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Abstract. Camera-based rainfall observation is a useful technology that contributes to the densification of rainfall 

observation networks because it can measure rainfall with high spatio-temporal resolution and low cost. To verify the 

applicability of existing theories, such as computer vision and meteorological studies, to static weather effects caused by 

rainfall in outdoor photography systems, this study proposed relational equations representing the relationship between 10 

image information, rainfall intensity, and scene depth by linking the theoretically derived rainfall intensity with a technique 

proposed in the computer vision field for removing static weather effects. This study also proposed a method for estimating 

rainfall intensity from images using those relational equations. Since the method only uses the camera image taken of the 

background over a certain distance and background scene depth information, it is a highly versatile and accessible method. 

The proposed equations and the method for estimating rainfall intensity from images were applied to outdoor images taken 15 

by commercial interval cameras at the observation site in a mountainous watershed in Japan. As a result, it was confirmed 

that transmission calculated from the image information decreases exponentially according to the increase in rainfall 

intensity and scene depth, as assumed in the proposed equations. On the other hand, the calculated extinction coefficient 

tended to be overestimated at small scene depth.  Although there are issues at present that need to be resolved for the 

technology proposed in this study, this technology has the potential to help the development of a camera-based rainfall 20 

observation technology that is accurate, robust, versatile, and accessible. 

1 Introduction 

The water cycle regulates local, regional, and global climate change, and precipitation is an important component of this 

cycle (Eltahir & Bras, 1996). Reliable precipitation data are therefore critical for local, regional, and global water resource 

management and weather, climate, and hydrologic forecasting (Jiang et al., 2019; Sun et al., 2018). Rainfall is difficult to 25 

observe adequately due to large spatial and temporal variations (Kidd et al., 2016). In order to properly observe such 

variations, a dense observation network is necessary on a fine temporal and spatial scale. Especially in mountainous areas 

where flash floods and debris flow occur, rainfall should be measured on fine spatial and temporal scales for effective early 

warning against these disasters (e.g., Kidd et al., 2016). Currently, rainfall data are mainly obtained from ground observation 
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such as rain gauges, and remote sensing such as weather radar and satellites. Rainfall data obtained from ground observation 30 

are used for both direct measurement and indirect measurement calibrations. However, rainfall data is often limited in terms 

of spatio-temporal resolution due to the sparseness of the ground observation networks (Notarangelo et al., 2021). In addition, 

it has been noted that near-real-time rainfall data has reasonable coverage in Europe and East Asia, including Japan, but 

observation sites are sparse in other regions (Kidd et al, 2016), and due to the high cost of observation, a high-resolution, 

ground-level rainfall monitoring network still has limited use (Jiang et al., 2019). Therefore, innovative methods to achieve 35 

higher density in the ground-level rainfall observation network have been the focus of recent hydrological research (Tauro et 

al., 2018). 

In recent years, crowdsourcing has become increasingly prominent as an initiative to overcome the issues mentioned above. 

Zheng et al. (2018) have conducted a comprehensive review of crowdsourcing and indicated that crowdsourcing could be 

considered an important supplementary data source, complementing traditional data collection approaches. With regard to 40 

crowdsourcing methods, techniques have been proposed to build sensors using low-cost equipment not used for its intended 

use and to combine a variety of not fully utilized technologies to make opportunistic observations (Tauro et al., 2018). For 

these techniques, an approach has been adopted in the form of aggregating data obtained from a high-density network built 

using a large number of low-cost sensors that are less accurate (Notarangelo et al., 2021). While such an approach is not as 

accurate as conventional rain gauges in most cases, it could provide valuable additional information when combined with 45 

conventional techniques (Tauro et al., 2018). Haberlandt and Sester (2010) and Rabiei et al. (2016) reported that the idea of 

considering moving vehicles as rain gauges and windshield wipers as sensors to detect rainfall may enable better areal 

rainfall estimation than using several accurate rain gauges by making numerous observations, even if they are somewhat 

inaccurate. The microwave link in the cellular phone communication network, which focuses on the relationship between 

rain attenuation of electromagnetic signals of cellular phones transmitted from one cellular tower to another and the average 50 

rainfall along the path, has been proposed as a promising new rainfall measurement technology (Leijnse et al., 2007; Messer 

et al., 2006; Overeem et al., 2011; Rahimi et al., 2006; Tauro et al., 2018; Upton et al., 2005; Zinevich et al., 2009). It has 

been indicated that such opportunistic sensors have the potential to be utilized in geographic regions where the density of 

conventional rainfall measurement devices is low, namely mountainous areas and developing countries (Uijlenhoet et al., 

2018). Further, since a large number of video monitoring cameras have been installed outdoors in recent years for security 55 

and safety reasons, techniques have been reported to use these cameras to estimate the environment and weather of scenes 

(Jacobs et al., 2009). As techniques that use cameras to monitor surrounding conditions, techniques to observe river levels 

and flow rates (Gilmore et al., 2013; Muste et al., 2008; Tauro et al., 2018), and rainfall (Allamano et al. 2015; Dong et al., 

2017; Jiang et al., 2019; Yin et al., 2023; Zheng et al., 2023) have also been reported, and are attracting great interest in the 

hydrologic field. In addition, such a camera-based technique for understanding the surrounding situation has the potential to 60 

serve as a sensor that can measure multiple types of physical quantities with a single camera and is a very reasonable and 

meaningful technique for obtaining various types of information all at once. Since rainfall measurement using cameras 
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enables high spatio-temporal resolution and extremely low-cost measurement, it is possible to say that it has opened a novel 

avenue toward higher-density rainfall observation (Tauro et al., 2018). 

The development of camera-based rain gauges requires clarification of the effects of rainfall on images. The effects of 65 

adverse weather conditions, such as rainfall, on images have conventionally been studied mainly in the fields of computer 

vision and image processing (Narasimhan & Nayar, 2002). In outdoor photography systems used for monitoring, navigation, 

and other purposes, various algorithms such as feature detection, stereo correspondence, tracking, segmentation, and object 

recognition are used and these algorithms require visual clues and feature information (Garg & Nayar, 2007). Since the 

adverse weather conditions lead to the loss of those visual clues and feature information due to the effects of poor visibility, 70 

the objective of studies was to remove the effects of adverse weather conditions on the images and obtain clear images (Jiang 

et al., 2019; Tripathi & Mukhopadhyay 2014). On the other hand, in reference to such image processing techniques, studies 

on camera-based rain gauges quantified the degree of performance degradation due to adverse weather in outdoor 

photography systems as a change in weather conditions (Garg & Nayar, 2007). Such studies broadly categorize adverse 

weather into dynamic weather, such as rain and snow, and static weather, such as fog and haze, based on physical properties 75 

and types of visual effects (Garg & Nayar, 2007). In the case of static weather, the constituent water droplets are small, 

ranging from 1 to 10 μm, and cannot be detected individually by a camera. The intensity produced in the pixel is therefore 

due to the cohesive effect of the numerous water droplets within the pixel's solid angle (Garg and Nayar, 2007). Accordingly, 

studies have been conducted to represent static weather and remove the effects of static weather from images by using 

models of atmospheric scattering such as direct attenuation and airlight (Narasimhan & Nayar, 2002, 2003). In the studies on 80 

removing static weather effects from images, methods based on priors from natural image statistics have conventionally been 

used (Fattal, 2008; He et al., 2011; Tan, 2008). Recently, deep machine learning-based methods that extract image features 

from a large amount of learning data have been adopted (Qin et al., 2020; Shao et al., 2020; Zhou et al., 2021). On the other 

hand, in dynamic weather, water droplets are composed of particles 1,000 times larger than in static weather, ranging from 

0.1 to 10 mm, and individual particles are visible to cameras. For this reason, the image processing research to remove 85 

dynamic weather effects has primarily studied techniques to extract rain by discriminating water droplets (rain streaks) from 

other backgrounds, and previous studies on camera-based rain gauges are also utilizing such techniques (Bossu et al., 2011; 

Garg & Nayar, 2007; Luo et al., 2015). 

In the previous studies, dynamic and static weather have been treated as separate themes because of the different 

characteristics of their effects on images. In particular, rainfall has been studied primarily as a dynamic weather topic 90 

(Allamano et al., 2015; Dong et al., 2017; Jiang et al., 2019; Yin et al., 2023; Zheng et al., 2023). However, the following 

practical challenges remain in these studies that treat rainfall as dynamic weather. They are effective only for static 

backgrounds of outdoor photography (Allamano et al., 2015), require special equipment (Dong et al., 2017), and need to use 

video rather than still images to estimate rainfall intensity (Jiang et al., 2019), the need for a variety of rainfall images and 

corresponding rainfall intensity value data in advance to train the deep learning model (Yin et al., 2023; Zheng et al., 2023). 95 
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Given that Zheng (2018) points out that the simplicity of data collection is important in crowdsourcing technology, there is it 

is necessary to reduce restrictions on the specifications of the acquired images and the method of image acquisition. 

On the other hand, it has been pointed out that when raindrops are more than a certain distance away from the camera, 

individual raindrops cannot be discriminated by the camera's sensor, so rain streaks accumulate and appear as fog (Garg and 

Nayar, 2007; Li et al. 2018; Li et al., 2019). This implies that rainfall causes static weather effects. Therefore, in an outdoor 100 

photography system that captures images over a certain distance, not only the dynamic weather effects caused by rain but 

also the static weather effects caused by rain may be apparent in the images. In Japan, many cameras have been installed by 

public organizations to monitor watershed conditions with an angle of view that allows the viewer to see into the background 

at a certain distance for disaster prevention purposes. In other words, it is easy to obtain images that show static weather 

effects. Therefore, to utilize more images effectively, we construct a method to measure rainfall intensity using static 105 

weather effects from such images that are not intended for rainfall measurement but for monitoring watershed conditions. 

