1 Supplementary materials for

2	Measurement report: The variation properties of aerosol hygroscopic
3	growth related to chemical composition during new particle formation
4	events in a coastal city of southeast China
5 6 7	Lingjun Li ^{1,2,3} , Mengren Li ^{1,2,3*} , Xiaolong Fan ^{1,2,3} , Yuping Chen ^{1,2,3} , Ziyi Lin ^{1,2,3} , Anqi Hou ^{1,2} , Siqing Zhang ^{1,2,3} , Ronghua Zheng ^{1,2,3} , Jinsheng Chen ^{1,2,3*}
0 9	¹ CAS Center for Excellence in Regional Atomospheric Environment, Institude of Urban Environment,
10	Chinese Academy of Sciences, Xiamen 361021, China;
11	² Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment,
12	Chinese Academy of Sciences, Xiamen 361021, China;
13	³ College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100086,
14	China
15	
16	* Corresponding to: Jinsheng Chen (jschen@iue.ac.cn) and Mengren Li (mrli@iue.ac.cn)
17	
18	
19 20	
20	
21	
22 23	
23 74	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 27	
31 20	
30 30	
3) 40	
τU	

Species	NH4NO	3 (NH ₄) ₂ SO ₄	NH ₄ HSO ₄	NH ₄ C	C1
κ	0.58	0.48	0.56	0.93	
ρ (g cm ⁻³)	1.72	1.769	1.78	1.527	
Fable S2. Comp	arisons of	the average $f(80\%)$ or $f(80\%)$	35%) values in	different	study.
Study ar	ea	Periods	<i>f</i> (RH)	RH(%)	Referenc
Lin'an Cl	nina	2013/3/1-31	1.43 ± 0.12	80	Zhang et a
Lini an, China		2013/3/1-31	1.58 ± 0.12	85	(2015)
Paovang (Thing	2014/6/17 8/16	2.28 ± 0.69	80	Wu et al
Raoyang, C	IIIIIa	2014/0/17 - 8/10	3.39 ± 1.14	85	(2017)
Beijing C	hina	2017/1/12 - 2/14	1.47 ± 0.16	80	Zhao et a
Derjing, Ci	iiiia		1.47 ± 0.10	00	(2019)
Beijing C	hina	2010/0/10 - 10/4	1.64 ± 0.13	85	Ren et al
Derjing, Cl	iiiia	2017/7/17 - 10/4	1.04 ± 0.15	05	(2021)
Guangzhou,	China	2019/10/15 - 2020/1/8	1.50 ± 0.11	70	Li et al. (20
Max & Leave d Carelle and		2009/7/15 10/12	2.24 ± 0.62	85	Zieger et a
iny- Alesund, s	Svalbalu	2008/ //13 - 10/13	5.24 ± 0.03	85	(2010)
Jungfraujoch	, Swiss	2008/5	$\overline{2.30\pm0.33}$	85	Zieger et a
Mace Head,	Ireland	2009/1-2	2.08 ± 0.29	85	(2013)
	havin	2012/4/4 5/10	1.60 ± 0.20	05	Titos et a
Cremeda C	insun.	2013/4/4 - 3/10	1.00 ± 0.30	63	(2014)
Granada, S	pam				(2014)
Granada, S		2022/2 4	1.44 ± 0.15	80	(2014) This (1

Table S1. The hygroscopicity parameters (κ) and densities (ρ) of inorganic salts used 42 in this study.

		NPF	Undefined	Non-NPF	Entire campaign
	mean	6.31×10 ³	5.72×10^{3}	3.41×10 ³	5.29×10 ³
	stdv	3.60×10 ³	2.61×10^{3}	1.91×10 ³	2.82×10 ³
Total	max	1.67×10^{4}	3.05×10^{4}	1.15×10^{4}	3.05×10^{4}
	median	5.60×10 ³	5.37×10 ³	2.82×10 ³	4.91×10 ³
	min	1.08×10 ³	6.57×10^{2}	5.50×10 ²	5.50×10 ²
	mean	1.66×10 ³	1.15×10 ³	6.99×10 ²	1.12×10^{3}
	stdv	1.59×10 ³	8.25×10^{2}	5.16×10^{2}	9.52×10^{2}
Nucleation mode	max	8.34×10 ³	8.57×10^{3}	5.28×10 ³	8.57×10^{3}
	median	1.06×10 ³	9.40×10 ²	5.81×10^{2}	8.64×10^{2}
	min	1.05×10^{2}	6.59×10	2.00×10	2.00×10
	mean	3.80×10 ³	3.37×10 ³	1.78×10^{3}	3.08×10^{3}
	stdv	2.80×10 ³	1.82×10^{3}	1.08×10 ³	1.98×10 ³
Aitken mode	max	1.44×10 ⁴	2.21×10 ⁴	6.09×10 ³	2.21×10^{4}
	median	2.97×10 ³	3.10×10 ³	1.43×10 ³	2.73×10 ³
	min	5.47×10 ²	3.02×10 ²	2.60×10 ²	2.60×10^{2}
	mean	8.59×10 ²	1.20×10 ³	9.33×10 ²	1.10×10^{3}
	stdv	4.04×10 ²	6.12×10 ²	6.20×10 ²	6.0810 ²
Accumulation mode	max	2.42×10 ³	7.67×10^{3}	4.99×10 ³	7.67×10^{3}
	median	7.82×10^{2}	1.11×10^{3}	7.55×10^{2}	1.01×10^{3}
	min	2.09×10 ²	3.73×10	8.75×10	3.73×10

