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Abstract. In the face of climate change and increasing anthropogenic pressures, a reliable water balance is crucial for 

understanding the drivers of water level fluctuations in large lakes. However, in poorly-gauged hydrosystems such as Lake 10 

Titicaca, most components of the water balance are not directly measured. Previous estimates for this lake have relied on 

scaling factors to close the water balance, which introduces additional uncertainty. This study presents an integrated modeling 

framework based on conceptual models to quantify natural hydrologic processes and net irrigation consumption. It was 

implemented in the Water Evaluation and Planning System (WEAP) platform at a daily time step for the period 1982–2016, 

considering the following terms of the water balance: upstream inflows, direct precipitation and evaporation over the lake, and 15 

downstream outflows. To estimate upstream inflows, we evaluated the impact of snow and ice processes and net irrigation 

withdrawals on predicted streamflow and lake water levels. We also evaluated the role of heat storage change in evaporation 

from the lake. The results showed that the proposed modeling framework makes it possible to simulate lake water levels 

ranging from 3,808 to 3,812 m a.s.l. with good accuracy (RMSE = 0.32 m d-1) under a wide range of long-term hydroclimatic 

conditions. The estimated water balance of Lake Titicaca shows that upstream inflows account for 56% (958 mm yr-1) and 20 

direct precipitation over the lake for 44% (744 mm yr-1) of the total inflows, while 93% (1,616 mm yr-1) of total outflows are 

due to evaporation and the remaining 7% (121 mm yr-1) to downstream outflows. The water balance closure has an error of -

15 mm yr-1 without applying scaling factors. Snow and ice processes, and net irrigation withdrawals had minimal impact on 

variations in lake water level. Thus, Lake Titicaca is primarily driven by variations in precipitation and high evaporation rates. 

These results will be useful to support decision-making in water resources management. We demonstrate that a simple 25 

representation of hydrologic processes and irrigation enables accurate simulation of water levels. The proposed modeling 

framework could be replicated in other poorly-gauged large lakes because it is relatively easy to implement, requires few data, 

and is computationally inexpensive. 
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1 Introduction 30 

1.1 On the need for an integrated water balance in large lakes 

Lakes are water reservoirs of vital importance for the development of regions as they provide many ecosystem services, 

including fisheries, water supply, tourism and energy generation (Sterner et al., 2020). However, these services can be impacted 

by fluctuating lake water levels. For instance, Yao et al. (2023) showed that, in the period from 1992 to 2020, there was a 

significant decrease in water levels in 43% of natural lakes (457), an increase in 22% (234), and non-significant trends were 35 

observed in 35% (360). Understanding the main drivers of fluctuations in water levels is crucial for effective lake management, 

which requires a realistic water balance that accounting for both natural processes and anthropogenic pressures (Wurtsbaugh 

et al., 2017). Several studies on large lakes (>500 km2) (e.g. Rientjes et al., 2011; Vanderkelen et al., 2018; Wale et al., 2009) 

have estimated water balance under the assumption that net water withdrawals in the contributing catchments are negligible. 

However, this assumption may no longer be valid due to changing climate conditions and increased competition for water 40 

uses, potentially leading to reduced upstream inflow (Wurtsbaugh et al., 2017). For example, Schulz et al. (2020) demonstrated 

that net withdrawals for irrigation exacerbate the decline in storage at Lake Urmia, which is also impacted by climate change. 

In large lakes, it is essential to adopt integrated water balance modeling, which represents the interactions and feedbacks 

between natural hydrological processes and water management within a single modeling framework (Niswonger et al., 2014). 

Unlike traditional decision support systems applied to large lakes (Hassanzadeh et al., 2012), which typically simulate natural 45 

flows and irrigation water requirements independently, integrated modeling enables these processes to be simulated in a 

coupled and dynamic manner. Few studies have attempted to address an integrated water balance in large lake hydrosystem 

(e,g. Hosseini-Moghari et al., 2020; Lima-Quispe et al., 2021). These studies tend to focus on some components of the water 

balance, while others are addressed superficially. For example, Hosseini-Moghari et al. (2020) focused on estimating upstream 

inflow of Lake Urmia, with less emphasis on direct precipitation over the lake and evaporation, which both play very important 50 

roles in the water balance of large lakes (Gronewold et al., 2016). This is partly because large lake hydrosystems involve 

numerous hydrological processes, and there is often insufficient data to represent these processes in detail and evaluate them 

comprehensively. The issue is further complicated in transboundary lake hydrosystems, where hydrometeorological 

monitoring is not always coordinated (Gronewold et al., 2018). 

