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Abstract. The streampower fluvial erosion (SP) model is the basis for many analyses and simulations of landscape evolution.

It assumes that the rate of river incision into bedrock depends only on flow intensity and rock erodibility, and is insensitive

to sediment flux. In two dimensions, the SP model is often coupled with diffusion processes, which together describe the

coupled evolution of channels and hillslopes (SPD models). While it is implicitly assumed that channels in the SPD models

retain their detachment-limited character, this has not been extensively tested. Here we show that the deposition component5

of hillslope diffusion has a substantial effect on channel slope and relief in SPD models, and present a new method to predict

the channel steepness index from model parameters. We contrast the results with those of a mixed bedrock-alluvial river

model coupled with a hillslope diffusion model that both track sediment mass balance, and suggest that the combination of

mass-conservative hillslope processes and non-mass-conservative fluvial erosion in SPD models leads to unrealistic scaling

behavior. We demonstrate this by examining several field sites where an SPD model adequately describes the spacing of first-10

order valleys, and show that it is inadequate to predict channel steepness.

1 Introduction

Detachment limited erosion models are widely used to simulate and interpret how climate and tectonics affect bedrock river

long profiles. Such models assume that rivers evolve only to erode bedrock, and sediment does not affect the rate of incision

(Sklar and Dietrich, 1998). Detachment limited erosion models may be formulated in terms of excess shear stress (Whipple15

and Tucker, 1999; Howard and Kerby, 1983), or streampower (Seidl and Dietrich, 1992; Howard, 1994). In either case, such

assumptions reduce to a common model form, in which fluvial erosion is proportional to the product of discharge (often

replaced with drainage area) to a power, and slope to a power. Here we refer to this type of model as the streampower (SP)

model.

Extending the SP model from channel long profiles to two dimensions requires consideration of erosion processes not20

driven by concentrated water flow, collectively called hillslope processes. Hillslope processes are most often represented by

a conservation law in which the sediment flux varies (linearly or nonlinearly) with slope, making them diffusional processes.

Combined ‘streampower plus diffusion’ (SPD) models have become the tool of choice for a wide range of geomorphologic

problems, from constraining site-specific erosion (Barnhart et al., 2020b), to identifying controls on drainage reorganization

1

https://doi.org/10.5194/egusphere-2024-2418
Preprint. Discussion started: 15 August 2024
c© Author(s) 2024. CC BY 4.0 License.



(Lyons et al., 2020), the evolution of orogens (Wolf et al., 2022) and explaining erosion rates globally (Ruetenik et al., 2023).25

Others have added complexity to the hydrological processes used to generate discharge, but have maintained the SPD erosion

form to simulate the evolution of small watersheds (Litwin et al., 2022, 2024) and entire continental orogens (Shen et al.,

2021).

SPD models are nonlinear advection-diffusion equations, which have been been used to explain controls on drainage density

and the spacing of first order valleys (Perron et al., 2008, 2009; Theodoratos et al., 2018; Theodoratos and Kirchner, 2020;30

Bonetti et al., 2020). Less has been done to understand the effects of hillslope processes on channel profiles in SPD models.

This is perhaps because theoretical studies have generally recognized that SPD models should only apply to small domains,

where it is conceivable that no redeposition of fluvial sediment occurs (e.g., Perron et al., 2008; Bonetti et al., 2020). SPD

models are applied beyond this scope. In such cases, diffusion is sometimes included simply to reduce slope and elevation near

drainage divides, where the SP model alone predicts that channel elevation goes to infinity as area goes to zero. The implicit35

assumption is that the effect of diffusion is confined to headwaters, such that channels in SPD models remain detachment

limited and their dynamics independent of sediment flux. However, it has long been known that the effect of diffusion can

persist through the entire drainage network. Howard (1994) showed one parameter combination for which the SPD model

produced increased channel slope compared to the SP model prediction at large drainage areas. Persistent increases in slope,

integrated over a basin, lead to a substantial difference in total relief as well. This feature has not received widespread attention,40

nor have its implications for the growing number of applications of SPD models been explored.

The goal of this paper is to investigate how hillslopes affect channel profiles in SPD models, and determine whether these

effects meaningfully change how SPD model results should be interpreted. We show that hillslope diffusion can strongly affect

steady-state channel steepness, and demonstrate a new way in which this effect can be predicted directly from model parameters

when diffusion is linear (the ‘SPLD’ model). We discuss the physical interpretation of the channel-hillslope coupling in SPD45

models, focusing on the effect of mixing mass-conserving and non-mass-conserving process models while not distinguishing

sediment from bedrock. We contrast the SPD model predictions with a mass-conserving model of hillslopes and mixed bedrock-

alluvial rivers which shows less sensitivity to local hillslope processes. Lastly, we examine several field sites where the SPLD

model can correctly predict the spacing of first order valleys, and demonstrate that it is inadequate to predict channel steepness.

2 Theory and Methods50

2.1 Streampower law and channel steepness

The basic SP model for the evolution of channel elevation z with along-channel distance x is:

∂z

∂t
=−KAmSn + U (1)

where t is time, K is the streampower incision coefficient, A(x) is the upslope area S(x) is the channel slope, U is the uplift or

baselevel change, and m and n are the area and slope exponents of the streampower law. At steady state, the SP model predicts55
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a power law relationship between slope and area:

S = ksnA−m/n (2)

ksn,pred = (U/K)1/n (3)

where ksn is the normalized steepness index, and ksn,pred is the predicted steepness based on the SP model. Independent of

model form, ksn can be estimated directly from regression of log-transformed slope and area using (2). Alternatively, it can be60

estimated from regression of elevation and the area-normalized distance coordinate χ, which minimizes noise that arises from

the elevation derivative (Perron and Royden, 2013):

z(x) = z(xb) +
(

U

KAm
0

)1/n

χ (4)

χ =

x∫

xb

(
A0

A(x)

)m/n

dx (5)

where xb is an arbitrary baselevel location, and A0 is a reference drainage area. The slope of the relationship between χ and z65

reduces to ksn,pred when A0=1. In order for χ to have units of [L], A0 should have units of [L2], in which case ksn,pred would

be dimensionless. However here we always report ksn according to Equation 3, which has SI units of m2m/n. The numerical

value will be the same as if A0=1 m2.

