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Abstract.

During winter, public avalanche forecasts provide crucial information for professional decision-makers as well as recre-

ational backcountry users in the Swiss Alps. While avalanche forecasting has traditionally relied exclusively on human exper-

tise, the Swiss avalanche warning service has recently integrated machine-learning models to support the forecasting process.

This study assesses a random forest classifier trained with weather data and physical snow-cover simulations as input for pre-5

dicting dry-snow avalanche danger levels during the initial live-testing in the winter season of 2020-2021. The model achieved

∼70% agreement with published danger levels, performing equally well in nowcast- and forecast-mode. By using model-

predicted probabilities, continuous expected danger values were computed, showing a high correlation with the sub-levels as

published in the Swiss forecast. The model effectively captured temporal dynamics and variations across different slope as-

pects and elevations, though it decreased the performance during periods with persistent weak layers in the snowpack. SHapley10

Additive exPlanations (SHAP) were employed to make the model’s decision process more transparent, reducing its ‘black-box’

nature. Beyond increasing the explainability of model predictions, the model encapsulates twenty years of forecasters’ expe-

rience in aligning weather and snowpack conditions with danger levels. Therefore, the presented approach and visualization

could also be employed as a training tool for new forecasters, highlighting relevant parameters and thresholds. In summary,

machine-learning models as the danger-level model, often considered ‘black-box’ models, can provide high-resolution, com-15

parably transparent “second opinions” that complement human forecasters’ danger assessments.

1 Introduction

The destructive potential of snow avalanches demands reliable forecasts and timely warnings to ensure safety and mobility

in avalanche-prone regions. In Switzerland, snow avalanches are the deadliest natural hazard (Badoux et al., 2016), causing

significant economic losses that can exceed several hundred million Swiss francs (Bründl et al., 2004). Consequently, the Swiss20

avalanche warning service issues a daily avalanche bulletin during winter. This forecast provides essential information for the

public and local authorities, aiding in decision-making for safe winter backcountry recreation and ensuring public safety on

transportation routes and in settlements during periods of high avalanche danger.
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Until now, public avalanche forecasting has been entirely a human-expert decision-making process during which avalanche

forecasters interpret a wide range of data sources such as weather forecasts, meteorological observations, and snow-cover25

model outputs, combined with field observations of snow-cover stability and avalanche activity (Techel et al., 2022b). In fore-

cast products, the severity of expected avalanche conditions is described with a danger level for a region and specific time

period summarizing snowpack stability, frequency distribution, and avalanche size (Techel et al., 2020a; EAWS, 2021a). Ad-

ditionally, typical avalanche situations are also communicated using so-called “avalanche problems” (EAWS, 2021b). Despite

numerous attempts to employ statistical or machine-learning methods as alternatives to conventional avalanche forecasting30

(e.g. Schweizer et al., 1994; Schirmer et al., 2009; Pozdnoukhov et al., 2011; Mitterer and Schweizer, 2013), very few of these

approaches were successfully integrated into operational avalanche forecasting.

In recent years, the growth in data volumes and advancements in data-driven modelling have opened up new possibilities for

developing avalanche forecasting models. Among them, different machine-learning models have emerged including models

predicting danger levels (Pérez-Guillén et al., 2022; Fromm and Schönberger, 2022), transferring these predictions to a format35

similar to human-made forecasts (Maissen et al., 2024), identifying typical avalanche problem types (Horton et al., 2020;

Reuter et al., 2022), assessing snowpack stability and critical snow layers (Mayer et al., 2022; Herla et al., 2023), or predicting

avalanche activity (Dkengne Sielenou et al., 2021; Viallon-Galinier et al.; Hendrick et al., 2023; Mayer et al., 2023). These data-

driven approaches can provide relevant outputs for avalanche forecasting with high spatiotemporal resolution (van Herwijnen

et al., 2023). Despite rigorous model validation, which is indispensable for their integration into the forecasting process,40

the ‘black-box’ nature of many machine learning models presents an additional challenge to their use. While predictions

generated by simpler models can be readily interpreted (Horton et al., 2020; Reuter et al., 2022; Mayer et al., 2023), the

’decision-making’ behind complex machine-learning models generally remains hidden, making it challenging to understand

how variables are weighted to make predictions. Though various methods for explaining machine-learning predictions have

been proposed (Ribeiro et al., 2016; Lundberg and Lee, 2017, e.g.), so far, these have not been tested for models in an avalanche-45

forecasting context.

With this study, we have two objectives: to evaluate the performance and to deepen the understanding of the predictions

generated by a model predicting the avalanche danger level (Pérez-Guillén et al., 2022). To this end, we analysed the live-

predictions during the initial winter season when the model was tested before avalanche forecasters started to integrate these

model predictions into their daily forecasting process. During this forecasting season, the model provided nowcast and 24-hour50

forecast predictions for dry-snow conditions in Switzerland. Here, we compare aspect-specific predictions with danger level

forecasts in the public bulletin, including a comparison of model-predicted probabilities with sub-level qualifiers assigned to

danger levels (e.g. Techel et al., 2022b; Lucas et al., 2023). Furthermore, we assessed model performance in situations when

different avalanche problems were relevant. Finally, to understand the features driving predictions towards a certain danger

level, and thus to reduce the ‘black-box’ nature of the model, we employed an explanation model quantifying the impact of the55

model’s input features for each danger level, overall but also for individual predictions.
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2 Public avalanche forecast in Switzerland

The avalanche forecast is published at 17:00 LT (local time), valid until 17:00 LT the following day, with an update at 08:00

LT, if necessary (SLF, 2023). The forecast domain is split into 149 warning regions (status 2021, average size ≈ 200 km2;

white polygons in Fig. 1), which are clustered into danger regions based on the expected avalanche conditions (black polygons60

in Fig. 1). Each danger region is assigned a danger level based on the European Avalanche Danger Scale (EAWS, 2021a,

levels: 1–Low, 2–Moderate, 3–Considerable, 4–High and 5–Very High)1summarizing the severity of avalanche conditions.

Moreover, the locations of potential avalanche-triggering spots are specified by providing the aspects and elevation where

these are most frequent (SLF, 2023). Within the specified aspect-elevation zone, the danger level is applicable (Fig. 1). In

addition, the avalanche situation is communicated using the concept of the typical avalanche problems (EAWS, 2021b). For65

dry-snow conditions, three avalanche problems are used (SLF, 2023):

– The New snow problem (NS) indicates that the current or most recent snowfall can be released.

– The Wind slab problem (WS) is given when fresh or recently wind-drifted snow is of concern.

– The Old snow problem (OS) highlights that persistent weak layer(s) within the snowpack are potentially prone to trig-

gering.70

In the bulletin, only the avalanche problems that significantly contribute to the danger are mentioned. For dry-snow condi-

tions, at most, two avalanche problems can be specified. If no particular avalanche problem is identified (e.g., at 1-Low), the

avalanche situation is reported as no distinct avalanche problem (EAWS, 2021b).

