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Overview6

We sincerely thank the reviewers for their constructive comments and review of our paper. These comments7

will substantively improve our manuscript. We have included responses to the reviewers’ comments below,8

with the reviewer comments in black text and our response in green text.9

In this document, we will detail our planned revisions. Some of the revisions require re-analyzing our10

ensemble simulation with additional variables, such as 10m north-south wind, 10m east-west wind, and heat11

indices. The ensemble simulations use O(1) TB per variable for a 58-member ensemble, and O(100) TB per12

variable for the huge ensemble. Upon completion of the analysis that the reviewers suggest, we will submit13

a revised version of the manuscript in mid-March 2025.14

For public reference, this is the first of a two-part manuscript on huge ensembles. We refer to part I as15

HENS Part I [Mahesh et al., 2024a], and we refer to part II has HENS Part II [Mahesh et al., 2024b].16

Comments from Reviewer #117

Part 1 and 2 are both interesting papers that document the development and use of a machine learned en-18

semble weather forecast model with an enormous number of ensemble members. We request a short period19

of time due to the computational and data requirements of these comments. The papers fit well into GMD,20

but I think that they should be revised following the comments below. The paper is documenting very inter-21

esting results, as it shows that an SFNO-type-model can be used to develop a competitive ensemble forecast22

system when combined with bred vectors and multi-check pointing.23

Thank you very much for your review of our paper.24

Page 2: The ML model has “orders-of-magnitudes” lower computational cost. Is this really true? More25

than a factor of 10? This could only be possible if the IO cost (that will stay the same) is considered to be26

of less than 10% of the overall cost (also see comment for Part 2). And what is the “cost”? Time, energy, or27

hardware purchase?28

Thank you for raising this concern. We are not considering I/O costs here and are only basing this off an29

estimate of time to generate an ensemble member. Due to differences in hardware (CPU vs. GPU), high-30

performance computing centers, network, energy requirements, data storage availability/ costs, hardware31

costs, time step, and spatial resolution, we intentionally do not provide a comprehensive breakdown and32

comparison between SFNO and IFS in this work. The basis of our statement is that with 96 CPUs and 6033
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minutes, we can generate 1 IFS ensemble member. However, with 1 GPU and 60 minutes, we can generate34

60 ensemble members with SFNO. Conservatively, this represents a 60x decrease in the time required to35

generate the ensemble member. It is a significantly larger decrease if we consider the CPU time for IFS vs.36

the GPU time for SFNO. We of course acknowledge that CPUs and GPUs are different computing platforms.37

Physics-based models could also be sped up on GPUs, though such versions are not yet available in many38

cases. However, our goal is not to benchmark the compute complexity and required floating point operations39

for physics-based models and ML models in this work. Instead, we demonstrate that currently, it is more40

feasible and practical to run huge ensembles with SFNO, since SFNO takes much less time to generate 141

member per GPU than IFS does per CPU. We simply wish to illustrate that running SFNO is computationally42

cheap on GPUs, similar to the statements made here regarding ECMWF’s data-driven weather model [Alexe43

et al., 2024]. We discuss this more in our Part 2 peer review response.44

For our group, another practical consideration is that our compute time is primarily measured on a per-node45

basis, not a per-GPU basis. Since we have 4 GPUs per node on Perlmutter, we can increase the throughput46

of the number of ensemble members by a factor of 4. (Of course, we fully acknowledge that this situation47

varies based on the inference setup of different users, and this varies widely based on users. However, it48

was a relevant practical consideration for our group when we decided whether to run huge ensembles with49