2.2 Streampower plus linear diffusion (SPLD) model

The SPLD model generalizes the SP model to two dimensions and adds a linear diffusion term to describe hillslope sediment70

transport:

∂z

∂t
=−KAm|∇z|n + D∇2z + U, (6)

where D is the hillslope diffusivity. In two dimensions, we can also write a constraint that describes the relationship between

elevation and the specific area a (e.g., Bonetti et al., 2020, Eq. 5):

−∇ ·
(

a
∇z

|∇z|

)
= 1. (7)75

The specific area is the intrinsic counterpart of drainage area, defined as the drainage area per unit contour width in the limit

that the contour width is small. Because it is an intrinsic property of the topographic surface, replacing area with the specific

area in (6) produces a governing equation that is independent of grid resolution (Bonetti et al., 2020). (Bonetti et al., 2018)

describe a way to estimate a by integration of the contour curvature, but for numerical landscape evolution simulations in

which a is recalculated many times, it is more efficient to estimate a = A/v0 from an algorithmic solution for drainage area A80

and grid cell width v0. For this reason it will be helpful to write (6) explicitly accounting for the grid cell width, as in Litwin

et al. (2022):

∂z

∂t
=−Kvm

0 am|∇z|n + D∇2z + U. (8)
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2.3 Model setup

We ran simulations on raster grids using the open source Earth surface modelling platform Landlab (Hobley et al., 2017;85

Barnhart et al., 2020a). Fluvial erosion is calculated using an implicit scheme with D8 flow routing based on Braun and Willett

(2013). Linear diffusion is calculated using an explicit finite volume scheme. The two processes (plus the source term U ) are

loosely coupled to calculate total topographic change in each timestep. While the SPD models have been solved simultaneously

(e.g., Perron et al., 2008), loosely coupled schemes are far more common (Tucker et al., 2001; Barnhart et al., 2018; Bovy and

Lange, 2023).90

All SPLD model results use a domain size of 200x400 cells, while the actual domain length varies with the grid cell width.

The top and bottom edges are fixed-elevation boundaries, and the left and right are zero-flux boundaries. All model runs use

the same initial condition: a randomly seeded rough surface with a mean elevation of 20 cm. We run simulations for 250 tg

(the characteristic SPLD timescale, see Appendix A), at which point all simulations show negligible change in relief with time.

We used Landlab to calculate the χ-coordinate for locations with drainage areas greater than 100 cells. This threshold was95

chosen to ensure the analysis is conducted on relatively large channels with linear relationships between χ and elevation. More

complex schemes could be devised to estimate the threshold for what is a channel (Passalacqua et al., 2010; Clubb et al., 2014),

but we found little variation in our results for different threshold values, once the threshold is sufficiently large. We estimated

the normalized steepness index from χ and elevation using linear regression.

3 Results100

3.1 Hillslope diffusion increases channel steepness

Stream channels extracted from steady-state results of the SPLD model have higher normalized steepness ksn and relief than

predicted by the SP model. Figure 1(a) shows one simulation with well-developed fluvial dissection where K=5e-5 yr−1,

D=0.011 m2/yr, U=0.0005 m/yr, m=0.5, n=1, and v0=20 m. Differences between SP and SPLD channels are visualised in

three ways. In the inset plot of Figure 1(a), an extracted channel profile is compared with the profile that would be expected105

from the 1D SP model with the same K, U , m, n, and upslope area. In this particular channel, SPLD relief is nearly twice

that of the equivalent SP model. The increase in ksn is also apparent from the intercept of log-scaled slope and area (Figure

1(b)) and slope of the χ-elevation relationship (Figure 1(c)). Both show near doubling of ksn in comparison to the SP model

prediction.

The SPLD channel steepness varies systematically with model parameters. Figure 2 shows variation with diffusivity and110

grid cell width (colors) for different values of the predicted SP channel steepness ksn,pred, and different combinations of m

and n. The value of ksn,pred differs with the streampower incision coefficient K. Increasing diffusivity alone increases the

SPLD channel steepness in nearly all cases, but the sensitivity depends on other parameters. When ksn,pred is small (when K

is large), SPLD channel steepness is closer to the predicted SP value. The sensitivity of ksn to diffusivity is greatest when the

4

https://doi.org/10.5194/egusphere-2024-2418
Preprint. Discussion started: 15 August 2024
c© Author(s) 2024. CC BY 4.0 License.



105 106

Area (m2)

10−2

10−1

S
lo

p
e

(m
/m

)

ksn = 18.0

ksn,pred = 10.0

0 2 4

χ (m)

0

20

40

60

80

E
le

va
ti

on
(m

)

ksn = 19.2

ksn,pred = 10.0

0 1000 2000 3000 4000 5000 6000 7000
0

500

1000

1500

2000

2500

3000

3500

(b) (c)

(a)

0 1000 2000

Distance (m)

0

20

40

60

E
le

va
ti

on
(m

) SPLD

SP

Figure 1. Visualizing the increase in channel steepness associated with hillslope processes for model simulation with K=5e-5 yr−1, D=0.011

m2/yr, U=0.0005 m/yr, m=0.5, n=1, and v0=20 m. (a) Hillshade of steady state topography, where channels with drainage area > 100 cells

are highlighted in blue. Inset plot shows the profile of the channel highlighted in red compared with expected without hillslope processes

(black). The basin has approximately twice the relief of that without hillslope processes. (b) Increase in slope at a given area for all channels,

compared to the prediction from the SP model (ksn,pred). (c) Increase in channel elevation relative to expectation from χ-coordinate in

comparison to the prediction from the SP model. The units of ksn are m2m/n.

fluvial incision is weakly sensitive to slope (m=0.4, n=0.6), even despite the fact that the corresponding K values are larger115

compared to the other streampower exponent cases.