So far, not enough is known about the details of the static weather effects caused by rainfall. Therefore, the main objective of 

this study is to verify the applicability of existing theories, such as computer vision and meteorological studies, to static 

weather effects caused by rainfall in outdoor photography systems. In this study, we analyzed the effects of rainfall intensity 

on the appearance of the background. Using the extinction coefficient as information source, we linked the technique of 110 

removing static weather effects reported in many computer vision studies with the theory of rainfall intensity expressed in 

atmospheric radiology and meteorology. We then proposed equations for the relationship between image information, 

rainfall intensity, and the distance from the camera to the background, hereinafter referred to as scene depth. Using the 

proposed equations, rainfall observations can be performed with an image of the background at a certain distance and 

information on the scene depth to the background, even if the image is not intended for rainfall observations. Therefore, by 115 

applying the outdoor images taken by commercial interval cameras at observation sites in mountainous watersheds in Japan 

and rainfall observations to the proposed relational equations, the relationship between image information, rainfall intensity, 

and scene depth was analyzed, and the validity of the extinction coefficient obtained from the images was verified. 

Furthermore, we also attempted to estimate rainfall intensity using the proposed relational equations. 

This paper is structured as follows. Section 2 describes the proposed relational equations for the relationship between image 120 

information, rainfall intensity, and scene depth. Section 3 describes the outdoor observations and the processing of the 

captured images. Section 4 presents the results of observations, image processing, and analysis. Section 5 discusses the 

extinction coefficient and rainfall intensity estimated from the image information, and section 6 describes the conclusion. 

2 Relational equations for the relationship between image information, rainfall intensity, and scene depth 

2.1 Image information and extinction coefficient 125 

Effects of static weather are mainly caused by two scattering phenomena: direct attenuation and airlight (Fattal, 2008; He et 

al., 2011; Narasimhan & Nayar, 2002, 2003; Tan, 2008). Light emitted from a certain background is scattered and attenuated 
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by particles such as water droplets in the atmosphere. This phenomenon is termed direct attenuation, which reduces the 

contrast of a scene (Tripathi & Mukhopadhyay, 2014). Light from a light source, typically sunlight in the case of daytime 

outdoors, is scattered toward the camera, which results in a shift in color. This phenomenon is termed airlight (Tripathi & 130 

Mukhopadhyay, 2014). Static weather effects can be represented as a function of the scene depth and vary spatially on a 

single image (He et al., 2011; Tripathi & Mukhopadhyay 2014). In the case of static weather, since the size of constituent 

particles such as water droplets is large compared to the wavelength of light, the "scattering coefficient", which represents 

the ability of a unit volume of atmosphere to scatter light in all directions, is not dependent on wavelength. For this reason, 

all wavelengths are equally scattered, giving the appearance of a whitish fog (Narasimhan & Nayar, 2003). Therefore, the 135 

static weather effect that appears on the image by rainfall can be considered as image whitening, where the luminance 

increases and contrast decreases, depending on rainfall intensity and scene depth. 

Many studies on computer vision have reported techniques for removing static weather effects from images (Fattal, 2008; He 

et al., 2011; Tan, 2008). In these studies, the effect of a hazy background due to fog or haze is represented by the following 

Image Degradation Model, using Koschmieder's model, which shows the relationship between visibility and atmospheric 140 

extinction coefficient (Fattal, 2008; Koschmieder, 1924). 

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴൫1 − 𝑡(𝑥)൯         (1) 

Where I is observed intensity, J is scene radiance, A is global atmospheric light, and t is transmission, which represents the 

ratio of light that reaches the camera without being scattered. x indicates the pixel position. A is independent of x and is 

generally constant in a single image (Tan, 2008).  Eq. (1) is defined on the three RGB color channels. I(x), J(x), and A are 145 

three-dimensional RGB vectors and are represented by integer pixel intensity. t(x) is scalar between 0 and 1. These four 

variables have no units. 

In Eq. (1), the right-hand side J(x)t(x) is direct attenuation, and A(1-t(x)) is airlight. Direct attenuation represents the 

attenuation of scene radiance by the medium in the air, while airlight represents light scattered by myriad particles suspended 

in the atmosphere.  150 

If the atmosphere is uniform, transmission t is expressed as follows. 

𝑡(𝑥) = exp൫−𝛽𝑑(𝑥)൯          (2) 

Where d (m) is scene depth. x indicates the pixel position as in Eq. (1). 

β (m-1) is called the atmospheric extinction coefficient and represents the ability of the atmosphere to dissipate light in a 

unit volume of the atmosphere. Extinction refers to the combined effect of light scattering and absorption. In this paper, the 155 

terms extinction and scattering are used synonymously because water absorbs virtually no light in the visible light 

wavelength range. 
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Equation (2) shows that transmission attenuates exponentially according to the increase in scene depth, subject to the effect 

of the extinction coefficient. The principle is based on Beer-Lambert law, which means that as light passes through matter, in 

this case transparent atmosphere, its intensity attenuates exponentially. 160 

The following is a variant of Eqs. (1) and (2). 

𝛽 = −
୪୭୥೐൫௧(௫)൯

ௗ(௫)
           (3) 

𝑡(𝑥) =
஺ିூ(௫)

஺ି௃(௫)
           (4) 

𝑊ℎ𝑒𝑟𝑒  𝐴 − 𝐽(𝑥) ≠ 0, 𝑎𝑛𝑑 0 ≤ 𝑡(𝑥) ≤ 1  

 165 

2.2 Rainfall intensity and extinction coefficient 

With the theory of atmospheric radiation, the extinction coefficient under rainfall conditions can be expressed as follows 

using the raindrop diameter, the particle size distribution of raindrops, and extinction efficiency (Grabner & Kvicera, 2011). 

𝛽 = ∫
గ஽మ

ସ

ஶ

଴
𝑁(𝐷)𝑄𝑑𝐷          (5) 

Where D (m) is the raindrop diameter and N(D) (m-3) is the particle size distribution of raindrops. D2/4 represents the surface 170 

area of raindrops projected in the optical path direction. Q is called extinction efficiency and is a dimensionless parameter 

that expresses the ratio of the extinction cross-sectional area of the raindrop to the geometric cross-sectional area of the 

raindrop. The extinction cross-sectional area is the quantity that expresses the intensity of extinction of a single particle with 

the dimension of area. Under the Mie scattering theory, the extinction efficiency Q is expressed as 2, given the relationship 

between raindrop size and the wavelength of visible light (Chylek, 1977; Uijlenhoet et al., 2011). 175 

Since the particle size distribution of raindrops is known to be related to rainfall intensity (Marshall and Palmer, 1948), the 

extinction coefficient can be expressed using rainfall intensity as follows. 

𝛽 = 5.80 × 10ିହ𝜋𝑄𝑅଴.଺ଷ          (6) 

The detailed derivation process of Eq. (6) is described in Appendix A. 

 180 

2.3 Relationship between image information, rainfall intensity, and scene depth 

The extinction coefficient of the Image Degradation Model shown in Eq. (2) is the extinction coefficient obtained from the 

image information as shown in Eqs. (3) and (4). If the images were taken under rainfall conditions, the extinction coefficient 

in Eq. (2) will reflect rainfall intensity. On the other hand, the extinction coefficient using the rainfall intensity shown in Eq. 

(6) is a theoretically derived value, although it is approximate, based on the atmospheric radiation theory. Therefore, by 185 
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substituting Eq. (6) into Eq. (2), the relationship between image information, rainfall intensity, and scene depth can be 

obtained as follows: 

𝑡(𝑥) = exp൫−5.80 × 10ିହ𝜋𝑄𝑅଴.଺ଷ𝑑(𝑥)൯        (7) 

𝑡(𝑥) =
஺ିூ(௫)

஺ି௃(௫)
           (8) 

𝑊ℎ𝑒𝑟𝑒  𝐴 − 𝐽(𝑥) ≠ 0, 𝑎𝑛𝑑 0 ≤ 𝑡(𝑥) ≤ 1  190 

Equation (7) shows a relationship where transmission t decreases exponentially as rainfall intensity R increases and as scene 

depth d increases.  

Equations (7) and (8) can be transformed as follows: 

𝑅 =  ቂ−
ଵ

ହ.଼଴×ଵ଴షఱగொௗ(௫)
log௘ ቀ

஺ିூ(௫)

஺ି௃(௫)
ቁቃ

భ

బ.లయ        (9) 

𝑊ℎ𝑒𝑟𝑒  𝐴 − 𝐽(𝑥) ≠ 0, 𝑎𝑛𝑑 0 ≤ 𝑡(𝑥) ≤ 1  195 

Equation (9) is a formula for estimating rainfall intensity from image information. The applicability of these relational 

equations will be examined in subsequent chapters. 

