple input variables simply with over simple spherical noise, as in GraphCast-Perturbed (Price et 

al., 2023), or Perlin noise (Bi et al., 2023). 

 

We ini;ally presented bred vectors and mul;ple checkpoints in Collins et al. (2024). Concurrently, Baño-Medina et al. 

(2024) also released a preprint using bred vectors and mul;ple trained models. The results in Baño-Medina et al. (2024) serve 

as excellent independent valida;on of bred vectors and mul;ple checkpoints. They validate their method from Jan 10 to Feb 

28 (with 50 forecast ini;al dates), and they show promising results, par;cularly at certain la;tudes and land regions. We 

comprehensively show that SFNO-BVMC is compe;;ve with IFS on global mean quan;;es using forecasts from a full year 

(732 forecast ini;al dates for 2020 and 92 for summer 2023). We further validate our ensemble with a unique pipeline for 

extreme diagnos;cs and spectral diagnos;cs of each ensemble member and the ensemble mean. While their method uses 

Adap;ve Fourier Neural Operators (AFNO) (Pathak et al., 2022), we use SFNO, a successor to AFNO that is more stable and 

has beVer skill. We train all 29 SFNOs from scratch, whereas they sample mul;ple models from 3 training runs. To compare 

methodologies with Figure 2 in Baño-Medina et al. (2024), we present a diagram of how we generated bred vectors in 

SFNOBVMCSFNO-BVMC. The boxed quan;;es in Figure 4 represent the unique methodological details of our approach. We 

add spherical ini;al noise to Z500 (compared to Gaussian noise), start the breeding cycle 3 ;mesteps before the ini;aliza;on 

date (compared to Jan 1, 2018), and 

 

Figure 5. Sample visualiza;ons of the learned bred vectors. For a sample ini;al ;me (June 18, 2020 00:00 UTC), the bred vectors are 

visualized for six different input fields: 850 hPa specific humidity, 10m wind speed, surface pressure, 2m temperature, 500 hPa geopoten;al, 

and 850 hPa temperature. 
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 use the determinis;c RMSE as the bred vector amplitude. In Part II, we assess the forecasts from bred vectors and mul;ple 

checkpoints at scale, with a significantly larger ensemble. than in Baño-Medina et al. (2024). 

2.4 Contribu;ons of bred vectors and mul;ple checkpoints to the ensemble calibra;on 

In SFNO-BVMC, the bred vectors and mul;ple trained model checkpoints both contribute to ensemble spread and calibra;on. 

Bred vectors are a flow-dependent ini;al condi;on perturba;on: they are calculated independently for each checkpoint, and 

they use the preceding threetwo ;me steps to generate the perturba;on according tobased on the current flow in the 

atmosphere. At longer lead ;mes, when there is less dependence on the ini;al condi;ons, mul;-checkpoin;ng causes the 

spread-error ra;o to approach 1; this is consistent with our expecta;ons from the ensemble in Weyn et al. (2021). In Figure 

6, we show the spread-error ra;os from three different ensembles: Figure 6a has only 29 checkpoints and no bred vectors, 

Figure 6b has 1 checkpoint and 29 bred vectors (each added to and subtracted the ini;al condi;on), and Figure 6c has 29 

checkpoints and 1 bred vector (added to and subtracted from the ini;al condi;on). Figure 6a has 29 ensemble members, 

while Figures 6b and c have 58-member ensembles. As a model perturba;on, mul;-checkpoin;ng does not represent the 

uncertainty arising from an imperfect ini;al condi;on. Therefore, the mul;-checkpoint ensemble is underdispersive at early 

lead ;mes. On the other hand, the ensemble composed only of bred vectors is underdispersive on synop;c ;me scales (3-5 

days) when represen;ng model uncertainty also becomes important for obtaining good calibra;ongrand ensemble in Weyn 

et al. .(2021). In Figure 6, we show 

3 Ensemble Diagnos;cs 

Ul;mately, with SFNO-BVMC, we hope to study LLHIs. This requires a calibrated ensemble with reliable probabilis;c forecasts. 

SFNO-BVMC is a novel way to create ensemble forecasts from determinis;c ML models. Therefore, in the following sec;on, 

we present a diagnos;cs pipeline to evaluate the SFNO-BVMC ensemble and compare it to the IFS ensemble. We 

 

Figure 6. Contribu;ons of bred vectors and mul;ple checkpoints to spread-error rela;ons. (a) shows the spread-error rela;on obtained 

from an ensemble only composed of mul;ple checkpoints. This ensemble has twenty-nine members, one for each checkpoint. (b) shows 
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the same for an ensemble of fidy-eight members, using only bred vectors for ini;al condi;on perturba;ons. (c) shows the spread-error 

rela;on for an ensemble composed of fidy-eight members, with one bred vector added and subtracted from the ini;al condi;on for each 

model checkpoint. Spread-error ra;os are averaged across fidy-two ini;al condi;ons, one per week star;ng 01-02-2018, in 2018. Successful 

ensemble forecasts have a spread-error ra;o of 1. 

the spread-error ra;os from three different ensembles: Figure 6a has only 29 checkpoints and no bred vectors, Figure 6b has 

1 checkpoint and 29 bred vectors (each added to and subtracted the ini;al condi;on), and Figure 6c has 29 checkpoints and 

1 bred vector (added to and subtracted from the ini;al condi;on). Figure 6a has 29 ensemble members, while Figure 6s b 

and c have 58 members ensembles. As a model perturba;on, mul;-checkpoin;ng does not represent the uncertainty arising 

from an imperfect ini;al condi;on. Therefore, the mul;-checkpoint ensemble is underdispersive at early lead ;mes. On the 

other hand, the ensemble composed only of bred vectors is underdispersive on synop;c ;me scales (3-5 days) when 

represen;ng model uncertainty also becomes important for obtaining good calibra;on (Palmer, 2018). 

3 Ensemble Diagnos;cs 

Ul;mately, with SFNO-BVMC, we hope to analyze the sta;s;cs of LLHIs. This requires a calibrated ensemble with reliable 

probabilis;c forecasts. SFNO-BVMC is a novel way to create ensemble forecasts from determinis;c ML models. Therefore, in 

the following sec;on, we present a diagnos;cs pipeline to evaluate the SFNO-BVMC ensemble and compare it to the IFS 

ensemble. We first evaluate SFNO-BVMC using diagnos;cs that evaluate overall performance. Next, we assess SFNO-BVMC’s 

control, perturbed, and ensemble mean spectra. Finally, we present diagnos;cs specifically focused on extreme weather 

forecasts. We open-source the code for these diagnos;cs (see Data Availability sec;on), and we hope that it can be used to 

guide future ML model development. For a fair comparison for all diagnos;cs, we validate IFS against ECMWF’s opera;onal 

analysis and SFNO-BVMC against ERA5. IFS is ini;alized with this opera;onal analysis, not the ERA5 reanalysis, so it has a 

different verifica;on dataset. All diagnos;cs show SFNO-BVMC resultsscores with 58 members, and IFS ENS resultsscores 

with 50 members. SFNO-BVMC has 58 members: 29 checkpoints and 1 bred vector per checkpoint (added to and subtracted 

from the ini;al condi;on). Because of the use of 29 checkpoints and centered bred vector perturba;ons, SFNO-BVMC cannot 

be evaluated with an ensemble size smaller than fily-eight members. However, whileWhile there are unbiased versions of 

the metrics that are corrected for ensemble size, the difference in the metrics due to different ensemble size would be 

sufficiently small that the diagnos;cs s;ll allow for fair evalua;oncomparison between the 50-member IFS and 58-member 

SFNO-BVMC. 