SPLD channel steepness also increases with the grid cell width v0. When the grid cell width is large, the channel steepness

can remain close to the SP model prediction, though this diminishes as K becomes large or D becomes small. Several works

have already addressed the grid cell dependence of the SPLD model (Howard, 1994; Perron et al., 2008; Pelletier, 2010; Her-

garten, 2020; Hergarten and Pietrek, 2023). As others have already noted (e.g., Hergarten and Pietrek, 2023), the combination120

of fluvial erosion and hillslope diffusion is the source of the grid cell dependency of the SPLD model.

We can compensate for the grid cell dependence of the SPLD model by holding the quantity Kvm
0 constant when varying v0

(Bonetti et al., 2020). Holding this term constant implies that at different grid cell widths, we need different values of the SP

5
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Figure 2. Increase in steady-state normalized channel steepness from the SPLD model with hillslope diffusivity D and grid cell width v0

(colors) for three values of the predicted SP channel steepness ksn,pred (columns) and three combinations of the streampower exponents m

and n (rows). Subplots have different values of K according to the combination of n and ksn,pred (Equation 3). The uplift rate U is held

constant. The units of v0 are meters, and the units of K are m1−2m/yr.

steepness ksn,pred = (U/K)1/n in order to achieve the same SPLD steepness, expressed in the relationship between slope and

area or χ and elevation. We define a new steepness quantity, the specific area steepness ksnap that will remain constant even125

while ksn,pred varies, beginning with the 1D streampower law at steady state:

0 =−Kvm
0 amSn + U (9)

S =
(

U

Kvm
0

)1/n

a−m/n. (10)

Where again a is the specific area. Then the specific area steepness is the coefficient on slope:

ksnap =
(

U

Kvm
0

)1/n

. (11)130

Figure 3 shows that keeping Kvm
0 constant does reduce the dependence of the results on the grid spacing, but does not

eliminate it in all cases. Even when the relative change in steepness with grid size is small (3(c)), the results are still sensitive
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to diffusivity D, suggesting this is a characteristic feature of the SPLD model. More work could be done to further explore

the scaling analysis with the specific area version of the model, but as we will show in the discussion, there are reasons to be

generally skeptical of the physical realism of the scaling that emerges from the SPLD model with or without grid dependence135

correction.
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Figure 3. Variation of channel steepness ksn with D and v0 for several values of the specific area steepness ksnap, as defined in Equation

11, and three different combinations of m and n. Curves with different values of v0 have different ksn,pred in order to conserve the quantity

Kvm
0 within each subplot. We show the largest ksn,pred (for v0=50 m) and the smallest (for v0=10 m) for reference.

3.2 Prediction and scaling of SPLD channel steepness

The channel steepness of the SP model can be derived directly from rearranging the SP model (Equation 3), however, no

equivalent solution exists for the SPLD model. In theory, the SPLD steepness can be derived by rearranging Equation 6 for the

relationship between slope and drainage area:140

S =
(

U + D∇2z

K

)1/n

A−m/n. (12)

This shows that in channels, where Laplacian curvature is positive, there is net deposition of material eroded from hillslopes

so the steepness must be greater than in the SP model alone (Equation 3). This is what we have seen in Figures 1 and 2. We
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can quantify this difference by plotting the diffusion term relative to uplift. Figure 4(a) shows this for part of the watershed

highlighted in Figure 1, revealing that the deposition in valley bottoms locally increases the effective uplift rate by a factor of145

two.
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Figure 4. (a) The diffusion term relative to uplift for part of the highlighted watershed shown in Figure 1. In valley bottoms, the diffusion

term is net depositional, and is nearly equal to the uplift rate. (b) The diffusion relative to uplift versus drainage area, showing that they are

not strongly correlated for large drainage areas. Points colored in blue have drainage area > 100 cells, and a mean value shown with a dashed

blue line. The mean line also appears on the colorbar of (a).

We can generalize the insight from pointwise calculations of the diffusion relative to uplift to explain the difference between

simulated steepness and predicted steepness of the SP model. We do this by taking an average of the diffusion term over

channelized cells, which is possible because the hillslope flux divergence is generally poorly correlated with drainage area

once drainage area is large (Figure 4(b)), even while the relationship between the diffusion term and streampower term remains150

linear to balance uplift (Theodoratos et al., 2018). We denote the mean for locations with drainage area > 100 cells with (∼),

such that (D∇̃2z)/U is the mean diffusion relative to uplift in these locations.

An analytical relationship between (D∇̃2z)/U and the steepness deviation (ksn/ksn,pred)n− 1 can be derived (Appendix

B), following similar logic to Equation 12. Note that the steepness deviation reduces to the relative error formula (ksn−
ksn,pred)/ksn,pred when n=1. Figures 5(a, d, g) show that the mean hillslope diffusion term relative to uplift in channels155

predicts the steepness deviation well for model runs in Figure 2. Each subplot in Figure 5 aggregates all values of K, D, and

v0 shown in rows of Figure 2. Most points fall very close to the 1:1 line, while some points with large average diffusion in

channels have lower than expected steepness deviation. These cases have relatively low dissection, and it is assumed that model

boundary conditions are at this point beginning to affect the relief and channel steepness.

