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Abstract.  Aerosol modulation of atmospheric convection remains an important topic in ongoing research.  A key 18 

challenge in evaluating aerosol impacts on cumulus convection is isolating their effects from environmental 

influences.  This work investigates aerosol effects on maritime tropical convection using airborne observations from 20 

NASA’s Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex).  Nine environmental 

parameters with known physical connections to cloud and storm formation were identified from dropsonde data, and 22 

14492 dropsondes were matched with corresponding CAMP2Ex flight segments (““scenes”)..”  To constrain 

environmental conditions, scenes were binned based on their association with “low,” “medium,” or “high” values for 24 

each dropsonde-derived parameter.  In each scene and environmental bin, eight radar- and radiometer-based 

parameters directly related to convective intensity and/or frequencyprevalence were correlated with lidar-derived 26 

aerosol concentrations to examine trends in convective characteristics under different aerosol conditions.  Threshold 

values used to stratify the environments were varied across four sensitivity tests.  Convective parameters and aerosol 28 

concentrations typically became more strongly and positively correlated, with statistical significance, as 

environmental conditions became more favorable for convection.  Particularly strong correlations between convective 30 

and aerosol metrics resulted from stratifying environments based on their 850–500-hPa temperature lapse rate (LR), 

700–500-hPa LR, and K-Index.  While general to examine how the convective-aerosol correlations within each 32 

environmental bin responded.  While results were mixed, some trends identified in the convective-aerosol analyses 

support the idea of warm-phase convective invigoration.  General trends suggested that higher aerosol concentrations 34 

were correlated with stronger and/or more-frequentprevalent convection, in some cases, while other cases saw a 

“Goldilocks” zone of medium aerosol concentration favoring enhanced convection.  These results indicate that 36 

medium-to-high aerosol concentrations may enhance convection, but alsothese correlation analyses warrant further 
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analysis, and our results stress the importance of considering environmental conditions when evaluating aerosol 38 

impacts. 

 

 

Short summary 40 

Decoupling aerosol and environmental impacts on convection is challenging.  Using airborne data, we correlated 

microwave-frequency convective metrics with aerosol concentrations in several different environments.  Medium-to-42 

high aerosol concentrations were oftenoccasionally strongly and positively correlated with convective intensity and 

frequencyprevalence, especially in favorable environments based on temperature lapse rates and K-Indexcases with 44 

relatively high moisture near the surface.  Storm environment is important to consider when evaluating aerosol effects. 

 

1. Purpose and background 46 

The primary purpose of this study is to explore potential impacts of aerosol concentration on maritime tropical 

convection during NASA’s Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) from a 48 

remote-sensing perspective within environmental contexts.  The field phase of CAMP2Ex occurred from 20 August – 

10 October 2019, with instruments on NASA’s P-3B Orion (P-3) aircraft sampling a wide range of environmental, 50 

cloud, radiation, and aerosol conditions across 19 research science flights (SFs) conducted out of Clark International 

Airport (Reid et al., 2023).  The P-3 overflew a variety of cloud types during CAMP2Ex, ranging in depth from shallow 52 

convection to deeper cumulus congestus and ranging in organization from isolated clouds to squall lines (Reid et al., 

2023).  Key instruments for this study that were flown on the P-3 during CAMP2Ex include: the Advanced Microwave 54 

Precipitation Radiometer (AMPR; Spencer et al., 1994; Amiot et al., 2021), Airborne Precipitation and cloud Radar 

3rd Generation (APR-3; Durden et al., 2020), High Spectral Resolution Lidar 2 (HSRL2; Burton et al., 2016), and 56 

Advanced Vertical Atmospheric Profiling System (AVAPS; Hock and Young, 2017).   This research falls under the 

CAMP2Ex science question of “To what extent are aerosol particles responsible for modulating warm and mixed-58 

phase precipitation in tropical environments?”, while also having direct implications for impacts on deeper convection 

and cloud meteorology (ESPO, 2020; Reid et al., 2023).  A secondary purpose of this study is to expand and 60 

demonstrate the scientific utility of AMPR’s geophysical retrievals from NASA’s Advanced Microwave Precipitation 

Radiometer (AMPR; Spencer et al., 1994; (Amiot et al., 2021, 2023). 62 

 

A significant challenge in evaluating aerosol impacts on convection is to isolate aerosol influences from other sources 

of convection modulation, such as atmospheric dynamics, thermodynamics, and cloud microphysical processes (e.g., 64 

Liu et al., 2016; Grabowski 2018).  Since a given convective plume will be affected by synoptic-scale (> 2000 km), 

mesoscale (2–2000 km), and sub-mesoscale (< 2 km) dynamics (Orlanski, 1975) and environmental conditions, it is 66 

important to understand and constrain environmental conditions associated with any convective element (herein 

“storm”) of interest.  Several environmental factors with direct physical connections to convection can be evaluated 68 

from remote-sensing and in situ observation platforms.  Studies have demonstrated the utility of radiosonde data, the 
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principles of which can be applied to dropsondes (e.g., the Advanced Vertical Atmospheric Profiling System, AVAPS; 70 

Hock and Young, 2017) to the extent offered by the dropsonde’s launch altitude.  Vertical velocity (w) at the 700-hPa 

level can be used to diagnose vertical motion and associated convective support (Bony et al., 2004; Liu et al., 2016).  72 

Convective Available Potential Energy (CAPE), a measure of parcel buoyancy that is used to diagnose potential 

updraft velocity, is defined via 74 

 CAPE ൫J kg-1
൯ = g න

൫Tvି Tv,0൯

Tv,0

zel

zlfc

 dz, (1) 

where g is gravitational acceleration; Tv and Tv,0 are parcel and environmental virtual temperatures, respectively; z is 76 

altitude; and zlfc and zel altitudes of the level of free convection and equilibrium level, respectively (Markowski and 

Richardson, 2010).  While the shape of CAPE (Blanchard, 1998) is not examined in this study, it would be worth 78 

considering in future work given its importance to tropical convective updraft intensity. 

 

The Lifting Condensation Level (LCL) altitude indicates cloud-base height and is often used in forecasting convection 80 

(Markowski and Richardson, 2010).  While a surface-based parcel is expected to reach saturation faster when LCL 

altitude is lower (all else being equal) and thus experience warming from latent heat of condensation sooner, studies 82 

have demonstrated that higher LCL altitude is often associated with wider updrafts and stronger vertical velocities 

owing to entrainment of relatively dry air beneath the cloud base (Mulholland et al., 2021).  K-Index is used to forecast 84 

convective potential/frequency (i.e., not intensity) and is defined as 

 K-Index(°C) =  (T850 −  T500) +  Td,850 −  ൫T700 −  Td,700൯ (2) 86 

where T850, T700, and T500 are temperatures at the 850-, 700-, and 500-hPa levels, respectively, and Td,850 and Td,700 are 

dew point temperatures at the 850- and 700-hPa levels, respectively (George, 1960).  From Eq. (2), K-Index considers: 88 

1) low-to-mid-level temperature lapse rate (hereafter simply “lapse rate”, LR), 2) low-level dew point temperature 

(Td), and 3) mid-level Td depression, with the former two (latter one) being directly (inversely) related to convective 90 

potential.  In addition to 850–500-hPa, 700–500-hPa LR may serve as an excellent indicator of convective potential 

(e.g., Sherburn and Parker, 2014).  Others (e.g., Wang et al., 2015) have used 850–700-hPa LR in forecasting 92 

convective potential due to its association with parcel vertical acceleration in the lower atmosphere.  Lastly, low-level 

Td is important for convective intensity (“intensity” referring to peak updraft velocity) due to entrainment of relatively 94 

high-water-vapor air into an updraft’s base (e.g., Lucas et al., 2000). 

 

We utilize microwave remote-sensing signatures from radar and radiometer to evaluate convective intensity and 96 

frequency.  The 30-dBZ equivalent radar reflectivity factor (ZH) isoline has often been used to identify precipitation 

regions (e.g., Straka et al., 2000) and delineate between different “storms” or “cells” (e.g., Johnson et al., 1998; 98 

Hastings and Richardson, 2016; Amiot et al., 2019).  As precipitation-sized hydrometeors form and grow, ZH increases 

due to hydrometeor diameter (D) weighting of D6 associated with Rayleigh scattering, with eventual onset of non-100 

Rayleigh resonance effects for larger values of D relative to the radar wavelength (Rinehart, 2010).  This is especially 

important to note at finer wavelengths, such as 2.2 and 0.84 cm associated with the Airborne Precipitation and cloud 102 
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Radar 3rd generation (APR-3)’s Ku and Ka bands, respectively (Durden et al., 2020), the primary radar dataset used 

herein.  A combination of Ku- and Ka-band radar can be powerful when evaluated using dual-frequency ratio (DFR): 104 

 DFR = ZKu − ZKa, (3) 

where ZKu and ZKa represent ZH at Ku- and Ka-band, respectively, on a logarithmic scale (i.e., expressed in dBZ) (e.g., 106 

Liao et al., 2008; Liao and Meneghini, 2011).  In regions where ZKu and ZKa are both similar (e.g., near 0 dBZ for 

hydrometeors that are in the Rayleigh scattering regime at both frequencies), DFR will be near zero; however, 108 

departures in DFR from 0 dBZ can indicate differences in attenuation between the two frequencies and can be used to 

infer hydrometeor size and phase (e.g., Liao and Meneghini, 2011).  As Ku-band ZH increases, the DFR in rain regions 110 

generally becomes slightly negative (i.e., -1–0) before increasing to positive values for ZH > 30 dBZ; in regions of ice 

hydrometeors, DFR generally increases with increasing Ku-band ZH, with a steeper increase occurring for lower-112 

density ice hydrometeors (Liao and Meneghini, 2011). 

 

Microwave radiometers generally retrieve higher brightness temperature (Tb) values at increasingly lower frequencies 114 

as precipitation hydrometeors grow in the absence of ice formation aloft (e.g., Spencer et al., 1994).  This makes it 

possible to retrieve cloud and precipitation properties using Tb combinations (e.g., Wilheit and Chang, 1980; Wentz 116 

and Spencer, 1998; Hong and Shin, 2013; Amiot et al., 2021).  AMPR’s cloud liquid water (CLW) retrievals often 

fail within precipitation regions; thus, as a cloud grows vertically, AMPR-derived CLW is expected to increase until 118 

it fails in moderate-to-heavy precipitation (Amiot et al., 2021, Amiot, 2023).  However, CLW increasing around 

precipitation may yield useful information about the associated convective intensity; for example, precipitation is 120 

often associated with cumulus clouds at least 1.5–2 km tall (Smalley and Rapp, 2020) and CLW > 1 kg m-2 may 

indicate precipitation formation within these clouds (e.g., Jiang and Zipser, 2006). 122 

 

Aerosol impacts on convective storms hashave been a significant research topic.  Increased aerosol concentration is 

generally associated with increased cloud condensation nuclei (CCN), with aerosol size distribution influencing cloud 124 

particle size distribution (Junge and McLaren, 1971).  In shallow clouds, the second indirect effect of aerosols favors 

a decrease in precipitation formation and increase in cloud lifetime (Albrecht, 1989), resulting from reduced cloud 126 

droplet sizes due to increased competition for water vapor (e.g., Rosenfeld and Lensky, 1998; Sherwood, 2002).  