3.1 Mean Diagnos;cs 

We validate the overall quality of the ensemble on three diagnos;cs: con;nuous ranked probability score (CRPS), spread-

error ra;o, and ensemble mean RMSE. First, CRPS evaluates a probabilis;c forecast of a ground truth value. It is a summary 

score of the performance of the ensemble forecast. The formula for CPRS at a given grid cell is 
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Figure 7. CRPS of SFNO-BVMC and IFS ENS. SFNO-BVMC is a 58 member ensemble that uses 29 SFNO checkpoints trained from 
scratch, and two ini;al condi;on perturba;ons per checkpoint. The two ini;al condi;on perturba;ons come from a single bred vector that 

is added to and subtracted from the ini;al condi;on. Scores are calculated over 732 ini;al condi;ons (two per day at 00 UTC and 12 UTC) 

for 2020, which is the test set year. SFNO-BVMC is validated against ERA5, and IFS ENS is validated against ECMWF’s opera;onal analysis. 

IFS ENS scores are taken from WeatherBench 2 Rasp et al. (2024). 

CRPS 

(1) 

where X	and X′	are random variables drawn from the cumula;ve distribu;on func;on (CDF) of the ensemble forecast F. 

Here, y	is the verifica;on value (ERA5 for SFNO-BVMC and opera;onal analysis for IFS ENS). 

Figure 7 compares the global mean CRPS of SFNO-BVMC to that of IFS ENS on five different variables. On 850 hPa 

temperature, 2m temperature, 850 hPa specific humidity, and 500 hPa geopoten;al, SFNO-BVMC lags approximately 12–18 

hours behind IFS ENS, though their performance is comparable. SFNO-BVMC does match IFS ENS on the 10m zonal (u 

component) wind. 
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Second, an essen;al requirement for an ensemble weather forecast is that the ensemble spread must match its skill (For;n 

et al., 2014); the spread-error ra;o should be 1. This result is derived sta;s;cally based on the idea of exchangeability 

between ensemble members: each ensemble member should be sta;s;cally indis;nguishable from each other and from the 

forecasts (For;n et al., 2014; Palmer et al., 2006). The spread is the square root of the global-mean ensemble variance. 

Similarly, the error is the square root of the global-mean ensemble MSE. See Sec;on BC for a detailed descrip;on of 

calcula;ng the spread and error across mul;ple forecasts ini;alized on different ini;al ;mes. Figure 8 demonstrates that 

SFNO-BVMC obtains spread-error 

 

Figure 8. Spread-Error Ra;o of SFNO-BVMC and IFS ENS. SFNO-BVMC is the same 58 member ensemble described in Figure 7. Spread-error 

ra;os are calculated over 732 ini;al condi;ons (two per day at 00 UTC and 12 UTC) for 2020. SFNO-BVMC is validated against ERA5, and 

IFS ENS is validated against ECMWF’s opera;onal analysis. IFS ENS scores are taken from WeatherBench 2 Rasp et al.  (2024). 

ra;os that approach 1, and it has comparable performance to IFS ENS. At early lead ;mes, SFNO-BVMC is underdispersive for 

all variables except Z500, but the spread skill ra;o approaches 1 for longer lead ;mes. 

Finally, we evaluate the ensemble mean RMSE of SFNO-BVMC and IFS ENS (Figure 9). Their scores are comparable, with 

SFNO-BVMC lagging close behind the IFS ensemble mean, and both models have an ensemble mean RMSE that converges to 

climatology at 360 hours (14 days). 

On these aggregate metrics, SFNO-BVMC is olen eighteen hours behind IFS ENS, so its performance is slightly worse but 

s;ll comparable. Through large SFNOs with a high-resolu;on, expressive internal state, bred vectors, and mul;-checkpoin;ng, 

this ensemble has significantly improved calibra;on, compared to previous work using lagged ensembles (Brenowitz et al., 

2024). It serves as a benchmark for the calibra;on poten;al for determinis;c ML models, and it can be compared to recent 

models which op;mize for an ensemble objec;ve. While IFS ENS has been an established weather forecas;ng model for 

decades, SFNO is s;ll a new architecture. Improving the skill of the SFNO architecture itself is an important area of future 

research. However, in this manuscript, our main goal is not primarily to create the most skillful weather forecas;ng model; 
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rather, we hope to explore huge ensembles and low-likelihood events at the tail of the ensemble forecast distribu;on. SFNO-

BVMC is orders of magnitude less computa;onally expensive than IFS, so it uniquely enables the crea;on of huge ensembles 

of forecasts.. These allow for unprecedented sampling of internal variability and an analysis of extreme sta;s;cs, as presented 

in Part II of this paper. 

3.2 Spectral Diagnos;cs 

A common issue with determinis;c machine learning weather models is that their forecasts tend to be “blurry” (Kochkov et 

al., 2023). As a metric to measure and quan;fy this blurriness, exis;ng work compares the spectra of the ML predic;ons to 

the spectra of ERA5. The spectral analyses show that ML models have reduced power at small wavelengths compared to 

ERA5. Determinis;c ML models are olen trained using the MSE loss func;on, which strongly penalizes sharp forecasts in 

 

 

Figure 9. Ensemble Mean RMSE of SFNO-BVMC and IFS ENS. SFNO-BVMC is the same 58 member ensemble described in Figure 7. Scores 

are calculated from forecasts ini;alized at 732 ini;al condi;ons (two per day at 00 UTC and 12 UTC) for 2020. SFNO-BVMC is validated 

against ERA5, and IFS ENS is validated against ECMWF’s opera;onal analysis. IFS ENS scores are taken from WeatherBench 2 Rasp et al. 

(2024). 

the wrong place.variability and an analysis of extreme sta;s;cs, as presented in Part II of this paper. Addi;onally, while IFS 

ENS has been an established weather forecas;ng model for decades, SFNO is s;ll a new architecture. Improving the skill of 

the SFNO architecture itself is an important area of future research. 

3.2 Spectral Diagnos;cs 

A known problem with determinis;c ML weather models is that their forecasts are "blurry" (Kochkov et al., 2023). Compared 

to ERA5, they have reduced power at small wavelengths. Determinis;c ML models are olen trained using the MSE loss 

func;on, which strongly penalizes sharp forecasts in the wrong place. This is referred to as the double penalty problem 
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(MiVermaier, 2014), in which an ensemble is penalized once for predic;ng a storm in the wrong place and another ;me for 

missing the correct loca;on of the storm. To avoid the double penalty from the mean squared error, ML models may learn to 

predict smooth, blurred solu;ons. Exis;ng work has noted that these smooth ML predic;ons that appear closer to an 

ensemble mean (Agrawal et al., 2023; Brenowitz et al., 2024), rather than an individual ensemble member. 

However, a key feature of the Regarding spectral performance, there are two desirable characteris;cs. These characteris;cs 

dis;nguish an individual ensemble member from an ensemble mean: 

1. During the rollout, it is not just thatpreferable for the forecasts are blurry. The spectra must increasingly blurof each 

ensemble member to stay constant with lead ;me. With this characteris;c, each ensemble member maintains a 

realis;c representa;on of the atmospheric state during the rollout. 

2. During the rollout, it is preferable for the spectra of the ensemble mean to realis;cally degrade with lead ;me 

(Bonavita, 2023). As the ensemble members spread more and their trajectories diverge during the forecast rollout, , 

the ensemble mean should become blurrier, and its spectra should increasingly degrade at small wavelengths. In 

par;cular, on synop;c ;me scales (around 3-5 days), when error growth becomes nonlinear, the IFS ensemble mean 

displays a sharp decline in power around 1000 kilometer wavelengths (Bonavita, 2023). 

(Bonavita, 2023). This introduces two important criteria for an ML-based weather forecast: whether the forecasts are blurry, 

and whether they get increasingly blurry with lead ;me. 