SFNO or with a physics-based model.)50

P6, paragraph starting with “We choose SFNO. . . ”: I find this part difficult to follow. It would be51

good to remind the reader about the architecture of the SFNO and to clearly state what is changed to see52

only “linear” scaling with horizontal resolution. This will clearly not be the case if the size of the SFNO53

is increased (?). And I thought I had seen talks by NVIDIAns that showed that there were fundamental54

problems when scaling SFNO to km-scale resolution? And is “super-linear” more or less than linear when55

you talk about the cost?56

Thank you for pointing out these issues. We have now removed the section on how SFNO scales with57

input resolution. We believe that this discussion on compute complexity would best happen in research58

that performs global, kilometer-scale emulation, particularly after any necessary changes to model size and59

hyperparameters (e.g. embedding dimension and scale factor) have been made. We are not performing this60

kilometer-scale emulation in HENS Part I and Part II, so we believe it would be best to save this topic for61

future work.62

What exactly do you mean by downscaling and scale factor here (I think I know, but only since I know63

the previous papers)? I do not understand why a lower scale factor would lead to a larger ensemble spread.64

In SFNO, the input is encoded into a latent representation. In the latent space, the SFNO blocks process65

the latent representation to optimally predict the next time step. Then, this transformed latent input is66

decoded to the physical fields of the next input prediction. The scale factor is the parameter that determines67

the resolution of the latent representation of the input. A scale factor of 1 would mean that the latent68

representation has the same dimensions as the input. A scale factor of 2 downsamples the input by a factor69

of 2, and so forth. We have modified the text to include this.70

Figures 4e-h in Brenowitz et al. [2024] show that models with lower scale factors have better spread-error71

ratios. Additionally, we illustrate that the bigger models (lower scale factor and also embed dimension) have72

better spread-error ratios in Figure 2a. These bigger models also have less spectral degradation (Figure 2b).73

They are less blurry. We hypothesize that they blur out less of the initial condition perturbations; instead,74

they better incorporate the finer scales of the perturbations in their predictions. We speculate that this could75

lead to more ensemble spread, in part by allowing for more transfer of perturbation energy from small scales76
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to larger scales.77

Figure 4: I do not really understand how the process is repeated for t-1 and t0.78

Thank you for making us aware of this, and we apologize for any confusion. We use the following process:79

at t−3, add random spherical noise to Z500, and compute the difference between the perturbed forecast and80

a control forecast. We use this difference as the new perturbation, and we add it to the state at t−2. Again,81

we calculate the difference between the perturbed state and the control state, which would result in a new82

perturbation. For t−1, we continue with the same algorithm. We add the newly calculated perturbation to83

t−1, and we calculate the difference between a perturbed forecast and control forecast. Here is an algorithm84

to help clarify. For input state X (the 74-channels compromising the state of SFNO), spherical random noise85

ϵ, and bred vector perturbation δ,86

Algorithm 1 Bred Vector Algorithm
1: Add random spherical noise ϵ to Xt−3 Z500:

X
perturbed
t−3

= Xt−3 + ϵ

2: Compute difference between perturbed and control forecasts at t−3:

δ = SFNO(Xperturbed
t−3

) − SFNO(Xt−3)

3: Add δ as the new perturbation. Add to the state at t−2:

X
perturbed
t−2

= Xt−2 + δ

4: Compute difference between perturbed and control states at t−2:

δ = SFNO(Xperturbed
t−2

) − SFNO(Xt−2)

5: Repeat the process for t−1:
X

perturbed
t−1

= Xt−1 + δ

δ = SFNO(Xperturbed
t−1

) − SFNO(Xt−1)

6: Repeat the process for t0:
X

perturbed
t0

= Xt0 + δ

δ = SFNO(Xperturbed
t0

) − SFNO(Xt0)

7: Output: Bred vector perturbation δ

Figure 10: Is the control member equivalent to a normal ensemble member, or are there small differences87

(as in IFS)?88
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Peer Review Figure 1: ECMWF M-Climate Description. See the second bul-
let point for a description of the number of initial dates used. ECMWF M-
Climate was taken from https://confluence.ecmwf.int/display/FUG/Section+5.3.1+M-
climate%2C+the+medium+range+model+climate. (Date accessed: 02/17/2025)

We have added the control member spectra to this figure and compared it to the spectra range from the89

perturbed members.90

Can you also plot 0h?91

We will add the 0h spectra figure to Figure 10 and will present this in the revised manuscript.92