However, precipitation-sized hydrometeors that form in higher aerosol concentrations are generally larger, owing to 128 

ample cloud droplets available for collection and droplet growth (e.g., Stroud et al., 2007; Altaratz et al., 2008; Saleeby 

et al., 2010). 130 

 

Many numerical-modeling studies have explored aerosol warm-phase invigoration in tropical convection.  Sheffield 

et al.., (2015) demonstrated how enhanced aerosol concentrations can increase cloud water content and produce more-132 

vigorous updrafts via latent heat of condensation.  Likewise, Marinescu et al.., (2021) noted a 5–15% increase in mean 

updraft velocity around 4–7 km AGL when CCN concentrations were relatively high.  Smaller cloud droplets 134 

associated with higher aerosol concentrations may also enhance updraft/convective intensity via increased latent heat 

released during freezing and enhanced depositional growth above the environmental 0 °C level (e.g., van den Heever 136 
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and Cotton, 2007; Rosenfeld et al., 2008).  However, convective intensity increases are primarily driven by low-level 

condensational heating, rather than freezing above the environmental 0 °C level (Igel and van den Heever, 2021; 138 

Cotton and Walko, 2021), further indicating the importance of evaluating aerosol concentrations within/around warm-

phase regions.  Numerous other modeling studies have also demonstrated increased aerosol concentrations enhancing 140 

convection (e.g., van den Heever et al., 2006). 

 

Despite these cloud/storm enhancements from aerosolsSeveral observational studies have also explored the impacts 142 

of increased aerosol concentrations on convection.  For example, Lin et al., (2006) found enhancements in cloud height 

and cloud cover associated with increased aerosol concentrations in the Amazon.  Likewise, Fan et al., (2018) 144 

identified increases in convective strength owing to the activation of additional CCN in regions with high 

concentrations of ultrafine aerosols in the Amazon.  Using a combination of observations and simulations, Zhang et 146 

al., (2023) described how fine aerosols enhance convection which, in turn, modulates the surrounding environment 

and feeds back into larger-scale atmospheric circulations. 148 

 

In contrast, many other studies (e.g., Grabowski and Morrison, 2016; Grabowski and Morrison, 2020; Varble, 2023) 

have presented evidence that increased aerosol concentrations do not invigorate convection above the environmental 150 

freezing level but may do so below the environmental freezing level.  The former results from increased positive 

buoyancy, via enhanced latent heat of freezing, being offset by increased negative buoyancy, via mass loading from a 152 

greater liquid water content being lofted above the environmental freezing level (Grabowski and Morrison, 2020).  

The latter results from higher aerosol concentrations leading to lower supersaturation values within the surrounding 154 

environment and increased buoyancy, which in turn lead to higher updraft velocities and enhanced latent heating 

associated with increased condensation (e.g., Grabowski and Morrison, 2017; Grabowski and Morrison, 2020).  156 

Therefore, the role of enhanced aerosol concentration on updraft velocity can strongly depend on whether they are 

within regions wherein warm-phase or cold-phase processes dominate. 158 

 

Similarly, despite numerous studies supporting the idea of convective enhancement from increased aerosol 

concentrations, many other studies have identified situations where higher aerosol concentrations may be detrimental 160 

for convection.  For instance, entrainment of relatively dry environmental air may cause rapid evaporation of smaller 

cloud droplets associated with higher aerosol concentrations, decreasing cloud/storm structure (e.g., Liu et al., 2016).  162 

Veals et al., (2022) noted a tendency for weaker convection in the presence of higher aerosol concentrations in central 

Argentina.  This indicatesraises several questions about the true impact of increased aerosol concentrations on 164 

convection, which motivates our study herein.  These differences in the outcomes of past studies also indicate that a 

“Goldilocks” zone of medium aerosol concentration may favor the strongest convection (e.g., Sokolowsky et al., 166 

2022).  Additional studies2022).  Further, demonstrated increased aerosol concentrations enhancing convection (e.g., 

van den Heever et al., 2006), while other research discussed considerable difficulty in separating aerosol influences 168 

from atmospheric dynamics (e.g., Grabowski, 2018).  Limitations in past numerical and observational studies are 
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summarized by Varble et al., (2023), which highlights several uncertaintiesthe continued uncertainty surrounding 170 

aerosol impacts on convection and motivates our study herein. 

 

One remote-sensing instrument employed in aerosol analyses is lidar, including the High Spectral Resolution Lidar 2 172 

(HSRL2) that was deployed on NASA’s P-3 aircraft during CAMP2Ex (Hostetler, 2020; Reid et al., 2023; Ferrare et 

al., 2023).  HSRL2 measures aerosol backscatter and depolarization ratio at 355, 532, and 1064 nm, with aerosol 174 

extinction and aerosol optical thickness (AOT) also measured using the HSRL2 technique at 355 and 532 nm 

(Hostetler, 2020).  Integration for calculating AOT occurs over a vertical distance starting near the surface and ending 176 

at the top of the aerosol extinction profile, which is often around 5–6 km AGL.  Lenhardt et al.., (2022) demonstrated 

how HSRL2’s extinction and backscatter coefficients, especially at 532 nm, have strong direct correlations with CCN 178 

concentrations.  Additional studies (e.g., Liu et al., 2016) noted a direct correlation between lidar-based AOT and 

CCN concentration.  Therefore, extinction, backscatter, and AOT may all be considered when examining aerosol 180 

concentration.  However, the height/location of an aerosol layer, which can be obtained from extinction and/or 

backscatter, is important to consider when evaluating diabatic heating from radiation absorption (e.g., Chand et al., 182 

2009; Redemann et al., 2021).  We will discuss HSRL2 data in more detail in section 2. 

 

Based on these studies, the primary science question we address is: How do radiometer- and radar-based metrics of 184 

storm intensity and frequencyprevalence vary with lidar-based observations of aerosol concentration when binned into 

similar environmental groups throughout CAMP2Ex?  The results of these analyses are important as they provide 186 

insight into science questions for a major NASA field campaign, have relevance to upcoming NASA missions [e.g., 

Atmosphere Observing System (AOS, 2022)], and contribute knowledge to long-standing questions of aerosol 188 

influences on convection.  We hypothesized that radar- and radiometer-based metrics of storm intensity and frequency 

would all increase under greater 700-hPa w, CAPE, K-Index, LRs, and low-level Td.  Expectations for LCL altitude 190 

were more uncertain, given the greater low-level water vapor content associated with low LCL altitude, but the 

tendency for higher LCL altitude to favor stronger updrafts (We hypothesized that integrated cloud liquid water path 192 

(CLW), peak equivalent radar reflectivity factor (ZH), peak Ku-/Ka-band radar dual-frequency ratio (DFR),Mulholland 

et al., 2021).  Based on the results of Mulholland et al. (2021), we hypothesized that higher LCL altitude would 194 

correlate directly with storm intensity and frequency.  Further, we hypothesized that radiometer-retrieved CLW, peak 

ZH and DFR, and abundance of ZH observations ≥ 30 dBZ in a given scene would all increase under higher aerosol 196 

concentrations within an environmental group.  These hypotheses were based on expectations that increased aerosol 

concentrations would favor development of smaller and more-numerous cloud droplets, enhancing convection and 198 

CLW, while the presence of fewer but larger raindrops would increase maximum ZH and overall presence of ZH ≥ 30 

dBZ along with greater Ka-band attenuation compared to Ku band (i.e., increased maximum DFR).  Further, we 200 

hypothesized that radar- and radiometer-based metrics of storm intensity and prevalence would all increase under 

greater 700-hPa w, CAPE, K-Index, LRs, and low-level Td, though this investigation is secondary to our aerosol 202 

analyses in this study.  Expectations for LCL altitude were more uncertain; some studies (e.g., Mulholland et al., 

2021While) have discussed the tendency for higher LCL altitude to favor stronger updrafts, but other studies (e.g., 204 
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Grabowski, 2023) have presented alternate explanations, and greater low-level water vapor content would be 

associated with a lower LCL altitude.  Thus, the influence of LCL altitude on convective intensity is still debated in 206 

the literature.  Given the environmental stratification methods employed, as discussed in the next section, our focus 

was primarily on the correlations between convective and aerosol metrics and secondarily on the convective patterns 208 

associated with environmental variations, as mentioned previously.  However, in each of these analyses, it is essential 

to note that correlation does not necessarily indicate causality, as a correlation between two variables may exist entirely 210 

due to indirect effects (e.g., Kretschmer et al., 2017).  In addition, it must be acknowledged that these radar- and 

radiometer-based metrics of convective intensity may vary due to factors not specifically owing to changes in peak 212 

updraft intensity (e.g., cloud microphysics; e.g., Varble et al., 2023).  Despite these and other inherent difficulties, 

limitations, and uncertainties associated with separating aerosol and environmental influences on convection are 214 

acknowledged (e.g., Grabowski, 2018), potential trends found in the CAMP2Ex dataset could provide useful 

information to support future work.  Section 2 covers the data and methods used, with Sects. 3 and 4 highlighting 216 

environmental stratification and aerosol analyses from the microwave-frequency datasets.  Section 5 presents a 

summary, discussion of limitations, and future work. 218 

 

2. Data and analysis methods 

All AMPR, APR-3, AVAPS, and HSRL2 data were gathered from the CAMP2Ex data repository (Aknan and Chen, 220 

2020).  Due to the direct correlations between CCN concentration and lidar extinction, backscatter, and AOT, all three 

parameters were analyzed from HSRL2’s 355- and 532-nm channels that employ the HSRL2 technique, though 532-222 

nm backscatter was of particular interest based on discussions in Lenhardt et al.., (2022).  The same quality control 

(QC) processes outlined in Amiot (2023) for the AMPR, APR-3, and AVAPS data were applied for this study, 224 

including application of AMPR’s multiple data quality flags and removal of the same 10 APR-3 files and 10 AVAPS 

dropsondes.  Starting with the initial 144 dropsondes examined in Amiot (2023), a test was performed to determine 226 

whether each dropsonde passed through cloud.  Given the 3% uncertainty in AVAPS RH (Freeman et al., 2020), any 

dropsonde where more than 20% of the dropsonde profile was associated with RH > 97% was removed from the 228 

analysis, which amounted to five dropsondes in total.  The HSRL2 data were screened for clouds (Hostetler, 2020) to 

avoid potential contamination of the aerosol analyses (e.g., Liu et al., 2016).  Uncertainty values associated with each 230 

instrument were deemed negligible for this study.  More specifically, AMPR’s root-mean-square deviation and median 

absolute deviation are both on the order of 10-2 kg m-2 (Amiot, 2023) and AMPR’s noise-equivalent differential 232 

temperature (NEDT) is 0.5–1.0 K (Amiot et al., 2021).  APR-3’s Ku-band (Ka-band) calibration uncertainty is roughly 

1 dB (1.5 dB) (Durden et al., 2020).  The uncertainties in AVAPS’s temperature, relative humidity, and pressure 234 

measurements are 0.2 °C, 3%, and 0.5 hPa, respectively (Freeman et al., 2020).  Systematic errors for HSRL2 are 

approximately 4.7% (5.0%) for the 355-nm (532-nm) channel (Burton et al, 2015).  Nine environmental parameters 236 

with known physical connections to convective intensity were subjectively chosen for this study based on their ability 

to be fully captured by a statistically significant number of CAMP2Ex dropsondes; future work would benefit from 238 

examining other environmental conditions.  The nine selected parameters were: 700-hPa w; modified CAPE; LCL 
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altitude; K-Index; 850–700-, 850–500-, and 700–500-hPa LRs; mean Td below the 925-hPa level; and mean Td below 240 

1 km AGL, hereafter referred to by their symbols in Table 1. 