On the first criterion, SFNO-BVMC ensemble members do contain some blurriness, like many other determinis;c ML 

models. On the second criterion, crucially, theircharacteris;c, SFNO-BVMC spectra remain constant through the 360-hour 

rollout (Figure 10 and Figure 11). This contrasts with GraphCast and AIFS; those determinis;c ML models do increasingly blur 

with lead ;me (Kochkov et al., 2023; Lang et al., 2024). WeBrenowitz et al. (2024) and Lang et al. (2024) hypothesize that 

autoregressive fine-tuning could be responsible for this behavior. In autoregressive fine-tuning, the ML model weights are 

op;mized over mul;ple ;mesteps. Normally, during training, the model weights are op;mized to minimize the MSE of just 1 

;mestep of the forecast, but during the autoregressive fine-tuning phase, the weights are op;mized based on the predic;ons 

and ground truth aler mul;ple ;me steps. The goal of this method is to improve the performance during rollout. 

Autoregressive fine-tuning may effec;vely increase the ;me step of the model, making it more similar to an ensemble mean 

(Lang et al., 2024) and contribu;ng to increased blurring during the rollout. To minimize this spectral degrada;on, we do not 

conduct any autoregressive fine-tuning. The SFNO trained here is only trained to predict six hours ahead, and its 

autoregressive performance is not op;mized. With this design decision, we reduce the training computa;onal requirements, 

as autoregressive fine-tuning is intensive in GPU memory and computa;on ;me. We use the savings from this choice to train 

an SFNO with a small scale factor and large embedding dimension. SFNO-BVMC These design choices allow our configura;on 

of SFNO to hold as much high-resolu;on informa;on in its internal representa;on as possible. 
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While the control and perturbed spectra remain constant because of our inten;onal choice not to use autoregressive 

training. 

Through this test, we validate that the individual members’ predic;ons do not collapse into the ensemble mean. This is a 

crucial test of the physical fidelity of SFNO-BVMC. Because each SFNO-BVMC ensemble member’s spectrum is constant 

through the rollout, the ensemble members maintain their ability to through the rollout, the SFNO-BVMC ensemble mean 

does increasingly blur with lead ;me.resolve extreme weather. If their spectra degraded with lead ;me, then the forecasts 

may become too blurry to predict highly localized extreme events. At a lead ;me of 360 hours, the perturbed members 

maintain similar spectra as the control member (Figure 11), and at the ini;al ;me, they have similar spectral characteris;cs 

as the unperturbed ERA5 ini;al condi;on (Figure D5). 

An important caveat is that even though the spectra are constant during the rollout, they are s;ll somewhat degraded 

compared to ERA5 (Figure 2b) We have not solved the problem of blurry forecasts en;rely. We have minimized it as much as 

possible by using a large embedding dimension and a small scale factor, which increase the resolu;on of the latent 

representa;on of the input, and by inten;onally avoiding mul;step finetuning. However, our determinis;c training setup s;ll 

results in blurring with the use of the MSE loss func;on and large six-hour ;mesteps, and allevia;ng this problem is an 

important avenue for future research. 

On the second characteris;c, the SFNO-BVMC ensemble mean realis;cally degrades with lead ;me: it has a similar 

ensemble mean spectra as the IFS ensemble mean. Figure 12 shows that the ensemble means of SFNO-BVMC and IFS ENS 

similarly degrade in power aler 24 hours, 120 hours, and 240 hours. For Z500, there is a notable decline in power between 

lead ;mes of 24 hours and 120 hours. This sharp decline is due to the nonlinear error growth that characterizes forecasts at 

lead ;mes of 3–5 days. On synop;cOn synop;c scales (∼1000 km in space and 3–5 days in ;me), SFNO-BVMC’s ensemble 

mean has a similar decline in power as IFS ENS. This increases our trust that the ensemble members trajectories realis;cally 

diverge, and the ensemble is correctly represen;ng synop;c error growth. 

These two results pass a crucial test laid out by Bonavita (2023). They originally posed this test comparing the spectra of a 

determinis;c PanGu ML model and the IFS ensemble mean. Despite the blurring in PanGu, they show that a control run of 

PanGu does not successfully mimic the IFS ensemble mean spectrum. In our work, we have created an ensemble predic;on 

system from mul;ple determinis;c ML models that meets the above two characteris;cs. 

3.3 Extreme Diagnos;cs 

The preceding analysis has evaluated ensemble weather forecasts from SFNO-BVMC on overall weather. This is necessary but 

as yet insufficient valida;on for our main scien;fic interest in LLHIs. Since extreme weather events are rare in space and ;me, 

they contribute rela;vely liVle to these scores. Herealer, we focus on diagnos;cs specifically designed to validate the 

performance of SFNO-BVMC on extreme weather. We complement these diagnos;cs with a case study of the Phoenix 2023 

heatwave in Figure A1. 
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3.3.1 Extreme Forecast Index 

As part of its IFS evalua;on, ECMWF releases a Supplemental Score on Extremes (Haiden et al., 2023). This score is based on 

the Extreme Forecast Index (EFI). Using an ensemble forecast and its associated model climatology, the EFI is a unitless 

 

Figure 10. Control Spectra. Spectra from the control member of SFNO-BVMC averaged across forecasts from fidy-two ini;al ;mes, one per 

week star;ng January 2, 2020. Spectra are shown for 850 hPa temperature, 2m temperature, and 500 hPa geopoten;al. Note the different 

scales on the y-axis for each variable. 

850 hPa Temperature Spectra 

 

Figure 11. Perturbed Spectra. Spectra of the control member and each perturbed member from a 58-member SFNO-BVMC ensemble are 

shown. The shading denotes the range of all the perturbed members. Spectra are averaged across forecasts from fidy-two ini;al ;mes, one 

per week star;ng January 2, 2020. 

scales (∼1000 km in space and 3–5 days in ;me), SFNO-BVMC’s ensemble mean has a similar decline in power as IFS ENS. 

This increases our trust that the ensemble members trajectories realis;cally diverge, and the ensemble is faithfully 

represen;ng synop;c error growth. Bonavita (2023) originally posed this test comparing the spectra of a determinis;c PanGu 
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ML model and the IFS ensemble mean. Despite the blurring in PanGu, they show that a control run of PanGu does not 

successfully mimic the IFS ensemble mean spectrum. 

Through these spectral diagnos;cs, we validate that the individual members’ predic;ons do not collapse into the ensemble 

mean. This is a crucial test of the physical fidelity of SFNO-BVMC. Because each SFNO-BVMC ensemble member’s spectrum 

is constant through the rollout, the ensemble members maintain their ability to predict extreme weather. If their spectra 

degraded with lead ;me, then the forecasts would become too blurry to predict localized extreme events. 

3.3 Extreme Diagnos;cs 

The preceding analysis has evaluated ensemble weather forecasts from SFNO-BVMC on overall weather. This is necessary but 

as yet insufficient valida;on for our main scien;fic interest in LLHIs. Since extreme weather events are rare in space and ;me, 

they contribute rela;vely liVle to these scores. Herealer, we focus on diagnos;cs specifically designed to validate the 

performance of SFNO-BVMC on extreme weather. 

3.3.1 Extreme Forecast Index 

As part of its IFS evalua;on, ECMWF releases a Supplemental Score on Extremes (Haiden et al., 2023). This score is based on 

the Extreme Forecast Index (EFI). Using an ensemble forecast and its associated model climatology, the EFI is a unitless 

quan;ty that quan;fies how unusual an ensemble forecast is. The EFI ranges from -1 (unusually cold) to 1 (unusually hot). 

The EFI measures the distance between the ensemble forecast CDF and the model climatology CDF (LalaureVe, 2002; Zsótér, 

2006). The formula for the EFI is 

2006). EFI  (2) 

 

The formula for the EFI is 
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Figure 12. Ensemble Mean Spectra. The spectra of the ensemble mean of SFNO-BVMC and IFS ENS are shown. Spectra are averaged across 

forecasts from fidy-two ini;al ;mes, one per week star;ng January 2, 2020. Spectra are shown for 850 hPa temperature (led) and 500 hPa 

geopoten;al (right). 

EFI  (2) 

where Q	is a percen;le, and Qf(Q)	denotes the propor;on of ensemble members lying below the Q	percen;le calculated 

from the model climatology. The model climatology is calculated for each lead ;me for each grid cell. 

