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Dear Editor,

We sincerely thank the reviewers for their time and thoughtful evaluation of our manuscript, "A minimal
machine learning glacier mass balance model" [Paper EGUSPHERE-2024-2378]. We greatly appreciate
their positive feedback and the valuable insights they have provided. In response to their comments, we
have revised the manuscript accordingly, with changes clearly highlighted. Below, we address the reviewers’
comments that require further explanation. All minor editorial suggestions have been directly incorporated
into the revised version.

Reviewer 1

Introductory statement

The main objective of the study is to create a machine-learning model to estimate annual point surface
mass balance measurements. This could serve as a tool to fill gaps in in-situ measurements, which are
crucial for the calibration and validation of models of global glacier change. The usefulness of a machine
learning approach is discussed in comparison to the traditional Positive Degree Day (PDD) approach,
and given the large amount of observational data points in the Swiss Alps, this method could potentially
provide a better constraint on annual point mass balance modeling.

Thanks to the authors for a well-written manuscript! I think using a machine-learning approach instead
of a PDD approach to fill gaps in point mass balance measurements is an excellent idea, and the choice of
method is appropriate.

We are happy to receive this positive feedback and thank the reviewer for their helpful comments and
suggestions. Below, we offer a detailed, point-by-point response to the latter.

Minor comment #1

However, I do have one major concern: The authors took a very open-ended approach to determining
the predictors for the miniML-MB model, neglecting the physical background knowledge that is well-
established in glaciology. The best predictors of annual point mass balance, which can be found within
temperature and precipitation data, are typically the annual snow accumulation and the annual heat
content (total number of positive degree days) over the full hydrological year. This knowledge forms the
basis of the PDD model, but it is not incorporated into the miniML-MB model in the same way. As a result,
I don’t believe the comparison between the two methods is entirely fair. To clarify my point, I’ve identified
a few specific lines that illustrate the issue.

First, we would like to address the reviewer’s comment regarding our machine-learning (ML) model’s



"open-ended" nature. Statistical and ML methods are inherently open-ended, unlike mechanistic models
used in empirical or physical approaches. This is because their primary objective is to derive patterns and
relationships directly from observational data. This fundamental difference is crucial to understand our
method correctly. As highlighted in the manuscript, our approach serves as an alternative to established
methods by constructing models grounded in observations rather than predefined physical mechanisms. The
advantage of these ML models is their ability to extract meaningful insights from minimal datasets. These
data-compression capabilities are particularly valuable, as they allow for developing less data-hungry models
while simultaneously aiding in interpreting the main drivers of mass balance changes. This reductionist
approach should not be perceived as a limitation but rather as a chosen trait that underscores the strengths of
ML models in this context.

Second, we would like to respond to the reviewer’s concern regarding the fairness of the comparison between
the positive degree-day (PDD) and ML models. We believe that the comparison is fair because what matters
is that both models are evaluated out-of-sample on an independent test set. As noted earlier, the fact that the
models use different predictors is a natural consequence of their differing methodologies. Arguing that the
comparison is invalid due to this difference would be similar to saying that a PDD model cannot be compared
to a Surface Energy Balance model simply because they rely on distinct sets of predictors. The validity of
the comparison lies in ensuring that both models are tested on an independent dataset and calibrated under
consistent conditions. Under these circumstances, the comparison remains robust and meaningful.

In the reviewer’s other comments below, our answers and revisions will hopefully explain this comparison
between the ML and PDD models more thoroughly.

However, to address this first comment, we revised the discussion by adding a new section:

(Section 6.3: Comparison with the PDD model): We have shown that using just two predictors obtained
through dimensionality reduction techniques, miniML-MB can closely match the PMB for individual
glacier sites, surpassing the PDD model’s performance in most cases (see Section 5.3.). Here, we
discuss the question of whether comparing the two models is fair, given their essential differences and
reliance on different predictors.

A fundamental difference between miniML-MB and the PDD model lies in their approach to modeling
and understanding processes. ML methods are data-driven, relying on observational data to identify
patterns and relationships without requiring physical principles or predefined rules (e.g., melt or snow
threshold temperatures). These ML models are open-ended and flexible, adapting as more data becomes
available, without a fixed structure or assumptions about the system. Importantly, they can still provide
physically meaningful results, as shown in this study. In contrast, PDD models are mechanistic models
based on established physical principles in glaciology. They have a fixed structure derived from these
principles, making them less adaptable to data outside their theoretical framework.

