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Abstract. In the Horn of Africa Drylands (HAD) conflict over water and vegetation is prominent. Additionally, large-scale 

land acquisitions (LSLAs) are increasing the competition of water, putting local communities at greater risk. A key impact of 

increasing LSLA's is the decrease in water and land availability for vulnerable agropastoral communities. Despite recent 

studies, there is still a lack of research that includes the influence of upstream-downstream dynamics on drought risk and 15 

impacts of agropastoralists. Therefore, this study further develops an agent-based model (ADOPT-AP) to investigate how 

upstream large scale commercial farms influence downstream drought risk and impact of agropastoralists in the Upper Ewaso 

Ng’iro catchment in Kenya. After the model has been calibrated and validated, we assess how commercial exporting farms 

affect drought risk and impact of downstream communities by simulating different scenarios where the farms are replaced by 

agropastoral communities or forests. Our results show how both drought hazard characteristics and impacts differ among these 20 

scenarios. The analysis shows that in the scenarios where these farms are replaced by forests or communities, drought 

conditions are alleviated by increasing soil moisture, streamflow, and groundwater tables. These improvements are linked to 

reduced water abstraction and increased infiltration, benefiting downstream communities by decreasing the distance to 

household water, and increasing crop and milk production in times of dry periods. Policy interventions should prioritize 

equitable water distribution, regulation of water use, and promotion of sustainable agricultural practices to mitigate long-term 25 

impacts on water resources and community resilience. 

1 Introduction 

Drought poses a thread in the already existing water challenges in the Horn of Africa Drylands (HAD) (Solomon et al., 2018,). 

Drought hazard and risk are, however, not merely a natural phenomenon driven by rainfall deficits and other 

hydrometeorological processes. Droughts are also shaped by human behaviour and interventions (Van Loon et al., 2016). For 30 
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example, large-scale land acquisitions (LSLAs) for commercial farms that use large quantities of (ground-) water are further 

increasing the competition of water, putting local farmers and communities at increased risk to droughts (Chiarelli et al., 2022). 

These LSLA’s may be in the form of large private ranches, industry, and commercial export farms (Mkutu & Mdee, 2020). A 

key impact of increasing LSLA's is the decrease in water and land availability for vulnerable agropastoral communities (Lanari 

et al., 2018). Agropastoralism is the main source of livelihood to millions of people in Kenya accounting for 10-44% GDP 35 

(Nyariki and Amwata, 2019). For such communities, drought adaptation is key to anticipate current- and future drought risk 

(Pörtner et al., 2022).  

To support drought adaptation for agropastoralists, it is important to understand the factors that influence adaptation actions 

they can take themselves, and how these actions interact with large scale water users (such as commercial farms) and 

governmental policies (Alam et al., 2022; Reckien et al., 2023). There is an emerging literature that captures the factors driving 40 

drought risk management by agropastoral communities in Kenya and what policy interventions may stimulate drought 

adaptation. For example, Wens et al. (2021), show that mistrust in drought forecasting (-29%) serves as a barrier to adaptation, 

while experience with past adaptation decisions (+44%) stimulate the intention to adopt new drought adaptation measures. 

Streefkerk et al. (2023) found for a case study in Kenya that low levels of wealth and high distance to wells have a large effect 

on water availability. Furthermore, a recent study by Schrieks et al. (2023) shows that the likelihood that agropastoralists 45 

implement adaptation measures is positively influenced by, among other, the perceived efficacy of adaptation measures and 

confidence in their ability to adapt (perceived self-efficacy). Other factors influencing drought adaptation by agropastoralists 

are gender, education level, access to financial resources, and access to government support or aid.  

Knowing the factors that influence local drought adaptation may support identifying (governmental policy) actions to increase 

the uptake of drought adaptation. For example, Wens et al. (2022) include ex-ante cash transfers and timely extension services. 50 

Less known are the effects of large-scale commercial farms on drought for agropastoralists and which policies may support 

risk reduction and the equitable distribution of water (e.g. Giger et al. 2022). Studies have shown that drought risk often 

increases downstream as water is stored and abstracted in upstream areas (Van Oel et al., 2018; Veldkamp et al., 2017). Water 

use by commercial horticulture farms may play a role in upstream – downstream water conflicts, and water use by large farms 

already exceeds minimum water availability in the dry season (Lanari et al., 2018). In the longer term, this may lower 55 

groundwater tables and increase drought risk in the entire region and for all water users (e.g. Castilla-Rho et al, 2015).  

What is lacking in these studies, however, is a systematic assessment of these upstream-downstream interactions and an 

evaluation of drought adaptation options for agropastoralists being affected by upstream commercial farms (Kiteme et al., 

2021). The main goal of this paper is, therefore, to develop a coupled hydrological and agent-based model (ADOPT-AP) to 

investigate the influence of upstream large scale commercial export farms on downstream drought risk and adaptation by 60 

agropastoralists.  We apply and test the ADOPT-AP model for the Ewaso Ng’iro north catchment in Kenya. Main novelties of 

our method are the ability to capture heterogeneous and dynamic drought-human interactions (including different water users) 

in a spatially-explicit manner. After the model has been calibrated and validated, we test how commercial exporting farms 

affect drought risk and impact of downstream communities.  

https://doi.org/10.5194/egusphere-2024-2382
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.



3 

 

2 Case Study Area  65 

The Ewaso Ng’iro North catchment, spanning 210,000 km2 , sources its water primarily from Mount Kenya and the Aberdare 

Range (Kiteme et al., 2021). These main water towers, located to the south of the catchment, contribute to the varied climatic 

zones observed in the region (Fig. 1). The upstream areas exhibit a humid climate with an altitude up to 5000 m and mean 

annual rainfall of 1500 mm, transitioning to semi-arid and arid conditions downstream with a minimum altitude of 500 m and 

mean annual rainfall of 350 mm (Mungai et al., 2004). This climatic gradient is essential in determining land use and the 70 

livelihoods of the local population. 