 

3 Materials and Methods 

3.1 Rainfall photography and observation 200 

We captured outdoor conditions including rainfall events and observed rainfall intensity by installing three cameras at 

observation sites (35° 45’ 53” N, 138° 18’ 42” E, 758 m a.s.l.) along the banks of the Omu River, which flows through 

Yamanashi Prefecture in central Japan. A plan view of the observation site is shown in Figure 1. Photography was taken 

using three commercially available interval cameras (Brinno TLC200Pro). The camera has a 1/3-inch HDR sensor with a 

resolution of 1.3 megapixels and a pixel size of 4.2 µm. The F-number, field of view, and focal length of the lens are F2.0, 205 

112 degrees, and 19 mm in 35 mm format, respectively. The focus distance is from 40 cm to infinity. The resolution of the 

image is 1280 pixels wide by 720 pixels high. Images of the upstream, opposite bank, and downstream of the river were 

taken at one-minute intervals from the same point. Camera 1 took the upstream direction of the river, Camera 2 took the 

opposite bank direction, and Camera 3 took the downstream direction. The photography period was 235 days from April 19, 

2021, to December 9, 2021. Images taken at night were excluded from the analysis because it was difficult to distinguish 210 

rainfall. 
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Figure 1. Observation site plan. Coastline map made with Natural Earth (2018). 

 

One-minute rainfall intensity was also observed using a tipping bucket rain gauge (Onset RG3-M) at almost the same 215 

locations where the cameras were installed. The resolution and calibration accuracy of the tipping bucket rain gauge used 

was 0.2 mm and ±1.0%, respectively. In the tipping bucket rain gauge, the number of tips in a unit of time is affected by the 

amount of water stored in the bucket in the previous unit of time due to the characteristics of the mechanism. Therefore, even 

if one tip occurs in a unit of time, the actual rainfall in a unit of time is considered to have a range from a value slightly 

larger than 0 to a value less than 0.4 mm. However, since the range is constant, we consider that a broad trend can be 220 

discussed. The total rainfall during the observation period was 1257 mm, and the total daytime rainfall for the analysis was 

685 mm. The maximum one-minute daytime rainfall intensity during the observation period was 0.8 mm min-1. The number 

of images used for the analysis by rainfall intensity is shown in Table 1. Although the number of images at 0.8 mm min-1 is 

small, there are more than 100 images at 0.4 mm min-1 and above, so a broad trend can be discussed. 

 225 

 

Table 1. The number of images  

Rainfall intensity Camera 1 Camera 2 Camera 3 

(mm min-1)    
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0.0 151,823 133,970 151,771 

0.2 3,141 2,908 3,141 

0.4 87 75 87 

0.6 21 20 21 

0.8 12 12 12 

 

3.2 Image data preprocessing and processing 

For the images of landscapes taken, background objects, such as sky, vegetation, and riverbeds, and their respective scene 230 

depths are different according to the angle of view of the camera and the area of the image. Then, to analyze the influence of 

background objects and scene depth, patches to be analyzed were set on the image. The analysis patch was defined as the 

center area of 30 × 30 pixels in each area of the image divided into 64 areas of 8 × 8. Serial numbers were assigned to 64 

patches as shown in Figure 2. The representative value of each analysis patch was the mean value of the analysis patch. 

 235 
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Figure 2. Analysis patches of the three cameras: (a-1), (b-1), and (c-1), respectively, show the images taken by 

Camera 1, Camera 2, and Camera 3 during no rainfall. Likewise, (a-2), (b-2), and (c-2) show the images taken by 

Camera 1, Camera 2, and Camera 3 during rainfall, respectively. 

 240 

Concerning the parameters obtained from the images to be used in Eq. (8), observed intensity I was the luminance value of 

the image taken. Global atmospheric light A and scene radiance J were calculated from observed intensity I using the Dark 

Channel Prior method proposed by He et al. (2011), hereinafter referred to as DCP. DCP is a method for recovering an 

image, scene radiance J, from which the effects of static weather are removed using a single hazy image, observed intensity I. 

The procedure for recovering scene radiance J from observed intensity I by DCP is described in Appendix B. 245 

DCP is not a machine learning-like method that requires a large amount of prior learning but is a method that can simply 

estimate global atmospheric light A and scene radiance J from a single image with relatively little calculation amount. 

Therefore, this study has adopted a method using DCP. In addition, since the angle of view may change even with the same 

camera in long-term photography, image registration was performed so that the angle of view was the same throughout the 
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entire term. Image registration was performed by combining feature detection using the Accelerated-KAZE (Alcantarilla et 250 

al., 2013) algorithm and image warping by homography.  

Scene depth d was calculated as the oblique distance from the camera to the intersection of (i) the light path in the camera’s 

line-of-sight direction obtained from the camera’s latitude, longitude, height above sea level, azimuth angle, and elevation 

angle information and (ii) the background 5-m digital elevation models created from the aerial laser survey data (Geospatial 

Information Authority of Japan, 2018). The scene depth of each analysis patch was defined as the scene depth at the center 255 

position of each patch. 

The values of parameters A, J, I, and d calculated for each image were applied to the proposed relational equations (Eqs. (7), 

(8), and (9)) to analyze the relationship between transmission t, rainfall intensity R, and scene depth d in each analysis patch. 

The flowchart of estimating rainfall intensity from image information by Eq. (9) is shown in Figure. 3. The image processing 

was performed using OpenCV4.0.1, an open-source library in the Python 3.8.12 programming language. For DCP 260 

calculation, we referred to the source code in Zhang (2021). 

 

 

Figure 3. The flowchart of estimating rainfall intensity from image information. 

 265 
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4 Results 

4.1 Distribution of observed intensity I, scene radiance J, global atmospheric light A, and transmission t 

Figures 4, 5, and 7 show the distribution of observed intensity I, scene radiance J, and transmission t for each rainfall 

intensity in each patch, respectively. Patches with a sky background were excluded from the analysis because the scene 

depth could not be calculated. Patches where the appropriate scene depth could not be obtained due to geometric corrections 270 

in the image registration process, such as the rightmost patch of Camera 1, were also excluded from the analysis. Those 

patches not included in the analysis are indicated as d = n. d. without plotting. Global atmospheric light A is set to one value 

per image, so values for each patch are not shown in Figure 6. Further, Table 2 shows the slope of the regression line by 

single regression analysis in the relationship between the mean values of observed intensity I, scene radiance J, and 

transmission t shown for each rainfall intensity and rainfall intensity in Figures 4, 5, and 7. Although an exponential 275 

relationship between observed intensity I, scene radiance J, transmission t, and rainfall intensity is expected as shown in Eqs. 

(7) and (8), a simple regression analysis was conducted here to determine a simple trend.  
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Figure 4. Distribution of observed intensity I by rainfall intensity. Each patch is marked with a patch number and 280 

scene depth: (a) Camera 1, (b) Camera 2, (c) Camera 3. Patches hatched in gray are patches where the appropriate 

scene depth could not be obtained due to geometric corrections in the image registration process. 
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Figure 5. Distribution of scene radiance J by rainfall intensity. Each patch is marked with a patch number and scene 

depth: (a) Camera 1, (b) Camera 2, (c) Camera 3. Patches hatched in gray are patches where the appropriate scene 285 

depth could not be obtained due to geometric corrections in the image registration process. 
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Figure 6. Distribution of global atmospheric light A by rainfall intensity: (a) Camera 1, (b) Camera 2, (c) Camera 3. 
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 290 

Figure 7. Distribution of transmission t by rainfall intensity. Each patch is marked with a patch number and scene 

depth: (a) Camera 1, (b) Camera 2, (c) Camera 3. Patches hatched in gray are patches where the appropriate scene 

depth could not be obtained due to geometric corrections in the image registration process. 
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Table 2. Slope of the linear regression line for the relationship between rainfall intensity, observed intensity I, scene 

radiance J, and transmission t. The location of each patch is indicated by row and column numbers. 295 

  Column / Row  1 2 3 4 5 6 7 8 

Observed intensity I 

Camera1 

1 - - - - - - - - 

2 - - - - - - - - 

3 - 52.40 66.25 76.59 - - - - 

4 45.80 39.07 48.33 57.42 73.73 45.30 - - 

5 33.21 41.67 37.04 42.98 47.20 54.67 -15.01 - 

6 12.94 19.24 20.20 29.56 16.36 -9.48 -25.01 - 

7 12.97 19.69 2.28 -11.43 -20.57 -24.62 -45.80 - 

8 -9.10 -27.00 -36.77 -35.98 -22.55 -44.99 -53.63 - 

Camera2 

1 - - - - - - - - 

2 - - - 59.79 95.00 94.19 92.93 77.92 

3 67.34 70.56 64.20 62.77 55.58 65.09 63.81 63.42 

4 48.12 39.80 44.68 31.48 47.99 40.43 42.89 44.07 

5 28.78 5.07 13.07 14.21 15.65 22.56 27.15 11.41 

6 23.22 11.18 12.85 11.22 25.35 13.76 0.39 -22.07 

7 2.57 5.95 4.61 -7.41 -23.60 -31.81 -29.90 -26.84 

8 -42.43 -28.35 -35.16 -37.63 -38.64 -38.75 -23.07 -26.82 

Camera3 

1 - - - - - - - - 

2 - - - - - - - - 

3 - - - - - - - - 

4 - - - - 53.63 79.23 59.93 44.36 

5 4.69 18.07 73.43 85.58 76.77 57.74 48.45 29.47 

6 -3.45 7.84 3.69 -1.79 17.27 20.70 31.96 17.16 

7 -8.62 -8.50 -3.50 4.00 -11.76 -3.60 2.69 9.01 

8 -11.26 -8.03 -9.16 4.54 -1.36 -10.51 -19.65 -27.00 

Scene radiance J Camera1 

1 - - - - - - - - 

2 - - - - - - - - 

3 - -1.45 1.19 11.61 - - - - 

4 -8.06 -11.83 -8.50 -11.56 4.09 -3.49 - - 
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5 -6.71 -1.59 -10.57 -13.44 -17.33 1.96 -21.32 - 