A natural consequence of their differing methodologies is that the models use different predictors.
However, we believe that the validity of the comparison lies in ensuring that both models are tested
on an independent dataset and calibrated under the same conditions (e.g., cross-testing). Under these
criteria, the comparison remains robust and meaningful.

1.3. Minor comment #2

RC: Line 171: It is not clear whether the annual predictors are based on the hydrological year or the calendar
year.
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This has now been clarified in the manuscript; it’s over the hydrological year.

(Section 3.3: Experiments with the model’s setup): We explore four levels of temporal aggregation:

¢ Annual: mean annual temperature and total annual precipitation over the hydrological year (2
predictors, n = 2).

Minor comment #3

Line 239: It is stated that temperature [April-August] and precipitation [October-February] are the
best-suited predictors. This is unsurprising, given the physics behind glacier mass balance, but it is written
as if it could have been any of the combinations.

As mentioned above, while the predictors in a PDD model are based on established physical principles,
statistical modeling such as ML takes an inverted approach. Rather than pre-selecting predictors and then
simulating point mass balance (PMB), ML models directly identify the most effective predictors from
the available observations and data. Our results demonstrate that we achieve improved performance by
identifying the predictors that best capture the PMB observations in Switzerland. This ability to pinpoint key
climatic drivers of PMB is precisely what makes this approach interesting: miniML-MB identifies mean air
temperatures from May to August and total precipitation from October to February as the primary drivers
of mass balance. Therefore, these findings can validate commonly recognized PMB drivers for glaciers. To
better clarify this point, we added the following remarks to the revised manuscript:

(Section 5.6: Drivers of point surface mass balance) Through our custom dimensionality reduction
framework, May to August (summer) temperatures and October to February (winter) precipitation
are singled out as the main drivers for PMB (Fig.5). The ability to identify key climatic drivers of

PMB is an interesting feature of this ML approach. While predictors in a PDD model are grounded
in established physical principles, statistical models like ML adopt an inverted approach. Instead of
pre-selecting predictors and then simulating PMB, ML models work by directly identifying the most
effective predictors from the available observations and data. Qur results illustrate that this approach
enhances performance by identifying the predictors that most effectively explain PMB observations
in Switzerland. Consequently, these findings not only demonstrate the utility of this ML method but

also help validate the climatic drivers commonly associated with glacier MB [e.g., 3| 4} |5, (9}, |12} [10].
The majority of studies investigating the relationship between temperature, precipitation, and SMB

variations have consistently identified summer temperatures as the critical component. For instance,
[8] quantified the climate sensitivity of a sample of glaciers worldwide and determined that summer
temperature is the primary factor driving glacier-wide mass balance. In Switzerland, [15] performed a
regression study for PMB on the Morteratsch glacier complex (not included in our dataset) and found
that the mean temperature from May to July and total precipitation from October to February account
for up to 85% of the observed PMB variance.

Minor comment #4

I also believe that using data from the full hydrological year would likely yield even better predictors.

This comment is not entirely clear to us. If by "data from the full hydrological" the reviewer means the
approach where miniML-MB receives monthly temperature and precipitation over the course of the entire
year, i.e., 24 features (or values) in total, then we have tried that experiment. However, Figure 6 (Section
5.2) has shown that the best results are achieved using two seasonal values only based on temperature and



precipitation (in the manuscript, we call this the "optimal seasonal approach") after reducing the predictor
space to include only the most relevant months.

To explain this result, we would like to emphasize that working with glacier PMB series for individual sites, as
in our study, necessitates a setup designed to handle small datasets effectively. In this context, it is important
to consider a challenge in ML known as the curse of dimensionality. This refers to the phenomenon where, as
the number of features (dimensions) increases, the amount of data required to construct reliable models grows
exponentially. The curse of dimensionality reflects a trade-off between the richness of data representation and
the feasibility of extracting meaningful patterns in high-dimensional spaces. Addressing this issue typically
involves reducing the dimensionality of the input feature space. In our case, this means that miniML-MB
has to aim to explain most of the observed PMB variability while relying on as few predictor variables as
possible. To make this need for reducing the predictor space more clear, we have added the following to the
revised manuscript:

(Section 3.3: Experiments with the model’s setup) miniML-MB faces the challenge of training on
very small datasets, which reflect realistic conditions in glaciology, with stake measurements in other
parts of the world typically containing even less data than Switzerland’s long-term glacier record.
Working with glacier PMB series for single sites requires an ML setup tailored to handle small
datasets. This data-limited scenario poses a difficulty for ML models, as their ability to discern
patterns is typically correlated with the dataset size [2]]. Furthermore, ML models face a challenge

known as the curse of dimensionality [ 11]]. This refers to the phenomenon where, as a model’s number
of features (dimensions) increases, the amount of data required to construct reliable models grows
exponentially. Addressing this issue typically involves reducing the dimensionality of the input feature

space, which, in our case, means that miniML-MB should aim to capture most of the observed PMB
variability using as few predictor variables as possible. In our analysis, we study the effect of relying
on a varying number of predictors and explore which options optimally represent meteorological
information necessary to predict PMB.

Furthermore, this was also addressed by revisions made in Section 5.2 following Minor comment #2 made by
Reviewer #2 (see[2.3).

If, however, by "data from the full hydrological," the reviewer means that we should take the mean/sum over
the whole hydrological year (2 features per year), we believe that the relevant information to predict PMB
would be lost. To address this comment, we added the following to the revised manuscript:

(Section 3.3: Experiments with the model’s setup): We explore four levels of temporal aggregation:

e Optimal seasonal: two predictors (n = 2), one for temperature and one for precipitation
aggregated over consecutive months (max. 6). For example, mean temperature from Oct.-Jan.
and total precipitation from Feb.-Apr. The idea of this setup is to use a flexible construction of
seasons, where the information of months driving PMB might reside in intervals that overlap
seasons and/or are smaller than half-years. We limited the maximum number of consecutive

months to 6 because extending beyond this threshold risks diluting the relevant information
needed to accurately predict PMB.
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Minor comment #5

Lines 391-396: Snow cover on ice is also crucial in determining glacier mass balance, as glaciers cannot
melt when snow is present. While I am not an expert in machine learning, I believe the manuscript requires
revision, particularly in how the predictors are defined. I suggest basing them more strongly on established
physical knowledge. Predictors could include annual precipitation sum and annual PDD (based on the
hydrological year), but could also be expanded to include annual snow, rain, and PDD or something
similar. I think that the knowledge we already have on what drives glacier balance should be made more
clear throughout the manuscript but mainly in the description of the model and the discussion.

We fully agree with the reviewer’s perspective that, in first instance, one might expect improved model
performance when using predictors that are more deeply rooted in physical knowledge or that are less simple.
To address this, we conducted additional tests incorporating such variables, including PDD sums as suggested
by the reviewer, as well as downscaled and weighted variables (see Section 6.2). However, these tests did
not yield any significant improvement in model performance. We interpreted this as evidence that the model
acts as an "information compressor," effectively extracting the necessary information directly from the "raw"
and readily available variables, such as air temperature and total precipitation. Our results demonstrate that
the model can outperform traditional empirical methods with just a very limited number of input variables,
i.e., aggregates of temperature and precipitation. This "simplicity" is, in fact, a key advantage, making the
method more flexible and less dependent on extensive data that might not be available everywhere. We better
highlighted this in the revised version of Section 6.2 of the discussion, which also incorporates suggestions
by Reviewer #2 (see[2.8):

(Section 6.2: Choice of meteorological variables and post-processing) In first instance, one might
expect improved model performance when using predictors that are more deeply rooted in physical
knowledge or that are less simple. To address this, we conducted additional evaluations of the model,
incorporating more refined representations of temperature and precipitation. First, we used the sum
of daily average temperatures above 0°C in a month (PDD sums) instead of monthly average tem-
perature, given how PDD sums are often more indicative of snow and ice melt [/, |13]. However,

the performance improvement of miniML-MB with the PDD sums was minimal to non-existent
(Fig.ASa). It seems that miniML-MB is capable of effectively extracting relevant information related

to melt processes by directly identifying patterns from the monthly input temperatures. Then, we used
weighted mean air temperatures and precipitation totals, using weights based on the importance of

months identified in Section 5.6: 0.58, 1.0, 0.56, and 0.52 for May to August temperatures, respectively,
and 0.52, 0.46, 0.6, 0.58, and 0.42 for October to February precipitation. Again, no performance
improvement was observed (Fig. ASb). Our results demonstrate that more complex aggregations of
temperature and precipitation offer limited to no added value within our minimal ML framework
and support the need for dimensionality reduction instead. These findings suggest that the model

acts as an "information compressor,” efficiently extracting the necessary information directly from

the temperature and precipitation variables. This simplicity is, in fact, a key advantage, making the
method more flexible and less reliant on extensive data.