 

Figure 1: Study area: aridity zones (Gichuki et al., 2002), rivers, commercial export farms in the Upper Ewaso Ng’iro catchment. 

The upstream regions, characterized by higher rainfall and more stable water supplies, are dominated by cropland and forests. 

This area supports large commercial export farms, particularly horticulture and floriculture, which benefit from the favourable 75 

year-round climate and abundant water resources (Lanari et al., 2018, Wiesmann et al. 2000). They are indicated in red south 

east of the catchment  in Fig. 1. These farms are primarily concentrated in sub-catchments 1 and 2, with greenhouse operations 

spread throughout these areas. Sub-catchment 3 has similar conditions but only upstream, while sub-catchment 4 houses open 

farms, such as those cultivating wheat. Conversely, the downstream regions (sampling area), marked by arid conditions and 

covered in grassland and shrubs, support agropastoralism and pastoralism. Local livelihoods here are heavily dependent on 80 

livestock herding due to the scarce water resources. Schrieks et al. (2023) highlight in their survey of the local farmers and 

agropastoralists, that in the humid to semi-humid and semi-arid zones, crop farming and agropastoralism prevails, respectively. 

While in the arid zones, pastoralism is the dominant livelihood (Kiteme et al., 2021). 

The expansion of commercial export farms has dual impacts: they create employment opportunities but also lead to conflicts 

over water resources with local agropastoral communities (Kiteme et al. 2021). The intensive water use by these farms, 85 

especially for irrigation in horticulture, has been shown to reduce streamflow by up to 32% (Lanari et al., 2018). This 
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significant reduction in water availability exacerbates the challenges faced by local communities, who already struggle with 

limited water resources. 

Water resource management in Kenya has evolved over the years. The Water Resources Authority (WRA) is responsible for 

regulating and managing water resources at a national level. However, the governance structure has been increasingly 90 

decentralized, promoting more local participation (Dell Angelo et al., 2016). The Water Resource Users Associations 

(WRUAs), established following the 2012 Water Act, play a critical role in local water management, including monitoring and 

enforcing water abstraction permits and implementing conservation programs (Baldwin et al., 2016). Despite these efforts, 

equitable water distribution remains a challenge (Lesrima et al., 2021). 

The Ewaso Ng'iro North Development Authority is tasked with coordinating regional development initiatives within the basin, 95 

i.e., the case study area (Kiteme et al., 2021). Although the decentralized governance structure marks an improvement over 

the central governance model of the 2002 Water Act, disparities in water distribution persist, as noted by Dell Angelo et al. 

(2016). 

3 Data and methods 

Figure 2 briefly describes our approach by further developing the ADOPT-AP model (Streefkerk et al., 2023), which integrates 100 

(1) Hydrology: the DRYP hydrological model (Quichimbo et al., 2021) with (2) an agent-based decision model (ABM), which 

simulates adaptation decisions by agropastoralists. These two parts are connected through (3) Socio-hydrological interactions. 

These interactions are modelled as rules that describe the feedback between decision making and the hydrological system.   
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Figure 2: ADOPT-AP modelling framework, consisting of three modules; hydrology, human decision-making, and socio-105 
hydrological interactions. 

This coupled model allows for assessing how the main water users (‘agents’) respond to drought. Agropastoralists grow crops 

and tend livestock to sustain their livelihood. They can take six adaptation measures to cope with droughts to meet their water 

demand and required grass/crop yields. Adaptation decisions by agropastoralists are made following the protection motivation 

theory (PMT), which is based on (a) the perceived threat of drought risk and (b) their perceived coping capacity to implement 110 

drought adaptation measures. The agropastoralists make adaptation decisions at yearly time steps. The model includes ~15000 

agents with a heterogeneous set of characteristics (e.g. income, age, etc.) at a spatial resolution is 1x1 km2. This means each 

grid cell has one agropastoralist agent, representing multiple households (depending on population density). In addition, 

commercial export farms are represented through water management rules defining the required storage and abstraction of 

water.  We run the model for three scenarios and assess the effect of each scenario using drought and impact metrics. 115 

3.1 Hydrology 

DRYP is a process-based distributed hydrological model developed to simulate hydrological processes in dryland regions 

(Quichimbo et al., 2023). Precipitation and potential evapotranspiration are the main parameters where precipitation is divided 

into infiltration and surface runoff, depending on soil moisture conditions. Runoff is generated using a routing routine based 

on elevation. Groundwater is discharged into the streams as baseflow above a certain channel stream stage threshold value. 120 

Water from groundwater aquifers and surface streams can be abstracted by users. In addition, irrigation water can be applied 

to the land (modelled as additional rainfall). Human-induced land use changes are included by altering the crop coefficient 

(kc), saturated hydrological conductivity (Ksat), vegetation cover, rooting depth, influencing hydrological processes such as 

interception, actual evaporation and infiltration. A more detailed description of the hydrological model can be found in 

Quichimbo et al. (2021, 2023). 125 

Additional variables are added to the interception component of the hydrology component to enable simulating adaptation by 

individual agropastoralists and commercial farms. The monthly soil adjusted vegetation Index (SAVI) is obtained from 

Sentinel-2, and the fraction of vegetation cover is from Copernicus Global Land Service. The biome specific coefficient is 

taken from Kergoat (1998). Discharge is used for calibration and verification of the model and provided by the Centre of 

Training and Integrated research in ASAL Development (CETRAD). 130 

3.2 Human decision-making 

Following the Overview, Design Concepts and Details + Decisions (ODD+D) protocol (Müller et al., 2013), a detailed 

overview of the modelling structure and scheduling is given in Supplement S1. We here briefly summarize the main 

procedures. 