 242 

A significant challenge in evaluating aerosol impacts on convection is to isolate aerosol influences from other sources 

of convection modulation, such as atmospheric dynamics, thermodynamics, and cloud microphysical processes (e.g., 244 

Liu et al., 2016; Grabowski 2018).  Since a given convective plume will be affected by synoptic-scale (> 2000 km), 

mesoscale (2–2000 km), and sub-mesoscale (< 2 km) dynamics (Orlanski, 1975) and environmental conditions, it is 246 

important to understand and constrain environmental conditions associated with any convective element (herein 

“storm”) of interest.  Several environmental factors with direct physical connections to convection can be evaluated 248 

from remote-sensing and in situ observation platforms.  Studies have demonstrated the utility of radiosonde data, the  

Table 1: List of symbols used to represent the environmental, convective, and aerosol variables examined in 250 

this study, along with their units and a brief description of each variable. 

Symbol Units Type Description 

w700 m s-1 Environmental Vertical velocity at 700-hPa level 

NCAPEmod m s-2 Environmental Modified Normalized Convective Available Potential Energy 

LCL m Environmental Lifting Condensation Level altitude 

K-Index °C Environmental K-Index value 

LR850-700 °C km-1 Environmental Temperature lapse rate between 850- and 700-hPa levels 

LR850-500 °C km-1 Environmental Temperature lapse rate between 850- and 500-hPa levels 

LR700-500 °C km-1 Environmental Temperature lapse rate between 700- and 500-hPa levels 

Td,press °C Environmental Mean dew point temperature below 925-hPa level 

Td,alt °C Environmental Mean dew point temperature below 1 km AGL 

CLW kg m-2 Convective AMPR-derived columnar cloud liquid water path 

PCT10 K Convective AMPR 10.7-GHz polarization-corrected temperature 

PCT19 K Convective AMPR 19.35-GHz polarization-corrected temperature 

PCT37 K Convective AMPR 37.1-GHz polarization-corrected temperature 

PCT85 K Convective AMPR 85.5-GHz polarization-corrected temperature 

Z95,Ku dBZ Convective APR-3 Ku-band 95th percentile composite reflectivity 

PixelsKu unitless Convective APR-3 Ku-band composite reflectivity pixels ≥ 30 dBZ 

DFR unitless Convective APR-3 Ku-/Ka-band dual-frequency ratio 

AOT355 unitless Aerosol HSRL2 355-nm aerosol optical thickness 

AOT532 unitless Aerosol HSRL2 532-nm aerosol optical thickness 

Ext355 Mm-1 Aerosol HSRL2 355-nm aerosol extinction 

Ext532 Mm-1 Aerosol HSRL2 532-nm aerosol extinction 

Bsc355 Mm-1 sr-1 Aerosol HSRL2 355-nm aerosol backscatter 

Bsc532 Mm-1 sr-1 Aerosol HSRL2 532-nm aerosol backscatter 

 

principles of which can be applied to dropsondes (e.g., AVAPS) to the extent offered by the dropsonde’s launch 252 

altitude.  Vertical velocity (w) at the 700-hPa level can be used to diagnose vertical motion and associated convective 

Formatted: Don't suppress line numbers
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support (Bony et al., 2004; Liu et al., 2016).  Convective Available Potential Energy (CAPE), a measure of parcel 254 

buoyancy that is used to diagnose potential updraft velocity, is defined via 

 CAPE ൫J kg-1
൯ = g න

൫Tvି Tv,0൯

Tv,0

zel

zlfc

 dz, (1) 256 

where g is gravitational acceleration; Tv and Tv,0 are parcel and environmental virtual temperatures, respectively; z is 

altitude; and zlfc and zel altitudes of the level of free convection and equilibrium level, respectively (Markowski and 258 

Richardson, 2010). 

 

The Lifting Condensation Level (LCL) altitude indicates cloud-base height and is often used in forecasting convection 260 

(Markowski and Richardson, 2010), though the exact role of LCL altitude on convective intensity is debated in the 

literature (e.g., Mulholland et al., 2021; Grabowski, 2023).  K-Index is used to forecast convective potential/prevalence 262 

(i.e., not intensity) and is defined as 

 K-Index(°C) =  (T850 −  T500) +  Td,850 −  ൫T700 −  Td,700൯ (2) 264 

where T850, T700, and T500 are temperatures at the 850-, 700-, and 500-hPa levels, respectively, and Td,850 and Td,700 are 

dew point temperatures at the 850- and 700-hPa levels, respectively (George, 1960).  From Eq. (2), K-Index considers: 266 

1) low-to-mid-level temperature lapse rate (hereafter simply “lapse rate”, LR), 2) low-level dew point temperature 

(Td), and 3) mid-level Td depression, with the former two (latter one) being directly (inversely) related to convective 268 

potential.  In addition to 850–500-hPa, 700–500-hPa LR may serve as an excellent indicator of convective potential 

(e.g., Sherburn and Parker, 2014).  Others (e.g., Wang et al., 2015) have used 850–700-hPa LR in forecasting 270 

convective potential due to its association with parcel vertical acceleration in the lower atmosphere.  Lastly, low-level 

Td is important for convective intensity (“intensity” referring to peak updraft velocity) due to entrainment of relatively 272 

high-water-vapor air into an updraft’s base (e.g., Lucas et al., 2000). 

 

We utilize microwave remote-sensing signatures from radar and radiometer to evaluate convective intensity and 274 

prevalence.  The 30-dBZ ZH isoline has often been used to identify precipitation regions (e.g., Straka et al., 2000) and 

delineate between different “storms” or “cells” (e.g., Johnson et al., 1998; Hastings and Richardson, 2016; Amiot et 276 

al., 2019).  As precipitation-sized hydrometeors form and grow, ZH increases due to hydrometeor diameter (D) 

weighting of D6 associated with Rayleigh scattering, with eventual onset of non-Rayleigh resonance effects for larger 278 

values of D relative to the radar wavelength (Rinehart, 2010).  This is especially important to note at finer wavelengths, 

such as 2.2 and 0.84 cm associated with the Airborne Precipitation and cloud Radar 3rd generation (APR-3)’s Ku and 280 

Ka bands, respectively (Durden et al., 2020), the primary radar dataset used herein.  A combination of Ku- and Ka-

band radar can be powerful when evaluated using dual-frequency ratio (DFR): 282 

 DFR = ZKu − ZKa, (3) 

where ZKu and ZKa represent ZH at Ku- and Ka-band, respectively, on a logarithmic scale (i.e., expressed in dBZ) (e.g., 284 

Liao et al., 2008; Liao and Meneghini, 2011).  In regions where ZKu and ZKa are both similar (e.g., near 0 dBZ for 

hydrometeors that are in the Rayleigh scattering regime at both frequencies), DFR will be near zero; however, 286 

departures in DFR from 0 dBZ can indicate differences in attenuation between the two frequencies and can be used to 
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infer hydrometeor size and phase (e.g., Liao and Meneghini, 2011).  As Ku-band ZH increases, the DFR in rain regions 288 

generally becomes slightly negative (i.e., -1–0) before increasing to positive values for ZH > 30 dBZ; in regions of ice 

hydrometeors, DFR generally increases with increasing Ku-band ZH, with a steeper increase occurring for lower-290 

density ice hydrometeors (Liao and Meneghini, 2011). 

 

Microwave radiometers generally retrieve higher brightness temperature (Tb) values at increasingly lower frequencies 292 

as precipitation hydrometeors grow in the absence of ice formation aloft (e.g., Spencer et al., 1994).  This makes it 

possible to retrieve cloud and precipitation properties using Tb combinations (e.g., Wilheit and Chang, 1980; Wentz 294 

and Spencer, 1998; Hong and Shin, 2013; Amiot et al., 2021).  AMPR’s integrated cloud liquid water path (CLW) 

retrievals often fail within precipitation regions; thus, as a cloud grows vertically, AMPR-derived CLW is expected 296 

to increase until it fails in moderate-to-heavy precipitation (Amiot et al., 2021; Amiot, 2023).  However, CLW 

increasing around precipitation may yield useful information about the associated convective intensity; for example, 298 

precipitation is often associated with cumulus clouds at least 1.5–2 km tall (Smalley and Rapp, 2020) and CLW > 1 

kg m-2 may indicate precipitation formation within these clouds (e.g., Jiang and Zipser, 2006). 300 

 

Vertical ascent is a parameter included within the AVAPS dataset (Vömel et al., 2020) and is based on the fall-speed 

characteristics of the dropsonde (Freeman et al., 2020).  The ascent value from the pressure array element nearest 700 302 

hPa was used as w700.  Since CAPE is related to integrated buoyancy between the LFC and EL via Eq. (1), an issue 

arises with computing CAPE from AVAPS during CAMP2Ex; since the P-3 did not fly above the EL during any 304 

science flight (SF), the dropsondes did not capture the full vertical buoyancy profile associated with traditional CAPE.  

As such, the term “modified CAPE” is used herein and is defined mathematically as  306 

 CAPECAPEmod ൫J kg-1
൯ = g න

൫Tvି Tv,0൯

Tv,0

zP3

zlfc

 dz, (4) 

where zP3 is the P-3 altitude and all other terms are the same as in Eq. (1).  With this definition, modified CAPE would 308 

likely be less than true CAPE within the same environment, which limits evaluation of parcel buoyancy.  However, 

sinceSince the dropsondes were often launched when the P-3 altitude was > 4 km AGL (Vömel et al., 2020), the 310 

instability indicated by modified CAPE can be compared across the environments.  Despite this, P-3 altitude would 

have a direct effect on modified CAPE calculated via Eq. (4), with lower altitude (e.g., around 4 km AGL) biased 312 

toward lower modified CAPE by virtue of the dropsonde capturing a lesser vertical extent of the parcel buoyancy.  All 

CAPE values were calculated using the “mixed_layer_cape_cin” function within Python’s MetPy package (May et 314 

al., 2022).To mitigate this effect, we normalized the CAPE via dividing by the dropsonde launch altitude, which yields 

(modified) normalized CAPE (Blanchard, 1998) via the relation 316 

 

LCL altitude in each dropsonde was calculated using the “calc.lcl” function within Python’s MetPy package (May et 

al., 2022).  In contrast, the  NCAPEmod (m s-2) = 
CAPEmod

z
, (5) 318 

where z is dropsonde launch altitude.  In addition to normalizing the CAPE profiles by dropsonde launch altitude, an 

added benefit of examining NCAPEmod is that its units are m s-2, allowing direct examination of vertical acceleration 320 
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over the dropsonde layer (Blanchard, 1998).  All CAPE and LCL values were calculated using functions within the 

Python programming language (i.e., May et al., 2022) as noted in the data availability statement. 322 

 

K-Index was calculated semi-manually by identifying the pressure array elements nearest the 850-, 700-, and 500-hPa 

levels, extracting the associated T and/or Td values from these elements, and utilizing Eq. (2).  In a similar manner, 324 

the temperature and altitude values from array elements nearest the 850-, 700-, and 500-hPa levels were used to 

calculate LR850-700, LR850-500, and LR700-500 as 326 

 LR൫°C km-1
൯ =  −

൫Tupperି Tlower൯

൫zupperି zlower൯
, (56) 

where LR is lapse rate, Tupper and Tlower are temperatures at the higher and lower altitudes, respectively, and zupper and 328 

zlower are the higher and lower altitudes, respectively.  Lastly, mean low-level Td values were calculated by finding 

array elements where 1) pressure was > 925 hPa, or 2) altitude was < 1 km AGL, and calculating mean Td from the 330 

associated array elements. 