1.2 Challenges in estimating the water balance of large lakes 55 

It is widely recognized that large lakes have a major influence on regional climate (Scott and Huff, 1996; Su et al., 2020). For 

example, it has been observed that direct precipitation over the African Great Lakes is more intense than in their surrounding 

areas (Anyah et al., 2006; Kizza et al., 2012; Nicholson, 2023; Thiery et al., 2015). According to Scott and Huff (1996) this is 

due to the differences in heat capacities between the lake surfaces and the surrounding area, and the large amount of moisture 

that lakes provide to the lower atmosphere, which can lead to increased cloudiness and precipitation over lakes. Estimating 60 

precipitation based on ground stations, which are mainly located in the surrounding areas, can lead to inaccuracies. Despite 
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the current availability of remotely sensed datasets, they have been shown to still have significant biases (Hong et al., 2022; 

Satgé et al., 2019). Regarding direct evaporation, it depends not only on meteorological conditions, but also on  the size of the 

lake, water depth and water clarity, which all influence the energy balance due to changes in water temperature and vertical 

mixing (Lenters et al., 2005). Thus, estimating lake evaporation based on meteorological data alone can lead to inaccuracies 65 

(Bai and Wang, 2023). The energy balance method is considered to be one of the most appropriate and accurate for estimating 

evaporation (Lenters et al., 2005), but requires large quantities of data, meaning it is generally difficult to implement. The 

original Penman formulation, which does not include changes in heat storage, has been used to estimate lake evaporation (e.g. 

Kebede et al., 2006; Lima-Quispe et al., 2021). However, Blanken et al. (2011) observed a 5-month delay between peak net 

radiation and evaporation due to heat storage in Lake Superior in North America. One of the limitations of estimating the 70 

change in heat storage is the lack of water temperature data at different depths, and so models are used to simulate the thermal 

stratification dynamics of the water (e.g. Antonopoulos and Gianniou, 2003).  

For upstream inflow, ideally, measured streamflow data will be available. However, there are always areas in the catchments 

that contribute to the lakes that are ungauged (Wale et al., 2009). Upstream inflow is mostly estimated with hydrologic models 

(e.g. Rientjes et al., 2011; Zhang and Post, 2018). For ungauged catchments, regionalization methods are applied based on the 75 

parameters obtained in the gauged catchments (e.g. Guo et al., 2021). Basic lumped rainfall-runoff simulations may fall short 

due to the complex interplay of natural hydrological processes and water management. Integrating both aspects is essential for 

hydrosystems under significant anthropogenic pressure (e.g. Ashraf Vaghefi et al., 2015; Fabre et al., 2015; Hublart et al., 

2016). In high mountain catchments, snow and ice processes significantly impact hydrological responses. Estimating melt is 

challenging because it is difficult to obtain accurate forcing data (e.g. precipitation and temperature) in high elevation areas 80 

where the measurement network is very sparse (Ruelland, 2020), as well as control data (e.g. upstream-area streamflow and 

glacier mass balance). In this context, temperature-index approaches (Hock, 2003) are more suitable than energy balance 

approaches and can produce simulations with acceptable accuracy using a reduced number of parameters and forcing data (e.g. 