Lastly, since the winter season 2016-2017, forecasters assign one of three sub-levels to each danger level, except for 1-Low

(Techel et al., 2020b, 2022b):75

– plus or +: the danger is assessed as high within the level, e.g., a 3+ is high within 3–Considerable.

– neutral or =: the danger is assessed as about in the middle of the level, e.g., a 3= is about in the middle of 3–Considerable.

– minus or -: the danger is assessed as low within the level, e.g., a 3− is low within 3–Considerable.

After six years of internal usage, sub-levels are published in the bulletin since the forecasting season 2022-2023 (Lucas et al.,

2023; SLF, 2023). Thus, although the bulletin example for 29 January 2021 shown in Fig. 1 displays this sub-level information,80

it was not published at the time. When referring to sub-levels, we always mean the combination of danger level with sub-level

modifier.

3 Danger-level model

Using a 20-year historical data set of snow-cover simulations in Switzerland and information about the avalanche conditions in

the region, Pérez-Guillén et al. (2022) developed two random-forest models to predict the avalanche danger level for dry-snow85

1We refer to danger levels either using the integer-signal word combination (e.g., 2-Moderate) or by using the integer value only (e.g., 2).
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Figure 1. Map of Switzerland showing the forecast danger level (background colour) as published in the bulletin issued on 29 January 2021.

In addition, the forecast predictions of the danger level model are shown for each weather station (represented by triangles). The black

contour lines indicate the boundaries of each danger region. Critical elevations and slope aspects are graphically indicated on the map, and

the main avalanche problem(s) is specified, together with the sub-level assigned to the danger level in that region: plus (+), neutral (=) and

minus (-). The model predictions are represented by upward triangles for the North (N) aspect and downward for the South (S) aspect, with

the colour representing the danger level. Black contoured triangles denote predictions within the aspects and elevation as specified in the

bulletin, whereas grey triangles represent predictions outside of this aspect-elevation zone.

conditions in Switzerland at the location of more than 100 automated weather stations located mostly above treeline in the

Swiss Alps (indicated by triangles in Fig. 1). One of these models was trained using the forecast danger levels published in the

avalanche bulletin as a target variable, while the other used a subset of quality-checked danger level labels. The input features

for the models comprise a set of meteorological variables, averaged over a 24-hour time window similar to the avalanche

forecast, and features extracted from the simulated snow-cover profiles (12:00 LT). Table A1 shows the variables used in90

the operational model. While the predictions of the two models are highly correlated, their danger level predictions differ

sometimes (Pérez-Guillén et al., 2022). This is caused by the fact that the first model reflects the tendency of the human

forecasters to over-forecast (to be on the cautious side), while the second model was trained with a data set reflecting the best
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hindcast estimate of the danger level. Forecasters opted for live-testing the second model. Hence, we exclusively analyzed this

model in this study.95

The model predicts a danger level ranging from 1-Low to 4-High (EAWS, 2021a) since danger level 5-Very High was

merged with 4-High when training the model. In our classification setup, the final prediction for a given input x is the average

prediction of each tree t in the forest composed of T = 1000 trees:

P (Dl|x) =
1
T

T∑

t=1

pt(Dl|x) (1)

where T = 1000 is the number of estimators in the model, Dl where l ∈ {1, . . . ,4} is the danger level on the scale from100

1-Low (D1) to 4-High (D4), and P (Dl|x) is the mean class probability estimate or confidence score representing the estimated

likelihood of belonging to each class (danger level). The sum of the probability estimates across the four classes equals 1.

Hence, the final predicted danger level, D(x), is the one showing the highest probability P (Dl|x):

D(x) = argmax
Dl

P (Dl|x), for Dl with l ∈ {1, . . . ,4} (2)

Additionally, the expected value, here referred to as the expected danger value (Maissen et al., 2024), is estimated as the105

weighted average of all probability scores:

ED(x) =
4∑

l=1

(P (Dl|x) ·wl) (3)

where ED(x) ∈ [1,4] is the expected danger value for a given input sample and, w1 = 1, w2 = 2, w3 = 3 and w4 = 4 for

each danger level. Since danger levels are defined on a discrete scale, this value can be interpreted as a numerical value that

could highlight the model’s prediction on a continuous scale. For instance, if 40% of the decision trees predict danger level 3110

(PD3 = 0.4) while the 60% predicts danger level of 4 (PD4 = 0.6), the final danger level prediction is 4-High and the resulting

expected danger value is ED = 3.6, but with the added benefit of summarizing the probabilities in a single variable.

3.1 Live model deployment

The danger level model was live-tested for the first time during the winter season of 2020-2021. The model provided real-time

nowcast and forecast predictions from the end of December 2020 until May 2021. The nowcast setup follows these steps115

(Fig. 2a):

1. Measurements are transmitted every hour from the AWS to a server at SLF.

2. Using these measurements, the snow-cover is simulated for flat terrain and for four virtual slope orientations (North: N,

East: E, South: S, and West: W) with a slope angle of 38° (Morin et al., 2020).

3. The input features required for the model are extracted from the snow-cover simulations every three hours.120
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Figure 2. Schematic representation of: a) the steps for running the nowcast and forecast predictions with the danger level model in the live

testing deployment, and b) the time intervals applied to resample the input features for the model.

4. Using the extracted input features, the model generates danger level predictions every three hours, referred to as nowcast

predictions, for each AWS for the flat terrain and the four virtual slope aspects.

In forecast mode (Fig. 2a), snow-cover simulations are initiated using the most recent nowcast simulations (step 2), and then

are driven with COSMO-1 numerical weather prediction model (NWP) data as input (COSMO = Consortium for Small-scale

Modeling, https://www.cosmo-model.org/). The NWP data are downscaled to the locations of each AWS to drive snow-cover125

simulations for the flat study plot and four virtual slope aspects 24 hours ahead. In this case, the meteorological input features

of the danger level model are averaged over the next 24 hours of the forecast weather time series to forecast danger levels

for each IMIS station and slope aspect. Therefore, for a given time (Fig. 2b), nowcast predictions are computed using features

based on averaged measurements from the previous 24 hours, while the forecast predictions are based on averaged weather

predictions for the next 24 hours. For input features that are computed using historical information of more than 24 hours, such130

as the sum of new snow over three and seven days, the forecast integrates the measurements for the upcoming 24 hours with

nowcast values measured from the AWS.

4 Data and methods

4.1 Test set and model evaluation

For a detailed evaluation of the model’s performance, we used the winter season of 2020-2021, during which the model was135

tested in a live setting for the first time, with only one avalanche forecaster having access to the predictions. We refrain

from analyzing later winter seasons, as the model was available to all forecasters from the winter season 2021-2022 onwards,

potentially impacting the decision-making process and, hence, the forecast product. During the 2020-2021 season, the model

provided predictions on 138 days. On these days, the distribution of danger levels in the public bulletin was imbalanced: 27.4 %
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for 1-Low, 38.6 % for 2-Moderate, 31.3 % for 3-Considerable, 2.8 % for 4-High, and 0.04 % for 5-Very High. To assess the140

overall performance, we first compared the danger level predictions by the model at each station with the danger level forecast

in the public bulletin for the corresponding region of the station’s location. As the model provides predictions every 3 hours,

we filtered the predictions starting at 18:00 (local time) and valid for the next 24 hours to compare with the bulletin, as this is

the closest time window to the avalanche bulletin. In addition, we evaluated model performance by considering both station

elevation and virtual slope aspects of the input data compared with the critical elevations and aspects specified in the bulletin145

(Fig. 1). In this context, we defined:

– Within predictions: the predictions derived from stations within the core zone of the bulletin, only including stations that

were within the elevation range and the active slope aspects mentioned in the bulletin (represented by black contoured

triangles in Fig. 1).