Page 20: 9 initial dates per year does not seem correct.93

We have confirmed the M-Climate on ECMWF’s confluence webpage indicates that the M-Climate for94

a given initial date consists of the 9 initial dates per year in the stored hindcasts that are closest to that95

date. For clarity, we include a screenshot of the documentation in Peer Review Figure 1. We archive this96

screenshot in this document only because we understand that this documentation may change. A similar97

estimate of 9 initial dates is given in Section 2.1 of Lavers et al. [2016].98

Section 3.3.2 and 3.3.3 read a bit too much like a textbook. Can you refer to literature and keep the99

discussion shorter?100

We have shortened and changed the discussion. For clarity, the revisions will be easiest to see via a change101

log, to which we will point upon submission of the revised manuscript.102

Page 25: The discussion of the pipeline and the earth2mip package indicates that you consider this to be103

one of the main contributions of the paper. I think it could be, but you would probably need to make it more104

prominent in the write-up. It is hardly mentioned at the moment. You could maybe show how the package105

is working for another ML model, more-or-less out of the box?106

Thank you for this suggestion. The earth2mip package was made independent of and prior to our manuscript.107

We heavily use this pre-existing package for inference and scoring, and we introduce modifications to sup-108

port bred vectors and multiple ensembles. The package already includes support for multiple other models,109

including Graphcast, DLWP, the Adaptive Fourier Neural Operator, and Pangu. However, since the package110
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is more general-purpose than our manuscript, and because it was made independent of the manuscript, we111

do not include these demonstrations here. We note that the package already includes examples of using112

other models at (see https://nvidia.github.io/earth2mip/examples/index.html, Date Accessed: 02/16/2025).113

Is the extreme diagnostics pipeline that is mentioned on page 27 meant to be used by other groups and114

to work as a benchmark?115

The package includes instructions on integrating other model architectures for inference. The extreme di-116

agnostics pipeline is integrated with our fork of earth2mip. The diagnostics can then be run with other117

architectures. We would encourage others to use our extreme diagnostics or adapt the code for them into118

their own workflows, and we open-source these diagnostics to aid this goal. However, for this manuscript,119

we do not aim to provide an operational platform with a real-time leaderboard on extreme diagnostics, as120

that is out of scope. Furthermore, the WeatherBench 2 platform already exists with a similar purpose and is121

a more mature leaderboard.122

Abstract: “these” to “These”123

Done.124

P4: “set This”125

Fixed.126

Figure 2b: For what timestep are the spectra calculated?127

They are calculated at 360 hours. We have added this information to the figure caption.128

Comments from Reviewer #2129

The manuscript presents an approach to forecasting low-likelihood high-impact extreme weather events130

using a Spherical Fourier Neural Operator with bred vectors and multiple checkpoints (SFNO-BVMC),131

addressing a significant challenge faced by current deep-learning weather prediction models. The results132

demonstrate the model’s capability to predict extreme events while achieving reduced computational costs133

compared to traditional Numerical Weather Prediction (NWP) methods, potentially marking a significant134

milestone in weather forecasting.135

Thank you very much for your review and for providing these overall comments.136

Despite these promising results, several aspects warrant further research. The authors mainly focused137

on 2m temperature, especially heat extreme from model configuration to diagnostics, and given that the138

authors deliberately included 2m dewpoint temperature as a model input variable, incorporating predictions139

of derived heat extreme indices would provide valuable insights into the model’s capabilities. Furthermore,140