Reviewer 2

Introductory statement

This paper presents miniML-MB, a new machine-learning (ML) model designed for estimating annual
point surface mass balance (PMB) on glaciers, specifically tailored for situations with very limited datasets.
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By employing an XGBoost architecture, miniML-MB addresses the challenges associated with data scarcity
in glaciological research, providing a data-driven tool to predict PMB at specific sites within the Swiss Alps.
A significant feature of miniML-MB is its ability to discern influential climatic drivers of PMB, which
the authors identified as mean air temperature (May-August) and total precipitation (October—February).
The model demonstrated a high level of accuracy across multiple decades (1961-2021), achieving a mean
absolute error (MAE) of 0.417 m w.e., and outperformed a traditional positive degree-day (PDD) model,
which had an MAE of 0.541 m w.e.

A number of prognostic glacier models suffer from significant uncertainties in Surface Mass Balance
(SMB) modeling. One of the most widely used models, the Positive Degree-Day (PDD) model (and its
variations) fundamentally struggles with calibration issues: PDD parameters can vary considerably across
different glaciers and regions. Typically, calibration is performed through basic regression techniques. The
advent of machine learning (ML) techniques in glaciology, which offer advanced regression capabilities
and greatly simplify implementation, is therefore pivotal in addressing these calibration challenges. Besides
initial efforts by J. Bolibar and colleagues to model mass balance processes with ML, there has been a
need to tackle the challenge of deriving a local ML-based SMB model, driven by the glacier modeling
community’s shift towards distributed modeling. (as opposed to glacier-wide models). To my knowledge,
this is the first paper to address this issue—a crucial step for the community, given the demand for more
accurate models. Overall, I enjoyed reading this paper; it is well-written, clear, original, and presents
promising results.

I don’t have any major concerns, but some comments or suggestions that I hope will help the authors to
improve their manuscript.

We are very happy to hear that our work has been well received and would like to thank the reviewer for both
the positive feedback and the constructive comments. Below, we provide a point-by-point response to the
latter.

Minor comment #1

You do not discuss the choice of architecture. I assume you must have tried a series of different ML
models, and I think it would be valuable to share some of your experience with this process. Additionally,
it would help to justify your final choice beyond simply opting for a lightweight model due to the limited
data availability.

We currently address the choice of architecture in Section 3.1. Upon reflecting on the reviewer’s comment, we
realize that this paragraph was not clearly formulated and may have been somewhat misleading in parts. The
limited availability of data was not the primary reason for selecting XGBoost. While all machine-learning
models face challenges with small datasets, XGBoost is not inherently better at handling them than other
architectures. The main reason for our choice was that our input data was in tabular format (i.e., one row
per year with a PMB measurement). For this type of data, benchmarking studies have demonstrated that
XGBoost consistently outperforms other architectures [6} [14]. Additionally, comparisons between different
architectures for simulating PMB have already been conducted by Anilkumar et al. (2023), where XGBoost
also showed the best performance [1]]. Given the evidence from these studies and the strong performance
of our model, we decided not to explore other architectures further. Instead, we focused on comparing
our machine-learning model with the PDD model, which is well-established and widely recognized in the
glaciological community. To incorporate this comment, we have revised the following paragraph in the
methods:
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(Section 3.1: Architecture) Our setup is one of sparse data consisting of heterogeneous features with
generally small sample sizes (maximum of 60 years of measurements per site), structured in a tabular
format (Fig.3). For tabular data, tree-based models like XGBoost have been shown to be among the
best-performing approaches, particularly for small to medium-sized datasets [0,/14]. Furthermore,

since we aim to reconstruct PMB through a simple and interpretable approach, XGBoost is an ideal
candidate as it is typically faster to train, needs less feature engineering, and is more interpretable than
neural networks [6].