– Outside predictions: predictions derived from stations not in the elevation range mentioned in the bulletin. In this case,150

predictions can be further divided into two sub-categories based on whether the slope aspect is active or not in the bulletin

(represented by grey contoured triangles Fig. 1).

During the test period, the forecast for dry-snow conditions in the public bulletin indicated that each aspect was active in the

following percentages of cases (considering one forecast per region per day): 99.8 % (N), 97.8 % (E), 64.4 % (S), and 95.7 %

(W). The prediction data sizes from the model vary per aspect since the model only generates predictions with the condition155

of a minimum snow-cover depth of 30 cm (Pérez-Guillén et al., 2022), and as the simulated snow-cover depth can differ.

Therefore, the predictions are individually analyzed for each slope aspect (a ∈ {F,N,E,S,W}) by comparing:

– nowcast with forecast predictions: Dnx,a vs. Dfx,a

– forecast predictions with bulletin forecasts: Dfx,a vs. Dbu,a

– expected danger values computed with the forecast predictions with sub-levels forecast in the bulletin: ED,a vs. D(−=+)
bu,a160

For the comparison between expected values and the sub-levels, we applied a simple rounding strategy: minus rounds to the

nearest numerical danger level minus 1
3 , neutral rounds to the integer value of the danger level, and plus rounds to 1

3 above the

numerical danger level. The same approach was used to convert the danger level - sub-level combination to a numerical value

(Techel et al., 2022a; Maissen et al., 2024). The metrics used to assess model performance are defined in Appendix Sect. B.

4.2 Explainability of model165

To understand the predictions of machine-learning models, importance values can be derived for each input feature. There are

several ways to explore feature attribution. One of these is SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017),

an approach based on integrating concepts from game theory with local explanations. SHAP values provide a quantitative

method for assigning importance values either locally (for a single prediction) or across the entire dataset to explain the
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Figure 3. Distribution of the differences between forecast and nowcast predictions (Dfx−Dnx) for flat field and the four virtual aspects.

model’s overall behaviour (Lundberg et al., 2018). To implement this method, we used the Tree SHAP algorithm designed170

for tree-based machine learning models, such as random forests (https://shap.readthedocs.io/en/latest/index.html). A detailed

description of the computation of the SHAP values is shown in Lundberg et al. (2018). This approach uses an additive feature

attribution model, i.e., the output is defined as a linear addition of input features. SHAP values measure the contribution of

each input feature, which can be positive or negative with regard to the predicted value. SHAP values are bounded by the

output magnitude range of the model, which in our case – a random forest classifier – is from 0 to 1. Therefore, the range of175

the SHAP values will be from -1 to 1. We applied the SHAP method to obtain global explanations by summarizing the overall

importance of features for each class (danger level) of the model, as well as to quantify the contribution of each feature to

individual predictions.

5 Results

5.1 Agreement between nowcast and forecast predictions180

Overall, forecast and nowcast predictions correlated well, with Spearman correlation rs ranging from 0.90 for North to 0.91

for Flat (p < 0.01). The corresponding agreement rate varied from 84.6 % (North; Fig. 3a) to 86.1 % (Flat; Fig. 3a). When

predictions differed, forecast predictions were slightly more often one danger level higher than nowcast predictions (2-4%),

except for Flat (Fig. 3a). Differences by two danger levels were very rare (≤ 0.5 %). Comparing the expected danger values

(ED, Eq. 3) computed with the model-predicted probabilities showed a high correlation between forecast and nowcast (Pearson185

correlation rp of 0.97± 0.01,p < 0.01), with a mean difference of 0.0± 0.2.

5.2 Model agreement with avalanche bulletin

5.2.1 Overall agreement

For stations within the core zone defined in the bulletin (see Sect. 4.1), the mean agreement rate between the danger level

published in the bulletin Dbu and the forecast predictions Dfx was 70.4 %, with the lowest agreement rate for the flat-field190

simulations (66.3 %) and the highest for South aspects (74.0 %; Table 1). South and North predictions generally agreed more

with Dbu than flat and other aspects. When Dbu ̸= Dfx, the differences were essentially always by one level, with a larger
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Table 1. Summary of the model’s performance during the operative winter season 2020-2021 based on the Forecast predictions: Within (all

aspects active) or Outside (active (+) or non-active (-) slope aspect: Flat (F), North (N), East (E), South (S) and west (W); Support of the

predictions; Percentage of samples for each model bias (∆Dbu,a = value of Eq.B2). Mean absolute errors (MAE) and the Pearson correlation

coefficient are computed using the expected danger values and the sub-level assessments.

Prediction Aspect Support
Percentage [%] of ∆Dbu,a =

rp MAE
-2 -1 0 1 2

Forecast

Within

F 8665 1.3 28.2 66.3 4.2 0.0 0.88 0.37

N + 9417 0.5 16.6 72.0 10.7 0.1 0.86 0.37

E + 9160 0.9 22.8 70.6 5.8 0.0 0.89 0.34

S + 5737 0.9 20.6 74.0 4.6 0.0 0.93 0.31

W + 8688 1.3 25.1 68.9 4.7 0.0 0.89 0.34

Forecast

Outside

F 2152 7.3 53.8 37.0 1.9 0.0 0.74 0.48

N + 2379 4.5 39.9 51.0 4.5 0.0 0.70 0.40

E + 2222 6.7 48.8 41.5 3.0 0.0 0.73 0.45

S + 784 4.6 37.5 54.5 3.4 0.0 0.83 0.42

W + 1893 6.3 51.9 39.2 2.6 0.0 0.75 0.46

Forecast

Outside

N - 5 20.0 60.0 20.0 0.0 0.0 - 0.61

E - 120 0.0 98.3 1.7 0.0 0.0 0.34 0.59

S - 1133 9.2 70.7 19.6 0.5 0.0 0.62 0.56

W - 277 18.4 69.0 12.6 0.0 0.0 0.66 0.76

share of predictions being one level lower (ranging from 20.6 % (N) to 28.2 % (F) in Table 1) rather than higher (ranging from

4.2 % (F) to 10.7 % (N) in Table 1). In comparably few cases (≤ 2.0%), the difference was by two levels. The agreement rates

were lower for predictions that were partly or fully outside the core zone indicated in the bulletin: for instance, for forecast195

predictions (S), they decreased from 74.0% within the core zone to 54.5% when below the indicated elevation but within the

aspect range, and to 19.6% when fully outside the core zone (Table 1).