To calculate the EFI, a model climatology is necessary. The model climatology encapsulates the expected weather for a 

given ;me of year. For a given ini;al day, ECMWF creates a model climatology (called M-Climate) using hindcasts from 9 ini;al 

dates per year, 20 years, and 11 ensemble members (for a total of 1980 values). The CDF of these 1980 values represents the 

model climatology. This CDF is defined at each grid cell for each lead ;me, and it is used to calculate the Qf(Q)	term in Equa;on 

2. See Lavers et al. (2016) for more informa;on on the M-Climate defini;on. 

We generate a model climatology of SFNO-BVMC using the same parameters as ECMWF’s M-Climate, except the SFNOBVMC 

M-Climate uses 12 ensemble members, not 11. This is due to the use of centered (posi;ve and nega;ve) bred vector 

perturba;ons, which requires an even number of ensemble members. Aler crea;ng the climatology of SFNO-BVMC, we 

calculate the CDF of the model climate for each lead ;me for each grid cell. We use these CDFs to calculate the EFI for the 

SFNO-BVMC forecasts ini;alized on each day of summer 2023. Figure 13 visualizes a sample EFI from SFNO-BVMC and 

 IFS four days into a forecast on an arbitrary summer day. The IFS EFI values are directly downloaded from the ECMWF 

MARS data server. The SFNO-BVMC and IFS EFI values have excellent agreement across the globe (Figure 13). Notable features 

include pronounced heatwaves over much of Africa, South America, and the Midwest of the United States. The strong El Niño 

paVern in the tropical Pacific appears in the EFI for both SFNO-BVMC and IFS ENS. Visually, SFNO-BVMC has a smoother EFI 

than IFS ENS. This is a consequence of the blurriness of the SFNO 2m temperature predic;ons. Despite this, however, the 

SFNO EFI can s;ll predict large-scale extremes, and the two models have similar scores on the extreme diagnos;cs below. 

Figure 14 shows that IFS and SFNO-BVMC have highly correlated EFIs throughout summer 2023. Therefore, in principle, 
these two ensemble predic;on systems offer comparable extreme forecasts and could be used to forecast various extreme 
events of interest. The EFI encapsulates the ability of each model to forecast extreme temperatures.  

Therefore, in principle, the EFI 
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Figure 13. Visualiza;on of the Extreme Forecast Index from SFNO-BVMC and IFS ENS. For each grid cell and lead ;me, the Extreme Forecast 

Index (EFI) is a unitless metric that represents the distance between the model climatology and the current ensemble forecast. It ranges 

from -1 (anomalously cold) to 1 (anomalously hot). For a sample 4-day forecast ini;alized on August 19, 2023, the EFI from the 58-member 

SFNO-BVMC is compared to the EFI from IFS ENS: the global la;tude-weighted correla;on is 0.89. 

 

Figure 14. Comparing SFNO-BVMC and IFS ENS Extreme Forecast Index in boreal summer 2023. (a) shows the la;tude-weighted spa;al 

correla;on between IFS ENS EFI and SFNO-BVMC EFI as a func;on of lead ;me. (b) shows the la;tude-weighted 2D histogram between the 

SFNO-BVMC EFI and the IFS ENS EFI at a lead ;me of 5 days. Figures (a) and (b) are averaged using forecasts ini;alized over ninety-two 

ini;aliza;on days, one per day (00 UTC) for each day in June, July, and August 2023. 

Visually, SFNO-BVMC has a smoother EFI than IFS ENS. This is a consequence of the blurriness of the SFNO 2m temperature 

predic;ons. While the embedding dimension and scale factors mi;gate this blurriness as much as possible, the SFNOBVMC 

model climatology and ensemble forecasts have this ar;fact. Therefore, the EFI values also appear blurry. Despite this, 
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however, the SFNO EFI can s;ll predict large-scale extremes, and the two models have similar scores on the extreme 

diagnos;cs below. 

Figure 14 shows that IFS and SFNO-BVMC have highly correlated EFIs throughout summer 2023. Therefore, in principle, these 

two ensemble predic;on systems offer comparable extreme forecasts and could be used to forecast various extreme events 

of interest. The EFI encapsulates the ability of each model to forecast extreme temperatures. Therefore, in principle, the EFI 

similarity between SFNO-BVMC and IFS means that they have similarly skillful extreme weather forecasts, including heat 

extremes and cold extremes of varying severity. 

The EFI itself does not measure the accuracy of a forecast; it only measures how extreme or unusual a forecast is by 

comparing a given forecast to the model climatology. To evaluate the accuracy of the extreme forecast, the EFI is compared 

 

Figure 15. Extreme Diagnos;cs of SFNO-BVMC and IFS ENS. Diagnos;cs are averaged over forecasts ini;alized at 00 UTC for each day in 

June, July, and August 2023 (total of ninety-ini;aliza;on days). SFNO-BVMC is validated against ERA5, and IFS ENS is validated against the 

ECMWF opera;onal analysis. (a) measures the Receiver Opera;ng Characteris;c of the Area Under the Curve. Higher is beher. (b) measures 

the threshold-weighted CRPS. Lower is beher. (c) measures the reliability diagram, which compares the forecast probability to the observed 

occurrence. Reliable ensemble forecasts appear along the one-to-one line. 

 to an observa;onal dataset to assess if the extreme forecasts match observa;ons. We follow ECMWF’s valida;on strategy of 

using a Receiver Opera;ng Characteris;c curve to assess how well the EFI predicts the verifica;on values. The ROC curve 

could be calculated to assess how well the EFI predicts extreme temperatures. 

3.3.2 Reliability and Discrimina;on 

Two key aspects of an ensemble forecast are its reliability and its discrimina;on. Measured by reliability diagrams, a forecast’s 

reliability evaluates whether the predicted probability of extreme weather matches the observed occurrence. Measured by 

Receiver Opera;ng Characteris;c (ROC) curves, forecast discrimina;on is the ability to dis;nguish between an extreme 
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weather event and a not-extreme weather event. A ROC curve can be created for each forecast lead ;me, and it is summarized 

by the 

 

ROC Area Under Curve (AUC) score. We calculated the ROC AUC for each lead ;me, and a purely random forecast would have 

an ROC AUC value of 0.5. A perfect forecast would have an ROC AUC value of 1. 

Reliability diagrams and ROC curves are calculated by comparing two quan;;es: a binarized ground truth value (1 or 0, for 

extreme and not extreme) and a con;nuous ensemble forecast between 1 and 0. 

 A key valida;on criterion is the threshold defining extreme vs. not extreme. To enable future comparison with GenCast, 

weWe calculate our threshold for extreme temperature using the same defini;on as Price et al. (2023). Using the years 1992-

2016 of ERA5, we calculate the climatological 95th percen;le 2m temperature for each grid cell.  

These percen;les are calculated for each ;me of day (00:00, 06:00, 12:00, and 18:00 UTC) for each month. This results in 48 

different thresholds in total. This defini;on of extreme accounts for the diurnal and seasonal cycles: an event is considered 

extreme if it is hot for the ;me of day and ;me of year. It alsothus includes warm nighgme temperatures, which hashave 

important implica;ons for fire (Balch et al., 2022) and human health (Murage et al., 2017; He et al., 2022), and warm winters, 

which hashave important implica;ons for agriculture (Lu et al., 2022). This is a different ra;onale than defining extreme 

weather using an absolute temperature threshold or a threshold based only on the summer daily maximum. 