Table S3. Statistical analysis of particle concentration distribution (cm⁻³) for different
 days from February to April 2022.

		a	b	Reference
Ending and in the	RH < 60%	1.02	0.21	
Entire campaign	$RH \ge 60\%$	1.08	0.26	
Class	RH < 60%	1.00	0.10	Chen et al.
Clean	$RH \ge 60\%$	1.00	0.26	(2014)
Dallata d	RH < 60%	1.03	0.26	
Polluted	$RH \ge 60\%$	1.14	0.25	
Very clean		0.930	0.329	
Moderately clean	12 Jan14 Feb. 2017	0.971	0.372	
Polluted		0.988	0.356	
Very clean	-	0.972	0.355	Zhao et al.
Moderately clean	6 July-21 Aug. 2017	0.980	0.362	(2019)
Polluted		0.984	0.371	
Very clean	-	0.979	0.334	
Moderately clean	30 Sep13 Nov. 2017	1.002	0.344	
Polluted		1.014	0.332	
NPF	Esh Ann 2022	0.993	0.257	This man
Non-NPF	rebApr. 2022	1.026	0.289	I IIS WORK

Table S4. The curve-fitting parameters for f(RH) for different aerosol types using 78 Eq.(1).

84	Table S5. Statistics on the mass concentration ($\mu g m^{-3}$) of aerosol species (S.D.:
85	standard deviation)

	·			
	Mean	S.D.	Maximum	Minimum
Sulfate	1.82	1.08	6.54	0.02
Nitrate	2.75	3.28	24.46	0.03
Ammonium	1.26	1.04	6.26	0.02
Chlorine	0.16	0.17	1.89	0.001
OM	4.84	3.85	52.22	0.18
BC	0.95	0.62	3.51	0.10

Figure S1. Time series of measured and derived aerosol variables and ambient RH, wind speed and direction from February to April 2022. (a) Aerosol scattering coefficient of DryNeph at 525 nm wavelength; (b) the aerosol scattering hygroscopic growth factor f(80%) at 525 nm wavelength; (c) scattering Ångström exponents α ; (d) PM_{2.5} mass concentrations; (e) relative humidity (RH) at ambient conditions; (f) wind speeed (WS) and wind direction (WD).

- 100
- 101

Figure S2. the particle number size distribution spectrum and number
concentration. Example of NPF (a, b) and Non-NPF (c, d) days.

Figure S3. Comparisons of the *f*(RH) fitted curves following the other three
parameterization schemes between NPF and Non-NPF events. Black: NPF, red:
Non-NPF. The first column shows the results fitted by Eq. (S4), the second column
shows the results fitted by Eq. (S5), and the third column shows the results fitted by Eq.
(S6).

114 Figure S4. Measured and predicted mass concentration of ammonium. The

115 predicted mass concentration of ammonium (predicted NH_4^+) is calculated by Eq. (S5).

- 116 The solid line represents the linear regression.