6 -11.49 -14.53 -17.50 -15.04 -12.98 -34.60 -23.89 - 

7 -12.19 -7.22 -17.58 -32.83 -40.01 -34.52 -22.89 - 

8 -23.80 -32.32 -34.13 -33.73 -28.43 -26.00 -26.62 - 

Camera2 

1 - - - - - - - - 

2 - - - -4.55 14.76 9.89 11.92 12.24 

3 -1.30 1.56 -0.95 -4.29 -13.49 -1.60 -11.55 -1.43 

4 -11.12 -11.89 -2.69 -16.70 2.67 -9.32 -15.93 0.16 

5 -15.72 -27.70 -19.38 -19.68 -18.89 -13.37 -15.03 -16.53 

6 -5.85 -8.27 -5.03 -8.39 -12.92 -13.65 -23.55 -36.46 

7 -25.40 -20.29 -21.49 -27.92 -37.64 -33.12 -31.79 -33.75 

8 -53.68 -35.48 -37.99 -35.88 -34.75 -31.49 -23.60 -20.31 

Camera3 

1 - - - - - - - - 

2 - - - - - - - - 

3 - - - - - - - - 

4 - - - - -18.35 9.49 -0.23 1.49 

5 -4.14 -14.31 6.66 8.78 0.93 -3.36 2.25 -4.62 

6 -10.59 -13.31 -37.16 -38.91 -23.60 -18.97 -0.17 -5.03 

7 -11.76 -14.77 -10.56 -14.98 -31.53 -25.22 -18.75 -15.46 

8 -10.52 -13.16 -12.91 -10.16 -14.89 -13.83 -23.01 -37.25 

Transmission t 

Camera1 

1 - - - - - - - - 

2 - - - - - - - - 

3 - -0.26 -0.32 -0.36 - - - - 

4 -0.25 -0.23 -0.26 -0.32 -0.36 -0.26 - - 

5 -0.18 -0.20 -0.22 -0.26 -0.30 -0.27 -0.02 - 

6 -0.11 -0.15 -0.17 -0.20 -0.13 -0.10 0.02 - 

7 -0.12 -0.15 -0.10 -0.07 -0.07 -0.01 0.14 - 

8 -0.05 0.01 0.06 0.06 -0.02 0.13 0.16 - 

Camera2 

1 - - - - - - - - 

2 - - - -0.38 -0.42 -0.43 -0.42 -0.35 

3 -0.34 -0.34 -0.31 -0.32 -0.32 -0.32 -0.35 -0.31 
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4 -0.27 -0.23 -0.22 -0.22 -0.21 -0.23 -0.27 -0.21 

5 -0.20 -0.14 -0.15 -0.16 -0.16 -0.17 -0.20 -0.12 

6 -0.13 -0.09 -0.08 -0.09 -0.21 -0.17 -0.10 -0.04 

7 -0.11 -0.11 -0.11 -0.08 -0.03 0.04 0.03 -0.01 

8 0.04 0.04 0.08 0.05 0.07 0.08 0.01 0.04 

Camera3 

1 - - - - - - - - 

2 - - - - - - - - 

3 - - - - - - - - 

4 - - - - -0.31 -0.33 -0.27 -0.18 

5 -0.03 -0.13 -0.33 -0.37 -0.35 -0.27 -0.20 -0.15 

6 -0.02 -0.08 -0.16 -0.15 -0.18 -0.17 -0.14 -0.09 

7 0.00 -0.02 -0.01 -0.08 -0.06 -0.06 -0.09 -0.10 

8 0.02 -0.02 -0.01 -0.05 -0.05 0.00 0.02 0.01 

 

 

The value and distribution range of observed intensity I vary for each analysis patch with different background conditions 

such as background objects and scene depth in Figure 4. The trends of changes in the value and distribution range of 

observed intensity I according to changes in rainfall intensity, and the slope of the regression line also vary for each analysis 300 

patch (Figure 4 and Table 2). It was found that there exist some patches where the mean value of observed intensity I 

gradually increases as rainfall intensity increases in all cameras, such as patch 20 (row number 3, column number 4) in 

Camera 1, patch 13 (row number 2, column number 5) in Camera 2, and patch 36 (row number 5, column number 4) in 

Camera 3. The patch where the mean value of observed intensity I tends to increase as rainfall intensity increases is the patch 

where the slope is positive in Table 2. The larger the absolute value of the slope, the more sensitive the patch is to rainfall 305 

intensity. In these patches, the whiteness of the image increases as rainfall intensity increases on the whole. Next, as 

compared to observed intensity I, the effect of rainfall intensity on scene radiance J is limited and varies little in any of the 

cameras (Figure 5 and Table 2). Moreover, the intensity of global atmospheric light A is generally above 200 in all cameras, 

and the effect of rainfall intensity is limited, with little variation (Figure 6). Finally, the value and distribution range of 

transmission t varies for each analysis patch with different background conditions in Figure 7. The trends of changes in the 310 

value and distribution range of transmission t according to changes in rainfall intensity, and the slope of the regression line 

also vary (Figure 7 and Table 2). It was found that there exist some patches where the mean value of transmission t gradually 

decreases as rainfall intensity increases in all cameras, such as patch 20 (row number 3, column number 4) in Camera 1, 

patch 14 (row number 2, column number 6) in Camera 2, and patch 36 (row number 5, column number 4) in Camera 3. The 

patch where the mean value of transmission t tends to decrease as rainfall intensity increases is the patch where the slope is 315 
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negative in Table 2. The larger the absolute value of the slope, the more sensitive the patch is to rainfall intensity. It can be 

said to quantitatively indicate that in such patches, the background is gradually becoming hazy and less visible as rainfall 

intensity increases. 

 

4.2 Relationship between transmission t, rainfall intensity R, and scene depth d 320 

Figure 8 shows the relationship between transmission t calculated by Eq. (8), observed rainfall intensity R, and scene depth d 

for each patch. In all cameras, if observed rainfall intensity is constant, transmission t gradually decreases as scene depth 

increases. Similarly, if scene depth is constant, transmission t will gradually decrease as rainfall intensity increases. These 

data clearly show that transmission t decreases exponentially according to the increase in rainfall intensity R and scene depth 

d, as shown in Eq. (7). Therefore, the proposed relationship, Eqs. (7) and (8), are considered applicable to images taken 325 

outdoors in practice. Further, in the Figure at the time of rainfall in each camera such as rainfall intensity R from 0.2 to 0.8 

mm min-1, the plots generally ranged between the theoretical lines of Q = 0.5 to 2.0. However, in patches where scene depth 

d was less than approx. 100 m, the plots often ranged below the line of Q = 2.0. In the patches ranging below the Q = 2.0 line, 

the ratio of scene radiance J to global atmospheric light A tends to be higher. In addition, theoretically, if there is no rainfall, 

i.e., R = 0.0 mm min-1, transmission t should always be 1.0 without decreasing. However, even in the case of no rainfall, 330 

transmission t tends to decrease according to distance. 
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Figure 8. Relationship between transmission t and scene depth d: (a-1)–(a-5), respectively, show the results of Camera 335 

1 by rainfall intensity ((a-1) R=0.0 mm min-1, (a-2) R=0.2 mm min-1, (a-3) R=0.4 mm min-1, (a-4) R=0.6 mm min-1, and 

(a-5) R=0.8 mm min-1). Likewise, (b-1)–(b-5) show the results of Camera 2 by rainfall intensity, and (c-1)–(c-5) show 

the results of Camera 3 by rainfall intensity, respectively. The plots show the mean value of all image data in each 

patch, and the error bars show the standard deviation. The theoretical relationship between transmission t and scene 

depth d is shown as a curve when extinction efficiency Q is given in Eq. (7) for four patterns: 0.5, 1.0, 1.5, and 2.0 for 340 

each rainfall intensity. The theoretical transmission t is not shown because the transmission t is always 1 when R=0.0 

mm min-1. Each plot is shown in a different color depending on the ratio of scene radiance J to global atmospheric 

light A. 

 

5 Discussion 345 

5.1 Factors of the value and the variation of transmission t according to rainfall intensity 

As shown in Eq. (4), transmission t is determined by the relationship between observed intensity I, scene radiance J, and 

global atmospheric light A. However, as shown in Figures 4, 5, 6, and 7, the values and trend of variation for observed 

intensity I, scene radiance J, global atmospheric light A, and transmission t vary according to rainfall intensity. Therefore, it 
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was verified which of the following factors, observed intensity I, scene radiance J, or global atmospheric light A, strongly 350 

affected the value of transmission t and the variation of transmission t according to rainfall intensity. 

Figure 9 shows the relationship between (i) the mean value of observed intensity I, scene radiance J, and global atmospheric 

light A according to rainfall intensity in each patch for the three cameras shown in Figures 4, 5, and 6, and (ii) the mean 

value of transmission t shown in Figure 7. Table 3 shows the slope of the regression line and the value of the coefficient of 

determination R2 obtained by simple regression analysis. Figure 9 and Table 3 clearly show a negative correlation between 355 

observed intensity I and transmission t, where transmission t decreases as observed intensity I increases in all three cameras. 