While these results confirm a simple rearrangement of the governing equation, the channel curvature ∇̃2z is generally not160

known prior to simulation. To estimate the steepness deviation from the model parameters alone, we make use of scaling

analyses of the governing equations of the SPLD model. Litwin et al. (2022) presented a dimensional analysis of equations (7,

8) for the case m=0.5, n=1 that defines characteristic scales for horizontal length ℓg , height hg , and time tg . In Appendix A we
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show the same analysis for any values of the exponents m and n. Critical to our analysis here is the characteristic horizontal

length scale, which quantifies the distance from the ridge at which there is a transition from relative importance of diffusive165

to advective processes. The characteristic scale ℓg is analogous to the SPLD horizontal length scale derived by Perron et al.

(2009) and Theodoratos et al. (2018), which we call ℓc, only ℓg comes from the version using specific area a (Equations 7, 8)

and ℓc comes from the version using area A (Equation 6):

ℓg =
(

DnU1−n

Kvm
0

)1/(m+n)

(13)

ℓc =
(

DnU1−n

K

)1/(2m+n)

. (14)170

The relationships in Figure 4 showed that the channels were steeper in comparison to the SP model prediction when diffusive

processes were stronger relative to advective processes, and that steepness was also inversely proportional to the grid cell

width. These results also hold for those where Kvm
0 was held constant, because the underlying solution is the same. Using

the characteristic scales, we found ℓc (Equation 14) normalized by v0 is not only proportional to the steepness deviation

(ksn/ksn,pred)n− 1, but is approximately equal to it (Figure 5(b, e, h)). In the SPLD model ℓc is an important control on the175

spacing of first order valleys (Perron et al., 2009); it appears to be an important control on channel steepness in the model as

well.

The length scale ℓg (Equation 13) derived for the SPLD model with specific area performs slightly better overall (Figure 5(c,

f, i). This scaling holds for different values of m and n, though there appears to be a slight vertical offset of the curves relative

to the 1:1 line depending on the particular parameter values. The root mean squared error (RMSE) and log-transformed RMSE180

(RMSLE) suggest ℓc/v0 and ℓg/v0 are comparable predictors, but visual inspection suggests the trend in steepness deviation

with ℓg/v0 is more aligned with the steepness deviation than ℓc. This is likely related to the dependence of ℓg on v0. The ratio

ℓc/v0 implies scaling of the steepness deviation with v−1
0 , while using ℓg/v0 implies scaling with v

−(2m+n)/(m+n)
0 .

The scaling results suggest there is an inherent trade off in the SPLD model. Studies have chosen ℓc/v0 or ℓg/v0 to be

greater than one in order to resolve the diffusive-to-advective transition that occurs with distance downstream from ridges185

(Theodoratos et al., 2018; Litwin et al., 2022). When equal to one, SPLD steepness is already double the SP steepness, when

n=1. This may reflect actual channel-hillslope coupling (we will discuss this further in the next sections), but it may also lead

to unexpected behavior. For instance, if K and D are both increased for a simulation where lithology is perceived to be softer

and more weatherable, the steady state relief may in fact increase (according to the scaling in Figure 5).

In contrast, if one chooses parameter values such that ℓc/v0 or ℓg/v0 is small, hillslopes will not be fully resolved, and190

numerical diffusion, rather than the explicit hillslope diffusion, becomes important. For some large-scale applications, this

may be fine, as it satisfies the need to prevent elevation from going to infinity as drainage area goes to zero. In any case,

understanding how the channel-hillslope coupling will affect the simulated results should be an important part of SPLD model

use, especially for understanding how the results contrast with intuitions developed from the SP model.

Finally, while we have focused on coupling the SP model with linear diffusion, the scaling has explanatory power for195

nonlinear diffusion as well. When we run simulations with the same parameter values shown in Figures 2 and 4, but replace
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Figure 5. (a, d, g) The average of the diffusion term in channels relative to uplift (See Figure 4) versus the steepness deviation. Each subplot

in a row contains points from all columns in the corresponding row of Figure 2. (b, e, h) The length scale ℓc (Equation 14) relative to the grid

cell width explains the steepness deviation. (c, f, i) The length scale ℓg (Equation 13) relative to the grid cell width explains the steepness

deviation. RMSE is the root mean squared error and RMSLE is the root mean squared log error.

linear diffusion with the nonlinear diffusion model proposed by Ganti et al. (2012) with a critical slope of 0.5, we find that

simulated channels tend to fall at or above the 1:1 line (Figure 6). That is, nonlinear diffusion increases channel steepness

relative to the SP solution at least as much as suggested by the SPLD scaling.

4 Discussion200

4.1 Physical interpretation of SPLD channel-hillslope coupling

The results we have presented demonstrate a fairly simple concept: hillslope sediment flux to channels increases channel

steepness in the SPLD model, and that this scales with the activity of hillslope processes relative to fluvial processes. Is this

effect physically reasonable? Mechanistic models have attributed a component of channel slope to sediment transport (Sklar

10

https://doi.org/10.5194/egusphere-2024-2418
Preprint. Discussion started: 15 August 2024
c© Author(s) 2024. CC BY 4.0 License.