Figure 15c shows that SFNO-BVMC and IFS ENS are similarly reliable in their predic;on of extreme warm 2m temperatures 

at these lead ;mes. of 120 and 240 hours. To create the reliability diagram in Figure 15a, the ground truth dataset is binarized 

using the extreme temperature threshold defined described above: one. The "Forecast Probability" is a con;nuous value from 

0 to 1, indica;ng the propor;on of the ensemble that exceeds the threshold. Over all grid cells and ini;al ;mes of summer 

2023, the reliability diagram compares the probabilis;c forecasts of extreme events to their actual occurrence. In addi;on to 

the lead ;mes in Figure 15c), we visualize the reliability diagrams for each monthother lead ;mes (Supplemental Figure D1) 

and variables. We show that SFNO-BVMC also performs reliably when forecas;ng the heat index at lead ;mes of 48, 96, 120, 

and 240 hours. For 10m wind speed and cold extremes, SFNO-BVMC matches the performance of the IFS ensemble (Figure 

D2 and Figure D3). However, we also show that at 240 hour lead ;mes, the model is not reliable when it confidently (greater 

than 50% chance) forecasts wind extremes or cold temperature extremes (see Appendix D and Figure D4 for each ;me of 

day. The ensemble predic;onmore discussion). This is an area for future model development. 
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Next, we assess the ensemble’s discrimina;on. Figure 15. Extreme Diagnos;cs of SFNO-BVMC and IFS ENS. Diagnos;cs are averaged 

over forecasts ini;alized at 00 UTC for each day in June, July, and August 2023 (total of ninety-ini;aliza;on days). SFNO-BVMC is validated 

against ERA5, and IFS ENS is validated against the ECMWF opera;onal analysis. (a) measures the Receiver Opera;ng Characteris;c of the 

Area Under the Curve. Higher is beher. (b) measures the threshold-weighted CRPS. Lower is beher. (c) measures the reliability diagram, 

which compares the forecast probability to the observed occurrence. Reliable ensemble forecasts appear along the one-to-one line. 

is a con;nuous value indica;ng the propor;on of the ensemble that predicts extreme. This performance is aggregated over 

all grid cells and all ini;al ;mes of summer 2023. This results in a reliability diagram, calculated for lead ;mes of 120 hours 

and 240 hours. We visualize the reliability diagrams at other lead ;mes in the Supplemental Figure C1. 

Figure 15b shows that SFNO-BVMC and IFS ENS have a comparable ability to discriminate between extremes and 

nonextremesnon-extremes. Both ensembles have similar ROC Area Under Curve (AUC) scores, which measure the 

discrimina;on of an ensemble. The ROC curve varies the threshold for classifying an event as "extreme" or "not extreme" 

from 0 to 1: for each threshold, the resul;ng true posi;ve and false posi;ve rates are ploVed. A successful ROC curve would 

have a 0 false posi;ve rate and 1 true posi;ve rate: the area under such a curve would be 1. To calculate the ROC AUC scores 

in Figure 15b, we use the EFI. To actually compare the EFI to observa;ons, EFI ROC curves serve as ECMWF’s Supplemental 

Score on Extremes in their IFS valida;on (Haiden et al., 2023). The IFS EFI is defined on a daily mean temperature, not a six-

hourly temperature. Therefore, in the EFI ROC AUC score in Figure 15b uses a threshold based on daily means. This results in 

12 thresholds for extreme weather (one for each month), instead of 48 thresholds (one for each month for each ;me of day, 

as in (Price et al., 2023)). Based on the available data on the ECMWF MARS data server, we can only access IFS EFI values un;l 

a lead ;me of 

 7 days, so we only show IFS scores up to that lead ;me. At long lead ;mes (approaching 14 days), much of the SFNO-BVMC 

EFI skill comes from the strong El Niño in summer 2023. Because the EFI is only calculated on data with a daily sampling 
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frequency, Figure 15b necessitated a different extreme threshold than Figures 15a and c. This difference is necessary to enable 

comparison of EFI ROC curves with Haiden et al. (2023) and extreme diagnos;cs with Price et al. (2023). 

3.3.3 Threshold-weighted Con;nuous Ranked Probability Score 

We calculate threshold-weighted CRPS (twCRPS) on SFNO-BVMC and IFS ENS as a summary score. ExtremeSince extreme 

weather events have tremendous societal consequences. Therefore, a natural goal is to validate these weather forecasts 

specifically on their performance for such extremes. One approach might be to evaluate the forecasts during ;mes of extreme 

weather. However, Lerch et al. (2017) explain the concept of the forecaster’s dilemma, which is a common pirall that occurs 

with this strategy. This dilemma occurs when a forecast is validated on its extreme event forecasts only when those extremes 

actually happen. With this verifica;on setup, a forecast system can hedge its performance by overpredic;ng extreme events. 

Since it iswould never be evaluated during common weather, the forecast would not be penalized for its overly extreme 

predic;ons. By construc;on, sta;s;cally proper scoring rules do not allow for such hedging, and twCRPS is one such scoring 

rule (Gnei;ng and Ranjan, 2011; Allen et al., 2023). 

The equa;on for twCRPS is 

twCRPS 

(3) 

where w	is a weighing func;on, X	is a random variable drawn from the ensemble distribu;on, y	is the verifica;on value, 

and v	is the an;deriva;ve of w. We refer the reader to Allen et al. (2022) for further discussion of twCRPS. and its deriva;on. 

We choose a weighing func;on 

� 

��1	if z	>	t 
w	=	 (4) 

��0	otherwise 

This weighing func;on is applied at each grid cell. t	is the 95th percen;le 2m temperature described above; it is, calculated 

for each ;me of day for each month. 

Equa;on 3 and Equa;on 1 have the same structure; the difference is that Equa;on 3 applies v	to X	and y. Therefore, twCRPS 

reduces to calcula;ng the standard CRPS score, when the ensemble and the ground truth are transformed using the following 

func;on (Allen et al., 2022): 
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twCRPS(F,y)=	CRPS(Ft,max(y,t))	 (5) 

where Ft	is the CDF of the transformed ensemble. The transformed ensemble isforFor each ensemble member Ei, where i	
goes from 1 to N	for an ensemble size of N. As, the transformed ensemble member is 

 (6) 

The CDF of the transformed ensemble, Ft(x)), is thus calculated as . This transforma;on is 

described in further detail in , (Allen et al. (., 2022). 
Similar to CRPS, twCRPS is calculated independently for each grid cell, for each forecast ini;al ;me. Aler taking a global 

average and an average over each ini;al ;me in summer 2023, the twCRPS scores are shown as a func;on of lead ;me in 

Figure 15b. 

twCRPS assigns no penalty when the ensemble forecast and the ground truth are below the extreme threshold. This is the 

most common situa;on that accounts for much of the CRPS score, but it can mask out the performance on extremes. If an 

ensemble member lies above the threshold when the truth is below the threshold, then the ensemble will be penalized with 

a higher twCRPS. This is a solu;on to the forecaster’s dilemma: the ensemble can no longer hedge its score by overpredic;ng 

extreme events above the threshold. If an ensemble forecast is below the threshold while the truth is above the threshold 

(false nega;ve extreme), then the ensemble is also penalized. As the ensemble is transformed according to Equa;on 56, this 

penalty is determined by the distance between the threshold and the truth, not the distance between the raw forecast and 

the truth. Therefore, twCRPS penalizes both overpredic;on and underpredic;on of extremes. It provides the benefits of the 

standard CRPS score, as it evaluates a probabilis;c forecast of a single ground truth value. 

Figure 15b shows that SFNO-BVMC and IFS have similar twCRPS scores. In fact,, with SFNO-BVMC outperforms IFS, with a 

lower twCRPS scoreperforming slightly beVer on this metric. Since this score assesses the predic;on of the tails of the 

distribu;on, SFNO-BVMC is a trustworthy model for predic;ng extreme 2m temperature events. The twCRPS has the same 

units as the standard CRPS; for 2m temperature, the units are degrees Kelvin. However, the values for twCRPS are lower than 

those for CPRS because the former assigns no penalty for the most common case, when both the ensemble members and 

the ground truth value are below the threshold. In those cases, the twCRPS score will be 0. Relatedly, the score will be very 

close to 0 if most (though not all) ofBecause the ensemble members predict a non-extreme event and the ground truth is a 

non-extreme event. This behavior brings down the value ofverifica;on are transformed as in Equa;ons 5 and 6, the twCRPS 

score, compared tohas a lower value than the CRPS score. 

twCRPS complements other forecast diagnos;cs, including those specifically focused on extremes. Recently, Ben 

Bouallègue et al. (2024) validate PanGu weather on extreme weather events, in part by comparing quan;le-quan;le plots of 

PanGu, IFS, and ERA5. While these plots compare the aggregate distribu;ons of the forecasts and the truth, they do not 

assess whether extreme forecasts are collocated (in space and ;me) with extreme observa;ons. Ben Bouallègue et al. (2024) 

state that addi;onal diagnos;c tools are necessary to evaluate this. We suggest that twCRPS fills this need, as it focuses on 
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the tails of the ensemble distribu;on, but it also evaluates whether the forecasts coherently predict extremes at the right 

space and ;me. 