I recommend evaluating a broader range of LLHIs to strengthen the reliability of the approach. I think the141

authors can incorporate cold extremes along with heat extremes. What about wind extremes, which are in142

prediction variables?143

Thank you very much for these suggestions to help improve our manuscript. In our revised manuscript, we144

will include the following additions: SFNO-BVMC diagnostics for the heat index, wind, total column water145

vapor, and cold extremes. We will also include IFS diagnostics on the heat index and wind. We will submit146

a revised manuscript, and we will provide pointers to these updates for clarity.147
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Most importantly, this model does not encompass floods/precipitation, which can cause the highest148

impact extreme. In its current form, the LLHI diagnosis may be too narrow to adequately showcase the149

model’s full ability to predict various extreme weather events.150

Thank you for raising this issue. Precipitation is excluded as a variable because of the challenges in obtaining151

a global training dataset with high-spatiotemporal resolution. Some ML model groups have a “lack of152

confidence in the quality of ERA5 precipitation data” [Price et al., 2024] and exclude the precipitation153

results from the primary evaluation [Lam et al., 2023]. In addition to the training dataset challenge, the154

spatial statistics and long tails of precipitation indicate that further architectural changes may be necessary155

for some architectures [Pathak et al., 2022]. Therefore, precipitation is not one of the variables in the original156

SFNO [Bonev et al., 2023]. We note that the exclusion of precipitation is a common feature across many157

data-driven weather prediction models [Bi et al., 2023, Keisler, 2022, Chen et al., 2023a,b, Ramavajjala,158

2024, Cachay et al., 2024, Bodnar et al., 2024], many of which are leading models listed on WeatherBench 2.159

The addition of precipitation is very much an important challenge at the forefront of data-driven weather160

prediction. In future research, we certainly wish to emulate precipitation to forecast LLHI precipitation161

events and will include it as a variable in our ensemble: however, for this work, we focus on the development162

of ensembles and study extreme surface temperature events (with other variables forthcoming).163

As well as various extreme events, actual forecasts would be helpful to recognize the usefulness of the164

model. Diagnostics with real-event prediction would be more persuasive. For example, t2m ensemble time165

series at a certain grid point, trajectories of each ensemble for each variable, and the difference between IFS166

could strengthen the model’s credibility.167

We have currently presented two demos of actual forecasts in HENS Part II of our manuscript. in Figure 5b168

of HENS Part II, we compare our ensemble to the t2m distribution to IFS for the 2023 heatwave in Kansas169

City, Missouri, USA. In Figure 5a, we show how the ensemble range varies for the heatwave prediction as a170

function of lead time. In HENS Part II Figure 10, we also provide a demo of the distribution of predictions171

for a heatwave in Shreveport, Louisiana, USA. While these demos are currently in HENS Part II, we will172

supplement them by adding more related info to this manuscript in HENS Part I, including your suggestion173

of the ensemble trajectories from SFNO-BVMC and IFS. We sincerely thank you for this recommendation.174

Major Comments 1. (p.4) “Existing work has shown that simple Gaussian perturbations do not yield a175

sufficiently dispersive ensemble. (Scher and Messori, 2021; Bülte et al., 2024): the ensemble spread from176

these perturbations is too small.” If so, you can still adopt singular vectors or other methods to reflect initial177

condition uncertainty. Are bred vectors superior to other approaches? Are they the cheapest way other than178

simple Gaussian perturbations?179

Bülte et al. include benchmark performance using the IFS perturbations, which include a component from180

singular vectors. It is well out of the scope of this paper to compare other possible methods of perturbing181

the initial conditions: we show that bred vectors offer satisfactory performance for our purposes.182

2. (p.4) “Each resulting checkpoint represents an equivalently plausible set of weights that can model183

the time evolution of the atmosphere from an initial state.” : (Bonev et al., 2023) assessed their SFNO for184

weather prediction via ACC only. As hyperparameters and input variables changed, I am curious about the185

predictability of this version. Does each of the checkpoints generate reliable forecasts? Comprehensive186

assessment of SFNO via metrics more than ACC is required.187
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Thank you very much for raising this issue, and we agree that a comprehensive assessment is necessary. In188

this manuscript, we benchmark SFNO with overall diagnostics (root mean squared error, CRPS), spectral189

diagnostics (perturbed spectra, control spectra, and spectra of the ensemble mean), and extreme diagnostics190