10−1 100

(D∇̃2z)/U

10−1

100

(k
sn
/k

sn
,p
re
d
)n
−

1

RMSE=0.64
RMSLE=0.45

1:1

10−1 100

`c/v0

10−1

100

RMSE=0.61
RMSLE=0.48

10−1 100

`g/v0

10−1

100

RMSE=0.54
RMSLE=0.42

Scaling with Channel 
Diffusion Term

Scaling with Characteristic 
Horizontal Lengths

(f)(e)
(d)

10−2

D (m2/yr)

101

102

k
s
n

(m
2
m
/
n

)

K = 1.00e− 4

v0=10

v0=20

v0=50

ksn,pred

10−2

D (m2/yr)

101

102

K = 5.00e− 5

10−2

D (m2/yr)

101

102

K = 2.50e− 5

10−2

D (m2/yr)

101

102

k
s
n

(m
2
m
/
n

)

K = 1.00e− 4

v0=10

v0=20

v0=50

ksn,pred

10−2

D (m2/yr)

101

102

K = 5.00e− 5

10−2

D (m2/yr)

101

102

K = 2.50e− 5(c)(b)(a)

ksn,pred = 5.0 ksn,pred = 10.0 ksn,pred = 20.0

K = 1.0 x 10-4 K = 5.0 x 10-5

K = 2.5 x 10-5

Figure 6. (a, b, c) Increase in steady-state normalized channel steepness from the SPLD model with hillslope diffusivity D and grid cell

width v0 (colors) for three values of the predicted SP steepness ksn,pred. Diffusion is a nonlinear, second-order Taylor expansion of the

critical slope model (Ganti et al., 2012) and the critical slope is 0.5. All results shown have m = 0.5 and n = 1.0. The units of v0 are meters,

and the units of K are m1−2m/yr. Compare with Figure 2(d, e, f), which has the same parameters but uses linear diffusion. (d, e, f) Scaling

relationships at steady state. (d) The diffusion term relative to uplift averaged over channels (∼) versus the steepness deviation. Most sites

have steepness deviation greater than or equal to that suggested by the linear diffusion analytical solution. (e) The deviation explained with

the characteristic length scales ℓc from Theodoratos et al. (2018), and (f) ℓg from Litwin et al. (2022). Compare with Figure 5(d, e, f).

and Dietrich, 2006), and field studies have shown that resistive hillslope sediment can affect channel steepness (Johnson et al.,205

2009; Finnegan et al., 2017; Lai et al., 2021). How do these observations relate to that found in the SPLD model?

To understand channel-hillslope coupling in the SPLD model, it is first important that the same fluvial and hillslope processes

operate at every cell. This has been described with the sub-grid concept that each cell contains one segment of channel and

adjacent hillslopes, though models do not explicitly resolve such sub-grid features (Howard, 1994). Conceptually, the cell

elevation is then the average of the channel and hillslope component elevations. Hergarten (2020) describes that the hillslope210

flux may be effectively only distributed on the hillslope components of the cell (Perron et al., 2008; Howard, 1994) or only

across on the channel component (Pelletier, 2010) in order to reduce scale dependence of the model. Assuming that channels

must ultimately transport hillslope material to maintain mean cell elevation at steady state, the two sub-grid representations

still have the effect that sediment must be removed before erosion can begin to counter uplift.
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In this sense, the SPLD model channel-hillslope coupling is a kind of sediment cover effect. However, because the SPLD215

model couples mass conserving hillslope diffusion with non-mass-conserving fluvial erosion, this cover effect is strictly local.

That is, while using a spatially and temporally uniform K implies sediment is as difficult to erode as bedrock, the eroded

material cannot deposit and does not continue to affect conditions downstream. Past studies have argued that this is appropriate

for applications where the domain of interest is small enough that re-deposition can be ignored and where sediment has similar

erodibility to bedrock (Perron et al., 2008). However, the SPLD model has been used in scaling analyses and applications220

at much larger scales (Theodoratos et al., 2018; Theodoratos and Kirchner, 2020; Wolf et al., 2022; Shen et al., 2021). The

question of applicability at small scales is also in doubt. In reality, there is sediment retained at every scale in the fluvial

system, and such sediment retention can affect channel properties even in headwaters (Sklar, 2024). Furthermore, cases where

the travel distances of sediment particles are long are also likely to have finer grain sizes and consequently a higher erodibility

of sediment relative to bedrock, making the combination of features of the SPD model unlikely.225

Because of the combination of mass conserving and non-mass-conserving processes, the SPLD model predicts that channel

steepness should be correlated with hillslope length (Hergarten, 2020). In this study, we have shown that the SPLD model

predicts this effect persists in downstream channels. In the following sections we investigate both the effect of sediment con-

servation and the implied scaling between steepness and hillslope length.

4.2 Distinguishing eroded materials and conserving sediment mass230

While we have focused on the variety of SPD models that track only the topographic elevation, early numerical models recog-

nized the importance in distinguishing bedrock and sediment fluvial erodibility (Howard, 1994; Tucker et al., 2001). This type

of modeling continues today (e.g., Egholm et al., 2013; Roy et al., 2016; Campforts et al., 2020), but for many applications

SPD models that track only topography became the default because they use minimal complexity to capture first-order features

of fluvial topography, and can be highly computationally efficient (Braun and Willett, 2013).235

If the aim of a particular application is to work in two dimensions but maintain channel steepness and relief estimated by

analysis of channel long profiles (e.g., Harel et al., 2016), one solution would be to prevent deposition by diffusion, as in

Campforts et al. (2017). This still allows diffusion to limit steady state elevation as area goes to zero, but eliminates most of the

capacity of diffusive processes to balance advection. If drainage density is an important model target, this will not be effective

solution.240

One can regain some of the realism of separating bedrock and sediment, but maintain some of the simplicity of the stream-

power model, using models like the Stream Power with Alluvium Conservation and Entrainment (SPACE, Shobe et al., 2017)

model coupled with hillslope diffusion. SPACE explicitly tracks sediment mass balance and captures the reduction in bedrock

incision due to sediment cover. It has steady-state analytical solutions for channel slope in mixed bedrock-alluvial conditions

(Appendix C) to which we can compare the numerical results of SPACE coupled with diffusion.245

We considered three different variables from SPACE: Ks is the streampower coefficient for sediment, Kr is the coefficient

for bedrock, and Ff is the fraction of fine sediment, which determines how much of the sediment that is entrained will remain

in suspension and leave the mass balance. All simulations were run on 100x100 grids with three zero flux boundaries and one
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fixed value boundary on the lower edge. We used 30 m grid cell width, 25 yr timesteps, for 2 Myr. We set m=0.5, n=1.0, U=0.5

m/kyr, D=0.05 m2/yr, and Kr=0.1 kyr−1. All additional SPACE parameters were held constant, and are given in Appendix C.250

We assumed all material deposited by hillslope diffusion has the same properties as sediment produced by bedrock erosion.