Each year, agents decide whether to adopt an adaptation measure. They spend income on adaptation measures and the height 135 

of these expenditures is depending on their herd- and farm size. Income is determined by the crop and milk production 
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remaining after consumption. Agropastoralists can take six drought adaptation measures (numbered 1-6 in Fig. 3). Four of 

these have been described by Streefkerk et al (2023): (1) change crop type, (2) apply irrigation, (3) Change livestock type, and 

(4) Migrate with livestock. In this paper we expand the model with two additional adaptation measures (Table 1): (5, Fig. 3) 

water harvesting and (6, Fig. 3) soil conservation techniques. These two additional measures have been selected as they are 140 

widely applied in the Isiolo area as described by Schrieks et al. (2023). Both have an influence on the environment (i.e. modify 

properties in the hydrological model when adopted) (see Table 2). Adaptation costs for the six measures are obtained from the 

World Overview of Conservation Approaches and Technologies (Kentainers, 2024; Keynaseed, 2024; WOCAT, 2024). 

 

Figure 3: All adaptation measures implemented in the model. Adaptation measures water harvesting (5), and soil moistures 145 
conservation (6) are added compared to Streefkerk et al, (2023). 

Table 1: Adaptation measures added to ADOPT-AP. 

Adaptation 
measure 

Description  Duration  Timing  

Change crop type Plant drought resilience crops (cassava instead of maize). This measure affects 

the crop yield (based on the ratio  between actual and potential 

evapotranspiration).   

1 year  Beginning of October 

(start rainy season)  

Apply irrigation Apply irrigation over crop season. Wat is abstracted from groundwater or river 

and is applied as additional rainfall on the soil in the DRYP model  
20 years  Beginning of October 

(start rainy season)  
Change livestock type Change from cows to goats. With this change, less water and grass are needed. 

This has an effect on grass availability and water demand  
20 years  End May (start dry 

season)  
Migrate livestock Migrate herd to other location. Affects grass availability and water demand  1 year  End May (start dry 

season)  
Soil conservation Soil conservation techniques such as agroforestry, half-moons, terraces, etc. 

Increases vegetation cover and interception. This influences soil moisture 
content and grass yields which in turn affect crop and livestock yield.  

20 years  Begin October  
(start rainy season)  

Water harvesting Install a water harvesting structure that captures precipitation (max 50m2) and 

runoff. Capacity of 5 m3. Used for irrigation or livestock water in times of dry 

conditions. Affects crop and livestock yields.  

20 years  End May (start dry  
season)  
  

 

The behavioral theory Protection Motivation Theory (PMT) (Eq. 1) is applied to simulate whether an agent implements an 

adaptation measure (m) (Maddux and Rogers, 1983). In this theory, the IntentionToAdapt t,m is the variable that determines 150 

whether an agent will implement a specific measure. Its value is compared with a probabilistic threshold based on the measure's 
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lifespan (See Supplement S1). Crop-related adaptation measures (Table 1) are implemented at the beginning of October (the 

start of the long (main) rainy season). Livestock-related decisions are made at the end of May, before the long dry season. The 

IntentiontoAdaptt,m is based on two other components: 

𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑇𝑜𝐴𝑑𝑎𝑝𝑡𝑡,𝑚 =  𝛼 ∙ 𝑅𝑖𝑠𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡 +  𝛽 ∙  𝐶𝑜𝑝𝑖𝑛𝑔𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑡,𝑚,     (1) 155 

Risk appraisal includes the perceived probability of the drought risk by the farmers. The perception is high just after a drought 

event, and then decreases over time. Therefore, risk appraisal increases in relation to drought loss but decreases if no drought 

loss occurs. Drought loss is computed as the relative loss from decreasing livestock or crop production in a specific year 

compared to the average production of the previous 10 years (Di Baldassarre et al., 2013). 

The perceived ability to adapt (Coping appraisal) is determined by three components: (a) the household’s confidence in their 160 

ability to implement an adaptation measure (the perceived self-efficacy), which depends on household characteristics such as 

education level, household size, age, network and gender. (b) the households believe about the relative costs (‘perceived 

adaptation costs’) (Van Duinen et al., 2015), and (c) the perceived degree to which the adaptation options are likely to have an 

effect (perceived adaptation efficacy). The perceived adaptation efficacy, in the model, depends on whether an agent’s receive 

information from extension services or not. If an agent does not have access to external adaptation information, they learn 165 

from what happens in their neighbors' field or within their neighbors' herd. Neighbors are the agents in the neighboring cells 

depending on the radius-settings in the model (8-connected if radius = 1).  

The adaptation behavioral rules are informed by the survey data from Schrieks et al. (2023). The survey dataset contains 

information from 502 pastoral and agropastoral households in Isiolo county, Kenya (‘Sample area’, Fig. 1), and has been 

collected in May 2022. The dataset contains questions on the intention to adapt for all adaptation measures that are included 170 

in the model. The survey also addressed the underlying components of drought risk and coping appraisal of the protection 

motivation theory. Using survey data and other data sources, we parametrized the model as follows:  

• Household characteristics: Household characteristics (age, income, etc.) for agents are determined per climate zone 

(Fig. 1). We initialize agents (crop farmers) located in climate zones I-IV using data of the Tegemeo Institute (2010). Agents 

in climate zone V (agropastoral communities) are initialized with data by Schrieks et al. (2024). Agents in climate zones VI 175 

and VII (pastoral communities) are initialized with data by Schrieks et al. (2023). These initial socio-economic  characteristics 

of agents are based on the best-fitted statistical distribution (e.g. gamma distribution) of the sampled data. 