Table 1: List of symbols used to represent the environmental, convective, and aerosol variables examined in 332 

this study, along with a brief description of each variable. 

Symbol Type Description 

w700 Environmental Vertical velocity at 700-hPa level 

CAPE Environmental Modified Convective Available Potential Energy 

LCL Environmental Lifting Condensation Level altitude 

K-Index Environmental K-Index value 

LR850-700 Environmental Temperature lapse rate between 850- and 700-hPa levels 

LR850-500 Environmental Temperature lapse rate between 850- and 500-hPa levels 

LR700-500 Environmental Temperature lapse rate between 700- and 500-hPa levels 

Td,press Environmental Mean dew point temperature below 925-hPa level 

Td,alt Environmental Mean dew point temperature below 1 km AGL 

CLW Convective AMPR-derived columnar cloud liquid water path 

PCT10 Convective AMPR 10.7-GHz polarization-corrected temperature 

PCT19 Convective AMPR 19.35-GHz polarization-corrected temperature 

PCT37 Convective AMPR 37.1-GHz polarization-corrected temperature 

PCT85 Convective AMPR 85.5-GHz polarization-corrected temperature 

Zmax,Ku Convective APR-3 Ku-band maximum composite reflectivity 

PixelsKu Convective APR-3 Ku-band composite reflectivity pixels ≥ 30 dBZ 

DFR Convective APR-3 Ku-/Ka-band dual-frequency ratio 

AOT355 Aerosol HSRL2 355-nm aerosol optical thickness 

AOT532 Aerosol HSRL2 532-nm aerosol optical thickness 

Ext355 Aerosol HSRL2 355-nm aerosol extinction 

Ext532 Aerosol HSRL2 532-nm aerosol extinction 

Bsc355 Aerosol HSRL2 355-nm aerosol backscatter 

Bsc532 Aerosol HSRL2 532-nm aerosol backscatter 
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Once the above parameters were calculated from each dropsonde throughout CAMP2Ex SFs 05–19, they were 334 

matched spatiotemporally with AMPR and APR-3 data.  Since APR-3 has the highest temporal resolution of the data 

used herein (i.e., approximately 2 seconds per scan), the start and end times associated with each APR-3 flight-segment 336 

dataset were extracted.  Each dropsonde was associated with a single APR-3 file based on which start/end times 

bracketed the dropsonde’s launch time; for these 144 APR-3 files, the associated start and end times were used to 338 

define the “scene” times discussed below.  As a result, the duration of each “scene” varied, with most scenes spanning 

2–12 minutes (Fig. 1).  The AMPR and HSRL2 scans nearest the start and end times of each APR-3 fileAMPR was 340 

inoperable during SF 01 and had un-optimized settings for its gain and offset values during SFs 02–04 (Lang et al., 

2021), resulting in the exclusion of SFs 01–04 at the outset of our study.  A “scene” was then established for each 342 

dropsonde, defined herein using a standard duration of 10 minutes  calculated as ±5 minutes from the dropsonde 

launch time.  To account for situations where remote-sensing data collection began shortly before or after the start 344 

and/or end time of a given scene (e.g., P-3 was turning at the calculated start or end time), a grace of ±1 minute was 

allowed for the total scene duration, yielding a 10% uncertainty in scene duration.  Scenes where the calculated 346 

duration was < 9 or > 11 minutes were masked from the analysis, which amounted to 47 dropsondes in total.  Out of 

the 144 initial dropsondes, five were removed due to the aforementioned RH analysis, and the removal of these 47 348 

additional dropsondes yielded total of 92 dropsondes retained for our study.  The AMPR, APR-3, and HSRL2 scans 

nearest the start and end times of each scene were noted, and all AMPR, APR-3, and HSRL2 data were examined over 350 

the same approximate time period within each scene.  Nine; an example of these data in a single scene is provided in 

Fig. 1.  Eight remote-sensing parameters related to convective intensity and/or frequencyprevalence were calculated 352 

in each scene: maximum95th percentile (p95) of AMPR CLW; maximump95 of AMPR polarization-corrected 

temperature (PCT) at 10.7, 19.35, 37.1, and 85.5 GHz; maximump95 of APR-3 Ku-band composite ZH and DFR, and 354 

number of APR-3 Ku-band composite ZH pixels ≥ 30 dBZ, hereafter referred to by their symbols in Table 1.  

MaximumThe p95 values were used for the former seven parameters 356 

 

Figure 1: Bar plot of APR-3 scene durations during CAMP2Ex SFs 06–19.  SF 05 is excluded due to lack of Ku- 
and Ka-band APR-3 data available after applying the QC methods. 358 

 

due to their direct association with peak convective intensity (e.g., increased raindrop size and radar reflectivity with 

stronger updraft, all else being equal; e.g., Kollias et al., 2001), with the 95th percentile employed to avoid potential 360 

Formatted: Font: Not Bold
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outlier values associated with maximum values.  Ku-band was used for the composite ZH analyses given its reduced 

attenuation compared to a Ka-band signal over the same distance and atmospheric conditions (i.e., all else being 362 

equal).  To calculate composite ZH, the data QC described in Amiot (2023) was applied to all 25 APR-3 scan angles 

in each scene.  Within each column of QC’d APR-3 data across SFs 05–19, the maximum ZH between the P-3 altitude 364 

and the surface was used as the composite ZH.  The presence of occasional residual near-surface range-/sidelobe effects 

at off-nadir scan angles was noted, which often manifested as very high composite ZH (i.e., > 70 dBZ).  As a basic 366 

restriction, all composite ZH pixels > 70 dBZ were excluded from our analyses, but some erroneous pixels may still 

reside in the final dataset (e.g., isolated cases with some noisy pixels and/or near-surface range-/sidelobe effects with 368 

ZH < 70 dBZ).  Once all composite ZH values were calculated, ZmaxZ95,Ku, DFR, and PixelsKu were recorded in each 

scene.  AMPR PCT values were calculated following the methods of Cecil and Chronis (2018), with their methods 370 

for 89.0-GHz data applied directly to AMPR’s 85.5-GHz data.  The maximump95 PCT in each AMPR channel was 

recorded along with the maximump95 of retrieved AMPR CLW in each scene. 372 

 

To begin isolating potential aerosol influences on tropical convection, two steps were employed: 1) bin the 

environmental scenes into different groups based on a particular AVAPS parameter and magnitude, and 2) incorporate 374 

HSRL2 data into this analysis.  The nine AVAPS parameters listed in Table 1 were employed.  To stratify each 

environment, a single AVAPS parameter was separated into “low,” “medium,” and “high” values, and each scene was 376 

grouped into one of these categories based on the associated dropsonde’s values.  Within each environmental bin, the  
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Figure 1: Strip charts (i.e., top-view time series) of AMPR CLW (top) and APR-3 Ku-band composite ZH 378 

(second from top) along with a time-height plot of HSRL2 532-nm backscatter (second from bottom) from 
approximately 2354–0004 UTC during SF 09, which cover the “scene” associated with the dropsonde 380 

shown in the bottom panel.  The dropsonde was launched at 2359:50 UTC.  All AMPR data flags have 
been applied in the top panel.  Red shading in the bottom panel indicates CAPE, while solid red, green, 382 

and black lines denote temperature, dew point temperature, and parcel temperature, respectively. 
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eight convective parameters were compared against mean values of the six HSRL2 parameters (Table 1) from each 384 

scene.  The main statistics examined were: Pearson correlation coefficients, the number of data points used in each 

comparison, and the statistical significance, primarily based on whether the p-value associated with the Pearson 386 

correlation coefficient was < 0.01 (e.g., Wilks, 2011).  A few subjectively selected correlations were examined in 

greater detail using scatterplots, wherein it should be noted that the exact number of data points varied from plot-to-388 

plot due to variations in missing data (e.g., dropsonde launched below the 500-hPa level for any parameters that use 

500-hPa data).  In addition, several scenes contained no unmasked APR-3 and/or AMPR data, resulting in their 390 

exclusion from the comparisons. 

 

Lastly, the exact values used to stratify each environmental condition were varied in a sensitivity test consisting of 392 

four different sets of thresholds for each parameter (Table 2).  The methods used to stratify the environmental 

parameters in Tests 1–4 were, respectively, as follows: 394 

1) Create campaign-wide histograms of the AVAPS parameter and visually identify approximate values that 

split the dataset into three roughly equal-sized groups. 396 

2) Use Python’s “numpy.percentile” function (Harris et al., 2020) to objectivelyObjectively select thresholds 

that split each parameter’s dataset into three equal-sized groups. (see the Data Availability statement). 398 

3) Manually select thresholds that fall between the low-medium and medium-high thresholds previously 

identified in Tests 1 and 2. 400 

4) Use Python’s “numpy.percentile” function to objectivelyObjectively select thresholds that split each 

parameter’s dataset into three groups where the “low” and “high” categories each contain 25% of the data 402 

and the “medium” category contains 50% of the data (i.e., “medium” datasets that were approximately twice 

as large as the “low” and “high” datasets). 404 

For brevity, only results from Test 2 are shown herein, but results from all four tests can be found in supplemental 

material.  Test 2 is highlighted due to its objective stratification into roughly equal-sized groups using np.percentile. 406 

 

3. AMPR results 

This section presents the results of comparing the AMPR-based convective parameters with HSRL2 data within 408 

environmental bins established using the nine AVAPS parameters.  Correlation tables are used to provide complete 

descriptions of the observed correlations, with more in-depth discussions and analyses performed for some 410 

subjectively selected correlations that were statistically significant and/or potentially most impactful.  A brief 

description of the sensitivity test results for environmental stratification is provided for each parameter, and all 412 

associated correlation tables from these sensitivity tests can be found in supplemental material. 

 

AMPR’s CLW comparisons with HSRL2 in the stratified environments are summarized in Fig. 2.  From Fig. 2, 414 

mostmany Pearson correlation coefficients between the aerosol parameters and CLW were relatively lownegative and 
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yielded a high (i.e., > 0.05) p-value, regardless of environmental stratification, indicating generally weak correlations 416 

with limited statistical significance., especially when comparing CLW with AOT and Ext at either HSRL2 wavelength.  

This result was unexpected but, as will be elaborated upon further in this section, might have been largelywas primarily 418 

due to the tendency for AMPR’s CLW retrievals to fail inmasking of precipitation regions of heavy rainfall.for AMPR 

CLW.  Due to the CLW retrieval method not accounting for precipitation, regions wherein high CLW would be 420 

expected in association with heavy precipitation could easily appear as a region of failed retrieval (Amiot et al., 2021).  

However, clouds were screened from the HSRL2 data, so this behavior warrants further investigation.  A similar trend 422 

across the HSRL2 parameters and environmental bins, albeit with different correlation values and changes in their 

statistical significances, was observed across the sensitivity tests performed (supplemental material). 424 

 

Table 2: List of the four sensitivity tests that were performed to stratify the nine AVAPS parameters into “low,” 426 

“medium,” and “high” bins.  The listed values in each bracket represent the inclusive range of the “medium” 
bin for the respective parameter and test; that is, values less (greater) than the lower (upper) limit were 428 

classified into the “low” (“high”) bin.  “np” is an abbreviation for NumPy (Harris et al., 2020). 
 