This is the same approach that Shobe et al. (2017) used in a 2D demonstration.
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Figure 7. ‘SPACE plus linear diffusion’ model results, showing elevation with locations where drainage area > 100 cells highlighted in blue

(left column) and slope-area relationships (right column). (a, b) Case most similar to SPD model. (c, d) Same as (a, b), but sediment much

more erodible than bedrock. (e, f) All sediment remains in mass balance (Ff =0), lines of comparison are for 1D mixed bedrock+alluvial

solution and transport limit. (g, h) Same as (e, f) but sediment is more erodible than bedrock. The “Detachment limit” solution is the same as

the SP model. “Transport limit” and “Mixed” solutions are located in Appendix C.

Figure 7 shows topography and channel slope-area relationships for four simulations using ‘SPACE plus linear diffusion’.

The first case (Figure 7(a, b)) is analogous to the SPLD model: sediment and bedrock erodibility are the same (Ks=Kr),
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and sediment deposited by diffusion leaves the mass balance once it becomes suspended (Ff =1.0). The equilibrium channel255

steepness is 11.5 m, more than twice the detachment-limited prediction of 5.0 m, which is the same as ksn,pred when K is

replaced with Kr in Equation 3. The second case (Figure 7(c, d)) is the same as the first, except we increased the erodibility of

sediment (Ks=20Kr). Here, the channel steepness is 5.3 m, very close to the predicted value of 5.0 m.

Next we set Ff =0 as an end-member of ‘mixed bedrock-alluvial rivers’ in which the hillslope sediment supply is entirely

gravel and coarser and all sediment remains in the mass balance. Field studies of hillslope sediment production and bedload260

fraction of total fluvial sediment flux suggest that Ff is generally at least 0.5, and up to 0.9 for gravel bedded rivers (Turowski

et al., 2010). We show results for Ff =0 here because there is an analytical solution for SPACE to which we can compare the

coupled channel-hillslope numerical results.

The first case with Ff =0 (Figure 7(e, f)) is otherwise the same as Figure 7(a, b). Because sediment and bedrock erodibility

are equal, the analytical solutions for mixed bedrock-alluvial equilibrium steepness and transport limited equilibrium steepness265

are equivalent. The equilibrium steepness is 30.0 m, significantly higher than the detachment limited cases (Figures 7(b, d)),

but the channels are also relatively closer to the respective analytical solution with steepness of 43.7 m. When the sediment is

five times more erodible than bedrock (Figures 7(g, h)) it is clear that the channels follow the mixed bedrock-alluvial analytical

solution. Here the analytical solution predicts a channel steepness of 10.0 m, and the channel steepness from regression is 11.8

m. In other words, when sediment mass is conserved, the effect of the particular diffusivity or length of adjacent hillslopes on270

channel slope diminishes compared to the need to transport all sediment from upstream.

Why is there still an offset between equilibrium steepness of mixed bedrock-alluvial channels and the analytical solution

(Figures 7(f, h)), if sediment mass is conserved (Ff =0.0)? The residual deviation is due to the bed cover effect in SPACE.

While diffusivity does not affect the total amount of sediment that must leave the watershed, it does increase the equilibrium

sediment thickness in channels, which can reduce the effectiveness of incision (Shobe et al., 2017). The average channel275

sediment thicknesses for simulations in Figures 7(e) and 7(g) are 2.2 and 1.0 m respectively; the SPACE analytical solutions

(Appendix C) for steady state thickness without diffusion are 1.8 and 0.8 m, respectively. While the mechanism by which

channel steepness is affected by sediment is different in the SPACE+diffusion and SPD models, the result may be hard to

distinguish in steady-state profiles. The benefit of a model such as SPACE is that the strength of the interaction between

channel steepness and hillslope sediment can be explained, and its relative importance explored through model parameters.280

There are other benefits to using SPACE too, such as explainable sediment flux when simulating transient landscape evolution,

or the ability to parameterize lithology in terms of sediment characteristics (Ff , effective settling velocity V ) or climate in

terms of weathering and sediment production.

In real landscapes, the effect of local sediment input from hillslopes seems to be especially important in settings with large

sediment inputs from landslides. Ott et al. (2024) show that incision thresholds associated with the delivery of landslide-derived285

sediment to channels decreases the sensitivity of channel steepness to erosion rate in the Northern Andes. The effect of discrete

two-dimensional landslides on channel long profiles is explored by Campforts et al. (2020), who also use SPACE.

These studies, and the effects we have discussed here with SPACE and the SP model focus on the importance of sediment

cover in limiting erosion. However, sediment grains moving with flowing water are the necessary tools to bedrock erosion (Sklar
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and Dietrich, 2004; Lamb et al., 2015). This effect is implicitly included in SPACE and SP models in that sediment discharge290

can scale with water discharge and drainage area. However, fully addressing the effect of sediment on coupled channel-hillslope

evolution including the tools effect is an important direction for future landscape evolution modelling (Gasparini et al., 2004;

Egholm et al., 2013; Roy et al., 2016).

4.3 Relevance to channel-hillslope coupling in the field

While field studies have shown that coarse, resistive hillslope sediment can affect channel slope (Johnson et al., 2009; Finnegan295

et al., 2017; Lai et al., 2021), our analysis of the SPLD suggests a more general scaling between fluvial erodibility, diffusivity

and uplift (in ℓc and ℓg) and channel steepness. Our demonstration with the SPACE model showed that this relationship is

easily weakened or eliminated by differentiating sediment and bedrock erodibility, or conserving sediment mass. To explore

the ℓc-channel steepness relationship with field data we need independent ways to assess channel steepness and the expected

steepness in the absence of hillslope processes ksn,pred = (U/K)1/n. Otherwise the value of K in ℓc would already reflect300

potential influences of hillslope sediment. However, most studies only estimate (U/K)1/n from channel steepness (e.g., Harel

et al., 2016).