Minor comment #2

The explainability analysis you conducted to identify the most influential predictors (i.e., summer tem-
perature and winter precipitation, as expected) is definitely interesting. However, in a straightforward
machine-learning approach, I would have used a large number of candidate variables, allowing the model
to select automatically those with high explanatory power while disregarding automatically those with little
impact. Isn’t one of the primary benefits of ML methods, as black boxes, their ability to automatically
assess the relevance of each input during training? In short, let’s include everything; the irrelevant
ones won’t be used anyway. The fact that adding many predictors (e.g., n=24) appears to degrade the
performance of miniML (Fig. 6) is surprising to me. Would this result differ for an ML model based on a
neural network? (I must admit I am not very familiar with decision trees.)

We agree with the reviewer that the model would be provided with as many relevant features as possible
in a typical machine-learning setting, allowing it to perform feature selection independently. And indeed,
since XGBoost inherently requires little feature engineering and is designed to identify and select relevant
features from its input, we initially adopted an ’include everything’ approach by using as many as 24 features
(see Section 5.2). However, the exceptionally small size of our training dataset pushes the limits of what
any machine-learning model, including neural networks, can achieve without additional guidance. Our
study shows that in this specific context, which reflects realistic conditions in glaciology, the model benefits
significantly from extra preprocessing: We improved the results by focusing on a minimal set of predictor
variables that capture most of the observed PMB variability (optimal seasonal framework, n=2). While we
have not tried using a neural network, we strongly believe that such models would face similar challenges and
similarly benefit from this type of preprocessing. We have revised the following paragraph in the results:

(Section 5.2: Performance of miniML-MB with different predictors) Increasing the number and temporal
resolution of predictors, e.g., going from annual to monthly predictors, does not improve the model’s
capability to predict PMB, both in terms of MAE and Pearson correlation. This contrasts with typical

machine-learning approaches, where a larger number of candidate features is generally preferred, as
the model automatically selects those with high explanatory power while disregarding those with little

impact. In our case, miniML-MB does not seem to benefit from expanding the number of predictors.
We suspect that this outcome is linked to the relatively small training dataset, which favors a low-
complexity model with few but relevant predictors capturing most of the observed PMB variability.

[...]

Minor comment #3

An important limitation of PDD models is the variability of PDD factors in the literature, necessitating
sensitivity tests of these parameters in modeling applications, which can lead to significant variability
in results. If I understand Fig Al correctly, you show that, besides improving predictability over PDD,
miniML reduces this variability significantly. In the context of using miniML for glacier evolution
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modeling, wouldn’t this result from Fig Al be a particularly strong advantage? I think it should be further
highlighted.

We agree with the reviewer about the sensitivity of PDD models. However, in this case, Fig. Al illustrates the
year-to-year variability in PMB predictions generated by the PDD and miniML-MB models. This variability
is not indicative of the PDD factors themselves. The figure shows that the miniML-MB model generally
underestimates year-to-year variability compared to observations, while the PDD model tends to overestimate
it; both have their respective disadvantages. We have revised the following paragraph to reflect that, in this
case, this Figure does not necessarily show an advantage of miniML-MB, nor is it a clear limitation:

(Section 6.4: Limitations of miniML-MB) While miniML-MB is generally able to accurately match the
observed PMB and outperform the PDD model in terms of MAE for most sites, miniML-MB’s year-to-
year variability is generally much smaller than the observed one (Fig.A1). The reduced variability of
miniML-MB could come from its loss function (MAE), which is not designed to account for temporal
trends. The PDD model instead exhibits higher year-to-year variability, sometimes exceeding the
observed one. As noted in other studies (e.g., Ismail et al. 2023, Bolibar et al. 2023), this may be
because of the use of a fixed degree-day factor, which forces linearity. When values deviate from the
main observations, nonlinearities become more significant, potentially leading to overestimation or

underestimation. The underestimation by miniML-MB and the overestimation by the PDD model are
respective drawbacks of the models.

Minor comment #4

Another point not mentioned in the paper is the computational efficiency of the ML model, which is
virtually instantaneous (1. 156). With the ice flow model component being parallelized on GPUs, the SMB
model, such as PDD, can become the bottleneck, especially when applied to large grids, since PDD models
with snow layer tracking require temporally sequential (and thus non-parallelizable) sub-steps, see (Jouvet,
2022). This is an advantage of your approach that you should emphasize.