AVAPS 
parameters 

Test 1: Visual 
histogram analysis 

Test 2: 
np.percentileObjective 

split 0.33-0.33-0.33 

Test 3: Manual selection 
between Tests 1 and 2 

Test 4: 
np.percentileObjective 

split 0.25-0.50-0.25 
Td,alt [21.0, 22.5] °C [21.72, 22.4] °C [21.35, 22.45] °C [21.52, 22.59] °C 

Td,press [22.0, 23.0] °C [22.62, 23.2] °C [22.3, 23.1] °C [22.34, 23.39] °C 
LR700-500 [5.5, 6.0] °C km-1 [5.52, 5.9] °C km-1 [5.51, 5.95]°C km-1 [5.39, 6.01] °C km-1 
LR850-500 [5.0, 5.5] °C km-1 [5.18, 5.43] °C km-1 [5.1, 5.47] °C km-1 [5.12, 5.46] °C km-1 
LR850-700 [4.5, 5.5] °C km-1 [4.25, 4.98] °C km-1 [4.35, 5.25] °C km-1 [4.06, 5.11] °C km-1 
K-Index [30, 35] °C [31.08, 35.61] °C [30.5, 35.3] °C [30.07, 36.59] °C 

LCL [400, 550] m [404.1, 480.28] m [402, 525] m [369.36, 509.86] m 
CAPENCA

PEmod 
[200, 400] J kg-

1[0.04, 0.06] m s-2 
[144.96, 291.65] J kg-

1[0.03, 0.05] m s-2 
[175, 350] J kg-1[0.035, 

0.055] m s-2 
[100.36, 321.48] J kg-

1[0.02, 0.06] m s-2 
w700 [-0.25, 0.25] m s-1 [-0.17, 0.06] m s-1 [-0.20, 0.15] m s-1 [-0.29, 0.12] m s-1 

 

CLW would be expected in association with heavy precipitation could easily appear as a region of failed retrieval or 430 

may return a high CLW value with an unknown uncertainty (Amiot et al., 2021).  For this reason, precipitation was 

masked for the AMPR CLW retrievals.  A similar trend across the HSRL2 parameters and environmental bins, albeit 432 

with different correlation values and changes in their statistical significances, was observed across the sensitivity tests 

performed (supplemental material). 434 

 

To gain a more in-depth look at some correlations in Fig. 2, scatterplots were produced of CLW versus Bsc532 

(AOT532)AOT355 when binned by K-Index, as shown in the upper-left (upper-right) panel of Fig. 3.NCAPEmod (Fig. 436 

3a) and CLW versus Bsc532 when binned by LR850-700 (Fig. 3b).  These correlations were selected for scatterplot 

analysis based on their statistical significance in the CLW comparison with AOT532 when binned by K-Index (Fig. 438 

Fig. 2), with Bsc532 providing another while also presenting CLW comparisons with two different aerosol comparison 

under similarparameters and using two different environmental conditionsparameters for the binning.  From Fig. 3, a 440 

strong positive correlation of 0.64 3a, negative correlations can be seen between CLW and AOT532 in association with 

AOT355 for each of the environmental bins, though the negative correlations are most pronounced (and most 442 
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statistically significant) within the medium K-Index values, while the  correlations were considerably lower for low 

and high K-Index and high NCAPEmod groups.  The values.  That the medium K-Index bin stood out with statistical 444 

significance, while the low and high bins of AOT355 are relatively low (< 0.5) for the entire analysis, which limits 

variability in the aerosol concentrations, but we will discuss the trends relative to the AOT355 values present.  A notable 446 

feature in Fig. 3a is the clustering of data points around CLW = 0 kg m-2, which suggests that several of the scenes 

examined either did not, is interesting, especially since a similar trend was not as prevalent contain clouds or they 448 

were masked from the analyses; these trends will be seen in other aerosol comparisons (e.g., the scatterplot with Bsc532 

in Fig. 3) using the same environmental constraints.  A majority of comparisons discussed for the AMPR and APR-3 450 

convective metrics in this section and section 4.  The clustering of these data points around CLW = 0 kg m-2 as AOT355 

increases seems to have contributed to the negative correlations for each environmental group.  It should also be noted 452 

that CLW values > 1 kg m-2 were associated with medium or high K-Index values in both scatterplots in the upper 

row of Fig. 3.  This CLW value are excluded from Fig. 3a; a CLW threshold of 1 kg m-2 has been used in prior studies 454 

(e.g., Jiang and Zipser, 2006) to separate precipitating and non-precipitating clouds, which suggests that some light-

to-moderate precipitation may have influenced the CLW retrievals in these cases, which coincides with an expected 456 

increased in the abundance of indicating that precipitation scenes were largely successfully masked from Fig. 3a.  If 

precipitating clouds in associated with scenes were indeed masked under the presence of higher K-Index values 458 

(George, 1960).  The narrower spread of the medium K-Index values around this 1 kg m-2 CLW value in the upper-

right plot of Fig. 3 likely manifested as the stronger correlation coefficient.  AsAOT355 and higher NCAPEmod (i.e., 460 

the clustering of these data points above an AOT355 of 0.2), it would suggest that convection was strong enough to 

produce precipitation under higher aerosol concentrations and higher NCAPEmod; however, this is speculative and 462 

cannot be determined from Fig. 3a alone, but this idea will be revisited throughout sections 3 and 4.  Additionally, as 

will be referred throughout these discussions, a relatively limited sample size was present for several of the 464 

comparisons/scatterplots, and all cases examined in this study would benefit greatly from a larger sample.  Despite 

this, the statistical significance between CLW and AOT532 is potentially impactful, as the positive correlation matches 466 

the hypothesis that increased aerosol concentration would generally lead to higher CLW by providing more CCN and 

favoring the development of deeper convection due to latent heat of condensation. 468 

 

Further examining the upper-right scatterplot in Fig. 3, it is interesting that several data points with CLW > 1 kg m-2 470 

were associated with an AOT of 0.04–0.08.  Across the range of values observed in Fig. 3’s upper-right plot, this 

would be a “medium” aerosol concentration.  This is interesting and potentially impactful as it suggests the importance 472 

of the “Goldilocks” zone of medium aerosol concentration, where precipitation began to form in these clouds under 
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Figure 2: Pearson correlation coefficients from comparing maximump95 AMPR CLW with mean HSRL2 474 

AOT, extinction (Ext), and backscatter (Bsc) at 355 and 532 nm (top and bottom borders) within environmental 
bins stratified by the nine AVAPS parameters (left border) at low (L), medium (M), and high (H) magnitudes 476 

(right border) across the CAMP2Ex scenes.  AVAPS magnitudes were stratified using the values of Test 2 (Table 
2). Within each cell, the listed value is the Pearson correlation coefficient and the parenthesized value indicates 478 

the number of data points used in the comparison.  Cells with a Pearson correlation coefficient ≥ 0.70 contain 
bolded text.  Reds (blues) represent positive (negative) Pearson correlation coefficients, and the color shading 480 

corresponds to the magnitude of the p-value according to the colorbar, with darker shades of each color 
associated with lower p-values (i.e., greater statistical significance).  Color shading begins to increase 482 

substantially around a p-value of 0.05 and reaches a maximum for p-values around 0.01. 
 

a relatively limited sample size was present for several of the comparisons/scatterplots, and all cases examined in this 484 

study would benefit greatly from a larger sample.  the presence of medium aerosol concentration.  This trend is not as 

pronounced in the upper-left plot of Fig. 3 and warrants further investigation, but it demonstrates the potential for 486 

medium aerosol concentrations to exert an impactful influence on the development of convection and precipitation, 
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especially under favorable environmental conditions (i.e., medium or high K-Index values in the majority of cases 488 

observed in the upper-right plot of Fig. 3). 

Despite this, the statistical significance between CLW and AOT355 is potentially impactful and warrants further 490 

investigation. 

 

 

 

a) b)
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Figure 3: Scatterplots of maximump95 CLW (top row) and p95 PCT19 (bottom row) compared with mean 492 

values of the HSRL2 parameter listed in the title and y-axis of each plot within environmental bins stratified 
using the AVAPS parameter listed in the title of the corresponding plot.  AVAPS threshold values were from 494 

Test 2 (Table 2).  In all plots, blue triangles, green circles, and black squares correspond to data points 
associated with low, medium, and high magnitudes, respectively, of the associated AVAPS parameter.  Please 496 

note that the ranges of the x- and y-axes are not constant among the scatterplots shown. 
 

Despite impacts of moderate-to-heavy precipitation on CLW retrievalsMoving on to Fig. 3b, a similar trend as Fig. 3a 498 

can be seen, where there is a considerable clustering of datapoints around CLW = 0 kg m-2, including for several of 

the highest Bsc532 values (i.e., > 2 Mm-1 sr-1).  This further raises the question of cloud-free versus cloud-masked 500 

scenes, which will be explored more in this section and the next.  It was interesting to see that the highest CLW values 

c) d)



 

22 
 

(e.g., > 0.5 kg m-2) were associated with some of the lowest aerosol concentrations and low-to-medium LR850-700 502 

values, both of which are the opposite of our hypotheses.  As noted previously, the lack of precipitation in the QC’d 

AMPR data likely contributed to these unexpected trends.  The statistical significance of the high LR850-700 group 504 

seems to have been impacted by the data points with Bsc532 < 1 Mm-1 sr-1 and AMPR CLW between 0.25–0.75 kg m-

2.  Because of these data clusters and masking, it is difficult to discern some of the convective-aerosol correlations in 506 

Fig. 3b, but it is apparent that, within the precipitation-masked AMPR data, aerosol concentration is not directly 

correlated with the convective metric.  However, the statistical significance is worthy of additional examination as 508 

part of future work. 

 

To look into regions where AMPR’s CLW retrievals were masked in and around precipitation, AMPR Tb values can 510 

be used to obtain PCTs in these regions.  Correlation coefficients between AMPR’s 19.35-GHz PCT and the HSRL2 

parameters are shown in Fig. 4.  For brevity, only PCT19 is detailed herein given its sensitivity to clouds and 512 

precipitation, with additional PCT results presented in supplemental material.  From Fig. 4, more widespread positive 

and statistically significant4 the correlation coefficient magnitudes were considerably lower than the AMPR CLW 514 

analysis but some positive correlations were present, including ones with statistical significance.  This illustrates the 

benefits of examining PCT in regions of precipitation as opposed to solely relying on the CLW retrievals.  To examine 516 

some of the correlations with greatest positive statistical significance in more detail, we have produced scatterplots of 

PCT19 versus Bsc355 when binned by LCL (Fig. 3c) and PCT19 versus Bsc355 when binned by LR850-500 (Fig. 3d). 518 
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When examining the PCT19 values in Fig. 3c, many data points are are < 200 K, which indicates a relative lack of 

considerable precipitation in those scenes (Amiot et al., 2021; Amiot 2023); however, several data points with PCT19 520 

> 200 K can be seen in Fig. 3c, including values > 260 K, which indicates that PCT19 is indeed capturing precipitation.  