Ruelland, 2023). In terms of water management, according to Wu et al. (2022), 60% of freshwater withdrawals worldwide are 

made for agricultural irrigation. Catchment scale irrigation has been addressed using approaches based on soil water deficit 85 

(Kannan et al., 2011; Shadkam et al., 2016) and those that additionally consider irrigation scheduling (Githui et al., 2016; 

McInerney et al., 2018). Regardless of the approach chosen, one of the limitations is the lack of measured irrigation data 

(McInerney et al., 2018), which hinders the evaluation of irrigation simulations. This evaluation can consequently only be 

undertaken indirectly by attempting to more realistically reproduce observed outlet discharges by accounting for net 

consumption for water uses within the catchments (e.g. Fabre et al., 2015; Hublart et al., 2016). 90 

Net groundwater exchanges are neglected in some studies under the assumption that these fluxes are very small (Duan et al., 

2018; Lima-Quispe et al., 2021). Lake-groundwater interactions has been addressed using conceptual (Parizi et al., 2022) and 

physically-based models (Vaquero et al., 2021; Xu et al., 2021), chemical and isotopic balances (Bouchez et al., 2016), and 

the water balance (Chavoshi and Danesh-Yazdi, 2022). The water balance is a fairly easily option, as the net flux is the results 

of the other components. However, it is crucial to dispose of accurate measurements or estimates of the other water balance 95 
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terms to avoid propagating uncertainty (Chavoshi and Danesh-Yazdi, 2022). Hydrochemical or isotopic analyses are 

considered accurate (Bouchez et al., 2016), but can be very costly for a large lake. Modeling approaches are often limited by 

data availability (Barthel and Banzhaf, 2016), particularly when using models to dynamically simulate surface water-

groundwater interactions (Xu et al., 2021). On the other hand, downstream outflow in exorheic lakes can be estimated by direct 

measurements (Chebud and Melesse, 2009), a rating curve relating lake level to outflow (Sene and Plinston, 1994), and as a 100 

residual of the water balance (Duan et al., 2018).  

1.3 Placing Lake Titicaca in the context of an integrated water balance 

Lake Titicaca, located on the Altiplano of the tropical Andes of South America, is one of the highest large lakes in the world 

and an interesting case study for an integrated water balance. This lake is part of a vast endoreic catchment, and is connected 

by the Desaguadero River to Lake Poopo in Bolivia (see Fig. 1) (Lima-Quispe et al., 2021). As a transboundary lake shared 105 

by Peru and Bolivia and a poorly-gauged hydrosystem, it faces many of the aforementioned challenges. The region experiences 

significant interannual climate variability (Garreaud and Aceituno, 2001), which, coupled with complex water management 

issues (Revollo, 2001), intensifies the difficulties of managing Lake Titicaca. These challenges include extreme hydrological 

events (droughts and floods), lake releases, and water pollution (Revollo, 2001; Rieckermann et al., 2006). Water levels 

measured in Puno (Peru) have fluctuated by approximately six meters over the past century, with the lowest recorded in 1943–110 

1944 and the highest in 1984–1986 (Sulca et al., 2024), causing US$125 million in flood damage (Revollo, 2001). In response 

to these challenges, a management plan was developed in the early 1990s for both Lake Titicaca and the Altiplano hydrosystem 

(Revollo, 2001). A key component of this plan was the construction of an outflow gate to regulate lake releases and the 

establishment of operating rules. Although the outflow gate was completed in 2001, lake releases remain nearly the same as 

under natural conditions because the operating rules have not yet been implemented. Addressing these water management 115 

challenges requires an accurate integrated water balance allowing a better knowledge on the drivers of the lake water level 

variations. 

Unlike other large lakes, very few studies have been conducted on Lake Titicaca. The only study modeling the water balance 

of Lakes Titicaca and Poopó was the one by Lima-Quispe et al. (2021) using the Water Evaluation and Planning System 

(WEAP) platform  with a monthly time step for the period 1980–2015. The study aimed to distinguish the relative contributions 120 

of climate and irrigation management to water level fluctuations. However, the modeling approach proposed by the authors 

has a significant limitation because it is based on a scaling factor for precipitation over the lake to close the water balance, 

which clearly introduces additional uncertainty. Other methodological shortcomings include: (i) the omission of snow and ice 

processes, which can play non-negligible role in this high-elevation region; (ii) the estimation of evaporation using the Penman 

method, without accounting for changes in heat storage; and (iii) the use of historical monthly averages (humidity, wind speed 125 

and incoming solar radiation) to calculate reference evapotranspiration and evaporation, without considering interannual 

variability. 
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1.4 Scope and objectives   

In addressing the challenges and limitations of representing hydrologic processes in poorly-gauged large lakes such as Lake 