(reliability diagrams, Receiver Operating Characteristic curves, threshold-weighted CRPS, and [in Part II]191

outcome-weighted CRPS). In particular, for assessing reliability, spread-error ratios and reliability diagrams192

assess whether the forecasts are ”reliable,” defined as whether the ”observed frequency of the event, for a193

given forecast probability, is equal to the forecast probability” [Johnson and Bowler, 2009]. Some of our194

diagnostics assess a given SFNO checkpoint (e.g. lagged ensembles, perturbed spectra, control spectra), and195

the others assess the behavior of all 29 SFNO checkpoints as an ensemble. We believe these benchmarks196

constitute a comprehensive assessment of SFNO as a single checkpoint but more importantly as an ensemble197

system. Are there other specific metrics or aspects of SFNO that you wish to see tested? We hope to ensure198

that our results are rigorous. Thank you for your response and consideration.199

3. (p.6) “In this study, we add 2-meter (2m) dewpoint temperature as another variable; for our SFNO200

training dataset, we obtain the 2m dewpoint temperature field from ERA5.”: Vertical velocity and precipita-201

tion are excluded. As I mentioned above, precipitation is important in extreme weather forecasting. Is there202

any specific reason for excluding precipitation?203

[See response above.]204

4. (p.10) Figure 3. The ensemble spread from different numbers of checkpoints. : Model configuration205

also focused on 2m temperature. Do we need to change the number of checkpoints if we want to forecast206

wind extremes? Do we need to change it every time for different variables? Selecting the number of207

checkpoints based on the comparison among multiple variables would be a more optimal choice.208

Thanks for this question. We clarify that it is not intended to change the number of checkpoints in the209

ensemble based on the user’s variable of interest. We will change Figure 3 to show how spread changes as210

a function of ensemble size for other variables of interest.211

We answer question 6 and question 5 in reverse order, for clarity and flow.212

6. (p.17) “While the control and perturbed spectra remain constant through the rollout, the SFNO-213

BVMC ensemble mean does increasingly blur with lead time. Figure 12 shows that the ensemble means214

of SFNO-BVMC and IFS ENS similarly degrade in power after 24 hours, 120 hours, and 240 hours.”: In215

the first paragraph of section 3.2 Spectral Diagnostics, the authors elaborate that power decay is one of the216

symptoms of blurriness, but this sentence seems like presuming those two are equivalent. section 3.2 needs217

to be more clear. What is the relationship between spectra and blurriness in general?218

Thanks for this question: we apologize for the confusion. We use spectra as a measure of blurriness: a219

degraded spectrum is a sign that the model output is blurry.220

and what did SFNO find?221

During the rollout, it is preferable if the spectra of each ensemble member stays constant. This means that222

each ensemble member realistically represents the atmosphere. When we train SFNO with multistep fine-223

tuning, the spectra of each member does stay constant. A caveat is that SFNO-BVMC’s predictions still224
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have some blurriness, but at least this level of blurriness stays constant during the rollout.225

During the rollout, it is preferable if the spectra of the ensemble mean degrades realistically. As each226

individual member undergoes a different trajectory, the ensemble mean of all members should get blurrier:227

the ensemble members should increasingly spread with lead time. We find that the spectra of the ensemble228

mean from SFNO-BVMC degrades similarly to IFS, a realistic benchmark weather model. This passes a229

test laid out by Bonavita [2024]230

Why is SFNO-BVMC different from other DLWPs regarding the power spectrum?231

During the rollout of some deterministic DLWPs, such as Graphcast and the deterministic AIFS, the spectra232

of each individual ensemble member increasingly degrades with lead time [Lang et al., 2024, Kochkov et al.,233

2024]. This is not desirable. These other DLWPs not only start off slightly blurry (just like SFNO-BVMC),234

but they get increasingly blurrier during the rollout.235

5. (p.17) “On the second criterion, crucially, their spectra remain constant through the 360-hour rollout236