• Self-efficacy: We used the household survey data to assess the influence of socio-economic variables (age, gender, 

etc.) on perceived self-efficacy. For this we estimated Ordinary Least Squares regression (OLS) regressions models (one for 

each adaptation measure) with as dependent variables the perceived self-efficacy score from the survey and as independent 180 

variables the socio-economic variables. We estimate the regression models with multiple different socio-economic variables 

and included the variables in the model that provided the best the Aike's Information Criteria      (AIC) scores (Cavanaugh & 

Neath, 2019). Supplement S2 gives a description and descriptive statistics of the variables that are used and Supplement S3 

provides the regression tables.  
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• PMT weights: To estimate the weights of the PMT variables in the model, we estimated a logistic regression model 185 

with clustered standard errors   as in Schrieks et al. (2023). We created composite variables for the coping appraisal variables 

by taking the average of all adaptation measures in the dataset and we used the binary variable for intention to adapt for all 

adaptation measures as dependent variables (Schrieks et al., 2023). In Supplement S2 we included a table with an overview of 

all survey questions that have been used in the regression models. 

3.3 Socio-hydrological interactions 190 

Agropastoral households have livestock and cropland. By taking an adaptation measure to fulfil domestic, agricultural or 

livestock purposes, they change the environment (water availability and land use). Water can be abstracted directly from a 

river or through groundwater abstraction points for all three purposes.   

3.3.1 Domestic 

The domestic water demand for households in each cell is calculated for each (daily) time step. It is assumed that households 195 

abstract water from the nearest available source: either surface water from a river or groundwater from an abstraction point. 

Domestic water demand is calculated by multiplying the number of people in a grid cell by the daily water requirement per 

person (50 L/day per person in rural areas Oageng and Mmopelwa (2014). Actual water abstraction is limited by the water 

available in the nearest (non-dry) water source (either river or well). Depending on the season, farmers have to pay for water 

(Mattijssen, 2022) if there is no water available in their neighbourhood (at walking distance). 200 

3.3.2 Livestock and agriculture 

Water demand  

Water demand for irrigation is based on the soil moisture deficit (SMD; Equation 4) during the crop growing 

season, calculated as follows:  

SMD = Droot ⋅ (θfc−θ)           (2) 205 

where Droot is the rooting depth (mm), θ is the water content (–) and θfc is the water content at field capacity (–). Irrigation 

demand is derived by multiplying the SMD by the sum of the irrigated land area for each household in a cell. Irrigation water 

demand is compared to Jeptum et al. (2018) to confirm the correct calibration ranges of the irrigation factor. 

Households own livestock, which they usually herd at home. However, livestock can graze in a different location when 

insufficient grass or water is available at home. At the destination location, livestock drink water and graze.  Livestock water 210 

demand is calculated by multiplying the number of livestock in a grid cell by the daily water requirement per livestock type 

(See Streefkerk et al., 2023).   

Crop and grass yield  

https://doi.org/10.5194/egusphere-2024-2382
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.



9 

 

Crop and grass yield is calculated based on the ratio between the crop's actual (AET) and potential evapotranspiration (PET) 

(Ratiocrop_yield; see Supplement S1). This calculation follows Siebert and Döll (2010): if the ratio is 1 (AET = PET), crop 215 

yield is at its maximum, while a lower AET reduces crop yield. The crop coefficient kc in the DRYP model, with the reference 

evapotranspiration, determines a crop's PET. This indicates how much the crop would evaporate assuming it is healthy and 

well-watered. The crop coefficient depends on the crop type and its development stage (Allen et al., 1998). We used crop 

factors for maize and cassava from Siebert and Döll (2010). For determining grass yield, we used crop characteristics of fodder. 

Actual evapotranspiration indicates how much the crop evaporates based on the current water availability. Crop and grass yield 220 

(Yieldcrop) is then calculated by multiplying Ratiocrop_yield with the maximum (irrigated) yield (Yieldcrop_max) for those two crop 

types and fodder, following Siebert and Döll (2010): 

Yieldcrop = Ratiocrop_yield * Yieldcrop_max             (3) 

Income from livestock and crops 

We translate crop yield in a year to income by multiplying the yield with market prices of the crops. We address market 225 

fluctuations of crops prices by scaling the production of the year to the average production of the last ten years (Wens et al., 

2020). We calibrated and verified the simulated maize crop production with data from Kenya’s National Information 

Dashboard on Food Security and Nutrition (KNBS, 2024) of the counties within the model domain, and weighted accordingly. 

Livestock production (number of animals) is a function of grass yield and calculated on daily basis (Lopez, 2008; Pande and 

Savenije, 2016). In addition to these rules, we assume a birth rate and that livestock dies if they don’t have water for a certain 230 

period: for cattle this is four days, while goats can last maximum eight days without water (King, 1983). Income from livestock 

is generated by selling livestock or milk. Livestock prices are fluctuating by scaling the current livestock production to the 

average livestock production of the last ten years. Livestock is only sold when a household does not have sufficient income to 

pay expenses. Milk production is calculated by multiplying the number of animals by the number of litres produced by the 

type of livestock. For goats this is 1.5 L/day and for cows 3 L/day (Mattijssen, 2022; Otte et al., 2002). Based on Tegemeo 235 

Institute (2010) and Mattijssen (2022) region-specific milk and animal prices during different seasons and drought conditions 

are defined. Simulated milk production of the model is calibrated and verified with milk production data of Laikipia county of 

the National Drought Management Authority. 

3.3.4 Commercial export farms 

Commercial export farms are included in the model as water and land users in the upstream areas of the catchment (Fig. 1). 240 

Each farm has specific characteristics including: number of grid cells they occupy; a greenhouse roof surface for rainwater 

harvesting; a reservoir to store water (from roof, river and groundwater); type of farm (flowers or vegetables/other); water 

abstraction limit (per water source). Commercial farms do not follow the PMT theory for their adaptation decisions, but they 

try to meet their water demand by using water in the following order: (1) rainwater, (2) open water from rivers, and (3) 

groundwater. We differentiate between horticulture and crop farm types with the following decision rules: 245 
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• Commercial horticulture farms: Commercial farms have a reservoir and a greenhouse. Greenhouses are modelled as 

‘closed systems’ and irrigation water is not added to the model while there is evaporation. Water is used on daily basis from 

the reservoir to fulfil irrigation requirements, set at 40 m3/hectare/day for flowers (de Hoog, 2001).  

o To fill the reservoir with rainwater, greenhouses catch water on their roofs and store it for later use.  

o If the reservoir is not full and there is water in the river, the reservoir is filled with river water.  250 

o If there is not enough water in the reservoir and the farm has a permit, then it is filled with groundwater.   