There is considerable clustering of the data between a PCT19 of 185–200 K and Bsc355 of 0–7.5 Mm-1 sr-1, suggesting 522 

the presence of several instances of clouds that were generally not precipitating.  The association of the highest PCT19 

values with relatively low aerosol concentrations (i.e., < 4 Mm-1 sr-1 in this case) within the low and medium LCL 524 

groups, combined with the clustering of data points mentioned previously, seems to have caused the extremely low 

correlation values for these low and medium groups.  It appears that the high LCL correlation was sensitive to the 526 

three outlier values with PCT19 > 220 K and Bsc355 > 5 Mm-1 sr-1, which contributed to its high value; however, the 

fact that this correlation was found to have statistical significance indicates that it is worthy of further examination.  528 

In general, increased aerosol concentration was not strongly associated with enhanced convection in Fig. 3c.  However,  

it is noteworthy that over half of the data points with PCT19 > 240 K were associated with a low LCL; this would 530 
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indicate a relatively high amount of low-level water vapor content, wherein warm-phase convective invigoration may 

take place (e.g., Grabowski and Morrison, 2020); however, there are only nine data points with PCT19 > 240 K and 532 

the aerosol concentrations are relatively low, so this potential connection needs further analysis. 

 

The impact of a reduced dataset size can be seen to an even greater degree in Fig. 3d, which contains far fewer data 534 

points compared to Fig. 3c due to LR850-500 requiring data from the 500-hPa level.  Despite this, a statistically 

significant positive correlation was found between the aerosol and convective metrics, but it was unexpected that this  536 

 

Figure 4: As in Fig. 2 but using maximump95 AMPR 19.35-GHz PCT as the convective parameter. 
 

correlations can be seen compared to Fig. 2, indicating the potential for PCT19 to provide insight into aerosol impacts 538 

on convection.  Examining environments stratified based on LCL, LR850-500, and LR850-700 yielded some of the strongest 

and most significant correlations, especially when considering aerosol backscatter.  While some negative correlations 540 

are present in Fig. 4, most of the statistically significant correlations were positive; however, it was interesting to see 
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that the most statistically significant correlations varied between the low, medium, and high environmental bins, 542 

depending on which AVAPS variable was used for the stratification.  To examine this correlation variation in greater 

detail, two scatterplots were produced between PCT19 and Bsc532.  The first was based on using LR850-700 to stratify 544 

the environments, wherein low magnitudes of LR yielded the greatest statistical significance, while the other 

scatterplot was based on stratification using LR850-500, wherein the medium LR magnitudes had greatest significance. 546 

 

From the lower-left plot in Fig. 3, the vast majority of data points with a Bsc532 > 2 Mm-1 sr-1 or PCT19 > 240 K were 

associated with a medium or high LR850-700.  The latter follows the expectation that PCT19 would increase with 548 

increasing cloud and/or precipitation content owing to the associated increase in emissivity, since a higher LR850-700 

would indicate an increase in conditional instability and an environment that was more supportive of convection (all 550 

else being equal).  The clustering of data points around a PCT19 of 250 K is interesting, especially with the considerable 

variation in Bsc532 associated with those data.  Since a 250-K PCT19 would likely be associated with at least moderate 552 

precipitation, it seems that some of the highest aerosol concentrations in these scenes correlated with the formation of 

precipitation.  However, that the highest PCT19 values were associated with Bsc532 < 1 Mm-1 sr-1 was unexpected and 554 

indicates the difficulty in separating environmental and aerosol influences on convection.  A similar interesting cluster 

of data points around a PCT19 of 200 K was also likely associated with the presence of clouds that were more weakly 556 

precipitating compared to those observed within the cluster around 250 K.  Despite these trends, there was virtually 

no correlation between PCT19 and Bsc532 within environments binned by medium or high LR850-700.  However, there 558 

was a moderate correlation of 0.47 with statistical significance (i.e., a p-value around 0.01) between PCT19 and Bsc532 

within environments with low LR850-700.  This was also unexpected but, as seen in Fig. 3, the increase in PCT19 with 560 

increasing Bsc532 within low LR850-700 was much more gradual than within the medium and high LR850-700 groups.  

That is, while there was a statistically significant correlation within the low LR850-700 group, the highest aerosol 562 

concentrations and/or convective-parameter values were not necessarily associated with that group.  Nevertheless, in 

environments with low LR850-700, higher aerosol concentrations generally correlated with higher PCT19.  This makes 564 

sense physically as the low LR850-700 group contained lapse rates up to ~4.24 °C km-1, which are conditionally unstable. 

 

Examining the lower-right plot in Fig. 3, which represents the same comparisons as the lower-left plot but wherein 566 

LR850-500 was used to stratify the environments, the reduced sample size can be seen.  Compared to LR850-700, using 

LR850-500 to stratify the environments resulted in two key differences: 1) the switch in correlation within low-lapse-568 

rate environments from positive to negative, both of which were fairly statistically significant with a p-value < 0.05, 

and 2) an increase in the correlation and statistical significance of the high-lapse-rate group.  Regarding the change in 570 

correlation sign for the low-lapse-rate groups, the reduced data sample in the LR850-500 analysis resulted in most data 

points with Bsc532 > 1 Mm-1 sr-1 being excluded from the comparison.  Several data points in the lower-left plot were 572 

associated with Bsc532 > 1 Mm-1 sr-1, and their removal yielded a trend wherein data points within the low LR850-500 

group saw a decrease in Bsc532 as PCT19 increased, producing the negative correlation.  In contrast, the remaining high 574 

LR850-500 data points saw a pronounced increase in PCT19 as Bsc532 increased, resulting in the positive correlation.  The 

latter matches the hypothesis that higher aerosol concentrations and higher lapse rates would both favor deeper 576 



 

26 
 

convection.  However, the highest PCT19 values in the lower-right plot of Fig. 3 were associated with Bsc532 < 0.5 

Mm-1 sr-1, indicating that this trend is not always consistent. 578 

occurred for the low LR850-500 group and not the medium or high groups.  From Table 2, the low LR850-500 values were 

still conditionally unstable and thus supportive of convection, so this result is physically plausible and deserved further 

analysis.  However, it does seem that the data points with PCT19 > 230 K greatly influenced the correlations for the 

low and medium groups, which is to be expected with a relatively limited sample size. The increase in PCT19 with 

increasing aerosol concentration (within the low group) matches the hypothesized correlations, but the highest aerosol 

concentrations in Fig. 3d (i.e., Bsc355 > 2 Mm-1 sr-1 in this case) were associated with relatively low PCT19 values < 

205 K in all but one instance.  Thus, the overall trends in correlation between aerosol concentration and PCT19 in Fig. 

3d are fairly mixed.  Due to the presence of several statistically significant and potentially impactful results in Figs. 

2, 3, and 4, future work should examine these and other AMPR data in greater detail. 

Some unexpected trends in Figs. 2 and 4 should be noted, along with some caveats.  First, while some patterns in Figs. 

2 and 4 were constant across the different AVAPS parameters, others changed considerably depending on the 580 

parameter and threshold magnitude used to stratify the environments.  In addition, while many trends were consistent 

between HSRL2’s 355- and 532-nm channels for the same AVAPS parameter, some underwent a noticeable change 582 

in Pearson correlation coefficient and/or statistical significance between the channels.  Lastly, as is true for all analyses 

in this study, while high correlation between two parameters is interesting and potentially significant, it does not 584 

guarantee a cause-and-effect situation between the parameters.  Thus, the most noteworthy trends identified in this 

study (e.g., Fig. 3) should be examined further to evaluate their significance and potential aerosol influences on 586 

convection.  Many of these trends were also fairly consistent across the sensitivity tests (supplemental material). 

 

4. APR-3 results 588 

Similar analyses are presented in this section using ZmaxZ95,Ku. PixelsKu, and DFR as the convective parameters.  All 

figures utilize the AVAPS thresholds from Test 2 (Table 2), with the full sensitivity-test results presented in 590 

supplemental material.  To begin, Pearson correlation coefficients between ZmaxZ95,Ku and the HSRL2 variables can 

be seen in Fig. 5.  Several moderately and strongly From Fig. 5, there is no widespread presence of statistically 592 

significant negative correlation coefficients was previously observed for the AMPR CLW, which further suggests that 

the precipitation flagging in AMPR CLW may explain the negative correlations observed therein to some degree.  On 594 

the contrary, several statistically significant positive correlations can be seen between ZmaxZ95,Ku and the HSRL2 

metrics resulted from thevariables in Fig. 5.  This is most notable when binning these correlation analyses according 596 

to NCAPEmod, LCL, lapse rate, and low-level Td.  While some correlations between Z95,Ku and the HSRL2 variables 

were relatively high (i.e., > 0.5) for the medium and high categories of some environmental stratifications, including 598 

many with p-values < 0.01, especially when examining AOT and extinction.  These trends indicate the benefits of 

utilizing ZH to analyze clouds and precipitation.  The moderate-to-high correlations with parameters (e.g., LR850-500), 600 

it is interesting that the correlations within highest statistical significance were also observed across manyoften 

associated with the low category of the environmental conditions considered in the stratifications, particularly: CAPE, 602 

LCL, lapse rates, and Td,press. 
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Twogroup.  To examine some of these trends in greater detail, the two parameters selected for more in-depth analysis 604 

from Fig. 5 were: 1) Ext532 binned by LCL, and 2) Ext532 binned by LR700-500, (Fig. 6); these were selected based on 

the relatively high number of statistically significant correlations found when evaluating Ext532, with LCL and LR700-606 

500 offering different environmental stratifications within which to evaluate these correlations.  Examining the upper-

left plot of Fig. 6, all Ext532 values > 60 Mm-1 were associated with a medium or high LCL, which may indicate that 608 

aerosol influences on peak ZH were not as significant until the environment became more favorable for convection in 

general.  This trend is especially pronounced for Zmax,Ku > 50 dBZ, which may result from higher aerosol 610 

concentrations favoring the development of fewer but larger raindrops; these large raindrops would dominate ZH, but 

this analysis also highlights the importance of considering environmental conditions.  Interestingly, the correlation 612 

between Ext532 and Zmax,Ku was strongest and most statistically significant for low LCL values, which likely resulted 

from the relatively consistent low aerosol concentrations observed for the low-LCL category compared to the greater 614 

variation in aerosol concentration observed for the medium and high LCL categories (Fig. 6).  As with the AMPR 

analyses, these scatterplot comparisons involve a relatively limited number of data points, and further investigation 616 

with a larger sample would be beneficial.  It was noteworthy that several of the data points with Zmax,Ku > 50 dBZ in 

the upper-left panel of Fig. 6 were associated with Ext532 around 100–150 Mm-1 (i.e., a “medium” aerosol 618 

concentration in this case).  This also hints at the “Goldilocks” zone in aerosol concentration, where a concentration 

too high or low would be detrimental to convective intensity.  While the overall trend is more complex and is also 620 

heavily influenced by the environmental conditions, it was interesting to see some of these medium-magnitude values 

stand out5 were: 1) Bsc532 binned by LCL (Fig. 6a), and 2) Bsc355 binned by NCAPEmod (Fig. 6b); the former was 622 

selected based on its high statistical significance, while the latter was selected to investigate the interesting negative 

correlations for medium NCAPEmod. 624 

 

Evaluating Zmax,Ku against Ext532 when stratifying environments based on LR700-500 (upper-right panel of Fig. 6), the 

effects of reduced sample size for any environmental parameters with a 500-hPa component can be seen, as was the 626 
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In Fig. 6a, many Z95,Ku values > 30 dBZ were present in the CAMP2Ex scenes, indicating that precipitating systems 

were indeed flown over by the P-3 aircraft and further suggesting that AMPR’s precipitation flags yielded many of 628 

the unexpected negative results in section 3.  The standout feature of Fig. 6a is the statistically significant positive 

correlation between Z95,Ku and Bsc532 when binned by low LCL values.  That is, as aerosol concentration increased 630 

within low-LCL conditions, the peak ZH within the same scene increased as well, suggesting the development of larger 

raindrops.  These large raindrops would dominate ZH, but this analysis also highlights the importance of considering 632 

environmental conditions.  This trend also supports the notion that, within low LCL group, which would have higher 

lower-level water vapor content (all else being equal), higher Z95,Ku was associated with higher Bsc532 values.  While 634 

this is limited by the relatively small sample size herein, this result matches the warm-phase invigoration of convection 

discussed in prior studies (e.g., Grabowski and Morrison, 2020), and warrants further analysis.  The correlation was 636 

also positive for the medium LCL group but with a lower correlation value and lesser statistical significance, indicating 

the trend was not as robust as the low LCL group.  Despite this, the trends of increasing Z95,Ku with increasing aerosol 638 

concentration in these groups matches physical expectations.  It is also noteworthy that these trends were constant 
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across the sensitivity tests, increasing the reliability of these results.  However, the negative correlation in the high 640 

LCL group was unexpected and seems to have been influenced by the upper-left data points in Fig. 6a. 