4 Discussion and Conclusion 

In Part I of this two-part paper, we introduce SFNO-BVMC, an en;rely ML-based ensemble weather forecas;ng system. This 

ensemble is orders of magnitude cheaper than physics models, such as IFS. It enables the crea;on of massive ensembles that 

can characterize the sta;s;cs of low-likelihood, high-impact extremes. Here, we present the ensemble design, which uses 

bred vectors as ini;al condi;on perturba;ons and mul;ple checkpoints as model perturba;ons. Mul;ple checkpoints are 

created by retraining SFNO from scratch, with a different set of random weights when SFNO is first ini;alized. In this 

manuscript, we present a range of ensemble design choices and ra;onale for making these decisions; we list these in Table 

1. To maximize dispersion, we use a large SFNO with a small scale factor and large embedding dimension, and we avoid 

mul;step fine-tuning. 

 We assess the fidelity of SFNO-BVMC on overall ensemble diagnos;cs, spectral diagnos;cs, and extremes diagnos;cs. 

This comprehensive pipeline is specifically designed for ensemble forecasts (not solely for determinis;c ones). As the field of 

ML-based ensemble forecas;ng rapidly grows, we hope that other groups also use these sta;s;cs to evaluate their 

ensembles. On overall diagnos;cs, SFNO-BVMC’s performance is 18 hours behind IFS ENS, a leading opera;onal weather 

forecast on most diagnos;cs and most variables. We present a pipeline to evaluate the ensemble’s performance on extreme 

2m temperature events. 

On overall diagnos;cs, SFNO-BVMC’s performance lags approximately 12–18 hours behind IFS ENS. We present a pipeline to 

evaluate the ensemble’s performance on extreme 2m temperature, 10m wind speed, and heat index events. 

The spectral diagnos;cs demonstrate that individual ensemble members in the SFNO-BVMC have blurry predic;ons 

compared to ERA5. We minimize this as much as possible through a small scale factor, a large embedding dimension, and no 

autoregressive fine-tuning. S;ll, some degree of blurring s;ll remains. However, our spectral diagnos;cs reveal that the 

spectra from SFNO-BVMC remain constant throughout the rollout. This means that SFNO-BVMC’s ability to predict extreme 

weather and fine-scale phenomena remains constant. Addi;onally, the SFNO-BVMC ensemble-mean spectra indicate that 

the ensemble members realis;cally diverge. Future research and architectural improvements are necessary to reduce the 

extent of the ini;al blurring. 

Bred vectors are open-sourced through the earth2mip package, and they can readily be applied to other determinis;c 

architectures. This enables out-of-the-box ensemble forecasts from the wide array of exis;ng determinis;c architectures. 

Indeed, recently, there have been over twenty determinis;c ML weather predic;on models (Arcomano et al., 2020; Bi et al., 

2023; Nguyen et al., 2023; Chen et al., 2023b; Bodnar et al., 2024; Mitra and Ramavajjala, 2023; Ramavajjala, 2024; Pathak 

et al., 

2022; Bonev et al., 2023; Weyn et al., 2021; Willard et al., 2024; Keisler, 2022; Karlbauer et al., 2023; Rasp et al., 2024, 2020; 

Lang et al., 2024; Couairon et al., 2024; Scher and Messori, 2021; Chen et al., 2023a). It is computa;onally expensive and 
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programmer ;me-intensive to convert all these architectures into ensembles using probabilis;c training (e.g. through 

diffusion models or through CRPS training on the CRPS loss func;on). Even for the architectures that are converted to 

probabilis;c training, bred vectors and mul;ple checkpoints can provide baseline ensemble scores. This baseline can be used 

to guide further development of end-to-end training. 

Understanding how ML models respond to perturba;ons is an important research fron;er (Bülte et al., 2024; Selz and 
Craig,  

2023). SomeUnderstanding how ML models respond to perturba;ons is an important research fron;er (Bülte et al., 2024; 

Selz and Craig, 2023). In par;cular, future work is necessary to compare the computa;onal cost and skill of different ini;al 

condi;on perturba;ons perturba;on methods (Bülte et al., 2024), in tandem with model perturba;ons. We find that bred 

vectors are a computa;onally inexpensive way to achieve reasonable spread-error ra;os and to generate an arbitrarily large 

ensemble. Further refinement of ini;al condi;on perturba;on techniques is needed to improve forecast performance. Two 

advantages of bred vectors are that they do not rely on external sources. For instance, and they can be used to generate 

arbitrarily large ensembles. First, Price et al. (2023) use external perturba;ons from opera;onal data assimila;on that provide 

valuable informa;on abouVo include es;mates of observa;onal uncertainty. With the PanGu ML model, Bülte et al. (2024) 

createtest ML ensembles usingwith IFS perturba;ons, but they find that these perturba;ons do not lead to the best 

performance. Other ini;al condi;on perturba;ons, such as bred. Bred vectors, do not rely on external sources. If an ML model 

is used to emulate climate models (e.g. in WaV-Meyer et al. (2023)), thesebred vector perturba;ons are s;ll available, unlike 

IFS or data assimila;on perturba;ons. Addi;onallySecond, there are olen a limited number of external perturba;ons from 

exis;ng weather center. However, bredcenters. Bred vectors can be used to generate arbitrarily large ensembles, such as the 

huge ensemble in Part II. For opera;onal weather forecas;ng, future work is necessary to improve calibra;on by combining 

mul;ple types of perturba;ons. 

Looking to the future of ML-based ensemble forecas;ng, an important design choice is whether the ensemble is created 

during training or aler training. NeuralGCM (Kochkov et al., 2023) and GenCast (Price et al., 2023) create ensembles endto-

end during training; they train using probabilis;c loss func;ons. Here, we train SFNO using a determinis;c loss func;on, and 

we create the ensemble aler training. In the machine learning literature, it is an openac;ve area of research whether 

ensemble training or post hoc ensembling leads to the most reliable results (Jeffares et al., 2023). In weather forecas;ng, so 

far, GenCast and NeuralGCM offer superior ensemble performance to SFNO-BVMC. They have beVer CRPS scores and spread-

skill ra;os. Even at full ERA5 horizontal resolu;on, GenCast does not produce blurry forecasts. While GenCast and SFNO-

BVMC run on different hardware (TPUs, compared to NVIDIA GPUs used here), GenCast takes 6 minutes to create a 2-week 

forecast, with a ;mestep of 12 hours. At the same horizontal resolu;on, SFNO-BVMC takes 1 minute to create a 2-week 

forecast, with a ;mestep of 6 hours; therefore, SFNO-BVMC appears to be a factor of 12 faster for inference. In part, this 

difference is because SFNO-BVMC does not require the itera;ve denoising used by GenCast at each ;mestep. In Part II of this 
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paper, we assess the performance of huge ensembles of SFNO-BVMC. A promising area of future research is to explore the 

behavior of huge ensembles from these other ML-based models. 

The current genera;on of ML-based ensemble weather forecasts all have core design differences. IFS ENS uses 

physicsbased modeling, NeuralGCM uses a differen;able dynamical core and an ML physics parameteriza;on, GenCast uses 

a diffusion-based genera;ve model, and SFNO-BVMC uses determinis;c training. Because of these differences, future 

researchwork is necessary to assess the strengths and weaknesses of each model in different meteorological regimes. When 

different forecas;ng systems have uncorrelated errors, a mul;model ensemble can lead to improved skill. Each forecas;ng 

system could be post-processed, bias-corrected, and op;mized to create the best ensembles for each region. 