The issued sub-levels (D(−=+)
bu ; see Section 2) correlated strongly with the forecast predictions within the core zone (rp ≥

0.86,p < 0.01; Table 1). Considering all aspects, the mean absolute error (MAE) was ≤ 0.37 within the core zone (Table 1),

but was larger for predictions that were partly or fully outside the core zone (MAE≥ 0.4, MAE≥ 0.6, respectively). In other200

words, predictions partially outside the core zone differed by approximately half a level compared to D(−=+)
bu , which increased

to about half to a full danger level fully outside the core zone, reflecting the expected differences in avalanche danger as a

function of elevation and aspect (Pérez-Guillén et al., 2022; Techel et al., 2022b). Since similar results were observed for the

nowcast predictions (a detailed overview is shown in Table A2), in the following sections, we analyze exclusively the forecast

predictions within the core zone.205
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5.2.2 Level-wise agreement

The diagonals of the confusion matrices shown in Fig. 4 represent the proportion (number) of agreements between the forecast

of the model and the bulletin (Dbu; row-wise proportions) for each danger level. These were highest for Dbu 1 to 3. The

agreement was generally lower for South than for North aspect predictions, which was most evident for levels 2 and 4. In

contrast, South predictions showed a considerably higher agreement for Dbu = 1 than North predictions. Misclassifications210

(off-diagonal values in Fig. 4) were typically by one level and rarely by two levels (Tables 1 and A2). The row-wise analysis

shows that the model often predicted a lower level than the bulletin, particularly for South predictions and for Dbu = 3 in North

predictions. Moreover, danger level 2 was the least precise for both aspects, with a higher number of cases where the model

predicted danger level 2 while Dbu = 3 (Fig. 4).

Figure 4. Confusion matrices of the forecast predictions for the aspects: a) North and b) South. Only predictions from stations within the

core zone are considered. The colormap shows the percentage of samples per danger level, calculated row-wise.

5.2.3 Probability estimates215

The majority of model predictions were within one danger level of Dbu (Table A2 and Fig. 4). In addition, the distribution of

probabilities showed that the model predictions were mainly concentrated between two consecutive levels. Indeed, only a small

proportion of the predictions (less than 5 %) estimated probabilities over 0.2 for three levels simultaneously and none of them

over 0.1 for all four levels.

Comparisons of the probability distributions (forecast-mode, North aspect) with the danger level as forecast in the bulletin are220

displayed in Fig. 5. We distinguish two cases: when the model and the forecast danger level in the bulletin agreed (∆Dbu,N = 0;

Fig. 5a) and when they disagreed (Fig. 5b). When predictions matched (Fig. 5a), the mean probabilities ranged between PD1 =

10
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Figure 5. Box plot distributions of the probability outputs from the forecast predictions for each danger level forecast in the public bulletin

split into: a) when the predictions are in agreement with the bulletin (∆Dbu,N = 0) b) when disagreeing: model predictions are higher than

the bulletin (∆Dbu,N > 0) or lower (∆Dbu,N < 0). This analysis only considers the within predictions for the North aspect (Within, N +

predictions of Table 1). The dashed lines link the mean values of the box plot distributions.

0.69 for danger level 1 and PD2 = 0.55 for danger level 2. On average, the neighbouring levels had mean probabilities between

0.1 and 0.4. When Dbu was 1 or 4, there were rarely any predictions for two levels higher or lower. When the predictions

deviate from the bulletin (∆Dbu,N ̸= 0 in Fig. 3b), confidence in predictions decreased, showing higher uncertainty since the225

mean probability estimates for all danger levels fell below 0.6. Nevertheless, probabilities for the respective level in the bulletin

were the second highest (between 0.3 and about 0.45), indicating that the model bias was towards the forecast in the bulletin.

5.2.4 Sub-level-wise performance

To compare with the sub-level qualifiers of the avalanche bulletin, we discretized the expected danger values using a simple

rounding strategy rounding to 1
3 , and assigning a neutral (=) sub-level to its corresponding numerical integer, a sub-level230

minus (−) to 1
3 less than the integer, and similar for a sub-level plus (+) being assigned to 1

3 more than the integer (Sect. 3).

The confusion matrix in Fig. B1 displays the agreement rate between the expected danger values computed with the forecast

predictions and the sub-level qualifiers assigned. Excluding danger level 1, when no sub-level was assigned, the agreement

rate between the forecast sub-levels and the expected danger values was, on average, approximately 30 %, ranging from 0.6 %
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(4=) to 38.3 %(3−) (diagonal elements in the matrix of Fig. B1). The deviations of the predictions of the model from the main235

diagonal were mainly concentrated within one sub-level qualifier higher than the bulletin for assessments below 2+ and one

sub-level lower for assessments below 4−, showing a decrease in the number of samples with a larger difference. Since the

model was trained by merging danger levels 5 and 4, the maximum expected danger values were limited to 4=.

5.3 Temporal predictions and avalanche problems

As described in Section 2, avalanche problems provide information about snowpack characteristics in a region. To further240

investigate the performance of the model across different avalanche situations, we compared the mean agreement rate between

model predictions (Dfx) and bulletin (Dbu) for each station with the proportion of days that a specific avalanche problem was

forecast in this region (Fig. 6). The map in Fig. 6 shows that the proportion of days with a new-snow problem (NS) exceeded

20 % in the Southwestern and central regions of Switzerland, with complimentary patterns for the old-snow problem (OS)

reaching values of >40 % in the central parts of the Swiss Alps (Fig. 6b). Generally, stations in regions with a frequent OS245

problem showed lower mean agreement rates than those in the central and Northern regions. Consequently, the correlation

between the presence of a new-snow problem and the agreement rate was moderately positive (rs = 0.42;p < 0.01; Fig. 6c),

while negative for the presence of an old-snow problem (rs =−0.52;p < 0.01, Fig. 6d). The distribution of the wind-slab

problem is not shown, as it was forecast for more than 40 % of the days in the Swiss Alps without a clear spatial pattern.

To evaluate the temporal dynamics of the model predictions across avalanche problems, we selected two stations character-250

ized by different avalanche conditions (Fig. 7): Weissfluhjoch (WFJ) located in Davos region in the northeast of Switzerland

and Vallée de la Sionne (VDS) in the southwestern. The main differences between these two regions are related to the frequency

of snowfall events and the presence of persistent weak layers within the snowpack. In the region of Davos, the NS problem was

less frequently forecast compared to Vallée de la Sionne (10% vs 24% of the days) and, conversely, the OS more often (69%

vs 50%). Overall, in both regions, model predictions matched the changes in the danger level as forecast in the bulletin, albeit255

with different time lags depending on the avalanche situation (Fig. 7). The expected danger values correlated well with the

forecast sub-levels (WFJ: rp = 0.78, VDS: rp = 0.9), with the mean absolute error being approximately one sub-level (WFJ:

0.43, VDS: 0.35), showing a better match at VDS than at WFJ. Differences in typical avalanche problems between the regions

of Davos and Vallèe de la Sionne might explain the variations in model performance at these two locations. Model predictions

showed a rapid increase in avalanche danger during snow storms (when the NS problem was forecast; Fig. 7). Compared to the260

bulletin, the model often predicted an increase several hours earlier than the bulletin, driven by the onset of precipitation. While

increasing rapidly with precipitation, the expected danger values didn’t reach level 4 (Fig. 7) since not all individual decision

trees of the random-forest model predicted danger level 4. During times of decreasing avalanche danger, the model predictions

often decreased faster than bulletin, particularly for WFJ, as observed in February (Fig. 7) when the expected danger value

decreased from 3 to 1.5. In this situation, the bulletin remained conservative, gradually decreasing from a 3+ at the beginning265

of the month until reaching 1-Low by the end of the month.
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Figure 6. Maps showing the proportion of days regionally forecast in the public bulletin during the winter season 2020-2021 for the New

Snow problem (a) and Old snow problem (b). The AWS stations are coloured based on their average agreement rate calculated using the

forecast predictions (N). Only stations with predictions within the core zone on at least 10% of the days are included. Below, scatter plots

show the average agreement rate per station against the proportion of days forecast with New Snow (c) and Old snow (d) problems. Linear

regression lines and 95 % confidence intervals are marked in red. The dot sizes are coloured and scaled based on the mean absolute error,

computed using the expected danger values and the sub-levels forecast in the bulletin.

6 Model explainability

To improve our understanding of the predictions of the model, we employed a Tree explanation model to compute the SHAP

values using the test set of the forecast predictions (N) during the winter season of 2020-2021. SHAP provides numerical

importance values to each feature for every individual prediction of the model (Sec. 4.2).270
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Figure 7. Time series of the sub-levels forecast in the bulletin and the expected danger values, computed with the DL forecast and nowcast

predictions from the IMIS stations situated in a) the station of Weissfluhjoch located at 2536 m a.s.l. above Davos at the Eastern Swiss Alps

(Fig. 1) and b) the station of Vallèe de la Sionne located at 2385 m a.s.l. above Sion at the western Swiss Alps (Fig. 1). In addition, the forecast

avalanche problems for dry-snow conditions during the winter are also displayed: New-fallen snow problem (NS), Wind slab problem (WS)

and Old snow problem (OS).

6.1 Overall explainability

In general, the 3-day and 7-day sums of new snow (HN24_7d and HN24_3d in Fig. 8) and the skier penetration depth

(pen_depth in Fig. 8) rank among the five most important features, regardless of danger level. Nevertheless, the feature im-

portance order and distributions of SHAP values differ for each danger level.
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For danger levels 1 and 2, the SHAP beeswarm charts show that high values of variables related to precipitation (e.g.275

HN24_3d, HN24 and MS_Snow in Fig. 8) and wind or wind drift (e.g. VW, wind_trans24 and wind_trans24_3d in Fig. 8),

as well as the skier penetration depth, negatively impact the model’s predictions for these classes. The SHAP distributions of

these features are fairly symmetric, especially for danger level 1, indicating that low values of these variables impact favourably

toward predicting these danger levels. Comparing these danger levels, danger level 1 has distinct SHAP distributions for 7-day

accumulation of new snow and wind drift (HN24_7d and wind_trans24_7d in Fig. 8), with high SHAP values for low amounts280

of them. Although these features are also important for danger level 2, the distributions show a wider range of SHAP values

with different impacts on the model output. Overall, the model tends to predict low danger levels when the input features

related to the amount of new snow accumulated by precipitation and wind drift are low. In contrast, for danger levels 3 and 4,

the plots show that high values of these features, particularly at danger level 4, have a positive impact (Fig. 8). Precipitation

days are also characterised by high relative humidity, which positively drives predictions towards danger levels 3 and 4. The285

snow precipitation rate, MS_Snow (Fig. 8), is also an important feature for danger levels higher than 1 (Fig. 8). High rates

significantly impact predictions towards danger level 4 and help to discriminate between the other danger levels (Fig. 8), which

show an inverse distribution of SHAP values. All these are expected results, as high avalanche hazard situations for dry-snow

conditions are mainly characterized by new-snow accumulation during snow storms and the formation of wind slabs due to

strong winds. In addition, low values of input features such as critical cut length and stability indices represent an unstable290

snowpack, which may also lead to a high avalanche danger. This is also reflected in the SHAP distributions, where low values

of these features (e.g. min_ccl_pen, ccl_pwl_100, sn38_pwl_100, S4 in Fig. 8) positively impact high avalanche danger levels

(danger levels 3 and 4) and have a negative impact for predicting low avalanche danger levels (danger levels 1 and 2).

Low danger levels are usually forecast during stable weather conditions, i.e. no precipitation and clear, sunny weather (large

incoming radiation and high fluxes). The SHAP distributions of low danger levels show that low mean values of net long- and295

short-wave radiation and direct short-wave radiation (LWR_net, Qw, ISWR_dir in Fig. 8) have negative values. Additionally,

high mean air temperatures (TA in Fig. 8) positively influenced predictions towards danger level 1, while low temperatures

drove model predictions towards danger levels 2 and 3. High values of the variables related to the heat fluxes within the

snowpack (Qgo and Qs in Fig. 8) impacted predictions towards lower danger levels, whereas high values of the reflectivity of

the snow surface (pAlbedo in Table A1), which is characteristic of new snow layer, towards high danger levels. Therefore, the300

model tended to predict low danger levels on days with warm temperatures and stable weather conditions.

6.2 Prediction drivers in detail

To gain more insights into the individual impact of the features in the model predictions, we selected an avalanche forecasting

period of interest: March 2021 at Weissfluhjoch (WFJ). During this period, Dbu increased from level 1 at the beginning of the

month to level 4 on 16 March, followed by a gradual decrease until the end of the month, when it reached level 2 (Figures 7305

and 9).

The time series of SHAP values during this period shows that the accumulation of new snow was the most important factor

across all danger levels. For instance, at the beginning and end of the month, low snow accumulations during the last seven and
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Figure 8. SHAP beeswarm summary of the impact of the 20 most significant features (described in Table A1) on the model output for each

danger level: 1-Low, 2-Moderate, Level 3-Considerable and 4-High. These features are sorted by importance for each danger level, showing

the most significant variables at the top of each plot. The width of the individual charts indicates the density and frequency of SHAP values,

thus providing insights into the relative importance of each feature in relation to the model’s output. The colour coding (red for high, blue

for low) allows us to understand how changes in a feature’s value impact each danger level. While positive SHAP values indicate a change

in the expected model prediction towards each model’s class, negative values denote the opposite.
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last three days (HN24_7d < 14 cm, HN24_3d < 10 cm) resulted in high positive SHAP values for level 1, indicating the highest

probability for this level (PD1 in Fig. 9). Model predictions increased from level 2 to level 3 when new-snow accumulations310

exceeded thresholds of 12 cm (HN24_3d) and 20 cm (HN24_7d), approximately. The probability for level 4 was close to zero

during the entire month (Fig. 9), except for the period between March 15 and 17, when PD4 suddenly increased. This increase

was in line with the bulletin. New-snow accumulations of approximately over 17 cm (HN24), 30 cm (HN24_3d), and 40 cm

(HN24_7d) had a positive impact towards predicting danger level 4.