In the results of the single regression analysis, the coefficient of determination was 0.47 to 0.69 in the case of no rainfall and 

0.74 to 0.90 in the case of rainfall, which indicates a strong negative correlation. That is, the value of transmission t has a 

strong relationship with the value of observed intensity I. In addition, the absolute value of the slope of the regression line 

gradually increases as rainfall intensity increases. This indicates that as rainfall intensity becomes greater, the value of 360 

transmission t tends to respond to the value of observed intensity I more sensitively and vary more. Further, in each patch, 

especially patches where the range of variation of transmission t is large, observed intensity I increases and transmission t 

decreases as rainfall intensity increases. From this, it can be said that in patches where the range of variation of transmission 

t is large, as rainfall intensity increases, the apparent whiteness of the image tends to increase. 

 365 
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Figure 9. Relationship between observed intensity I, scene radiance J, global atmospheric light A and transmission t 

by analysis patch and rainfall intensity: 

(a-1)–(a-3), respectively, show the relationship between observed intensity I, scene radiance J, global atmospheric 

light A and transmission t in Camera 1. Likewise, (b-1)–(b-3) show the relationship in Camera 2, and (c-1)–(c-3) show 370 

the relationship in Camera 3, respectively. The plots by rainfall intensity for each patch were connected by straight 

lines to show the transition associated with changes in rainfall intensity in one patch. Global atmospheric light A is set 

to one value per image, so the values are all the same in each patch. In the Figures of observed intensity I and scene 

radiance J, the regression lines from the single regression analysis by rainfall intensity are shown as dotted lines that 

match the colors of the scatter diagram. 375 
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Table 3. Slope and coefficient of determination R2 of the linear regression line for the relationship between observed 

intensity I, scene radiance J and transmission t by rainfall intensity 

  Slope (×10-3)  Coefficient of determination R2 

 Rainfall 
intensity 

0.0 0.2 0.4 0.6 0.8  0.0 0.2 0.4 0.6 0.8 

 (mm min-1)            

I vs t Camera 1 -2.04 -3.53 -3.79 -4.03 -4.06  0.47 0.81 0.86 0.88 0.90 

 Camera 2 -2.04 -3.05 -3.47 -3.92 -4.09  0.69 0.74 0.77 0.81 0.86 

 Camera 3 -1.42 -2.88 -3.25 -3.48 -3.66  0.56 0.74 0.79 0.82 0.87 

J vs t Camera 1 -0.61 -2.16 -2.38 -2.48 -2.63  0.04 0.12 0.10 0.08 0.08 

 Camera 2 -1.65 -1.78 -1.42 -0.92 -1.39  0.36 0.14 0.07 0.02 0.03 

 Camera 3 -1.09 -2.02 -2.33 -2.20 -2.69  0.27 0.16 0.14 0.09 0.11 

 380 

Next, in the relationship between scene radiance J and transmission t, the slope of the regression line was negative in all 

three cameras. However, the coefficient of determination was 0.04 to 0.36 in the case of no rainfall and 0.02 to 0.16 in the 

case of rainfall, which indicates a generally weak negative correlation or almost no correlation. In each patch, changes in 

scene radiance J and transmission t according to changes in rainfall intensity were also not clear. In the patch where scene 

radiance J is relatively high when rainfall intensity is 0.0 mm min-1, scene radiance J tends to decrease as rainfall intensity 385 

increases. However, since it is not clearly linked to changes in transmission t, it can be said that the effect of changes in 

scene radiance J associated with changes in rainfall intensity on transmission t is limited. Then, in the relationship between 

global atmospheric light A and transmission t, the relationship between global atmospheric light A and transition of 

transmission t according to changes in rainfall intensity was not clearly found because global atmospheric light A was almost 

constant at 200 or more in all three cameras. These results suggest that the value and the variation of transmission t 390 

according to the increase in rainfall intensity are strongly influenced mainly by the value of observed intensity I. 

 

5.2 Validity of the extinction coefficient β determined from images 

5.2.1 Rationale for rainfall causing static weather effects 

As indicated in Section 1, it has been suggested that rainfall causes static weather effects because individual raindrops cannot 395 

be identified by the camera's sensor when they are more than a certain distance away from the camera. Therefore, this 

section briefly examines the validity of treating rainfall as static weather in this study. 
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The actual height and width of the background in the image varies with the distance from the camera. The height and width 

are smaller for scenes closer to the camera and larger for scenes farther away from the camera. Therefore, if the image 

resolution is constant, the actual height and width of the scene occupied by a single pixel also vary with the distance from the 400 

camera. In this section, we examine the actual width of the scene occupied by a single pixel in images taken with our camera. 

It should be noted that the results are approximations since lens distortion is not considered here. 

The angle of view of the camera used in this study is 112°. Therefore, at a distance of d (m) from the camera, a width of 2 × 

d × tan (112/2) (m) appears in the image. At a distance of 1 m from the camera, the width is approximately 3 m. The 

resolution of images captured by this camera is 1280 pixels wide by 720 pixels high. Thus, at a distance of d (m) from the 405 

camera, a single pixel occupies a width of 2 × d × (tan (112/2)) /1280 (m). The radius of raindrops is 0.1-10 mm 

(Narasimhan & Nayar, 2002). If the radius of a raindrop is 1 mm, the distance where the width of a single pixel and the 

diameter of a single raindrop are the same is about 0.86 m. Therefore, raindrops further than about 0.86 m from the camera 

are smaller than a single pixel and cannot be identified by the camera's sensor. In other words, raindrops further than about 

0.86 m from the camera are considered to cause static weather effects. The fact that the cameras used in the field in this study 410 

captured scenes from several 10 to several 100 meters away suggests that it is reasonable to treat rainfall as static weather. 

 

5.2.2 Values and trends of the extinction coefficient β determined from images 

In this study, as shown in section 2, we linked the extinction coefficient obtained from image information with the rainfall 

extinction coefficient approximately obtained from the atmospheric radiation theory. Since there are few examples of rainfall 415 

extinction coefficient values obtained from images in the past, the validity of the values is verified below.  

Figure 10 shows the relationship between the value of extinction coefficient β calculated from the image and scene depth d 

for each rainfall intensity. The extinction coefficient obtained from the image was calculated by Eq. (3) after determining 

transmission t from observed intensity I, global atmospheric light A, and scene radiance J of the image, as shown in Eq. (4). 

The Figure at the time of rainfall in each camera such as rainfall intensity R from 0.2 to 0.8 mm min-1 shows the values of 420 

extinction coefficient for the extinction efficiency Q of 0.5, 1.0, 1.5, and 2.0 and the values of extinction coefficient given in 

the previous study to be discussed in section 5.2.3. In all three cameras, the value of extinction coefficient β in the case of no 

rainfall, i.e., rainfall intensity R = 0.0 mm min-1, is the order of 10-4 to 10-2, while the value of extinction coefficient β in the 

case of rainfall is the order of 10-3 to 10-2. In addition, in all rainfall intensities, a trend is seen that extinction coefficient β 

decreases as scene depth increases in patches where scene depth d is less than approx. 100 m, while it remains nearly 425 

constant when scene depth d is more than approx. 100 m. These values and trends of extinction coefficient β will be 

discussed in the following sections. 
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 430 

Figure 10. Relationship between extinction coefficient β and scene depth d: (a-1)–(a-5), respectively, show the results 

of Camera 1 by rainfall intensity ((a-1) R=0.0 mm min-1, (a-2) R=0.2 mm min-1, (a-3) R=0.4 mm min-1, (a-4) R=0.6 mm 

min-1, and (a-5) R=0.8 mm min-1). Likewise, (b-1)–(b-5) show the results of Camera 2 by rainfall intensity, and (c-1)–

(c-5) show the results of Camera 3 by rainfall intensity, respectively. The plots show the mean value of all image data 

in each patch, and the error bars show the standard deviation. The values of extinction coefficient β is shown as 435 

dotted lines when extinction efficiency Q is given in Eq. (6) for four patterns: 0.5, 1.0, 1.5, and 2.0 for each rainfall 

intensity. The values of extinction coefficient β shown in previous studies is shown as blue line (Nedvidek et al., 1986) 

and orange line (Ulbrich and Atlas, 1985). Each plot is shown in a different color depending on the ratio of scene 

radiance J to global atmospheric light A. 

 440 

5.2.3 Validity of extinction coefficient β determined from images in the case of rainfall 

Although no research has been conducted to determine the extinction coefficient of rainfall from images, there are many 

examples in the field of radar meteorological observation and telecommunications where the extinction coefficient is 
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determined from the attenuation of electromagnetic waves due to rain using electromagnetic waves with wavelengths in the 

visible light and near-infrared regions(Bradley et al., 2000; Nedvidek et al., 1986; Shipley et al., 1974; Suriza et al., 2013; 445 

Ulbrich & Atlas, 1985; Zaki et al., 2019). Visible light is an electromagnetic wave with a wavelength of approx. 360 nm to 

830 nm and a camera can be regarded as a sensor that detects electromagnetic waves in that wavelength range. Uijlenhoet et 

al. (2011) indicated that both theoretically and experimentally the attenuation of visible and near-infrared signals over paths 

ranging from a few hundred meters to several kilometers can be used to estimate the average rainfall over a path. The 

concept of attenuation and extinction coefficients of electromagnetic waves due to rain in such previous studies can apply to 450 

this study. According to previous studies, the extinction coefficient of electromagnetic waves due to raindrops can be 

expressed by the following equation (e.g., Ulbrich and Atlas, 1985).  