(Figure 10 and Figure 11).”: Degradation of power in short wavelengths occurs in a lot of DLWPs. Then are237

all DLWP models’ degradation because of autoregressive fine-tuning? This seems like a crucial problem to238

just hypothesize the cause. I think it would be beneficial for readers to pinpoint the cause.239

Some papers have suggested that models with multistep fine-tuning have blurry results [Lang et al., 2024,240

Brenowitz et al., 2024], in part because they try to predict small-scale features beyond the predictability241

horizon [Kochkov et al., 2024] In our paper, we perform the converse experiment: SFNO trained without242

multistep fine-tuning largely does not get increasingly blurry during the rollout. This was an important243

factor in our choice not to multistep fine-tune: many other data-driven weather prediction models do choose244

to perform multistep fine-tuning for improved benchmark scores on overall diagnostics. However, because245

many DDWPs have very different architectures, time integrators, weighted loss functions, input variable246

sequences (such as including the most recent timestep or the most recent two timesteps), and targets (such247

as predicting the full atmospheric state or the residual between the input atmospheric state and the next step)248

we cannot exactly pinpoint the cause for all architectures in this work.249

7. (p.19) “This is necessary but as yet insufficient validation for our main scientific interest in LLHIs.”250

: I expect more analysis of LLHIs such as case studies that occurred during recent years, even though the251

authors agreed with the lack of validation. It would provide a more robust evaluation and help illustrate the252

model’s practical value.253

Thank you for these suggestions on improving the rigor of our manuscript. We will add these case studies.254

The context of this sentence referred to the ability of overall diagnostics (CRPS, ensemble mean RMSE)255

to assess performance on extreme events specifically. We introduced extreme diagnostics in Section 3.3 as256

our primary means of validation on extremes. These diagnostics assess statistical performance and reduce257

reliance on anecdotal evidence. However, we agree that case studies and examples are valuable ways to258

illustrate the model’s practical value, and we will build upon the case studies in Part II and add an example259

for wind events. Thank you for your suggestion.260

Minor Comments261

1. (p.12) “First, they contain a land-sea contrast for surface fields such as 10m wind speed and 2m262

temperature. For these surface fields, perturbations have distinct amplitudes and spatial scales over the land263

and ocean.”: It’s a bit difficult for me to discriminate the difference. Could you show the amplitude in264
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another way?265

Thank you for pointing out this issue to us. We appreciate your feedback. We will modify the figure and its266

caption in our revised manuscript to help clarify this.267

2. (p.14) “On 850 hPa temperature, 2m temperature, 850 hPa specific humidity, and 500 hPa geopoten-268

tial, SFNO-BVMC lags approximately 18 hours behind IFS ENS, though their performance is comparable.”:269

CRPS score with all pressure levels would be useful for readers e.g. GenCast or GraphCast.270

We appreciate this suggestion. Even with a 58-member ensemble (not the huge ensemble), validating on all271

pressure levels used in the model would require a significant expense. This is a calculation on approximately272

685 terabytes of data: (721: lat x 1440: lon x 60: lead time x 365: initial days x 58: ensemble members x 13:273

pressure levels x 5: prognostic variables x 32 bits). We could reduce the number of initial days on which we274

validate, but this would still be a sizable task. We agree that validating on all pressure levels would provide275

interesting information. However, such validation is not central to the scientific core of our two papers. For276

the sake of brevity of our already two-part manuscript, and to be judicious with our resources, we suggest277

saving this validation for future work. We note that the model weights are already made available under278

the very open CC0 license. If an interested reader seeks to use our ensemble for a different purpose than279

considered here (for example, forecasting 50 hPa variables), then they can run and validate the model openly280

for this task.281
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Second Response to Reviewers: ”Huge Ensembles Part I: Design of1