The amount of snow transported by wind (wind_trans24_7d and wind_trans24_3d in Fig. 9) had a similar effect to new315

snow but with less impact. Wind drift accumulations over 10 cm in the previous days showed positive SHAP values for high

danger levels and negative values for low danger levels. In addition, high rates of precipitation, MS_Snow > 0.4 (Fig. 9), had

a negative impact for level 1, while the opposite for level 4.

The month was characterized by large skier penetration depths (pen_depth ≥ 18 cm in Fig. 9), showing increasingly higher

negative SHAP values for larger depths at danger level 1. When penetration depths exceeded approximately 24 cm and 34 cm,320

the SHAP values were high for danger levels 3 and 4, respectively. The interpretation of the minimum critical cut length is

more complex since SHAP values show a variety of ranges for the same feature value, exhibiting both positive and negative

effects, as shown in Fig. 9 for level 2. For higher danger levels, particularly level 4, critical cut lengths below 20 cm showed

positive SHAP values, increasing the probability for this level. The natural stability index was among the seven most important

features for level 2 but with less influence (Sn in Fig. 8). In March, the variation of Sn was minor, showing a low value of Sn325

≤ 0.6 (Fig. 9), indicative of an unstable snowpack that favourably influenced this danger level.

A remarkable observation regarding the input values of the meteorological features related to the new snow accumulation

is the bias observed between the HN24, derived from the COSMO weather model for the next 24 hours, and HN24_3d and

HN24_7d (Fig. 9). These features are computed as a combination of extracted values from the snow-cover simulations driven

by COSMO and measured values by the AWS (Sec. 3.1). This explains the differences in the sum of values in Fig. 9 due330

to an underestimation of precipitation by the COSMO model from March 15 to 17, which consequently negatively impacted

the forecast predictions of the model towards danger level 4. During this period, the expected danger values computed from

nowcast predictions were more accurate, approaching danger level 4 (Fig. 6).

7 Discussion

7.1 Model performance during the operational test335

We assessed model predictions using the operational test set during the winter season 2020-2021. This was the first winter

where the model provided predictions in real-time without influencing the avalanche forecasters. Although the model was

trained using data from flat-field snow-cover simulations in nowcast mode, it was also tested to predict danger levels for four

slope virtual aspects and in forecast mode. Results show that the agreement rates between the nowcast and forecast danger

level predictions of the model are high, ranging from 84% to 86% (Fig. 3), and the expected danger values are also highly340

correlated.
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Comparing predictions with the danger level forecasts within the core zone of the bulletin, the overall agreement rate varied

from 66% (flat) to 74% (South) for forecast predictions (Table 1). While the overall agreement rate for flat-field predictions

was lower than previously reported (72% in Pérez-Guillén et al., 2022), the agreement rate for flat predictions per danger level

was still similar to Pérez-Guillén et al. (2022). The overall decrease is due to the lower support of predictions of danger level 1345

in the current study. The performance of predictions outside the core zone was consistent with previous studies (Pérez-Guillén

et al., 2022; Techel et al., 2022a), showing an increase in the model’s bias to predict one danger level lower for all aspects and

prediction types (Tables 1 and A2). This bias was more significant when predictions were fully outside the core zone.

Comparing the expected danger values of the model with the new sub-level qualifiers of the ordinal danger level scale used

operationally by the Swiss avalanche forecasters, deviations in model performance were mainly concentrated within one sub-350

level qualifier (Fig. B1) and mean absolute errors (MAE) being below 0.4 (see MAE values for Within predictions in Tables 1

and A2). Results are consistent for flat-field predictions and aspects as well as for both types of predictions, supporting the

operational use of the expected danger values for assessing danger levels in the new sub-level scale (Techel et al., 2022a).

7.2 Model Integration for operational avalanche forecasting

Since the winter season 2021-2022, the danger level model has been providing real-time predictions every three hours. The355

output included a danger level (Eq. 2) as well as an expected danger value (Eq. 3) for each weather station, slope aspect

and prediction type (nowcast and forecast). These predictions were accessible to forecasters, who consulted and compared

them with their danger level assessments to issue the daily avalanche bulletin. The model received positive feedback from

avalanche forecasters, providing a valuable “second opinion” in the decision-making process (van Herwijnen et al., 2023).

Its performance is generally considered comparable to the danger assessments made by forecasters. One of the model’s main360

strengths is its ability to help identify spatial patterns that are usually challenging to assess. This is especially useful when

conditions are rapidly changing and evolving, as shown in Fig. 7. A further development aiming to make model predictions

more accessible to forecasters is the prediction of a danger level for the predefined warning regions (polygons shown in Fig. 1).

This approach, further adapted and live-tested in 2023-2024, generates forecast predictions including danger level, sub-level,

and corresponding critical aspect- and elevation-information in a format equivalent to human-made forecasts, allowing a largely365

automatized integration of a “virtual forecaster” in the forecast production process from winter season 2024-2025 onwards

(Winkler et al., 2024).

7.3 Interpretation of model predictions

Avalanche formation is a complex interplay between the topography, meteorological conditions, and snow-cover properties

(Schweizer et al., 2003). Operationally, avalanche forecasting implies predicting the current and future likelihood of avalanches370

and anticipating their potential size in time and space Schweizer et al. (2020). The time series of the predictions of the model

reflected well, and even with a higher temporal resolution, the dynamic nature of avalanche forecasting, showing rapid increases

in danger levels correlating with forecasts in the bulletin during or shortly after snowfalls and gradual decreases during periods

of no precipitation (Fig. 7). However, the model predictions generally decreased faster than the bulletin when the OS problem
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was forecast (Fig. 7). Overall, the model performed better during snow storms, when the NS problem was forecast, and less well375

in regions characterized by a snowpack with a persistent weak layer (Figures 6 and 7). This suggests that the model predictions

are driven mainly by input features related to precipitation rather than variables reflecting the stability of the snowpack.

7.3.1 Impact of the meteorological features in the model predictions

Among the main meteorological drivers for dry-snow avalanches is the load from snowfall accumulations during or imme-

diately after storms (Schweizer et al., 2003; Birkeland et al., 2019). Consequently, the amount of new snow is ranked as the380

most important explanatory meteorological variable linked to avalanche activity in previous studies (Ancey et al., 2004; Hen-

drikx et al., 2014; Schweizer et al., 2009; Dkengne Sielenou et al., 2021; Mayer et al., 2023). The explainability of the model

predictions also showed that the meteorological variables related to accumulated sums of precipitation (HN24, HN24_3d and

HN24_7d in Fig. 8) and the skier penetration depth (pen_depth), which is directly linked to new snow parameters, were the

most relevant input features of the model for all danger levels, despite variations in the individual rankings (Fig. 8). These385

features also ranked highest in the internal feature importance scoring by the random forest algorithm when developing the

model (Pérez-Guillén et al., 2022). Nevertheless, SHAP values provide a quantitative measure of each feature’s impact on the

individual model predictions, indicating, as expected, that high accumulations of new snow drive model predictions towards

high danger levels, whereas periods of no precipitation or low snow accumulation drive predictions towards low danger levels