 

Comparing Z95,Ku with Bsc355 when binned by NCAPEmod (Fig. 6b), positive correlations between Z95,Ku and Bsc355 642 

were present for the low and high NCAPEmod groups, which matches expectations.  However, the negative correlation 

 

Figure 5: As in Fig. 2 but using maximump95 APR-3 Ku-band composite ZH as the convective parameter. 644 

 

case with Fig. 3.  The strongest and most statistically significant correlations between Zmax,Ku and Ext532 were found 

in the medium category of LR700-500, with a trend of increasing aerosol concentration correlating with a higher Zmax,Ku.  646 

Further, the cases with Zmax,Ku > 60 dBZ were associated with a high LR700-500, and the highest aerosol concentrations 

(i.e., Ext532 around 140 Mm-1) were associated with Zmax,Ku > 50 dBZ.  These trends further suggest that many of the 648 

highest aerosol concentrations tended to be associated with relatively strong convection.  The general trends in 
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correlation and statistical significance were similar across the sensitivity tests performed (supplemental material), with 650 

some variation in the exact correlation values and p-values. 

 within the medium NCAPEmod group was unexpected – this appears to be the result of only two data points with Z95,Ku 652 

> 40 dBZ in this medium group, unlike the low and high groups, which suggests that the medium NCAPEmod values 

were not as supportive of convection.  The presence of Bsc355 > 4 Mm-1 sr-1 associated with Z95,Ku > 50 dBZ within 654 

the high NCAPEmod is interesting as it suggests that the aerosol conditions may have supported the development of 

deeper convection when environmental conditions were more suitable for convection in general; however, this trend 656 

was not constant, as the highest Z95,Ku values were associated with Bsc355 < 4 Mm-1 sr-1 and low NCAPEmod values, 

which indicates that this analysis warrants further examination.  It should also be stressed that the presence of high 658 

correlations do not guarantee causality, further indicating that these results should be examined further. 

 

Next, the number of APR-3 Ku-band composite ZH pixels ≥ 30 dBZ (i.e., PixelsKu) was used as the convective 660 

parameter (Fig. 7).  Several more highly positive correlations were present compared to Figs. 2, 4, and 5, likely due 

to PixelsKu focusing on the abundance of convection rather than a peak value in a given scene.  The strongest positive 662 
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Figure 6: As in Fig. 3, but these are scatterplots of maximump95 APR-3 Ku-band composite ZH (top row) and 
the number of APR-3 Ku-band composite ZH pixels ≥ 30 dBZ (bottom row) compared against the mean value 664 

of the HSRL2 parameter listed in the title of each plot.  The AVAPS parameter used to stratify the 
environments is also listed in the title of each plot. 666 

 

to PixelsKu focusing on the abundance of convection rather than a peak value in a given scene.  The strongest positive 

correlations with a statistically significant p-value < 0.01 were found between PixelsKu and extinction at 355 and 532 668 

nm, along with Bsc532, especially when the environment was stratified by lapse rate or, K-Index, and LCL.  Given the 

especially strong correlation between Bsc532 and CCN concentration (Lenhardt et al., 2022) and the direct 670 

measurement of Bsc532 by HSRL2their statistical significance, the decision was made to examine the strong 

c) d)
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correlations between PixelsKu and Bsc532Ext532 within environments binned by K-Index (Fig. 6c) and LR850-500 and K-672 

Index.(Fig. 6d).  From Fig. 6c, most scenes featured at least one Ku-band composite ZH observation > 30 dBZ, further 

indicating the precipitating clouds the P-3 passed  674 
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Figure 7: As in Fig. 2 but using the number of APR-3 Ku-band composite ZH pixels ≥ 30 dBZ as the convective 
parameter. 676 

 

Relatively strong and statistically significant correlations observed when comparing PixelsKu with Bsc532 binned by 

LR850-500 (lower-left plot of Fig. 6) may indicate the importance of considering this deeper-layer LR when evaluating 678 

aerosol influences on tropical convection (i.e., compared with the weaker correlations observed in Fig. 7 when solely 

considering the 850–700-hPa layer).  Positive statistically significant correlations between PixelsKu and Bsc532 grew 680 

stronger as LR850-500 increased, which matches physical expectations that higher aerosol concentration may have 

enhanced convection as the environment became more favorable for convection overall.  Since this convective 682 

parameter is more sensitive to widespread convection rather than a peak magnitudeover during CAMP2Ex.  In Fig. 

6c, with the available data, the general trend was an increase in PixelsKu with increasing Ext532 for all categories of K-684 

Index.  The general trend matches expectations that higher aerosol concentrations would be correlated with a general 

abundance of convection and the formation of fewer but larger raindrops in a given scene.  Further, it seems that higher 686 
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aerosol concentrations supported the development of convection in general within a given scene, regardless of whether 

these APR-3 pixels were part of a single large convective storm or several individual plumes.  In examining the lower-688 

left plot of Fig. 6, all cases with Bsc532 > 1 Mm-1 sr-1 were associated with medium or high LR850-500 values.  Further, 

the data points (albeit only two of them) with Bsc532 > 2 Mm-1 sr-1 were associated with at least 1500 PixelsKu, along 690 

with a medium or high LR850-500, which indicates that the highest aerosol concentrations in favorable environments 

yielded a general abundance of convectionplume  However, it was also anticipated that the highest PixelsKu would be 692 

associated with the highest K-Index values, which is generally not the case.  This may be explained by the considerably 

small sample size in Fig. 6c, which limits the statistical significance of results obtained from Fig. 6c.  The impact of 694 

the small sample size also causes the best-fit lines to be impacted by some of the outlier values, such as the data points 

in the medium and high K-Index group with PixelsKu > 1500. 696 

 

Binning PixelsKu versus Bsc532 comparisons by K-Index (lower-right plot in Fig. 6) also led to increasingly positive 

correlations as K-Index increased.  This matches the hypothesis that K-Index would be associated with a relative 698 

abundance of PixelsKu given the K-Index’s association with convection in general (George, 1960).  Correlation 

between convective abundance and aerosol concentration was near zero when K-Index was low but became 700 

increasingly positive as K-Index increased, especially once K-Index increased past 31.1 °C.  The distribution of data 

points was the same across both plots in the lower row of Fig. 6, with data points binned into different environmental 702 

groups depending on whether LR850-500 or K-Index was used for the environmental stratification.  In the lower-right 

plot, both data points with Bsc532 > 2 Mm-1 sr-1 were associated with a medium or high K-Index value and at least 704 

1500 PixelsKu, further supporting the idea that convection became more widespread as aerosol concentration increased 

within supportive environments.  However, the two data points with 1–2 Mm-1 sr-1 Bsc532 were associated with low 706 

K-Index, which is reflected in their PixelsKu < 1500.  While the differing scene times in this analysis may have had an 

effect, this trend further stresses the importance of considering the environment alongside aerosol concentration (i.e., 708 

many locally high aerosol concentrations were associated with a “low” K-Index) and suggests that increased aerosol 

concentration may not have always strongly supported convection in less-favorable environments.  Most correlations 710 

in Fig. 7 were similar across the sensitivity tests (supplemental material), with environmental lapse rates and K-Index 

offering especially strong correlations between the convective and aerosol parameters. 712 

Similar trends can be found when comparing PixelsKu with Ext532 in environments binned by LR850-500, particularly for 

the medium and high groups (Fig. 6d).  That is, increased aerosol concentration was generally correlated with 714 

increased PixelsKu for each of the environmental bins, suggesting the potential for the higher aerosol concentrations 

to yield larger raindrops throughout the scene.  However, the correlation was only statistically significant for the 716 

medium group and was nearly zero for the low group.  These results further indicate the impact of the small sample 

size on this comparison, but the statistical significance of the correlations for the medium group of LR850-500 warrant 718 

further examination.  As with the prior analyses, it must also be noted that correlation does not guarantee causation, 

and thus the statistically significant results would benefit from expanded analyses using a larger sample size. 720 
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Lastly, DFR was used as the convective metric (Fig. 8).  As with ZmaxZ95,Ku and unlike PixelsKu, DFR focuses on the 

intensity of a given convective storm rather than the overall abundance of convection.  From Fig. 8, the most 722 

statistically significant and strongest correlations were found when binning the environments according to: CAPE, 

lapse rates, K-Index, or Td,alt,  NCAPEmod and LR850-700 but, unexpectedly, were typically in association with medium 724 

or highlow values of these environmental conditions.  Due to the presence of several moderately strongstatistically 

significant correlations with p-values < 0.01, Bsc355 was, these two environmental parameters were selected for deeper 726 

examination with scatterplots.  Similar to the PixelsKu analysis, LR850-500 and K-Index were selected based on their 

relatively high correlations and statistical significance in Fig. 8, as seen in Fig. 9.  A similar pattern is present in both 728 

of Fig. 9’s plots, with all Bsc355 > 2 Mm-1 sr-1 associated with medium or high values of LR850-500 and K-Index along 

with DFR values > 40.  These high DFR values represent conditions wherein the Ka-band APR-3 data were severely 730 

attenuated, which would be expected in the strongest convection, thus matching the hypothesis that higher aerosol 

concentrations would coincide with stronger convection in favorable environments.  However, many of the DFR 732 

values > 40 were associated with lower aerosol concentrations (i.e., Bsc355 < 1.5 Mm-1 sr-1) and a mixture of 

environmental conditions, with a greater number of medium and high K-Index data points found for DFR > 40 a more 734 

in-depth analysis.  In particular, DFR was compared to the slightly greater number of low with Bsc532 when binned by 