Titicaca, we pose the following key question: How can a reliable water balance be estimated? To answer this, we present an 130 

integrated modeling framework based on conceptual models to estimate the water balance of Lake Titicaca more reliably. The 

modeling framework is applied at a daily time step for the period 1982–2016, allowing us to represent water level fluctuations 

over a wide range of hydroclimatic conditions. The specific questions are: To what extent are water level variations sensitive 

to net irrigation withdrawals and to snow and ice processes? What is the role of heat storage change in evaporation from the 

lake? To address these questions, new approaches are introduced for: (i) predicting upstream inflow, including hydrologic 135 

sensitivity to net irrigation consumption and snow and ice processes; and (ii) estimating evaporation from the lake using the 

Penman method, while accounting for changes in heat storage. 

2 Material 

2.1 The Lake Titicaca hydrosystem 

Lake Titicaca, located at 3,812 m a.s.l. on the Altiplano of the tropical Andes of South America, covers an area of 140 

approximately 8,340 km2. The elevation of the catchments that contribute to the lake ranges between 3,812 and 6,300 m a.s.l. 

(average 4,200 m a.s.l.) and cover an area of approximately 48,780 km2. The lake has an average volume of 958 km3 and a 

maximum depth of 277 m according to the bathymetry carried out between 2016 and 2019 (Autoridad Binacional del Lago 

Titicaca, 2021). Lake Titicaca is of regional hydrological importance and the outflows of Lake Titicaca represent up to 79% 

of the inflows of Lake Poopo (Lima-Quispe et al., 2021). The Lake Titicaca Authority (Spanish acronym ALT) was also 145 

created as an autonomous binational entity with the mission to manage the lake. 
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Figure 1: Main geographical features of the Lake Titicaca hydrosystem and location of the main streamflow gauges. The reference 

year for the limits of the glacier is 2000 (RGI Consortium, 2017). The reference year for croplands is 2010 (Ministerio de Desarrollo 

Rural y Tierras, 2010; Ministerio del Ambiente, 2015). 150 

2.2 Climate data 

Daily precipitation and air temperature (see Fig. 2) were obtained from the data generated in Bolivia (Ministerio de Medio 

Ambiente y Agua, 2018) with the gridded meteorological ensemble tool (GMET) (Clark and Slater, 2006; Newman et al., 

2015). GMET has a spatial resolution of 0.05° for the period 1980–2016. It is based on a probabilistic method using ground 

station data, with further details provided by Clark and Slater (2006) and Newman et al. (2015). Lima-Quispe et al. (2021) 155 

used the same data. In some catchments in the study area, Satgé et al. (2019) evaluated 12 satellite-based products and found 

that MSWEP and CHIRPS products were the most promising at the 10-day time step. As a result, for daily precipitation, four 

datasets including GMET, MSWEP, CHIRPS, and basic interpolation of ground station data with inverse distance weighting 

(IDW) (Ruelland, 2020) were initially tested according to daily hydrological sensitivity analyses. The results showed that 

GMET led to more accurate simulations in most catchments and Lake Titicaca (not shown here for the sake of brevity). Daily 160 

data on relative humidity, wind speed, and solar radiation are very scarce in space and over time. Many values were missing 

in the time series from the weather stations, thus calling their quality and representativeness into question. For this reason, we 

used reanalysis data from ERA5-Land (Muñoz-Sabater et al., 2021) (see Appendix A). 
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Figure 2 shows the spatial pattern of precipitation (Fig. 2a) and air temperature (Fig. 2b) based on GMET for the period 1980–

2016. Annual precipitation varies between 440 and 1,100 mm (mean 725 mm). The wettest areas are concentrated in the 165 

northwest and over Lake Titicaca. The driest areas are to the south. The spatial distribution does not show generalized 

dependence on elevation, but there are small areas on the eastern and western margin where precipitation increases with 

elevation. The annual mean air temperature varies between -2°C and 11°C (average 6°C). The coldest areas are on the western 

and eastern areas, coinciding with the highest mountains. The warmest areas are located over Lake Titicaca. The spatial 

distribution of air temperature depends on elevation.  170 

 

 

Figure 2. Spatial distribution of (a) annual precipitation and (b) mean temperature for the hydrological period 1980–2016 according 

to GMET (Gridded Meteorological Ensemble Tool).  