(Fig. 8). Recent threshold-based binary classification models developed by Mayer et al. (2023) using a subset of avalanche390

observations in the region of Davos predicted dry-snow avalanche days when new snow accumulations reached thresholds of

22 cm for HN24 and 53 cm for HN24_3d. The detailed explanation of the model predictions at WFJ station (Davos) showed

that more than 3 cm and 17 cm of new snow (HN24) had positive SHAP values, increasing the probabilities for predicting

danger levels 3 and 4, respectively. Furthermore, a 3-day sum of new snow of 59 cm on 15th March (HN24_3d in Fig. 9)

produced a sudden high increase in the probability for danger level 4. Previously developed statistical approaches to predict395

natural avalanche activity did not include variables for new snow accumulations of more than three days (Dkengne Sielenou

et al., 2021; Viallon-Galinier et al.; Mayer et al., 2023). This study shows that HN24_7d ranked between the most important

variables impacting all danger levels, especially danger level 1 when there was no precipitation in the previous week at the

beginning and end of the month (Fig. 9). Hence, meteorological variables accounting for precipitation over periods longer than

three days can also be discriminant features for statistical avalanche forecast models.400

Wind is another meteorological factor contributing to slab avalanche formation by transporting snow and producing ad-

ditional loading in specific areas (Schweizer et al., 2003). In general, the 3-day and 7-day wind-drift accumulations ranked

between the 10 most important features for all danger levels, while wind velocity and 1-day wind-drift accumulation were

less important (Fig. 8). Particularly, the absence of wind-drift accumulations at the beginning and end of March contributed

to model predictions trending towards danger level 1 (Fig. 9). The other main meteorological factors that can promote insta-405

bility in the snowpack are rapid increases in air temperature and solar radiation due to changes in slab properties (Reuter and

Schweizer, 2012). In this regard, the input features used by the model are averaged 24-hour means of temperature and solar

radiation (Pérez-Guillén et al., 2022), and therefore do not capture rapid changes, resulting in a secondary impact on model

19

https://doi.org/10.5194/egusphere-2024-2374
Preprint. Discussion started: 6 August 2024
c© Author(s) 2024. CC BY 4.0 License.



predictions (Fig. 8). Over the long term, warming and melting processes favour snow metamorphism and settlement, decreasing

the probability of dry-snow avalanche formation (Schweizer et al., 2003). The interpretation of SHAP values is coherent with410

this, showing positive SHAP values for air temperatures above 0◦ (TA in Fig. 9) and generally, for high values of the radiation

parameters for danger level 1 (Fig. 8).

7.3.2 Impact of snow-cover features on model predictions

Besides meteorological drivers, snow stratigraphy plays a crucial role in avalanche formation. A prerequisite for dry slab-

avalanche release is the existence of a weak layer within the snowpack (Schweizer et al., 2003). The model was developed with415

input features extracted from the simulated profiles that contain information on the stability of the snow-cover (Pérez-Guillén

et al., 2022). These features include the critical cut-length computed at two weak layers (min_ccl_pen and ccl_pwl_100 in

Table A1) and several stability indices (Table A1): the natural stability index of two layers (Sn and sn38_pwl_100), the skier

stability index (Ss), and the structural stability index (S4). SHAP feature attribution showed that of these features, min_ccl_pen

had the highest impact on model predictions: low values positively impacted predictions towards danger levels higher than 1420

(Fig. 8). Even though the min_ccl_pen-values were low (< 6 cm in Fig. 8) during the period of high avalanche danger forecast

from 15 to 17 March in the region of Davos, the impact was lower than that of precipitation variables for danger levels 3 and 4.

The values of min_ccl_pen remained low until the end of March, while the forecast danger level remained high with a danger

level 3− from 23 to 26 due to OS problem (Fig. 6) and the expected danger value predicted by the model decreased from

2.3 to 2.0 (Fig. 9). This highlights the model’s weakness in accurately predicting danger levels when the OS problem is the425

main contributing factor to avalanche hazard. Additionally, the stability indices did not contribute significantly to high danger

levels in this avalanche situation. Their impact was not particularly high for any danger level (Fig. 8). Mayer et al. (2023) also

tested to develop a classification model using the natural stability index extracted from SNOWPACK simulations to predict

natural dry avalanche activity in Switzerland, resulting in low predictive performance. This was mainly attributed to the limited

discriminatory power of sn38, which aligned with results from previous studies (Jamieson et al., 2007; Reuter et al., 2022).430

However, other data-driven models also aimed to predict avalanche activity that included mechanically based stability indices

improved the performance of a classifier that only relied on meteorological and bulk snow parameters simulated with CROCUS

(Jamieson et al., 2007; Reuter et al., 2022).

7.3.3 Model explainability and further implementations

SHAP explanations are a powerful approach for quantifying the overall and individual influence of the input features on model435

predictions (Lundberg et al., 2018). Compared with other feature scoring methods, such as variable importance based on Gini

importance (Breiman, 2001), SHAP offers a more interpretable analysis of feature contributions. For operational avalanche

forecasting, a representation combining the values of the most important input variables with the SHAP values on a daily

basis, as shown in Fig. 9, can potentially be very valuable for making a complex machine-learning model understandable for

forecasters. This can also be used as a training tool for new forecasters by highlighting relevant parameters and thresholds.440

Additionally, this approach could be used to detect outliers in the input features, which may lead to wrong forecasts.
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From the perspective of developing new forecasting models based on machine learning, SHAP has confirmed what Pérez-

Guillén et al. (2022) qualitatively showed during the model development: the model’s predictive performance decreases when

the OS problem is the main avalanche problem forecast. This encourages the implementation of new models using better

discriminant input variables related to snowpack stability, such as, for instance, recently developed indices assessing snowpack445

instability (Mayer et al., 2022) or the likelihood of natural avalanches occurring (Mayer et al., 2023). An alternative could be

to develop a model to assess danger levels for each avalanche problem. Nevertheless, this approach could be challenging since

several avalanche problems were usually simultaneously forecast on the same day and region (Fig. 8).

8 Conclusions

In this study, we evaluated the performance of the random-forest classifier predicting the danger level for dry-snow avalanche450

conditions developed by Pérez-Guillén et al. (2022) during the initial live-testing season in Switzerland. Although the model

was trained with a dataset consisting of meteorological measurements providing nowcast snow-cover simulations for flat

terrain, its performance was equally good, or sometimes even better, in forecast mode and when making predictions for four

virtual mountain aspects. Overall, the mean agreement rate between model-predicted danger levels and the danger levels as

published in the Swiss avalanche forecast was 70%. Moreover, the continuous expected danger value, derived using the model-455

predicted probabilities, showed high correlations (rp ≥ 0.86 ) with the sub-levels as used by the Swiss avalanche warning

service. In general, the model reproduced the temporal evolution of avalanche conditions and captured variations in avalanche

danger between different slope aspects and elevations, at higher temporal resolution than human-made forecasts. However, the

predictive performance was lower during periods characterized by persistent weak layers within the snowpack compared to

other situations.460

Using the SHAP approach, we showed that model explainability can be greatly increased to obtain a detailed understanding

of feature importance overall, but also for individual predictions. We conclude that SHAP could potentially become a powerful

tool permitting the interpretation of the predictions of complex ‘black-box’ machine-learning models, not just in a research

context as shown here, but also when using model predictions operationally. Besides increasing the interpretability of such

complex models as the danger level model, rigorous validation and implementation of these models remain crucial to ascertain465

that predictions are reliable, which we consider a prerequisite for operational use. Integrating machine-learning models into

avalanche forecasting can complement the forecaster’s expertise by providing a “second opinion”. Moreover, model predictions

may open up possibilities to increase the spatio-temporal resolution of avalanche forecasts (Maissen et al., 2024).