One exception is the method derived by Perron et al. (2009) to estimate D/K from topography when n=1, by introducing

the solution for diffusivity from hilltop curvature U/D ≈∇2zh into the SPLD model (6):

|∇z|
∇2z−∇2zh

=
D

K
A−m, (15)305

from which they estimated m and D/K by least squares regression. Because the model used to derive (15) assumes n=1, we

can estimate the predicted channel steepness ksn,pred:

ksn,pred =
U

K
=

D

K

U

D
≈ D

K
∇2zh. (16)

The approximation in the hilltop curvature relationship is due to the conversion of rock to regolith, which have different bulk

densities. Typical ratios of rock to regolith bulk density are 1.5–2 (Roering et al., 2007; Heimsath et al., 1997). However, if the310

bulk density of the material eroded by fluvial processes is equal to that of bedrock, as assumed in the SP model, then U and

K have the same the bulk density prefactors and the conversions cancel. Consequently the last term of Equation 16 is exactly

equal to ksn,pred (see Appendix D).

We applied this method to several sites where Perron et al. (2009) showed that the length scale ℓc (their Lc) derived from

(15) correlated with the spacing of first order valleys, and examine whether the sites also support the SPLD model prediction315

that channel steepness should also scale with ℓc. Assuming a uniform K, D, and U , we can compare ksn,pred in Equation 16

to the steepness of larger channels adjacent to the first order valleys that were the focus of Perron et al. (2009), to match our

approach with the SPLD model results.

We forgo direct assessment of the SPLD scaling and calculation of ℓg , ℓc/v0, or ℓg/v0 because of dependence on the grid

cell width. These are model dependent quantities whose real-world interpretation is more nebulous. For this case study we320

focus on general scaling expected from the SPLD model: channel steepness relative to ksn,pred should increase with ℓc.
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Perron et al. (2009) considered five sites with varying valley spacing. We eliminated the two sites with the smallest spacing,

because the first order channels do not share baselevel with higher order rivers. We estimated channel steepness from least

squares regression of the χ-elevation relationship, where χ was calculated using the concavity index from Perron et al. (2009)

so that the resulting channel steepness will be comparable with ksn,pred in Equation 16.325
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Figure 8. (a, b, c) Hillshades of Gabilan Mesa, California (35.923°N, 120.820°W), Napa Valley, California (38.508°N, 122.332°W), and

Eaton Hollow, Pennsylvania (39.904°N, 80.042°W). (d, e, f) χ-elevation profiles for blue channels highlighted in the hillshades. The con-

cavity indices used to calculate χ are 0.35, 0.35, and 0.37 respectively (Perron et al., 2009). The dashed red line is a linear regression, where

slope gives an estimate of channel steepness. The dashed black line is the predicted channel profile starting at baselevel and increasing with

the steepness predicted by Equation 16.

All three sites have greater channel steepness than would be expected from the 1D SP parameters (Figure 8). Napa Valley

has an ℓc ≈ 14 m, and a channel steepness deviation ksn/ksn,pred− 1 of 1.56. Gabilan Mesa is similar, with ℓc ≈ 17 m and

steepness deviation of 2.0. Eaton Hollow has the largest value of ℓc (46 m), and thus the SPLD scaling predicts the steepness

deviation should be largest of the three sites. However, the steepness deviation is only 0.51.

While this is a very limited case study, it does have two important implications. First, channel steepness likely is affected330

by hillslope sediment, as would be predicted by many models (Sklar and Dietrich, 2006). Second, even in the settings that are

supposedly well-suited to the SPLD model, the model is not predictive of channel steepness.

We suggest that the limited steepness deviation at Eaton Hollow could be due to the difference in the character of the

hillslope sediment. Eaton Hollow is located on the Appalachian Plateau, which has a lower denudation rate than the other two

sites, and thus likely longer regolith residence times, which may lead to production of finer, more easily transportable sediment.335
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If this is the case, the SPACE model prediction that channel slope reduces to the detachment limited prediction when sediment

is easily erodible could be relevant. This hypothesis could be tested by extending the analysis to more sites and including

grain size distribution estimates. While the SPACE+diffusion model with high sediment erodibility would predict that channel

heads should be much closer to ridges at Eaton Hollow, it is possible that thresholds associated with runoff generation could

be important control on drainage density here (Litwin et al., 2022, 2024). This could be further addressed with site-based340

measurements of the extent of surface runoff.

5 Conclusions

We showed that hillslope diffusion increases channel steepness in ‘streampower plus diffusion’ (SPD) landscape evolution

models. When diffusion is linear (the SPLD model), we showed the steepness can be predicted from the model parameters.

The steepness increases directly with diffusivity, and inversely with the grid cell width, when grid cell dependency is not345

explicitly corrected.

While real rivers are known to steepen to accommodate sediment transport, the particular representation in SPD models are

limited to cases where sediment is at once as difficult to suspend as bedrock is to detach, but once suspended, it remains so and

is no longer accounted for downstream. This is a consequence of combining a mass conserving model of hillslope processes

with a non-mass-conserving model of fluvial erosion, and tracking only a single topographic surface. As a result, the steepness350

scaling of the SPLD model should have limited applicability in the field. We showed this at three sites where the SPLD model

does make the right prediction of first order valley spacing, but does not adequately predict channel steepness. We suggest this

is due to a difference in sediment grain size that affects how much channels may have to steepen to transport sediment.