𝛽 = 𝑎𝑅௕           (10) 

The two parameters a and b in Eq. (10) represent the difference in the particle size distribution of raindrops. Comparing the 

extinction coefficient of Eq. (6) and Eq. (10), we obtain a = 5.80 × 10-5 πQ, b = 0.63. In the previous studies, for example, 455 

Ulbrich and Atlas (1985) proposed the theoretical values a = 2.12 × 10-4 and b = 0.68 based on the results of previous 

experiments on rainfall intensity and optical attenuation, including the experiment of Shipley et al. (1974). On the other hand, 

Nedvidek et al. (1986) proposed the values a = 2.12 × 10-4 and b = 0.63 based on the results of experiments using near-

infrared light sources and reflectors. All the values of extinction coefficients shown in the unit of dB km-1 in the previous 

studies were converted to m-1. Figure 10 shows the results of calculating the extinction coefficient β using the values of a and 460 

b shown in these previous studies. The values of extinction coefficient β shown in these previous studies are in the order of 

10-3. The values of extinction coefficient β obtained from the images in this study in the case of rainfall are almost constant 

with the order of 10-3 in patches where scene depth d is more than approx. 100 m. Therefore, the results show that the 

extinction coefficient β in patches where scene depth d is more than approx. 100 m is almost consistent with the value shown 

in the previous study. However, the extinction coefficient β in patches where scene depth d is less than approx. 100 m is a 465 

significant overestimate compared to the previous studies. The reasons for this overestimate are discussed in 5.2.5. As 

indicated in section 2, extinction efficiency Q is ideally 2 (Chylek, 1977; Uijlenhoet et al., 2011), but the values of extinction 

coefficient in the previous studies ranged between 1.0 and 1.5. It has been indicated that the reason for this difference in the 

value of Q is that the ideal case of Q = 2 tends to overestimate the number of very small raindrops in the raindrop population 

(Bradley et al., 2000; Rogers et al., 1997). 470 

 

5.2.4 Validity of extinction coefficient β determined from images in the case of no rainfall 

In the case of no rainfall, as seen from Eq. (6), the rain extinction coefficient approximately obtained from the atmospheric 

radiation theory is expected to be normally zero, and the extinction coefficient obtained from the image is also expected to 

be zero (synonymous with the transmission t of 1). However, as shown in the no-rainfall Figure in Figure 10 in the case of 475 
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no rainfall, the extinction coefficient indicated almost the same trend in the three cameras, decreasing between the order of 

10-2 and 10-3 in patches where scene depth was less than approx. 100 m, and remaining almost constant between 10-3 and 10-4 

when scene depth was more than approx. 100 m. It is noted that since the extinction coefficient is expressed as an 

exponential function of transmission and scene depth as in Eq. (3), the facts that transmission t exponentially decreases in the 

range where scene depth is more than approx. 100 m in the no-rainfall Figure in Figure 8 and that the extinction coefficient 480 

is constant in the range where scene depth is more than approx.100 m in Figure 10 have the same meaning. 

The reason why the extinction coefficient is not zero when there is no rainfall may be due to the effect of aerosols in the 

atmosphere. In outdoor photography, not only hydrometeors, such as rain and fog, which are the subject of this study, but 

also lithometeors, such as smoke and dust, degrade visibility and change the appearance of the background. Therefore, 

images taken during no rainfall do not show the effects of rain but may show the effects of hydrometeors and lithometeors 485 

that are not observed as rainfall intensity. In this paper, hydrometeors and lithometeors that are not observed as rainfall 

intensity are collectively referred to as aerosols.  

Because of the importance of atmospheric aerosols to air pollution and the human health impacts caused by it, traffic and 

airport safety, and climate change, many studies have been conducted to understand the characteristics of aerosols (Kim & 

Noh, 2021). Some of these studies have reported on the relationship between atmospheric aerosols and atmospheric 490 

extinction coefficients (Kim & Noh, 2021; Ozkaynak et al., 1985; Shin et al., 2022; Uchiyama et al., 2014; Uchiyama et al., 

2018). Ozkaynak et al. (1985) calculated the values of the extinction coefficient from the results of visibility observation in 

12 airports at large cities in the U.S. and reported that they were 4.0 × 10-5 – 7.8 × 10-4m-1. Uchiyama et al. (2014) reported 

that the mode of extinction coefficients observed at Tsukuba, Japan, using an integrating nephelometer and one- and three-

wavelength absorption spectrometers were 2.5 × 10-5 m-1, and most values were not more than 2.0 × 10-4 m-1. Uchiyama et al. 495 

(2018), also observed extinction coefficients in two cities, Fukuoka, Japan, and Beijing, China, using an integrating 

nephelometer and an aethalometer, and found that the annual mean for Fukuoka was 7.46 × 10-5 m-1 and for Beijing, 4.12 × 

10-4 m-1. Kim and Noh (2021) obtained the extinction coefficients of atmospheric aerosols from camera images and reported 

that the estimated range was 5.0 × 10-5 to 1.0 × 10-3 m-1 and the optimal aerosol extinction coefficient was approx. 5.0 × 10-4 

m-1. Further, Shin et al. (2022) reported that the range obtained from the camera images and visibility data was 2.0 ×10-6 to 500 

1.1 × 10-3 m-1. In reference to these reports, although there are differences in the air pollution conditions at the observation 

sites and the observation methods used, the value of the atmospheric extinction coefficient is expected to be the order of 10-6 

to 10-3 in m-1 unit due to aerosol effects even if there is no rainfall. In the results of this study, the extinction coefficient is the 

order of 10-3 to 10-4 in patches where scene depth is more than approx. 100 m, as shown in the no-rainfall Figure in Figure 10. 

This result is a slight overestimation compared to the results observed in Japan in recent years, i.e., Uchiyama et al. (2014) 505 

and Uchiyama et al. (2018), but is considered to be generally appropriate. Therefore, the effect of aerosol is considered to 

appear in the extinction coefficient of no rainfall in patches where the scene depth is more than 28 approx. 100 m. However, 

in patches where scene depth d is less than approx. 100 m, the results show a significant overestimate compared to the 

previous studies as well as the case of rainfall. 
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 510 

5.2.5 Causes of overestimates of extinction coefficients obtained from images 

In patches where scene depth is less than approx. 100 m, the extinction coefficients calculated from images resulted in 

overestimates, regardless of the presence or absence of rainfall. This implies that the static weather effect was strongly 

represented in the image, contrary to the fact, even though the static weather effect was actually absent or small. One 

possible reason for this could be the influence caused by DCP, the method used in this study to calculate extinction 515 

coefficients.  DCP assumes that dark channel images of the outdoor images without static weather effects will have zero 

pixel values in most patches and that transmission will decrease according to an increase in scene depth and static weather 

effects (rainfall intensity in this study) (He et al., 2011). In other words, it is assumed that the increase in scene depth and 

static weather effects will make the image whiter. Therefore, although DCP can properly determine transmission t if the 

background of the image meets the assumption, it has been pointed out that there are many actual outdoor images that violate 520 

the assumption, and it is often difficult to estimate the appropriate transmission t (Qin et al., 2020; Qu et al., 2019; Ren et al., 

2018; Wu et al., 2020). It has been reported that especially in backgrounds with white objects that are essentially similar to 

the color of global atmospheric light, DCP often fails because it violates the assumed prior distribution (Qin et al., 2020; Ren 

et al., 2018; Yang and Sun 2018). 

In Figure 8 and Figure 10, the closer the ratio of scene radiance J to global atmospheric light A is to 1, the more the 525 

background has a color that is essentially similar to the color of global atmospheric light, and the more difficult it is to 

estimate transmission t by DCP. From Figures 8 and 10, it can be seen that in all the cameras and all rainfall intensity 

Figures, the values of the ratio of scene radiance J to global atmospheric light A in the patches within approx. 100 m of scene 

depth are larger than in the patches above approx. 100m of scene depth. Therefore, many patches within approx. 100 m of 

scene depth were likely to violate the assumption of the expected prior distribution, which suggests that it was an 530 

inconvenient patch for the estimation of transmission. This indicates that the cause of the overestimates of the value of the 

extinction coefficient in these patches was due to the misidentification of the white-colored background as a static weather 

effect, which tends to violate the DCP's assumption of prior distribution.  

It has been pointed out that the ambiguity between image color and scene depth is often a problem with image fog removal 

techniques such as the one referenced in this study (Meng et al., 2013). In other words, the inability to determine whether the 535 

whiteness of the image is due to the color of the background object itself or to the increase in scene depth is an issue for the 

techniques to remove static weather effects. Therefore, it is important to consider in advance the reason for the whiteness of 

the image, even with the method proposed in this study. Since some techniques have been proposed to express Eq. (1) from 

images (e.g., Fattal, 2008; Tan, 2008) in addition to the method using DCP, it is a future issue to study which method can be 

used to obtain appropriate extinction coefficients and transmission.  540 

Furthermore, In Figures 8 and 10, some plots overestimate extinction coefficients even if the value of the ratio of scene 

radiance J to global atmospheric light A is not necessarily larger, especially in the Figures with higher rainfall intensity. 
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Therefore, it can be inferred that the cause of the overestimates of extinction coefficients is not only due to the effect caused 

by DCP. At present, other causes have not yet been identified, and the issue in the future is to determine these causes. 

 545 

5.3 Estimates of rainfall intensity 

Based on the previous discussion, we attempted to estimate rainfall intensity using Eq. (9), which determines rainfall 

intensity from image information. In Eq. (9), the parameters needed to estimate the rainfall intensity R are extinction 

efficiency Q, global atmospheric light A, observed intensity I, scene radiance J, and scene depth d. Concerning the extinction 

efficiency Q, as shown in 5.2.3, the value of parameter a in Eq. (10) was proposed to be 5.80 × 10-5 πQ using extinction 550 

efficiency Q in this study. On the other hand, previous studies proposed the value of parameters a of 2.12 × 10-4 (Nedvidek 

et al. 1986; Ulbrich and Atlas, 1985). Therefore, assuming that the values of both parameters a are identical, the following 

equations obtain the extinction efficiency Q. 