142	Text S1.
143	The κ_{chem} of this study can be calculated by the following equation(Petters and
144	Kreidenweis, 2007):
145	$\kappa_{chem} = \sum_{i} \kappa_{i} \cdot \varepsilon_{i} \tag{S1}$
146	where κ_i and ε_i denote the hygroscopicity parameter κ and the volume fraction of
147	chemical component <i>i</i> in the aerosol. Based on Eq.(S6) and Supplementary Table S5,
148	κ_{chem} can be expressed as follows:
149	$\kappa_{chem} = \kappa_{AN} \varepsilon_{AN} + \kappa_{AS} \varepsilon_{AS} + \kappa_{ABS} \varepsilon_{ABS} + \kappa_{AC} \varepsilon_{AC} + \kappa_{BC} \varepsilon_{BC} + \kappa_{OA} \varepsilon_{OA} $ (S2)
150	Where, κ_{BC} is the κ of the black carbon aerosol (BC), which is assumed to be zero
151	because BC is hydrophobic; κ_{OA} and ε_{OA} represent the κ and volume fraction of the total
152	organic matter. The total aerosol volume concentration used to calculate the volume
153	fraction was calculated by summing the volume concentrations of all chemical species
154	(AN, AS, ABS, AC, BC and OA), where the volume concentration of BC was calculated
155	by assuming a density of 1.7 g cm ⁻³ (Wu et al., 2016).
156	
157	
158	
159	
160	
161	
162	
163	Text S2.
164	There are some characteristics of NPF and Non-NPF events (Figure S2). When
165	NPF events occurred, the particle number size distribution showed an obvious "banana
166	shape", and the nucleation-mode particles exhibited a clear growth process for several
167	hours. In Non-NPF days, the concentration of nucleation-mode particles did not exhibit
168	a notable peak, and the growth process of particles did not appear. The onset time of
169	NPF events observed in this study typically occurred around 10:00, coinciding with a
170	sudden and rapid increase in the number concentration of nucleation-mode particles
171	(N_{nuc}) . The diurnal variation of N_{nuc} exhibited a unimodal pattern, with the peak
172	concentration occurring around 12:00. Following the increase in N_{nuc} , the number
173	concentration of aitken-mode particles subsequently rose, reaching a peak
174	concentration around 15:00, with a time delay of several hours after the peak of
175	nucleation-mode particles, mainly caused by growth progress of particles from
176	nucleation mode to a larger particle size range.
177	
178	
179	
180	
181	
182	

184 **Text S3.**

The f(RH) values were fitted with four frequently-used empirical equations. The comparison of the fitting results, R² values, simulated and measured values of f(80%)for each parameterization scheme reveals that Eq. (S1) had the best fitting curve, the highest R² value, and it also had the smallest difference between simulated and measured values of f(80%). Therefore, Eq. (S1) was considered to be the most suitable parameterization scheme. The fitted curves of the other three parameterization schemes are shown in Figure S3.

192	$f(\text{RH}) = a(1 - \frac{RH}{100})^{-b(\frac{RH}{100})}$	(S3)(Chen et al., 2014)
193	$f(\text{RH}) = a(1 - \frac{\text{RH}}{100})^{-b}$	(S4)(Kasten, 1969)
194	$f(\text{RH}) = 1 + a(\frac{\text{RH}}{100})^b$	(S5)(Kotchenruther and Hobbs, 1998)
195	$f(\mathrm{RH}) = 1 + a(\frac{\mathrm{RH}}{100 - \mathrm{RH}})$	(S6)(Brock et al., 2016)
196		
197		
198		
199		
200		
201		
202		
203		
204		
205	Text S4.	
206	Aerosol acidity is a crucial parameter affect	ting the aerosol hygroscopic growth.
207	This is usually assessed by comparing the measu	ared mass concentration of NH4 ⁺ with
208	the amount required to completely neutralize	e sulfate, nitrate, and chloride ions
209	(predicted NH_4^+), which can be obtained from the	e following equation (Sun et al., 2010):

210 predicted
$$NH_4^+ = 18 \times (2 \times \frac{SO_4^{2^-}}{96} + \frac{NO_3^-}{62} + \frac{Cl^-}{35.5})$$
 (S7)

The relationship between measured NH4⁺ and predicted NH4⁺ was demonstrated by 211 Figure S4. The correlation between measured and predicted NH_4^+ was very strong 212 $(r^2=0.94)$, with a regression slope of 0.8, revealing that there were insufficient 213 214 atmospheric NH₄⁺ to fully neutralise sulfate and nitrate, thereby, PM₁ in Xiamen was considered to be more acidic during the observation period. Thus, the main chemical 215 216 form of the sulfate aerosol was NH4HSO4, and the nitrate aerosol was in the form of NH4NO3. However, the average mass concentration of chloride ions was low in Xiamen 217 during observation period, so the mass concentration of NH₄Cl was also low, with 218 219 NH₄NO₃, NH₄HSO₄ and (NH₄)₂SO₄ as the dominant inorganic components. 220