Ensemble Weather Forecasts using Spherical Fourier Neural2

Operators”3

4

April 3, 20255

Overview6

We sincerely appreciate the reviewers’ thoughtful feedback and thorough evaluation of our paper. In our7

prior response (https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2420/8

egusphere-2024-2420-AC2-supplement.pdf), we included our outlined plan for changing the9

manuscript (e.g. changing text, adding new figures, updating existing figures). We have now submitted our10

revised manuscript. In this document, we include pointers to the updated manuscripts that resolve the re-11

viewers’ major comments: we do not include all the reviewers’ comments here. For a complete line-by-line12

discussion of all the reviewers’ comments, please see our prior response at the link above. Our manuscript13

changes are in green, and the reviewer comments are in black.14

Changes to the Manuscript In Response to Reviewer #115

Page 2: The ML model has “orders-of-magnitudes” lower computational cost. Is this really true? More than16

a factor of 10? This could only be possible if the IO cost (that will stay the same) is considered to be of17

less than 10% of the overall cost (also see comment for Part 2). And what is the “cost”? Time, energy, or18

hardware purchase?19

See the Part II changes, where we add a sentence on the computational efficiency of ML that makes it20

feasible to generate 256 members in one minute in parallel on 256 GPUs.21

P6, paragraph starting with “We choose SFNO. . . ”: I find this part difficult to follow. It would be good22

to remind the reader about the architecture of the SFNO.23

We have now included a description of the SFNO architecture in section 2.124

What exactly do you mean by downscaling and scale factor here (I think I know, but only since I know25

the previous papers)? I do not understand why a lower scale factor would lead to a larger ensemble spread.26

We added this to the architecture description in Section 2.1. Also, on page 7, we have included the following27

text:28

The scale factor controls the level of spectral downsampling of the input field. With more aggressive down-29

sampling, SFNO internally represents the input atmospheric state with reduced resolution. We speculate30

1
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that this may reduce the effective resolution of the predictions. With a reduced effective resolution, small-31

scale perturbations would not grow and propagate upscale. Instead, they would be blurred out, and they32

would not result in increased spread among ensemble members.33

Figure 10: Is the control member equivalent to a normal ensemble member, or are there small differences34

(as in IFS)? Can you also plot 0h?35

See Figure D5. Also, see associated text:36

At a lead time of 360 hours, the perturbed members maintain similar spectra as the control member (Fig-37

ure 10), and at the initial time, they have similar spectral characteristics as the unperturbed ERA5 initial38

condition (Figure D5).39

Figure 2b: For what timestep are the spectra calculated?40

They are calculated at 360 hours. We have added this information to the figure caption for Figure 2b.41

Changes to the Manuscript In Response to Reviewer #242

Despite these promising results, several aspects warrant further research. The authors mainly focused on 2m43

temperature, especially heat extreme from model configuration to diagnostics, and given that the authors de-44

liberately included 2m dewpoint temperature as a model input variable, incorporating predictions of derived45

heat extreme indices would provide valuable insights into the model’s capabilities.46

We have included diagnostics on the heat index in Appendix D, Figure D247

Furthermore, I recommend evaluating a broader range of LLHIs to strengthen the reliability of the48

approach. I think the authors can incorporate cold extremes along with heat extremes. What about wind49

extremes, which are in prediction variables?50

We have included diagnostics on the 10m wind speed and cold extremes in Appendix D, Figure D3 and51

Figure D4. In the appendix and in the main text, we state that the model performs well on these other52

variables at 48 and 96 hours. At 240 hours, the model’s reliability degrades for probabilities greater than53

approximately 50%. This is the subject for further research. In addition to appendix D, we highlight this in54

the main text also on page 23:55

We visualize the reliability diagrams for other lead times (Supplemental Figure D1) and variables. We show56

that SFNO-BVMC also performs reliably when forecasting the heat index at lead times of 48, 96, 120, and57

240 hours. For 10m wind speed and cold extremes, SFNO-BVMC matches the performance of the IFS58

ensemble (Figure D2 and Figure D3). However, we also show that at 240 hour lead times, the model is not59

reliable when it confidently (greater than 50% chance) forecasts wind extremes or cold temperature extremes60

(see Appendix D and Figure D4 for more discussion). This is an area for future model development.61