Yes, the ML model’s high computational efficiency is worth pointing out. We added the following to the
conclusion:

(Section 7: Conclusions) miniML-MB is a highly computationally efficient model, making PMB
predictions almost instantaneous. The model is streamlined for ease of use, with just three hyperparam-

eters to adjust for its XGBoost architecture. Our data-driven approach is tailored to small observation
datasets, a typical situation in glaciology but a technical challenge in ML. [...]

Minor comment #5

You have chosen MAE as the loss function, which is more tolerant of outliers. Out of curiosity, did you try
using Mean Squared Error?

Yes, we initially used the MSE, but changing the loss to the MAE improved results slightly, although not
strikingly. We chose to use the MAE mostly because of the possibility of strong outliers in PMB when
covering long-time series from the 1960s to now (like 2008, for example). We added the following to the
manuscript to answer this question:
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(Section 3.2.: Training and testing) During miniML-MB’s fitting on the training set, the model is
configured to minimize its MAE loss function. We chose the MAE because of strong intra-site
variability in PMB, especially at sites with long measurement series, and because the MAE is more

robust to outliers. Initially, we used the MSE as the loss function, but switching to MAE resulted in a
slight performance improvement, though the change was not drastic.

Minor comment #6

Section 5.4: I must admit I was somewhat skeptical about retraining on 2022 to predict 2023, as this
involves very little data. You may possibly frame this experiment and its results with more caution. What
are the risks of working with so little data? What if you were switching 2022 and 2023?

To clarify, when making predictions on 2023, the model is not re-trained (i.e., trained a second time) on 2022;
instead, 2022 is added to the training dataset, and the model is tested on 2023. We agree with the reviewer
that adding just one year is a small amount of data, but even one year can have some impact on such a limited
dataset. The experiment suggested by the reviewer of switching 2022 and 2023 was performed and yielded
the same effect. However, we chose not to show it in the study because we felt that it was less relevant and
would possibly confuse the reader as it was not in chronological order. With testing on 2023, we aimed to
demonstrate that, as more data is added when it comes, the model can likely predict extreme years. Of course,
the model would ideally be exposed to more than one extreme case, but the point of this experiment was to
show that there is potential for predicting extreme years once the model has encountered such cases in its
training set. This is why Section 5.4 underscores:

(Section 5.4.: Prediction of extreme years) [...] the necessity for ML models to encounter temporal
analogs in their training data in a climate that will exhibit increasingly extreme events. Once this is the
case, miniML-MB shows promising abilities in making accurate PMB predictions for extreme years.

We have revised the sections describing this as ML’s "capability to learn rapidly” to present it more cautiously
as suggested by the reviewer:

(Section 5.4.: Prediction of extreme years) These and previous results show that miniML-MB seems
to have good generalization abilities, meaning that the model can adapt to unseen data drawn from a
similar distribution as the training data (Fig.7 and Fig.9b for non-extreme years). However, for both
extreme years, miniML-MB’s predictions saturate by converging to an almost constant value, within
the range of observed PMB, that follows the site’s trend of the last decade (Fig.A2). Since tree-based
models split value ranges into different segments, when an extreme value is encountered, it falls into
the outermost leaf of the tree, therefore saturating the response. Thus, while tree-based models excel at
interpolation, they cannot produce values beyond those seen in the training dataset. Because 2023 was
not a strong outlier for Gries-P1 and Gries-P2, this also explains why miniML-MB can forecast PMB
values relatively accurately for these sites. Providing one extreme year to its training dataset already
improves miniML-MB’s performance in generalizing to extreme years, highlighting its potential ability
to learn rapidly. Our findings underscore the necessity for ML models to encounter temporal analogs
in their training data in a climate that will exhibit increasingly extreme events. Once this is the case,
miniML-MB shows promising abilities in making accurate PMB predictions for extreme years.
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(Section 7: Conclusions) [...] While we have shown that a PDD model performs better for outliers such
as the extreme years of 2022 and 2023, including just one extreme year in miniML-MB’s training dataset
already improves the model’s predictive accuracy for most sites. While miniML-MB would ideall

be exposed to multiple extreme cases to make predictions of future extreme years, this experiment
highlights the model’s potential for rapid learning.