221 Supplementary References

- 222 Brock, C. A., Wagner, N. L., Anderson, B. E., Attwood, A. R., Beyersdorf, A.,
- Campuzano-Jost, P., Carlton, A. G., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez,
 J. L., Lack, D. A., Liao, J., Markovic, M. Z., Middlebrook, A. M., Ng, N. L., Perring,
- A. E., Richardson, M. S., Schwarz, J. P., Washenfelder, R. A., Welti, A., Xu, L., Ziemba,
- L. D., and Murphy, D. M.: Aerosol optical properties in the southeastern United States
- in summer Part 1: Hygroscopic growth, Atmospheric Chemistry and Physics, 16,
- 228 4987-5007, 10.5194/acp-16-4987-2016, 2016.
- 229 Chen, J., Zhao, C. S., Ma, N., and Yan, P.: Aerosol hygroscopicity parameter derived
- 230 from the light scattering enhancement factor measurements in the North China Plain,
- 231 Atmospheric Chemistry and Physics, 14, 8105-8118, 10.5194/acp-14-8105-2014, 2014.
- 232 Kasten, F.: VISIBILITY FORECAST IN PHASE OF PRE-CONDENSATION, Tellus,
- 233 21, 630-&, 10.1111/j.2153-3490.1969.tb00469.x, 1969.
- Kotchenruther, R. A., and Hobbs, P. V.: Humidification factors of aerosols from biomass
 burning in Brazil, Journal of Geophysical Research-Atmospheres, 103, 32081-32089,
 10.1029/98id00340, 1998.
- 237 Li, J. W., Zhang, Z. S., Wu, Y. F., Tao, J., Xia, Y. J., Wang, C. Y., and Zhang, R. J.:
- Effects of chemical compositions in fine particles and their identified sources on
 hygroscopic growth factor during dry season in urban Guangzhou of South China,
 Science of the Total Environment, 801, 10.1016/j.scitotenv.2021.149749, 2021.
- Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of
 hygroscopic growth and cloud condensation nucleus activity, Atmospheric Chemistry
 and Physics, 7, 1961-1971, 10.5194/acp-7-1961-2007, 2007.
- Ren, R. M., Li, Z. Q., Yan, P., Wang, Y. Y., Wu, H., Cribb, M., Wang, W., Jin, X. A., Li,
 Y. A., and Zhang, D. M.: Measurement report: The effect of aerosol chemical
 composition on light scattering due to the hygroscopic swelling effect, Atmospheric
 Chemistry and Physics, 21, 9977-9994, 10.5194/acp-21-9977-2021, 2021.
- 248 Sun, J. Y., Zhang, Q., Canagaratna, M. R., Zhang, Y. M., Ng, N. L., Sun, Y. L., Jayne,
- 249 J. T., Zhang, X. C., Zhang, X. Y., and Worsnop, D. R.: Highly time- and size-resolved
- 250 characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol
- 251 Mass Spectrometer, Atmospheric Environment, 44, 131-140,
- 252 10.1016/j.atmosenv.2009.03.020, 2010.
- 253 Titos, G., Lyamani, H., Cazorla, A., Sorribas, M., Foyo-Moreno, I., Wiedensohler, A.,
- and Alados-Arboledas, L.: Study of the relative humidity dependence of aerosol light-
- 255 scattering in southern Spain, Tellus Series B-Chemical and Physical Meteorology, 66,
- 256 10.3402/tellusb.v66.24536, 2014.
- 257 Wu, Y. F., Wang, X. J., Yan, P., Zhang, L. M., Tao, J., Liu, X. Y., Tian, P., Han, Z. W.,
- and Zhang, R. J.: Investigation of hygroscopic growth effect on aerosol scattering
- 259 coefficient at a rural site in the southern North China Plain, Science of the Total
- 260 Environment, 599, 76-84, 10.1016/j.scitotenv.2017.04.194, 2017.
- 261 Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., Wiedensohler, A.,
- and Hu, M.: Particle hygroscopicity and its link to chemical composition in the urban

- atmosphere of Beijing, China, during summertime, Atmospheric Chemistry and
 Physics, 16, 1123-1138, 10.5194/acp-16-1123-2016, 2016.
- 265 Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H., Ma, Q. L., Zhang, Y. W., Zhang,
- 266 X. Y., and Ogren, J. A.: Observations of relative humidity effects on aerosol light
- scattering in the Yangtze River Delta of China, Atmospheric Chemistry and Physics, 15,
- 268 8439-8454, 10.5194/acp-15-8439-2015, 2015.
- 269 Zhao, P. S., Ding, J., Du, X., and Su, J.: High time-resolution measurement of light
- 270 scattering hygroscopic growth factor in Beijing: A novel method for high relative
- humidity conditions, Atmospheric Environment, 215, 10.1016/j.atmosenv.2019.116912,
 2019.
- 273 Zieger, P., Fierz-Schmidhauser, R., Gysel, M., Strom, J., Henne, S., Yttri, K. E.,
- 274 Baltensperger, U., and Weingartner, E.: Effects of relative humidity on aerosol light
- 275 scattering in the Arctic, Atmospheric Chemistry and Physics, 10, 3875-3890,
- 276 10.5194/acp-10-3875-2010, 2010.
- 277 Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of
- 278 relative humidity on aerosol light scattering: results from different European sites,
- 279 Atmospheric Chemistry and Physics, 13, 10609-10631, 10.5194/acp-13-10609-2013,
- 280 2013.
- 281