As well as various extreme events, actual forecasts would be helpful to recognize the usefulness of the62

model. Diagnostics with real-event prediction would be more persuasive. For example, t2m ensemble time63

series at a certain grid point, trajectories of each ensemble for each variable, and the difference between IFS64

could strengthen the model’s credibility.65

We have included a real-event prediction demo in Appendix A.66
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Major Comments 1. (p.4) “Existing work has shown that simple Gaussian perturbations do not yield a67

sufficiently dispersive ensemble. (Scher and Messori, 2021; Bülte et al., 2024): the ensemble spread from68

these perturbations is too small.” If so, you can still adopt singular vectors or other methods to reflect initial69

condition uncertainty. Are bred vectors superior to other approaches? Are they the cheapest way other than70

simple Gaussian perturbations?71

Thank you very much for raising this helpful suggestion. We have added this to the discussion section, page72

26:73

Understanding how ML models respond to perturbations is an important research frontier. In particular, fu-74

ture work is necessary to compare the computational cost and skill of different initial condition perturbation75

methods, in tandem with model perturbations. We find that bred vectors are a computationally inexpen-76

sive way to achieve reasonable spread-error ratios and to generate an arbitrarily large ensemble. Further77

refinement of initial condition perturbation techniques is needed to improve forecast performance.78

We continue the discussion by comparing bred vectors to other perturbation methods.79

4. (p.10) Figure 3. The ensemble spread from different numbers of checkpoints. : Model configuration80

also focused on 2m temperature. Do we need to change the number of checkpoints if we want to forecast81

wind extremes? Do we need to change it every time for different variables? Selecting the number of82

checkpoints based on the comparison among multiple variables would be a more optimal choice.83

We have added 2 additional variables to our analysis to Figure 3.84

5. (p.17) “On the second criterion, crucially, their spectra remain constant through the 360-hour rollout85

(Figure 10 and Figure 11).”86

: Degradation of power in short wavelengths occurs in a lot of DLWPs. Then are all DLWP models’87

degradation because of autoregressive fine-tuning? This seems like a crucial problem to just hypothesize the88

cause. I think it would be beneficial for readers to pinpoint the cause.89

6. (p.17) “While the control and perturbed spectra remain constant through the rollout, the SFNO-90

BVMC ensemble mean does increasingly blur with lead time. Figure 12 shows that the ensemble means of91

SFNO-BVMC and IFS ENS similarly degrade in power after 24 hours, 120 hours, and 240 hours.”92

: In the first paragraph of section 3.2 Spectral Diagnostics, the authors elaborate that power decay is93

one of the symptoms of blurriness, but this sentence seems like presuming those two are equivalent. section94

3.2 needs to be more clear. What is the relationship between spectra and blurriness in general and what did95

SFNO find? Why is SFNO-BVMC different from other DLWPs with respect to the power spectrum?96

We have completely rewritten ”Section 3.2 Spectral Diagnostics” on page 17 to address these questions.97

7. (p.19) “This is necessary but as yet insufficient validation for our main scientific interest in LLHIs.”98

: I expect more analysis of LLHIs such as case studies that occurred during recent years, even though the99

authors agreed with the lack of validation. It would provide a more robust evaluation and help illustrate the100

model’s practical value.101

We have included a case study in appendix A.102

Minor Comments103

1. (p.12) “First, they contain a land-sea contrast for surface fields such as 10m wind speed and 2m104

3



temperature. For these surface fields, perturbations have distinct amplitudes and spatial scales over the land105

and ocean.”: It’s a bit difficult for me to discriminate the difference. Could you show the amplitude in106

another way?107

We have made the following change:108

For these surface fields, the perturbations have distinct amplitudes over the land and ocean. In this example,109

the 2m temperature perturbation has an amplitude of 0.56 K over land and 0.27 K over the ocean, and the110

10m wind speed perturbation has an amplitude of 0.45 m/s over land and 0.66 m/s over the ocean.111
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