• Commercial crop farms: Commercial crop farms are modelled similarly to community crop farms in ADOPT-AP 

(Streefkerk et al., 2023), but it is assumed that these farm types grow wheat. The farms have no rainwater harvesting from 

greenhouses but can store river and groundwater in a reservoir. They can also directly irrigate from river and groundwater if 

they have a permit. 255 

Data to characterize the commercial export farms is based on various sources. Dam greenhouse sizes are calculated though 

Google images. Farm sizes and crop types are obtained from the respective farm websites online. Furthermore, water 

abstraction limits and permits are specified per commercial farms and are based on abstraction permit data from the Kenya’s 

Water Resources Authority. 

3.4 Calibration and validation 260 

Calibration of parameters in all model components is performed using the Distributed Evolutionary Algorithms in Python 

(DEAP) software (Fortin et al, 2012), which makes use of the Non-Dominated Sorting Genetic Algorithm known as NSGA-

II (Deb et al., 2002). Discharge at the outlet of the catchment, milk production, and crop production are the variables used for 

calibration and validation. The difference between simulated and observed results is evaluated using a modified Kling-Gupta 

efficiency (KGE) score for discharge (Kling et al., 2012) and the bias ratio (BR; McEvoy et al., 2022) for milk and crop 265 

production. The hydrological model has a spin-up period of 11 years (1990-2000). The entire period after the spin-up period 

is available for calibration (Shen et al., 2022). The calibration algorithm DEAP initiates model runs in the first ‘generation’, 

which consists of 60 parameter sets (‘individuals’). The values in these sets range as indicated in Table 3. The 10 best 

performing parameters sets are selected and are either combined (‘mated’) or altered (‘mutated’) – with a probability of 0.7 

and 0.3 respectively. 12 new ‘individuals’ are created in the process, and the model is run for these parameter sets. This 270 

procedure is repeated 10 times (‘generations’). Of all generations, the best performing individual is selected and run to calculate 

the validation scores (De Bruijn et al., 2023). Table 5 gives an overview of the parameters which are included in the calibration 

procedure. Note that the hydrology-related parameters are factors that in the model are multiplied by the actual values of the 

physical parameters. The sensitivity of the hydrological parameters is assessed in Quichimbo et al. (2021), while the other 

parameters have been assessed by Streefkerk et al., (2023). An exception is the ‘intention to behaviour’ parameter, which is 275 

newly added in this study. 

Table 2: Overview of parameters included in calibration procedure. 
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Component Parameters Values [Unit] 

Hydrology 

Recession time 0.15 - 0.55 [-] 

Channel saturated hydraulic conductivity 0.2 - 1.0 [-] 

Saturated hydraulic conductivity (unsaturated zone) 0.1 - 0.5 [-] 

Rooting depth 0.6 - 2.0 [-] 

Specific yield 0.01 - 0.2 [-] 

Saturated hydraulic conductivity (saturated zone) 5.0 - 35.0 [-] 

Socio-hydrological 

interactions 

Distribution abstraction points 0.1 - 0.9 [-] 

Irrigation factor SMD 0.1 - 2.0 [-] 

Neighborhood radius 1.0-10.0 [km] 

Human decision-making 

Intention to behavior 0.1-1.0 [-] 

Alpha 0.33-0.66 [-] 

Costs measures 0.5-5 [-] 

3.5 Scenario analysis 

Three scenarios are run to study the effects of the water and land use of commercial export farms of downstream users: 

• Scenario 1 ‘Baseline Commercial export farms’: This scenario is the baseline scenario and includes the current 280 

commercial export farms and their operational water management rules (Section 3.1.1).  

• Scenario 2 ‘Commercial as forest’: This scenario assumes that the commercial export farms are no longer present, 

and instead there is a natural forest area. This implies that there is no human water abstraction, and the land use is changed 

from crop land to forest. To accommodate this in the model, the parameters related to interception (SAVI, fraction vegetation 

cover and biome specific coefficient), and infiltration capacity (Ksat) are increased in the DRYP model (Ellison et al, 2017; 285 

Iacob et al., 2017; Mwangi et al., 2016).  

• Scenario 3 ‘Commercial as agropastoral communities’: In this scenario, the commercial export farms are converted 

into agropastoral communities, similarly to other grid cells, to simulate water and land use during the time before commercial 

farming was introduced.  

We use different drought hazard and impact metrics to assess the effects of the three scenarios. Drought metrics includes soil 290 

moisture, discharge and groundwater levels. Drought impact metrics include crop production, milk production, and livestock 

distance to water of agropastoral communities. 

4 Results 

4.1 Validation of model 

The model is validated by comparing observed and simulated values of three variables (Fig. 4); discharge at the outlet of the 295 

catchment, milk production, and crop production (maize). The KGE score of discharge is ~0.54 (composed of a bias ratio of 

0.8, variance ratio of 0.74 and Pearson correlation of 0.67), and the BR is ~0.63 for crop production and ~0.62 for milk 
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production. The simulated crop production in the best performing parameter set is lower than the observed production, and has 

a high variability within the ten best performing parameter sets obtained from the genetic calibration method (Section 3.4). 

The simulated milk production has a higher variability than the observed milk production. However, it follows the timing of 300 

the observed peaks very well. During the last period withing the 2020/23 drought the model simulated a lower milk production 

than was observed. 

 

Figure 4: Observed and simulated timeseries of streamflow at the outlet of the catchment (m3/s), crop production (kg/hectare), and 

milk production (liters/month). The uncertainty ranges indicate the 10th and 90th percentile, resulting from the different parameter 305 
sets of the best ten performing runs. 