5.80 × 10ିହ π𝑄 = 2.12 × 10ିସ         (11) 

∴   𝑄 =
ଶ.ଵଶ×ଵ଴షర

ହ.଼଴×ଵ଴షఱ ஠
≈ 1.16          (12) 555 

The same values used in the previous discussion were applied for global atmospheric light A, observed intensity I, scene 

radiance J, and scene depth d. The flow for estimating rainfall intensity is shown in Figure 3. 

Figure 11 shows the relationship between the observed and estimated rainfall intensity for each camera. Figure 11 shows that 

there are patches where the observed and estimated rainfall intensities generally coincide, such as patch 42 in Camera 1, 

patch 29 in Camera 2, and patch 39 in Camera 3, suggesting that it is possible to estimate the rainfall intensity from the 560 

image. These example patches are those with the lowest mean absolute percentage error (MAPE) of rainfall intensity 

estimates throughout the observation period. Furthermore, in many of the patches with scene depths of less than 100 m 

hatched in yellow, the estimated rainfall intensity was overestimated. This may be due to the overestimation of the extinction 

coefficients, as we have mentioned before. Similarly, patches 12, 13, and 18 in Camera 2 also overestimate the estimated 

rainfall intensity due to overestimation of the extinction coefficient. This suggests that to estimate rainfall intensity from an 565 

image, it is necessary to select an appropriate background for which the extinction coefficient is not overestimated or 

underestimated. 
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 570 

Figure 11. Relationship between observed rainfall intensity and estimated rainfall intensity: (a) Camera 1, (b) 

Camera 2, (c) Camera 3. The plot for each patch shows the mean value and standard deviation for the entire 

observation period. Patches hatched in yellow indicate patches with scene depths of less than 100 m. Patches hatched 

in gray are patches where the appropriate scene depth could not be obtained due to geometric corrections in the 

image registration process. 575 
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Figure 12 shows the time series variation of rainfall intensity estimates for the three rainfall events for the patch with the 

lowest MAPE for each camera: patch 42 in Camera 1, patch 29 in Camera 2, and patch 39 in Camera 3. The scene depth of 

patch 42 in Camera 1, patch 29 in Camera 2, and patch 39 in Camera 3 were respectively 133.0 m, 148.5 m, and 198.9 m. 

The background of all these patches was vegetation. The rainfall events shown in Figure 12 are those with the maximum 580 

one-minute rainfall intensity of 0.8 mm min-1 throughout the observation period. The time series variation of rainfall 

intensity estimates for all camera patches during these rainfall events were stored at the storage locations indicated in the 

Supplement. In Figure 12, during the period when the one-minute rainfall intensity was observed to be 0.4 mm min-1 or 

greater for each rainfall event, it can be seen that the estimated rainfall intensity variation for all cameras followed the 

observed rainfall intensity variation, although the absolute values varied slightly. Therefore, it can be said that this method 585 

can capture short-term variations in rainfall intensity.  

 

 

 

Figure 12. Time series variation of observed and estimated rainfall intensity. The patch for each camera is the patch 590 

with the lowest MAPE of the rainfall intensity estimate for the entire observation period, with patches 42 in Camera 1, 

29 in Camera 2, and 39 in Camera 3, respectively. 
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Table 4 shows the results of the comparison of the accuracy between the five previous studies (Allamano et al., 2015; Dong 

et al., 2017; Jiang et al., 2019; Yin et al., 2023; Zheng et al., 2023) and this study. All five of these previous studies focused 595 

on the dynamic weather effects of rainfall, and no studies have been conducted on the static weather effects caused by 

rainfall. Allamano et al. (2015) and Dong et al. (2017) identified rain streaks on images based on temporal properties, 

excluded unfocused rain streaks, and estimated rainfall intensity from the identified rain streak information. Jiang et al. 

(2019) incorporated visual properties in addition to temporal properties in identifying rain streaks on images. Yin et al. 

(2023) estimated rainfall intensity by constructing an image-based supervised convolutional neural network model called 600 

irCNN. Zheng et al. (2023) estimated rainfall intensity by constructing a two-stage algorithm that extract raindrop 

information from the image and then perform convolutional neural networks using the extracted raindrop information as 

inputs. The MAPE calculated using data with observed rainfall intensity of 0.2 mm min-1 or greater in this study was higher 

than in the three previous studies, while the MAPE calculated using data with observed rainfall intensity of 0.4 mm min-1 or 

greater was similar to the five previous studies. These results indicate that the proposed method has a certain degree of 605 

effectiveness as a method for estimating rainfall intensity from images, although there is some error when the rainfall 

intensity is small. The proposed method is also considered to be sufficiently robust because it was validated for all rainfall 

events with observed rainfall intensities of 0.2 mm min-1 or greater during the 235-day observation period in this study. In 

addition, the similarity of the estimated rainfall intensity variations for all cameras suggests that the proposed method is 

sufficiently versatile. In this study, we conducted an experiment using three cameras installed in a mountainous watershed, 610 

and we obtained highly consistent results with the three cameras. If there are complex and diverse moving targets in the 

background such as in an urban area, the proposed method may be difficult to apply. However, the method can be applied to 

only a portion of the image, not the entire image. Therefore, by selecting an appropriate background for rainfall estimation, 

the proposed method could be used in urban areas. 

On the other hand, Figure 12 shows that the variation of the estimated rainfall intensity of Camera 2 around 6:30 on October 615 

13 was different from that of the observed rainfall intensity. The images from Camera 2 during this period were verified to 

be foggy in the selected patches. Therefore, the variation in the estimated rainfall intensity for Camera 2 can be attributed to 

the whitening of the background due to fog. Because this method estimates rainfall intensity from image whiteness, image 

whiteness caused by fog is misidentified as the effect of rainfall. Therefore, as a further study, it is necessary to investigate a 

method to determine whether the whiteness in the image under bad weather conditions is caused by rain or fog. In previous 620 

studies, raindrops were directly detected by focusing on the dynamic weather effects of rainfall at a short distance from the 

camera. Therefore, by integrating such a method based on dynamic weather effects with the method based on static weather 

effects proposed in this study, it may be possible to determine whether the whiteness in the image under bad weather 

conditions is due to rain or fog. Since both dynamic and static weather effects caused by rainfall are expected to appear in 

images taken outdoors during rainfall, especially in images taken in the distance, such a method of combining dynamic and 625 

static weather effect methods is reasonable and could be a more robust method. 
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Table 4. Comparison of accuracy between five previous studies and this study: The upper row of the Data size for 

validation and Accuracy in this study shows the values for the cases using data with observed rainfall intensity of 0.2 

mm min-1 or greater, and the lower row shows the values for the cases using data with observed rainfall intensity of 630 

0.4 mm min-1 or greater. MAPE is the mean absolute percentage error, and data with observed rainfall intensity of 0 

mm min-1 were excluded by the definition of MAPE. The values shown for the case using data with observed rainfall 

intensity of 0.2 mm min-1 or greater are the values for the patch with the lowest MAPE for each camera: patch 42 in 

Camera 1, patch 29 in Camera 2, and patch 39 in Camera 3. Similarly, the values shown for the case using data with 

observed rainfall intensity of 0.4 mm min-1 or greater are the values for the patch with the lowest MAPE for each 635 

camera: patch 37 in Camera 1, patch 28 in Camera 2, and patch 48 in Camera 3. The values of the three previous 

studies, Allamano et al. (2015), Dong et al. (2017) and Jiang et al. (2019), refer to those presented by Jiang et al. 

(2019). 

 This study Allamano 

et al. 

(2015) 

Dong 

et al. 

(2017) 

Jiang et 

al. 

(2019) 

Yin et al. 

(2023) 

Zheng 

et al. 

(2023) 
Camera 1 Camera 2 Camera 3 

Data size 

for 

validation 

(video 

length) 

3261 min 3015 min 3261 min 104 min 9 min 403 min 170 min 357 

mm 

120 min 107 min 120 min 

Accuracy 

(MAPE) 

39.1 % 41.7 % 36.0 % 26.0 % 31.8 % 21.8 % 13.5%~2

1.9% 

11%~2

0% 22.5 % 25.3 % 28.6 % 

 

6 Conclusions 640 

In this study, to verify the applicability of existing theories to static weather effects caused by rainfall in outdoor 

photography systems, we analyzed the effects of rainfall intensity on the appearance of the background. Using the extinction 

coefficient as information source, we proposed relational equations representing the relationship between image information, 

rainfall intensity, and scene depth by linking the theoretically derived rainfall intensity with a technique proposed in the 

computer vision field for removing static weather effects. we also proposed a method for estimating rainfall intensity from 645 

images using those relational equations. Then, the proposed relational equations were applied to outdoor images taken by 

commercial interval cameras at observation sites in a mountainous watershed in Japan. As a result, the following findings 

were obtained.  
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(1) In the images taken outdoors, generally as shown in the proposed relational equations, transmission t decreased 

exponentially according to the increase in rainfall intensity R and scene depth d.  650 

(2) The value of transmission t and the variation of transmission t according to the increase in rainfall intensity were 

considered to be strongly influenced mainly by the value of observed intensity I.  

(3) The extinction coefficient β obtained from images during rainfall was reasonable compared to the previous studies in the 

patches where scene depth d was more than approx. 100 m.  