LR850-500 data points for DFR > 40.  This further indicates the importance of considering environmental conditions 736 

alongside aerosol conditions when evaluating impacts on convection.  Most trends in Fig. 8 were fairly consistent 

among the sensitivity tests (supplemental material) apart from  738 
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700 (Fig. 9a) and NCAPEmod (Fig. 9b).  Examining Fig. 9a, all three environmental groups were associated with positive 
correlations between DFR and Bsc532, though these two parameters had essentially no correlation in the medium 740 

aerosol group.  The strongest and most statistically significant correlation was in association with the low LR850-700 
group; this was unexpected but, as seen in Table 2, these lapse rate values were still conditionally unstable and 742 

supportive of convection in the maritime tropics.  The trend of increasing DFR with increasing aerosol concentration 
matches expectations that, as raindrops grow, the Ka-band APR-3 signal would become more attenuated and yield a 744 

higher DFR.  It is also noteworthy that the highest DFR values > 30 dBZ (albeit a relatively limited sample size) were 
associated with relatively “medium” aerosol concentrations (i.e., Bsc532 of approximately 1.0–2.5 Mm-1 sr-1).  This 746 

matches the “Goldilocks” zone of medium aerosol concentration favoring enhanced convection (e.g., Sokolowsky et 
al., 2022).  Given the potential presence of these “Goldilocks” conditions and theFigure 8: As in Fig. 2 but using 748 

maximum Ku-/Ka-band DFR as the convective metric. 
 

some variation in the magnitude of the correlation or statistical significance.  However, there were some noteworthy 750 

changes, such as the sign of the correlations among high values of LR850-500, indicating that several of the data points 

may have fallen at the edges of the values used to bin the environments according to LR850-500 within the low group in 752 

Fig. 9a, these trends warrant further investigation. 
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Some similar trends can be seen in Fig. 9b, where binning the environment by NCAPEmod yielded statistically 754 

significant correlations between DFR and Bsc532 within low NCAPEmod scenes.  This statistical significance occurring 

in the low NCAPEmod group was unexpected but, as seen in Table 2, these NCAPEmod values were still associated with 756 

upward acceleration (i.e., conditions favoring enhanced convection).  For each NCAPEmod group, higher aerosol 

concentrations were generally correlated with higher DFR values, suggesting conditions wherein raindrops may have 758 

grown large enough to significantly attenuate the Ka-band APR-3 signal.  The “Goldilocks” zone of medium aerosol 

concentration with Bsc532 of approximately 1.0–2.5 Mm-1 sr-1 is present in Fig. 9b as well, indicating its persistence 760 

across different environmental binning techniques.  Many of the DFR trends, including those examined in Fig. 9, were  

 

 

Figure 8: As in Fig. 2 but using p95 Ku-/Ka-band DFR as the convective parameter. 762 
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relatively consistent across the sensitivity tests (supplemental material), but other trends varied across the sensitivity 

tests and suggests that several of data points may have fallen at the edges of the values used to bin the environments. 764 

 

5. Summary, limitations, and future work 

This study focused on examining potential impacts of aerosol concentration on maritime tropical convection using 766 

remote-sensing data in environmental contexts.  Nine parameters from 14492 AVAPS dropsondes across CAMP2Ex 

SFs 05–19 were used to stratify the environments: 700-hPa vertical velocity; modified CAPE; LCL altitude; K-Index; 768 

850–700-, 850–500-, and 700–500-hPa temperature lapse rates; mean Td below 1 km AGL; and mean Td below 925 

hPa.  Each dropsonde launch time was associated with a corresponding APR-3 scan, whose file start and end times 770 
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Figure 9: As in Fig. 3, but these are scatterplots of maximump95 APR-3 Ku-/Ka-band DFR compared against 
the mean value of the HSRL2 parameter listed in the title of each plot.  The AVAPS parameter used to stratify 772 

the environments is also listed in the title of each plot. 
 

were used to develop a 10-minute “scene” for all comparisons associated with the given dropsonde.  Threshold values 774 

were selected to divide scenes into “low,” “medium,” and “high” groups based on each AVAPS parameter, and 

sensitivity testing examined four different sets of threshold values used for each stratification.  Eight AMPR and APR-776 

3 metrics related to convective intensity and/or frequencyprevalence were compared with HSRL2 backscatter, 

extinction, and AOT at 355 and 532 nm within the binned environments using Pearson correlation coefficients and 778 

their associated p-values.  These convective parameters were: maximump95 of AMPR CLW; maximump95 of PCT 
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at 10.7, 19.35, 37.1, and 85.5 GHz; maximump95 of APR-3 Ku-band composite ZH; number of Ku-band composite 780 

ZH pixels ≥ 30 dBZ; and Ku-/Ka-band DFR. 

 

Several strongly positive correlations with statistical significance were observed between the convective and aerosol 782 

metrics within the environmental bins.  Particularly noteworthy stratification parameters were LR850-500 and K-Index, 

which yielded notable results for three of the five convective parameters detailed via scatterplots herein, and LR700-784 

500, which resulted in widespread strong and statistically significant correlations.  Several parameters were subjectively 

selected for more in-depth analysis, and a full description of the correlations in each sensitivity test is provided in 786 

supplemental material.  Correlations between aerosol concentrations and the convective parameters generallyThe 

correlations between the convective metrics and aerosol parameters varied depending on which convective metric was 788 

examined.  Largely because of masking regions of precipitation in its analysis, AMPR CLW and PCT19 were often 

unexpectedly negatively correlated with aerosol concentration within each environmental group examined, including 790 

to a statistically significant degree in many cases.  The masking of precipitation regions in AMPR’s CLW analyses 

yielded several unexpected negative correlations and limited the aerosol-convection conclusions that could be drawn 792 

solely based on AMPR CLW.  This was mitigated when examining AMPR PCT19, which includes precipitation 

regions and yielded several positive aerosol-convection correlations as expected, some of which had statistical 794 

significance.  Likewise, examining APR-3’s Z95,Ku, PixelsKu, and DFR yielded many positive correlations with aerosol 

concentration, including several with statistical significance.  While PixelsKu was limited by a fairly small sample size 796 

in some cases, a trend of increasing PixelsKu with increasing aerosol concentration could be seen in the scatterplots.  

The main feature of the Z95,Ku analysis was its relatively strong and statistically significant correlation with aerosol 798 

concentrations in environments with a low LCL, indicating a relatively high amount of low-level water vapor and 

supporting the idea raised in past studies that increased aerosol concentration may enhance convection within warm-800 

phase regions.  A standout result of the DFR analysis was the presence of a “Goldilocks” zone of medium aerosol 

concentration, suggesting that these medium values enhanced convection to a stronger degree than low or high aerosol 802 

concentrations in some cases, as also observed in prior studies.  Correlations between aerosol concentrations and the 

convective parameters occasionally became more highly positive and more statistically significant, based on the 804 

associated p-value, as environmental conditions became more favorable for convection overall, which matches our 

hypotheses. 806 

 

These results are important as they .  In other words, increased aerosol concentrations appeared to enhance convection, 

but these effects were sometimes less significant until the environment was sufficiently supportive of convection.  808 

These results match our hypothesis that increased aerosol concentrations may contribute to stronger and/or more-

widespread convection, especially in favorable environments.  However, some trends hinted at a “Goldilocks” zone 810 

of aerosol concentration as demonstrated in past modeling studies, where medium aerosol concentrations would be 

most favorable for convection compared to lower or higher values.highlight some potentially impactful correlations 812 

between convective parameters and aerosol concentrations in the maritime tropics, including some instances where 

medium-to-high aerosol concentrations appeared supportive of convective invigoration.  However, as noted 814 
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throughout the manuscript, correlation does not necessarily indicate causation.  Because of this, correlations 

highlighted in this study serve to identify potentially interesting and impactful trends that warrant a more in-depth 816 

exploration in future work, rather than providing solid definitive conclusions on their own.  Our results also stress the 

importance of considering environmental conditions alongside aerosol concentrations when evaluating impacts on 818 

convection. 

 

These results are important as they provide observational evidence to support the idea that medium-to-high aerosol 820 

concentrations may enhance convection, which is a topic that has often been explored primarily using numerical 

modeling.  This provides context to further our understanding of aerosol-cloud interactions and their associated 822 

impacts on the atmosphere’s water and energy cycles.  A key result of this study is that environmental conditions seem 

to be critical to the total impact aerosols may have on maritime tropical convection, where the enhancements from 824 

medium-to-high aerosol concentrations are especially prevalent in environments that are conducive for convection in 

general.  This result does further indicate the difficulties in truly separating aerosol influences from environmental 826 

influences, but it also emphasizes the need to consider aerosol and environmental conditions together when evaluating 

convection.  Further, the correlation tables presented in this manuscript, including those in supplemental material, 828 

provide a wide range of information that is applicable to broader applications (e.g., a future study that might explore 

the impacts of low-level Td or mid-level lapse rates on tropical convection). 830 

 

While many results were encouraging, several limitations must be considered.  Dropsondes launched when the P-3 

was above 500 hPa were relatively limited, reducing the sample size for all associated environmental parameters.  832 

Other limitations in the dataset, such as the P-3 avoiding the most intense convection during a given flight and 

environmental modification from nearby convection, impacted the results.  Further, “scene” duration varying from 834 

approximately 2–12 minutes in most cases may have affected comparisons, since lower durations were at a 

disadvantage when observing stronger and more-widespread convection.  There was some ambiguity regarding 836 

whether an increase in PixelsKu was associated with a single updraft or multiple updrafts, which have different 

implications for convective intensity and frequencyprevalence.  Lastly, while many correlations were strong and 838 

encouraging, they do not necessarily prove a cause-and-effect situation for their respective comparison., as previously 

discussed.  Thus, it is not possible to say with certainty that increased aerosol concentrations enhanced convection in 840 

these CAMP2Ex scenes solely based on the correlations presented in this study, but rather the data suggest the 

possibility for aerosol enhancement of convection and further analyses would increase confidence in these results. 842 

 

Given the encouraging nature of many comparisons in this study, while also considering the above limitations, future 

work would greatly benefit these science questions.  Future efforts could look at addressing the limitations above, 844 

such as creating constant scene times across CAMP2Ex, using an advanced ZH attenuation-correction method, 

distinguishing areas where PixelsKu were adjacent or separated, and employing other datasets from the P-3 and Learjet-846 

35 aircraft to increase reliability of the strongest correlations observed.  Peak 30-dBZ ZH contour height in a storm 

should be considered given its direct relation to updraft magnitude (e.g., Straka et al., 2000; Amiot et al., 2019).  Other 848 
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remote-sensing data (e.g., satellite) may help with assessing nearby convection just outside of the P-3 observation 

range.  Additional environmental parameters, such as wet-bulb potential temperature profiles (Williams and Renno, 850 

1993) and the shape of CAPE,), would be useful to examine.  Other aerosol properties (e.g., type, composition, and 

hygroscopicity) and their vertical location/distribution may also be helpful to consider.  Examining some of the most-852 

significant convective-aerosol correlations in greater detail would also be of significant benefit, as would separating 

the scenes according to the type of convection observed (e.g., shallow versus congestus). 854 

 

Data availability 

The AMPR, APR-3, AVAPS, and HSRL2 data are available on the NASA Langley Research Center’s Airborne 856 

Science Data for Atmospheric Composition repository at https://www-air.larc.nasa.gov/cgi-bin/ArcView/camp2ex, 

cited herein as Aknan and Chen (2020).  The objective selections of threshold values for environmental stratification 858 

were performed using Python’s NumPy nanpercentile function (Harris et al., 2020).  Pearson correlation coefficients 

and p-values were calculated using Python’s SciPy pearsonr function (Virtanen et al., 2020).  Several of the 860 

environmental parameters were calculated using Python’s MetPy package (May et al., 2022), including the 

mixed_layer_cape_cin function for CAPEmod, the calc.lcl function for LCL altitude, and SkewT function for producing 862 

the dropsonde image in Fig. 1. 
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