4.2 Scenarios: effect of commercial farming activities on drought risk and impact 

Before discussing the effect of different scenarios, we first look at water use by commercial farms in the Baseline scenario. 

Here, on average, irrigation water use by commercial flower farms is supplied as follows: ~75% of their irrigation is obtained 

from water that is stored in dams and reservoirs (previously collected via rainwater harvesting on the greenhouse roofs), 7% 310 

from river discharge, and 18% from groundwater sources. The irrigation water by commercial crop farms originates for ~35% 

from river discharge and the remaining ~65% from groundwater sources.  

Next, we assess the effects of the three scenarios defined in Section 3.5: (1) Baseline commercial farms (2) Commercial farms 

converted into forest, and (3) Commercial farms converted in agropastoral communities.  To allow for comparison, hazard and 

impact variables are simulated for two drought periods for each of the three scenarios, but limited to the same months: October 315 

2010 to June 2011 and October 2020 to June 2023. The effects on drought hazard are quantified using the indicators soil 

moisture, discharge and groundwater elevation. Drought impacts are quantified using distance to water, crop- and milk 

production. 
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4.2.1 Aggregated drought hazard and impact over the drought periods 

Figure 5 below shows the average of drought hazard and impact variables for the four sub-catchments where downstream 320 

agropastoral households are located, and also excludes the upstream area that was modified in the scenario. 

When comparing drought hazard across the two drought periods and scenarios, we mostly see the difference between the two 

drought periods and less difference across the scenarios. The 2020/23 drought appears to be more severe in terms of soil 

moisture (0.254, compared to 0.246) and streamflow (2.6 m3/s, compared to 1.3 m3/s) and groundwater depth (110 m, 

compared to 115 m in the forest scenario. During both drought periods, the groundwater depth is the highest (i.e., lower water 325 

table) in commercial farms scenario (112 m in 2010/11 and 119 m in 2020/23). Overall, we can observe that drought hazard 

is slightly exacerbated in commercial export farms scenario compared to the other scenarios. 

In terms of drought impacts, the crop production and milk production is higher in the 2010/11 drought (2010 OND season) 

compared to the 2020/23 drought (2020, 2021 and 2022 OND season). Crop and milk production during the 2010/11 and 2023/ 

drought is 609 and 307 kg/hectare for crop production, 24.2 and 26.9 l/month for milk production, respectively. The distance 330 

to household water is shorter in the 2010 drought; 120 m for all scenarios. Only in the distance to household water indicator 

we see notable differences among the scenarios, with the scenario of commercial farms leading to a longer distance to 

household (266 m) water during the 2020/23 drought indicating that people need to travel further for drinking and sanitation. 

While the differences across the scenarios are relatively small, note, however, that we here assess the average effect over a 

large area, and only look at two time periods. On the other hand, it can be seen that the severity of the drought has a greater 335 

impact on households than the difference in scenarios. In the next paragraphs we will have a closer look at the temporal and 

spatial differences among the scenarios. 

 

Figure 5: Average of drought hazard (a) and impact (b) over the four sub-catchments for two drought periods in the three scenarios. 
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4.2.2 Spatial and temporal drought hazard effects 340 

In this section the three scenarios are assessed in terms of their drought hazard characteristics. Figure 6 shows the effects of 

the two drought periods by comparing the forest (2) and communities scenario (3) with the baseline commercial farms scenario 

(1). The figure shows data for the four sub-catchments, excluding the scenario area. Over time the drought hazard variables 

are positively influenced (i.e. drought hazard reduced) due to the absence of the commercial farms in the forest and 

communities scenario. Results show that over time, there is an increase in soil moisture and streamflow. The increase of soil 345 

moisture coincided with the timing of the cropping season (OND). Within the scenario area soil moisture is decreased due to 

less irrigation. During the cropping season less water is abstracted for irrigation in the forest and communities scenario 

compared to the commercial farms scenario. The higher peaks in soil moisture in the communities scenario compared to the 

forest scenario can be explained by the higher adoption of irrigation or agroforestry by households, which is lower in the forest 

scenario (see Supplement S4). Groundwater tables are up to 1,5m higher in both the forest and communities scenarios. This 350 

effect is caused by the absence of abstraction of groundwater by the farms, and more infiltration because of the absence of 

greenhouses covering the land surface, causing less water taken out of the groundwater and an increase in groundwater 

recharge. In the forest scenario the infiltration capacity is higher, leading to higher groundwater tables. In the communities 

scenario, wheat is grown at the open farms instead of maize or casava, which results in different water demands. Streamflow 

and soil moisture are hydrologically connected to the groundwater table, which can explain the same upward trend in all the 355 

three variables. Note that there is no increase in groundwater level in absolute terms, but the increase is relative to the 

commercial farms scenario, which has a decreasing trend due to abstraction. Absolute values of the hydrological variables can 

be found in Supplement S5.  

 

Figure 6: Differences between baseline commercial farms (scenario 1), and forest (scenario 2) and communities scenario (scenario 360 
3)  in soil moisture (-), discharge (m3/d) and groundwater level (m) aggregated over the four sub-catchments, excluding the scenario 

area. 

Figure 7 also shows these effects spatially over the whole drought period of 2020-2023. The left panels shows that the decrease 

in soil moisture is largely at the location of the commercial farms in the forest (2)- and communities (3) scenarios during the 

whole drought. However, interestingly, there is an increase of soil moisture at some riparian zones downstream within the 365 

https://doi.org/10.5194/egusphere-2024-2382
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.



15 

 

same sub-catchments, which is linked to the increase in streamflow (Error! Reference source not found., middle) d

ownstream of the commercial farms. Some areas in the most Eastern sub-catchment have a reduction of streamflow. 