As the use of machine learning and huge ensembles grows in weather forecas;ng, it is important to consider climate equity 

(McGovern et al., 2024). Weather forecasts bring tremendous societal and economic value, and it is important to make them 

as accurate as possible across the global (Linsenmeier and Shrader, 2023). Considera;ons of forecast skill should be improved 

for all loca;ons, not just loca;ons with large weather centers. One benefit of SFNO-BVMC is that it creates forecasts at a 

frac;on of the computa;onal cost. This means that organiza;ons with limited access to large supercompu;ng resources can 

run weather forecasts and op;mize them for their specific end use cases and datasets. In par;cular, they can be fine-tuned 

for regional purposes. In this introductory work, we primarily consider global metrics, and we focus on 2m temperature. In 

the tropics, temperature variance is small due to a smaller Coriolis parameter, and humidity varia;ons are par;cularly 

important, especially for impacrul rainfall. Future work is necessary to consider the ensemble calibra;on and performance 

at the regional level, and this work can include explicit considera;ons of other variables, such as rainfall and humidity. In 

par;cular, the SFNOs trained here do not predict precipita;on, and accurate medium-range rainfall forecasts are an important 

fron;er in ML weather research. 

In this manuscript, we run our extreme diagnos;cs pipeline on warm temperature extremes, and we validate on summer 

2023, as it is the hoVest summer in the observed record. However, future work is necessary to characterizeAt lead ;mes of 

48 hours and 96 hours, the performance on cold temperature extremes and wind extremes is similar to IFS. However, future 

work is necessary to reduce false posi;ves for these other extreme events of interest (e.g. extreme wind, vapor transport, or 

precipita;onclasses of extremes at 10-day lead ;mes (Figure D3). The EFI here is calculated on daily mean temperature, but 

it can also be calculated for other quan;;es, such as daily max or min temperature, convec;ve available poten;al energy, or 

vapor transport (Lavers et al., 2016). Similarly, the ROC curves and reliability diagrams could be calculated for other types of 

extremes. We have presented an ensemble extreme diagnos;cs pipeline that can be used to guide development for other 

ML data-driven weather systems. 

u10m (m/s) 0.52 
v10m (m/s) 0.53 

u100m (m/s) 0.65 
v100m (m/s) 0.66 

t2m (K) 0.37 
sp (Pa) 40.80 

msl (Pa) 42.39 
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 Variable Amplitude 

Figure A1. Bred Vector Perturba;on Amplitudes. The root-mean-square amplitude of the perturba;on is shown for each variable. 

In Part II, we use SFNO-BVMC to generate a huge ensemble, with 7,424 members. This ensemble is 150x larger than the 

ensembles used for opera;onal weather forecas;ng. We explore how an ensemble of this size enables analysis of the sta;s;cs 

of low-likelihoodlowlikelihood, high-impact extremes. 

A Case Study: 2023 Phoenix Heatwave 

We include a case study for a heatwave in Phoenix in summer 2023. Phoenix had temperatures above 310 K (36.85 C) for over 

30 consecu;ve says in summer 2023. We compare the ensemble forecasts from SFNO-BVMC and the IFS ensemble in Figure 

A1. We compare SFNO-BVMC to the IFS ensemble, and we visualize their respec;ve verifica;on datasets. We show that at a 

lead ;me of 3 days, SFNO-BVMC can forecast the high temperatures observed over the region during the region. The IFS 

ensemble is ini;alized with an opera;onal analysis, not ERA5, and we use this analysis as the verifica;on dataset for IFS. 

Notably, the opera;onal analysis has even sharper fields than ERA5: this has previously been quan;fied in Figure S38 and 

Supplementary Materials Sec;on 7.5.3 of Lam et al. (2023). The difference between opera;onal analysis and ERA5 reanalysis 

is shown for this heatwave in Figure A1. 

AB Perturba;on Amplitudes 

The root-mean-square amplitude of the bred vector perturba;ons is set to be 0.35 * the determinis;c RMSE of SFNO at 48 

hours. Figure A1B1 visualizes the actual numerical value of these amplitudes (with the factor of 0.35 applied). 

BC Defini;on of Spread and Error 

Below, we include our defini;ons for calcula;ng the spread and error for calcula;on of the spread-error ra;o (For;n et al., 

2014). 

The ensemble forecasts have a 0.25 degree horizontal resolu;on on a regular la;tude-longitude grid, so the ensemble 

forecasts have a 721	la;tude points and 1440	longitude points. Let i	and j	be the indices of a grid cell at a given la;tude and 

longitude. 

tcwv (mm) 0.95 
d2m (K) 0.47 
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For each grid cell, the ensemble mean is 
 

 

For each grid cell, the ensemble variance is 
 

 

To calculate the spread in the spread-error ra;o, we first calculate the ensemble variance at each grid cell. Then, we take 

the global la;tude-weighted mean of this variance. Then, we take the mean over forecasts from mul;ple ini;al dates. Finally, 

we take the square root. 
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Figure A1. 2023 Phoenix Heatwave. Comparison of ensemble forecasts from SFNO-BVMC (a) and the IFS ensemble (b) at a grid cell near 

Phoenix, Arizona, USA. Both models’ forecasts are ini;alized on June 27, 2023 at 00:00 UTC. The SFNO-BVMC verifica;on dataset is ERA5 

and the IFS ENS verifica;on dataset is opera;onal analysis. (c) and (e) show ERA5 and opera;onal analysis, respec;vely, for the daily max 

temperature on June 30, 2023. (d) and (f) show the SFNO-BVMC ensemble mean and IFS ENS mean, respec;vely, for the daily max 

temperature on June 30, 2023. The black stars in c-f denote the grid cell near Phoenix, Arizona, USA used in (a) and (b). 
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Spread  

 Variable Amplitude 

Figure B1. Bred Vector Perturba;on Amplitudes. The root-mean-square amplitude of the perturba;on is shown for each variable. 

where l(i,j)	denotes the la;tude weight for grid cell i,j. The la;tude weights enable calcula;on of the global mean. 

We follow a similar process for calcula;ng the error, except the ensemble variance is replaced with ensemble mean-

squared error. 

Error  

where y	denotes the verifica;on value. The spread and error are calculated for each lead ;me and shown in Figure 8. 
Results 

are shown for all forecasts in the test set year, 2020, so T	=732, for 732 ini;al ;mes (2 per day). 

D Diagnos;cs for Addi;onal Variables and Lead Times 

We show the reliability of the forecasts from SFNO-BVMC at a lead ;me of two days and four days in Figure D1. IFS is more 

reliable than SFNO, since its forecasts lie closer to the 1-to-1 line, though the performance is comparable. When SFNO-BVMC 

predicts 95th percen;le temperature with approximately 20 to 30% probability, the actual occurrence is more frequent than 

this predicted probability. 

We also include the reliability diagrams for the heat index (Lu and Romps, 2022), which combines 2m temperature and 

moisture, and for 10m wind speed. In Figure D2, we show the reliability diagrams for 95th percen;le heat index. As for 2m 

air temperature, the 95th percen;le heat index is calculated from 1993-2016 ERA5 climatology. Comparing Figure D2 to Figure 

15, we find that SFNO-BVMC is similarly reliable for heat index extremes as it is for warm 2m temperature extremes. 