Despite the lack of field applicability, our steepness scaling is a powerful tool for understanding SPLD model behavior.

In parts of the parameter space where the steepness scaling effect is expected to greatly affect the results, or when emergent355

channel properties are particularly important, we recommend against drawing insights from SPD channel profiles and overall

relief. Improvements with minimal increased complexity can be made by distinguishing between sediment and bedrock and

tracking sediment mass, as in the SPACE model. Future work on hillslope-channel coupling in two-dimensional models should

consider incorporating more explicit representation of sediment grain size, as it is a key factor linking the evolution of hillslopes

and the development of channel long profile form.360

Code and data availability. All code necessary to reproduce our results and make the figures is archived on Zenodo (Litwin, 2024). Topo-

graphic data for Eaton Hollow, Napa Valley, and Gabilan Mesa are available from OpenTopography.

Appendix A: SPLD scaling analysis

Litwin et al. (2022) presented a dimensional analysis of Equations 7 and 8 for the case m=1/2, n=1. We generalize this for

any values of the exponents m and n. This dimensional analysis follows Theodoratos et al. (2018) in identifying three separate365
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dimensions in this equation; time T applies to t, height H applies to z, and horizontal length L applies to a, v0, and the horizontal

coordinates x and y. The coefficients in (8) can be rewritten in terms of characteristic height, length, and timescales hg , ℓg , and

tg , such that each term on the right has the same units as the time derivative of elevation, [H/T].

∂z

∂t
=− h1−n

g ℓn−m
g

tg
am|∇z|n +

ℓ2g
tg
∇2z +

hg

tg
, (A1)

where we also assign the gradient operator units of [1/L]. A system of equations can be defined by setting the coefficients of370

the terms in (A1) equal to the coefficients of the terms in (8):

U =
hg

tg

D =
ℓ2g
tg

Kvm
0 =

h1−n
g ℓn−m

g

tg
.

(A2)

Solving this system, the characteristic scales are the following, for positive exponents m and n:

tg =
(

Dn−mU2−2n

K2v2m
0

)1/(m+n)

ℓg =
(

DnU1−n

Kvm
0

)1/(m+n)

hg =
(

Dn−mU2+m−n

K2v2m
0

)1/(m+n)

.

(A3)

When m = 1/2 and n = 1 the characteristic scales reduce to those identified by Litwin et al. (2022).375

Appendix B: SPLD steepness scaling

The steepness deviation on the vertical axis of subplots in Figure 5 is a modified ratio of the SPLD channel steepness ksn

and the steepness predicted from the 1D SP model ksn,pred. We can show that this is equal to (D∇̃2z)/U , by noting that the

effective uplift in channels is Ueff = U + D∇̃2z and other parameters (n and K) are unchanged:

(
ksn

ksn,pred

)n

− 1 =




(
Ueff

K

)1/n

(
U
K

)1/n




n

− 1 (B1)380

=
Ueff

U
− 1 (B2)

=
U + D∇̃2z

U
− 1 (B3)

=
D∇̃2z

U
(B4)
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The scaling between the steepness deviation and ℓg/v0 (Figure 4(d)) then implies a scaling between ℓg/v0 and the hilltop

curvature in the SPLD model ∇2zh = U/D:385

ℓg

v0
≈ D∇̃2z

U
(B5)

≈ ∇̃2z

∇2zh
. (B6)

Thus the model predicts that ℓg/v0 is approximately the ratio of channel to hilltop curvature, and thus that channel curvature

can also be estimated a priori.

Appendix C: SPACE steady-state solutions390

The steady state relationship between slope and area under detachment limited, transport limited, and mixed bedrock-alluvial

cases of the SPACE model (without diffusion) are given by Shobe et al. (2017) Equations 40, 44, and 46 respectively. For

detachment limited, the solution is:

S =
(

U

KrAm

)1/n

. (C1)

The transport limited solution is:395

S =
[

UV

KsAmr
+

U

KsAm

]1/n

, (C2)

where V is the effective settling velocity, and r is the local runoff rate. The mixed bedrock-alluvial solution is the same, except

the second appearance of Ks is replaced with Kr:

S =
[

UV

KsAmr
+

U

KrAm

]1/n

. (C3)

The equilibrium sediment thickness for the mixed bedrock-alluvial case is given by Shobe et al. (2017) Equation 47:400

H =−H∗ log

[
1− V

Ksr
Kr

+ V

]
, (C4)

where H∗ is the bed roughness length scale. All simulations shown in Figure 7 have V =5.0 m/yr, r=1 m/yr, and H∗=1.0 m.

Appendix D: SPLD model with bulk density

The steady state SPLD model can be written with bulk density conversions as:

0 =−ρrKAm|∇z|n + ρsD∇2z + ρrU (D1)405
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Assuming that the streampower term primarily removes bedrock with bulk density ρr and hillslope sediment transport applies

to regolith with bulk density ρs. On hilltops the fluvial term goes to zero:

0 = ρsD∇2zh + ρrU, (D2)

where ∇2zh is the hilltop curvature. Eliminating U from (D1) using (D2), we find

ρrKAm|∇z|n = ρsD
(
∇2z−∇2zh

)
, (D3)410

from which we can derive the equivalent of (15) that explicitly accounts for bulk density:

ρs

ρr

D

K
A−m =

|∇z|
∇2z−∇2zh

. (D4)

Therefore the intercept of the regression between log of area and log of the right hand side of (15) may actually estimate ρsD
ρrK .

Multiplying this estimate by the hilltop curvature as we show in Equation 16 gives us U/K without a bulk density prefactor:

ρs

ρr

D

K
∇2zh =

ρsD

ρrK

ρrU

ρsD
=

U

K
. (D5)415

This suggests that we can get a reasonable estimate of U
K from D

K and hilltop curvature from Perron et al. (2009) without

further accounting for bulk density.
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