Furthermore, the figure shows that the increase of the groundwater table is mostly observed around commercial farms in both 

forest and communities scenario (around 5 meter over the 2020/23 period), as explained in previous paragraph. The increase 

of the groundwater has an effect downstream: a rise of the groundwater table downstream of the scenario area (around 1 meter 370 

over the 2020/23 period). There is no significant difference between the forest and communities scenarios, indicating that the 

commercial farms are most influential in modifying drought hazard characteristics. 

 

Figure 7: Differences between commercial farms and forest scenario (2) and communities scenario (3) over the 2020-23 drought 

period using hazard indicators: soil moisture (-), discharge (m3/d), and groundwater table (m). 375 

4.2.2 Spatial temporal drought impacts 

The spatial and temporal effects of the three scenarios are assessed in terms of their drought impact characteristics. We zoom 

in to role of different agents types: effects on crop production are assessed separately for agents close to the river and those 

located further away. Milk production differences are assessed separately for agents that migrate with their livestock (to seek 

for better pastures) and those who do not.  380 

Error! Reference source not found. shows the differences in crop production for forest scenario and communities scenario a

s compared to the baseline commercial farms scenario. Average crop production is higher for agents located nearby a river 

stream, which enhances water access, especially in the drought periods at the end of the years 2010, 2015, and 2021. Crop 

production shows less difference with the baseline in forest scenario than in the communities scenario. Note that the percentage 

change is relatively low (maximum of 0.4%). 385 

The forest and communities scenarios increase milk producton in the period between 2017 and 2023 for agents who migrated 

with livestock; up to 20 l/month.  The peak in milk production matches the peak in soil moisture (Error! Reference source n
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ot found.). Higher soil moisture results in higher grass produciton, leading to higher milk production. On the other hand, 

agents who did not migrate are (slightly) negatively influenced in that period in the forest and communities scenario. The 

reason could be that other agents who migrated, accessed the area of agents who stayed and therefore grass yields are shared 390 

among more livestock numbers, resulting in lower milk production. The phenomana can also explain the ‘mirroring’ of the 

results; if people who migrated have a higher milk production the people who did not migrate have a lower milk production 

(for example in the period before 2004). However, in the period before 2016 and after May 2013 a decrease in milk production 

can be observed for the agents who migrated (up to 10 l/month). In both the forest and community scenario around 5% more 

people migrated that season, compared to the commercial farms scenario (see Fig. S4 in the Supplement). Decisions whether 395 

to migrate or not are made beginning of May. It could be that less grass and water was available that upcoming dry season 

(end May to end September 2013), than was expected based on the conditions beginning of May (FEWSNET, 2013) resuling 

in lower milk production. This situation could have been different in the commercial farms scenario, as in general less water 

and grass was available. 

The distance to household water is decreased in forest and communities scenarios during the dry season, but this distance 400 

increases in the rainy season. The distance to household water is influenced by both the streamflow and groundwater level. An 

higher variability of distance to household water can be observed with the agents located near a river. The distance to household 

water follows a similar pattern as the streamflow (Fig. 6); an increase in streamflow results in a decrease in distan ce to 

household water and vice versa. 

 405 

Figure 8: Difference in forest and communities scenario compared to commercial farms scenario, expressed in crop production 

(kg/hectare), milk production (liters/d), and distance to household water (m). The figure also shows the impacts differentiated 

between agents located at the river (for crop production and distance to household water) and whether they migrated or not (for 

milk production). 

https://doi.org/10.5194/egusphere-2024-2382
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.



17 

 

5 Discussion 410 

5.1 Influence of commercial export farms on drought hazard and impact 

Previous research has already shown that water abstraction by commercial export farms reduces streamflow during the dry 

season. For example, Lanari et al. (2018) found that streamflow in Naru Moru River (tributary within the Ewaso Ng’iro 

catchment)   are influenced by commercial export farms in the catchment, resulting in to up to 32% of streamflow reduction 

in the month of February (dry season). This study has comparable results for the Naru Moru with an average reduction of 22% 415 

in February in the period of 2002 to 2012. In the period of 2013 to 2023 in February we see a decrease in streamflow of 36% 

in the Naru Moru River. It is, therefore  , expected that the ongoing expansion of commercial export farms will result in a 

further reduction of streamflow if no further water saving measure will be taken (Lanari et al., 2018).   

On top of these common findings for streamflow effects, our results show a large effect of commercial farms lead to lower 

groundwater tables. Initially, groundwater levels may appear sufficient to support both commercial farming activities and local 420 

community needs. As groundwater is a hidden water source and there is a lack of groundwater monitoring, it   may be difficult 

for communities and practitioners to perceive the extent of the problem. Additionally, the immediate economic benefits from 

export farming, such as employment opportunities and increased local revenue, may overshadow concerns about water 

consumption.  Over time, the excessive withdrawal of groundwater may lead to unsustainable water management (Gaye & 

Tindimugaya, 2019) and thus high impacts in the long term (Hogeboom et al., 2015). Impacts may include wells running dry 425 

for domestic use, inequity in access to water, land subsidence, conflict, and ecosystem and biodiversity degradation (Perrone 

& Jasechko, 2017; Rafiei Emam et al., 2015; Sarkar, 2012).  

To mitigate these long-term impacts, it is essential to implement sustainable water management practices that balance the 

needs of commercial and local water users, including; i) Regulating (indirect) water use by enforcing existing regulations 

and/or establishing robust groundwater monitoring systems and regulations to ensure that extraction rates do not exceed 430 

recharge rates and abstraction permit limits. Not only for commercial export farms, but (illegal) water abstraction in general 

(Mwaura et al., 2021); ii) Supporting the implementation of sustainable agricultural practices. The adoption of water-efficient 

irrigation methods can be encouraged to reduce water consumption (Mulwa et al., 2021). Alternatively, water consumption 

can be decreased by decreasing bare soil evaporation through promoting soil moisture conservation techniques such as 

agroforestry (Mwangi et al., 2016) and mulching (Kader et al., 2019); iii) Promoting equitable water distribution (especially 435 

in dry periods) by involving local communities in water management decisions and raising awareness about the importance of 

sustainable water use. The governance structure of the WRUA’s is already a step forward in equitable water distribution (Dell 

Angelo et al., 2016; Mwaura et al., 2021).  