Next, we show overall CRPS scores and reliability diagrams for 10m wind speed, and we also show the model’s reliability 

for forecas;ng cold extremes (5th percen;le 2m temperature). To calculate these sta;s;cs, we use December-January-

u10m (m/s) 0.52 
v10m (m/s) 0.53 

u100m (m/s) 0.65 
v100m (m/s) 0.66 

t2m (K) 0.37 
sp (Pa) 40.80 

msl (Pa) 42.39 
tcwv (mm) 0.95 

d2m (K) 0.47 
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February (DJF) from 2021 to 2022, while we use summer 2023 in Figure 15. We use a winter season for the Northern 

Hemisphere to include sufficiently cold extremes over land in the Northern Hemisphere. Addi;onally, DJF 21-22 is within the 

;me period included by the WeatherBench dataset (Rasp et al., 2024), so we can readily access the IFS ensemble wind 

forecasts via a Zarr file stored on Google Cloud, without having to download addi;onal data from ECMWF’s tape servers. On 

10m wind speed and cold extreme air temperature, SFNO-BVMC and the IFS ensemble have similar performance on overall 

CRPS 

Reliability at Predic;ng 95th Percen;le 2m Temperature 
 

 

Figure C1D1. Reliability Diagram at 48-hour and 96-hour lead ;mes. Reliability diagrams are shown for 95th percen;le extremes at a lead 

;me of 48 hours and 98 hours. Reliability diagrams are calculated using all ini;al ;mes from summer 2023. Successful forecasts lie along 

the 1-to-1 line. 
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Figure D2. Reliability Diagram for Heat Index. The heat index combines 2m air temperature and 2m dewpoint. Reliability diagrams are 

shown for 95th percen;le heat index extremes at a lead ;me of 48 hours and 98 hours (a) and 120 and 240 hours (b). Reliability diagrams 

are calculated using summer 2023 forecasts, from June 1, 2023 to Aug 14, 2023. 

and on reliability diagrams (Figure D3). This indicates that the ensemble genera;on methodology (bred vectors and mul;ple 

checkpoints) is promising for other variables and classes of extremes. SFNO-BVMC does degrade in reliability when making 
 Reliability Diagram:  Reliability Diagram:  

 

Figure D3. SFNO-BVMC Performance on 10m Wind Speed and Cold Extremes. (a) Overall CRPS for SFNO-BVMC and the IFS ensemble on 

10m wind speed. Lower CRPS scores are beher (b) Reliability Diagrams for 95th Percen;le 10m wind speed for SFNO-BVMC and IFS at lead 

;mes of 48 and 96 hours. (c) Reliability Diagrams for 5th percen;le temperature extremes for SFNO-BVMC and IFS at 48 and 96 hour lead 

;mes of 48 and 96 hours. All scores are calculated using all forecasts ini;alized in December-January-February 2021. Successful forecasts 

lie along the 1-to-1 line. 
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forecasts of extreme wind with 90% probability. This problem is accentuated at longer lead ;mes (see below), and future 

research is necessary to isolate the cause of this behavior. 

We iden;fy two areas for future research and model improvement. First, interes;ngly, both SFNO-BVMC and the IFS 

ensemble have degraded performance for forecas;ng cold extremes, as opposed to warm extremes (compare the 5th 

percen;le reliability in Figure D3 to the 95th percen;le reliability diagrams in Figure D1). With future model development, 

we hope to improve the performance of SFNO-BVMC in forecas;ng cold extremes. Second, for 10m wind speed and cold 

temperature extremes at a lead ;me of 10 days, SFNO-BVMC’s reliability degrades (Figure D4). For these variables, the 

ensemble s;ll has a good overall forecast scores (see the wind speed CRPS in Figure D3 and the 2m temperature Figure 7). 

SFNO-BVMC reliability is close to IFS for extreme forecast probabili;es from 0% to 50%. However, the reliability drops when 

the model predicts high probabili;es (greater than 70%) of extreme condi;ons. In these cases, SFNO-BVMC tends to be 

overconfident: its forecast of an extreme event does not match the observed outcome. This overconfidence occurs extremely 

rarely. At a lead ;me of 10 days, it is very uncommon (less than 1% of all forecasts for 2m temperature, less than 0.1% for 

10m wind speed) for SFNO-BVMC to predict a greater than 70% chance of extreme wind or cold temperatures. At this long 

lead ;me, there is significant ensemble spread induced by the perturba;ons, so the ensemble system is not confident in 

issuing extreme forecasts. S;ll, having a calibrated reliability diagram is crucial for all forecast probabili;es, and this 

shortcoming must be resolved with future model development. 

E Error in Computer Code For Bred Vector Calcula;on 

Aler performing the analysis in this manuscript, we discovered an error in our calcula;on of bred vectors. During the first 

steps of calcula;ng bred vectors at t−2	and t−1	(Figure 4), we incorrectly supplied SFNO with the solar zenith angle at ;me t0. 

We 
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Figure D4. Reliability Diagram at 240h Lead Time for 95th percen;le wind speed and 5th percen;le temperature extremes. Reliability 

diagrams are shown for 95th percen;le extremes at a lead ;me of 48 hours and 98 hours. Reliability diagrams are calculated using all 

forecasts ini;alized in December-January-February 2021. Successful forecasts lie along the 1-to-1 line. 

850 hPa Temperature Spectra 

 

Figure D5. Perturbed Spectra at 0h. Same as Figure 11, but showing the spectra of perturba;ons applied to the ERA5 ini;al condi;ons. 

have verified and established that this error does not affect any of the conclusions or scores presented in this manuscript. 

This error does not make a discernible difference for three reasons. First, the last breeding step calculates the perturba;ons 

using SFNO at t0. At t0, the correct zenith angle is supplied, so the final perturba;on is s;ll based on the correct SFNO forecasts. 

Second, we validate that the error does not cause undesired ar;facts related to the diurnal cycle in the actual perturba;ons 

(see Figure 5). Third, the breeding cycle only uses 1-step forecasts, which means that the error from using the incorrect zenith 

angle does not grow. 
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Figure E1. CRPS Comparison of Original and Fixed Bred Vector Perturba;on Method. Our original calcula;on of bred vectors contained an 

error with a mismatched cosine zenith angle during the first two breeding steps. This figure compares the CRPS of an ensemble with the 

"Original" (incorrect) bred vector calcula;on and the "Fixed" calcula;on for 2m and 850hPa atmospheric temperatures, the 500hPa 

geopoten;al height, and the 850hPa zonal wind as representa;ve fields. Results are shown for 52 forecasts ini;alized in summer 2020, one 

per week star;ng January 2. 

We also note that this error does not affect the 15-day rollout of SFNO, only the calcula;on of the bred vectors. Given the 

nature of this error, we do not believe it would cause SFNO-BVMC to appear beVer than it actually is. Instead, it would be 

more likely to degrade its performance, making the method seem worse than it really is. We compare the ensemble scores 

for the ensemble with the error (named "Original") and the fixed ensemble (named "Fixed") in Figures E1 and E2. We have 

corrected the error in the GitHub page for our project, but for scien;fic reproducibility, the error remains in the codebase in 

the DOI in our Code and Data Availability Sec;on, since this is the version of the code that we used for our analysis. 

Author contribu,ons. Bold words correspond to Contributor Roles Taxonomy (CrediT) conven;ons. AM and WDC contributed equally to 

this work. AM, BB, NB, JE, YC, PH, TK, JN, TAO, MR, DP, SS, and JW wrote Sodware and performed Formal Data Analysis. WDC, KK, and MP 

supervised the research project. WDC, KK, and MP Acquired Funding for the project. WDC, KK, PH, SS, AM, and MP obtained computa;onal 

Resources for the project. All authors contributed to the Methodology of the project. WDC, AM, BB, YC, PH, KK, JN, TAO, MP, MR, SS, and 

JW contributed to the Conceptualiza;on of the project. 
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Figure E2. Ensemble Mean RMSE and Ensemble Spread Comparison of Original and Fixed Bred Vector Perturba;on Method. Our original 

calcula;on of bred vectors contained an error with a mismatched cosine zenith angle during the first two breeding steps. This figure 

compares the ensemble mean RMSE and ensemble spread of an ensemble with the "Original" (incorrect) bred vector calcula;on, and the 

"Fixed" calcula;on. Results are shown for 52 forecasts ini;alized in summer 2020, one per week star;ng January 2. 
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