(4) Extinction coefficient β calculated from the no-rainfall images may have been affected by aerosols in the patches where 655 

scene depth d was more than approx. 100 m. Therefore, extinction coefficient β was not zero despite the assumption from the 

proposed equations.  

(5) Regardless of the presence or absence of rainfall, extinction coefficients obtained from the images were overestimated in 

the patches where scene depth d was less than approx. 100 m. It was suggested that one of the reasons for this was the 

influence caused by the method used to calculate the extinction coefficient.  660 

(6) By selecting a background with an appropriate value for the extinction coefficient, rainfall intensity can be estimated 

from the image using the proposed relational equations. This method can also be used to capture short-term variations in 

rainfall intensity from the image. 

(7) Based on the validation results of three cameras over 235 days of observations, the proposed method is considered 

sufficiently robust and versatile. 665 

These findings are extremely important information regarding the rain-induced static weather effects of images and will lead 

to further advances in the development of camera-based rain gauges. Overall, these findings suggest that the relational 

equations representing the relationship between image information, rainfall intensity, and scene depth are generally effective 

for outdoor images. The method of estimating rainfall intensity from images using the relational equations is also effective 

for outdoor images. Since this method estimates rainfall intensity from a single static image, it can be applied to video 670 

cameras in principle, and real-time rainfall information can also be obtained. In addition, since the method requires little 

prior preparation or training data, and only uses the camera image taken of the background over a certain distance and 

background scene depth information, it is a highly versatile and accessible method. In this study, the scene depth was 

obtained using a digital elevation model, but it would be possible to obtain the scene depth using a simpler method, such as 

measuring distances in a GIS. Furthermore, this method is also accurate and robust. On the other hand, there are still some 675 

issues to be studied, such as finding the details of the reasons for the overestimation of the extinction coefficient, methods to 

eliminate the overestimation, and methods to remove the effects of aerosols. Even if the proposed method is valid from a 

broad perspective, its applicability to a single individual image has not been verified at present. Therefore, the applicability 

of the proposed method to a single individual image is an issue to be addressed in the future.  

Rainfall information is very important for water resource management, weather, climate, hydrological forecasting, and 680 

countermeasures against disasters caused by rainfall. Especially for countermeasures against floods and landslides caused by 

rainfall, it is desirable to have information on rainfall with high spatio-temporal resolution. If the proposed method can be 
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applied to the many outdoor cameras installed around the world and these cameras can be used as rain gauges, they will be 

very effective and useful tools for countermeasures against floods and landslides. For this purpose, it is important to further 

accumulate knowledge about the effects of rainfall on images. 685 

 

 

Appendix A: Derivation process of Eq. (6) 

Rainfall intensity is defined as the amount of rainfall collected per unit time interval (World Meteorological Organization, 

2023). Therefore, rainfall intensity is expressed as follows using the particle size distribution of raindrops, raindrop volume, 690 

and falling velocity per unit volume (Uijlenhoet, 2001).  

𝑅 = 3.6 × 10଺ ∫
గ஽య

଺

ஶ

଴
𝑁(𝐷)𝑈(𝐷)d𝐷        (A1) 

Where R (mm h-1) is rainfall intensity, D (m) is raindrop diameter, N(D) (m-3) is the particle size distribution of raindrops, 

and U(D) (m s-1) is the terminal falling velocity of raindrops.  

Then, with the theory of atmospheric radiation, the extinction coefficient under rainfall conditions can be expressed as 695 

follows using the raindrop diameter, the particle size distribution of raindrops, and extinction efficiency (Grabner & Kvicera, 

2011).  

𝛽 = ∫
గ஽మ

ସ

ஶ

଴
𝑁(𝐷)𝑄d𝐷          (A2) 

Where D2/4 represents the surface area of raindrops projected in the optical path direction. Q is called extinction efficiency 

and is a dimensionless parameter that expresses the ratio of the extinction cross-sectional area of the raindrop to the 700 

geometric cross-sectional area of the raindrop. The extinction cross-sectional area is the quantity that expresses the intensity 

of extinction of a single particle with the dimension of area. Under the Mie scattering theory, the extinction efficiency Q is 

expressed as 2, given the relationship between raindrop size and the wavelength of visible light (Chylek, 1977; Uijlenhoet et 

al., 2011). 

From Eqs. (A1) and (A2), both rainfall intensity and extinction coefficient can be expressed by the particle size distribution 705 

of raindrops, but analytically, rainfall intensity cannot be expressed with extinction coefficient. Therefore, the relationship 

between rainfall intensity and extinction coefficient is approximately related using the relational equations between rainfall 

intensity and particle size distribution presented by Marshall and Palmer (1948), hereinafter referred to as M-P distribution. 

Using the M-P distribution, the particle size distribution of raindrops can be expressed by the following equation. 

𝑁(𝐷) = 𝑁଴exp(−𝜆𝐷)          (A3) 710 

𝑁଴ = 8 × 10଺           (A4) 
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𝜆 = 4.1 × 10ଷ𝑅ି଴.ଶଵ          (A5) 

Where units of 𝑁଴ and 𝜆 are m-4 and m-1, respectively. 

Substituting Eq. (A3) into Eq. (A2), we obtain:  

𝛽 = ∫
గ஽మ

ସ

ஶ

଴
𝑁଴𝑒𝑥𝑝(−𝜆𝐷)𝑄𝑑𝐷          715 

=
గேబொ

ସ
∫ 𝐷ଶ exp(−𝜆𝐷)

ஶ

଴
d𝐷         (A6) 

Here, we introduce the gamma function, which represents the generalization of the factorial. 

Γ(𝑧) = ∫ 𝑎௭ିଵ exp(−𝑎)
ஶ

଴
d𝑎 = (𝑧 − 1)!        (A7) 

Applying Eq. (A7) to Eq. (A6), we obtain:  

𝛽 =
గேబொ

ସఒయ Γ(3) =
గேబொ

ସఒయ
(3 − 1)!          720 

=
గேబொ

ଶఒయ             (A8) 

Substituting Eqs. (A4) and (A5) into Eq. (A8), extinction coefficient β can be expressed as follows using rainfall intensity R. 

𝛽 =
଼×ଵ଴లగொ

ଶ(ସ.ଵ×ଵ଴యோషబ.మభ)య          

= 5.80 × 10ିହ𝜋𝑄𝑅଴.଺ଷ          (A9) 

 725 

Appendix B: The procedure for the Dark Channel Prior method 

He et al. (2011) defined the concept of a dark channel as follows. 

𝐽ௗ௔௥௞(𝑥) = min
௬∈ఆ(௫)

ቆ min
௖∈{௥,௚,௕}

 𝐽௖(𝑦)ቇ         (B1) 

Where Jdark(x) is the dark channel at pixel position x, Ω(x) is a local patch centered at pixel position x, y is the pixel position 

and an element of Ω(x), c is the index of the color channel, and Jc(y) is the color channel at pixel position y. The dark 730 

channel is the result of two minimum operators. 

The Dark Channel Prior method is based on the statistical prior distribution in which some pixels have at least one color 

channel with very low intensity in almost all non-sky patches of a certain size in outdoor images without static weather 

effects. That is, an image that has been dilation-processed for each patch with the lowest intensity color channel values, 

which is called a dark channel image, is assumed to have zero pixel values in most patches. This is expressed by the 735 

following equation.  
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𝐽ௗ௔௥௞(𝑥) = min
௬∈ఆ(௫)

ቆ min
௖∈{௥,௚,௕}

 𝐽௖(𝑦)ቇ ≈ 0        (B2) 

Using Eq. (B2), the first term on the right-hand side of Eq. (B3) below, which is transformed from Eq. (1), can be regarded 

as zero.  

min
௬∈ఆ(௫)

൬ min
௖∈{௥,௚,௕}

 ூ೎(௬)

஺೎ ൰ = 𝑡(𝑥) min
௬∈ఆ(௫)

൬ min
௖∈{௥,௚,௕}

 ூ೎(௬)

஺೎ ൰ + 1 − 𝑡(𝑥)      (B3) 740 

That is, Eq. (B3) is transformed into the following Eq. (B4) when Eq. (B2) is applied.  

min
௬∈ఆ(௫)

൬ min
௖∈{௥,௚,௕}

 ூ೎(௬)

஺೎ ൰ = 1 − 𝑡(𝑥)         (B4) 

Eq. (B4) can be rearranged for transmission t to yield the following Eq. (B5). 

𝑡(𝑥) = 1 − min
௬∈ఆ(௫)

൬ min
௖∈{௥,௚,௕}

 ூ೎(௬)

஺೎ ൰         (B5) 

In Eq. (B5), Ic (y) is obtained from observed intensity I, so transmission t can be obtained by setting global atmospheric light 745 

A separately. He et al. (2011) selected pixels with the top 0.1 percent intensity in the dark channel image and set the pixel 

with the highest intensity of observed intensity I among these pixels as global atmospheric light A.  

Scene radiance J can be recovered by substituting the calculated transmission t using Eq. (B5), the observed intensity I, and 

the global atmospheric light A, which is set separately, into Eq. (1).  

 750 

Data availability 

Images of all cameras and data used for analysis in this study are available at https://doi.org/10.5281/zenodo.7163149, 

https://doi.org/10.5281/zenodo.7166150 and https://doi.org/10.5281/zenodo.7166178.  

 

Supplement 755 

Time series variations of rainfall intensity estimates for all camera patches during the three rainfall events as shown in 5.3 

are available at  https://doi.org/10.5281/zenodo.13337020 
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