When reviewing experiences from drylands in other global regions, the question is whether producing water intensive 

commodities can be a sustainable water management practice in water-scarce dryland areas (Martinez-Valderrama et al., 2024). 440 

Especially when the commodity is exported and not contributing to the food security of the country itself. However, this is a 

political discussion, as there are also employment and economic benefits to this industry (Peter et al., 2018; Mekonnen et al, 
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2012). In addition, the importing countries can take virtual water (or energy) footprints into account in their supply chain 

(Mekonnen et al, 2012). 

5.2 Drought impacts and human-water feedbacks 445 

Drought impacts are a manifestation of complex system in which interaction between water and people exist and emerge (Van 

Loon et al., 2016). Drought impacts may be different for different people, as people have different capacities or respond 

differently. In turn, the drought responses of people (and other actors) may influence the propagation of drought. For example, 

irrigation may delay the drought impact of soil moisture drought, but may worsen the drought at a later stage during 

hydrological drought (Piemontese et al., 2024). Other feedbacks relate to behavioural factors. For example, results show 450 

seasonal migration dynamics, and how people influence each other’s pasture availability and milk production. Lower milk 

production in one year, may increase risk perception for the next year and thus the chance of migrating. The scenario analysis 

shows that the uptake of irrigation and agroforestry is lower in the forest scenario as compared to the scenario with commercial 

farms. This is probably due to the higher water availability in the scenario without commercial farms leading to a lower risk 

perception, resulting in a lower uptake of irrigation.  Understanding these interactions is crucial for developing effective 455 

drought adaptation strategies for agropastoral communities, and sustainable water management practices and governance 

(Wens et al., 2021). 

There is a broader scientific discussion on the (human-induced) conversion of agricultural land into forest, and what the effect 

is on (downstream) hydrology (Ellison et al., 2012). Some studies see forests as ‘demanders’ of water (through higher 

evapotranspiration rates) (Greeff, 2010; Malmer et al., 2010;  Trabucco et al., 2008), while other see them as ‘providers’ 460 

(through moisture transport, higher infiltration and lower soil evaporation) (Ellison et al., 2017; Sheil & Murdiyarso, 2009). 

In this study, the scenario analysis excludes the scenario area itself from the analysis and focusses on downstream effects, 

where we do see small differences. As mentioned in the results, soil moisture is higher in the communities scenario during the 

cropping season. It can be due to a higher uptake of irrigation and agroforestry, but  it can also be because of different 

hydrological fluxes. When looking into the hydrological fluxes over the entire catchment, higher canopy evaporation can be 465 

observed in the forest scenario, resulting in lower potential evaporation and precipitation reaching the soil. Insignificant 

changes are observed in groundwater storage and recharge. The model does not take any potential benefits of moisture 

recycling of forest into account. Keeping the human-drought feedbacks of adoption behaviour in mind, it is difficult to point 

out what causes the higher soil moisture; the higher uptake of adaptation measures or changes in hydrological fluxes. Future 

research would be needed for that.  470 

The development of models like ADOPT-AP provides a valuable tool for capturing and understanding the interactions between 

human activities and drought impacts. However, lack of data on adaptation measures over time hinders the validity of 

modelling the effects of adaptation measures as human-water feedbacks (Aerts, 2020). Although alternative calibration 

parameters can be used to calibrate and validate the model, empirical longitudinal data from consecutive surveys on the uptake 

of adaptation measures would be valuable (Kalthof et al., 2024). Such panel data would give more certainty around calibrating 475 
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the weighting of relative importance of the risk and coping appraisal parameters in our decision model and the threshold that 

drives the intention to adapt to measures actually implemented (Bubeck et al., 2020). 

In this study households and commercial farms are incorporated as actors that influence the water balance. However, other 

water users may be important as well, especially considering population growth in urban areas (Wamucii et al, 2023) and the 

expansion of the tourism industry (Mutiga et al., 2010). Furthermore, this study represents the adaptive behaviour of 480 

households through the protection motivation theory (PMT). Although research shows that PMT factors best explain the 

adaptive behaviour of farmers in Kenya (Wens et al., 2021), it should be noted that not all factors are included in this study 

and more factors may influence the adoption of drought measures (Schrieks et al., 2023). 

Conclusion 

This study presents an evaluation of the effects of commercial export farms in terms of drought hazard and impacts within the 485 

Upper Ewaso Ng’iro catchment. After validation of the model, we compared the base scenario in which commercial farms are 

present in part of the catchment to two scenarios where there are agropastoral communities or forests instead of the commercial 

farms. 

The analysis shows that in the scenarios where these farms are replaced by forests or communities, drought conditions are 

alleviated by increased soil moisture, streamflow, and groundwater tables during dry periods. These improvements of drought 490 

conditions are related to reduced water abstraction and increased infiltration of communities and forests compared to 

commercial farms. This benefits downstream communities by decreasing the distance to household water (average up to 10 

m) and increasing crop production (average up to 0.4 %) and milk production (average up to 10 l/ month) in times of drought. 

Changes are, however, low in comparison to the effect of drought itself.  

The reduction of streamflow due the commercial farms aligns with previous research, highlighting the need for equitable water 495 

management practices. Policy interventions should prioritize equitable water distribution, regulation of water use, and 

promotion of sustainable agricultural practices to mitigate long-term impacts on water resources and community resilience. 

Code and data availability 

The ADOPT-AP model code is publicly available in GitHub via https://github.com/istreefkerk/ADOPT-AP and 

http://doi.org/10.5281/zenodo.7447665.  500 
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