Future developments should include incorporating additional discriminant input features (e.g., indices developed by Mayer

et al., 2022, 2023), for instance to increase prediction performance for situations with persistent weak layers, or testing the470

applicability of these models in regions with different snowpack characteristics.

Code availability. The code for the live deployment of the danger level model can be found at deapsnow_live_v1 GitLab repository.
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Figure 9. Time series of the sub-levels forecast in the bulletin and the expected danger values, computed with the forecast predictions from

the AWS station situated in Weissflujoch during March, 2021 (up; the starting time for each date was set to 18:00, LT). The probability

outputs for each danger level during this period are also displayed. Below, the heatmaps show the overall seven most important features

for this forecasting period for each danger level (y-axis) and the time series of the values for each input feature (x-axis). We selected the

predictions and input feature values of the time window close to the forecast in the bulletin (starting from 18:00 (LT) on a given day and

valid for the next 24 hours). The colour represents the SHAP values computed for each feature in this time window.
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Appendix A: Features of the model and Nowcast performance

Table A1. Meteorological variables used for training the random forest algorithm. The three types of features are: measured meteorological

variable, modelled meteorological variable by SNOWPACK, or extracted variable. Features can be discarded by Recursive Feature Elimina-

tion (RFE), manually, or because they are highly correlated with another one.

Feature description Feature name

Mean sensible heat [W/m2] Qs

Mean ground heat at soil interface [W/m2] Qg0

Mean incoming longwave radiation [W/m2] ILWR

Mean net longwave radiation [W/m2] LWR_net

Mean net shortwave radiation [W/m2] Qw

Mean parametrized albedo [−] pAlbedo

Mean direct incoming shortwave [W/m2] ISWR_dir

Mean air temperature [º] TA

Mean surface temperature [º] TSS_mod

Mean relative humidity [−] RH

Mean wind velocity [m/s] VW

Mean wind velocity drift [m/s] VW_drift

Mean solid precipitation rate [kg/s2/h] MS_Snow

Mean snow height [cm] HS_mod

Mean 24h wind drift [cm] wind_trans24

Mean 3d wind drift [cm] wind_trans24_3d

Mean 7d wind drift [cm] wind_trans24_7d

Mean 24h height of new snow [cm] HN24

Mean 3d sum of daily height of new snow [cm] HN24_3d

Mean 7d sum of daily height of new snow [cm] HN24_7d

Mean natural stability index [−] Sn

Mean depth of natural stability index [cm] zSn

Mean Sk38 skier stability index [−] Ss

Mean structural stability index [−] S4

Natural stability index at surface weak layer [−] sn38_pwl_100

Critical cut length at surface weak layer [m] ccl_pwl_100

Min. critical cut length at a deeper layer of the penetration depth [m] min_ccl_pen

Skier penetration depth [cm] pen_depth
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Table A2. Summary of the model’s performance during the operative winter season 2020-2021 based on the type of prediction: Nowcast

Within (all aspects active) or Outside (active (+) or non-active (-) slope aspect: Flat (F), North (N), East (E), South (S) and west (W); Support

of the predictions; Percentage of samples for each model bias (∆Dbu,a = value of Eq.B2). Mean absolute errors (MAE) and the Pearson

correlation coefficient are computed using the expected danger values and the sub-level assessments.

Prediction Aspect Support
Percentage [%] of ∆Dbu,a =

rp MAE
-2 -1 0 1 2

Nowcast

Within

F 8665 1.8 27.3 64.8 6.1 0.0 0.87 0.37

N + 9417 1.0 18.4 70.2 10.2 0.1 0.85 0.37

E + 9160 1.6 25.3 66.9 6.2 0.0 0.87 0.35

S + 5737 1.5 21.4 71.6 5.5 0.0 0.91 0.32

W + 8688 2.0 27.0 65.4 5.7 0.0 0.87 0.36

Nowcast

Outside

F 2152 8.3 52.8 36.8 2.1 0.0 0.72 0.50

N + 2379 5.6 43.6 46.5 4.3 0.0 0.68 0.43

E + 2222 8.1 51.2 38.2 2.5 0.0 0.71 0.48

S + 784 6.0 35.7 53.8 4.5 0.0 0.80 0.44

W + 1893 6.9 53.1 37.1 2.8 0.0 0.73 0.48

Nowcast

Outside

N - 5 20.0 80.0 0.0 0.0 0.0 - 0.75

E - 120 1.6 97.9 0.5 0.0 0.0 0.32 0.60

S - 1133 11.2 68.4 19.2 1.3 0.0 0.59 0.58

W - 277 26.3 63.3 10.1 0.2 0.0 0.70 0.71

Appendix B: Evaluation metrics

The forecast-nowcast model bias, ∆Dm,a, is defined as:

∆Dm,a = Dfx,a−Dnx,a (B1)

where Dfx,a is the forecast, and Dnx,a is the nowcast danger level predicted by the model for each mountain slope aspect485

(a ∈ {F,N,E,S,W}). The ∆Dm,a can range from ±3 for a difference of three danger levels in the scale, ±2 for two levels, ±1

for one level, to 0 when the predictions agree. The agreement between predictions is the percentage of total number of cases

where ∆Dm,a = 0.

The forecast model-bulletin bias, ∆Dbu,a, is defined as:

∆Dbu,a = Dfx,a−Dbu,a (B2)490

where Dfx,a is the forecast danger level predicted by the model for each mountain slope aspect (a ∈ {F,N,E,S,W}) and Dbu,a.

The ∆Dm,a can range from ±3 for a difference of three danger levels in the scale, ±2 for two levels, ±1 for one level, to 0

when the predictions agree. The agreement between bulletin forecasts and predictions is the percentage of total number of

cases where ∆Dbu,a = 0.
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The Mean Absolute Error (MAE) is the average of the absolute differences between the forecasts and the predicted values:495

MAE =
1
n

n∑

i=1

∣∣∣D(−=+)
bu,a −ED,a

∣∣∣ (B3)

where n is the number of predictions (Support in Tables 1 and A2), D(−=+)
bu,a are the sub-levels forecast in the bulletin and

ED,a is the expected danger values (Eq. 3) predicted for each mountain slope aspect (a ∈ {F,N,E,S,W}).

Figure B1. Confusion matrix comparing the sub-levels forecast in the bulletin and the expected danger values (proportion of samples: row-

wise sum), which are discretized into refined danger level scale bins for the forecast predictions.
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