Minor comment #7

L. 401: »we used the sum of daily average temperatures ...”. To my understanding, all the thing of ML is to
do this for you; not sure I see the point of reporting this experiment here.

At some stage during the development of our model, we suspected that using PDD sums instead of monthly
temperatures might improve performance, as PDD sums are often more indicative of melt processes. The
point seemed particularly relevant given that the ML model operates at a monthly rather than a daily resolution.
We thus performed a dedicated experiment, eventually showing that the model does not require a more refined
representation of temperature to perform well (Section 6.2, Fig. AS). Instead, as the reviewer pointed out, the
model seems to be able to extract this information by directly identifying relevant patterns from the monthly
input temperatures. We have modified the discussion to address this comment and Minor comment #4 by
Reviewer #1 (see[L.6):

(Section 6.2: Choice of meteorological variables and post-processing) In first instance, one might
expect improved model performance when using predictors that are more deeply rooted in physical
knowledge or that are less simple. To address this, we conducted additional evaluations of the model,
incorporating more refined representations of temperature and precipitation. First, we used the sum
of daily average temperatures above 0°C in a month (PDD sums) instead of monthly average tem-
perature, given how PDD sums are often more indicative of snow and ice melt [[7,|13]]. However, the

erformance improvement of miniML-MB with the PDD sums was minimal to non-existent(Fig.A5a).
It seems that miniML-MB is capable of effectively extracting relevant information related to melt

rocesses by directly identifying patterns from the monthly input temperatures.. Next, we used
weighted mean air temperatures and precipitation totals, using weights based on the importance

of months identified in Section 5.6: 0.58, 1.0, 0.56, and 0.52 for May to August temperatures, respec-
tively, and 0.52, 0.46, 0.6, 0.58, and 0.42 for October to February precipitation. Again, no performance
improvement was observed (Fig.A5b). Our results demonstrate that more complex aggregations of
temperature and precipitation offer limited to no added value within our minimal ML framework
and support the need for dimensionality reduction instead. These findings suggest that the model

acts as an "information compressor”, efficiently extracting the necessary information directly from

the temperature and precipitation variables. This simplicity is, in fact, a key advantage, making the
method more flexible and less reliant on extensive data.

Minor comment #8

It would be beneficial to have a “prospective” section in the conclusions. The paper contains important
results, and I would like to understand the main challenges to make this “minimal” ML model generalizable
so that it can be embedded in a glacier evolution model (GEM). What are the next steps in this regard?
How strong is the “data bottleneck”? I would appreciate some insights on both the model’s generalizability
and its direct applicability within a GEM. Even though the model is customized, it would be interesting to
see if it could be compatible with GEMs. Running an ensemble based on the 28 miniML models could
possibly yield GEM results with reduced uncertainty compared to using a PDD model with factors varying

10
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within literature-based ranges?

The ML model presented in this paper is primarily designed for application at individual locations, such as
the gap-filling of individual time series. We see this as an initial exploration into ML mass balance models
while developing an ML model suitable for integration into a glacier evolution model, which is the focus of
another ongoing activity of ours. In this latter work, we are creating an ML model trained on an ensemble
of stakes, capable of generalizing to unseen glaciers and providing glacier-wide predictions. The project,
named "Mass Balance Machine’, includes initial tests conducted in Switzerland and shows promising results
(for more information, see https://github.com/ODINN-SciML/MassBalanceMachine). We have modified the
conclusion to address this point:

(Section 7: Conclusions) miniML-MB is tailored specifically to PMB, enabling the capture of the
characteristics of individual sites and a site-by-site application. The model is a promising tool for

efficiently providing local-scale information about PMB and its drivers and for filling gaps in the time
series of measured PMB. At present, it is, however, unsuited for applications at the glacier-wide scale

or for unseen sites. This would require training on an ensemble of sites to capture inter-site variability
and is the focus of an ongoing, follow-up study. While such a multi-site approach does not allow
for site-specific optimization, it has the potential to capture general trends across locations. Such
an expansion to modeling an ensemble of sites will also come with new challenges, particularly as
learning from small amounts of data and transferring knowledge to new domains remain difficult in
machine learning (Dube et al. 2020).
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