2.3 Snow and glacierized areas 175 

According to MODIS snow cover (Hall et al., 2002) computed over the period 2000–2016 based on a method described in 

Ruelland (2020), 80% of the upstream catchments are completely free of snow throughout the year. Areas where the snow 

cover persists for more than 20% of the year are located above 4,700 m a.s.l. These high elevations areas represent less than 

0.5% of the total surface area. Glacierized areas are located above 4,600 m a.s.l. and represented 231 km2 in the early 2000s 

(RGI Consortium, 2017), i.e. less than 0.5% of the total area. The estimated glacier volume is ~12 km3 (Farinotti et al., 2019), 180 

which represents ~1.3% of the mean volume of Lake Titicaca (958 km3). 

2.4 Croplands and irrigable area 

According to land cover maps (Ministerio de Desarrollo Rural y Tierras, 2010; Ministerio del Ambiente, 2015) (see Fig. 1), 

cropland covers 8,069 km2 (17% of the upstream catchments). Agriculture is largely traditional, rainfed, and constrained by 
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droughts, frosts, and hailstorms (Garcia et al., 2007). Main crops include forage grasses, potatoes, grain barley, and quinoa 185 

(INTECSA et al., 1993c). Only 40% of arable land is cultivated due to crop rotation and agroclimatic constrains (INTECSA 

et al., 1993c). Potatoes are planted in October-November and harvested after six months, while quinoa has a similar cycle. 

Beans and onions, mostly irrigated, are planted from July to September. The land cover maps (Ministerio de Desarrollo Rural 

y Tierras, 2010; Ministerio del Ambiente, 2015) do not distinguish between rainfed and irrigated areas (see Fig. 1), limiting 

the identification of changes in irrigated areas over time. The ESA CCI-LC dataset (ESA, 2017) also does not identify irrigated 190 

areas in the Altiplano.  

Available data comes from inventory of irrigation systems. The inventory on the Bolivian side was carried out in 2012 

(Ministerio de Medio Ambiente y Agua, 2012). For the Peruvian side, the "rights of use" granted by the Autoridad Nacional 

del Agua (ANA) until 2023 were used (https://snirh.ana.gob.pe). These inventories provide information on location (latitude 

and longitude), irrigable area, and volume granted (Peru) or reference volume of irrigation (Bolivia). Figure 3 illustrates the 195 

irrigation systems in terms of location and irrigable area. The irrigable area is 767 km2 (see Table 1), which represents 1.6% 

of the upstream catchments that contribute to Lake Titicaca. Only 9.5% of the croplands are located in ‘irrigable areas’, i.e., 

cropland within the area of influence of an irrigation system that can potentially be irrigated. However, not all of the irrigable 

area is irrigated because irrigation depends on the availability of water in space and over time. Then, we assumed the irrigable 

area was constant over the period 1980–2016. Figure 3 also shows that most of the irrigation systems cover an area of less than 200 

5 ha, i.e. small-scale irrigation predominates. Also, irrigation is mostly practiced by smallholder farmers. Furrow irrigation is 

the most common system and its efficiency is about 35% (Autoridad Nacional del Agua, 2009; Instituto Nacional de Recursos 

Naturales, 2008; Ministerio de Medio Ambiente y Agua, 2012). The main sources of water are rivers and reservoirs (see Fig. 

3). The main reservoir is Lagunillas (see Fig. 3), with a capacity of 500 million m3. The remaining 15 reservoirs have capacities 

of less than 30 million m3. Due to lack of data on dam management, streamflow regulation was not accounted, assuming it has 205 

minimal on natural flows. 

 

Figure 3. Location of irrigation systems in terms of irrigable area (Ministerio de Medio Ambiente y Agua, 2012; 

https://snirh.ana.gob.pe).  

https://snirh.ana.gob.pe/
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2.5 Glaciological and hydrological control data 210 

2.5.1 Geodetic mass balance of the glaciers 

Within the study area, no observations are available at the scale of small glacierized catchments. Only geodetic mass balance 

data are computed at the scale of the entire Lake Titicaca hydrosystem (e.g. Dussaillant et al., 2019; Hugonnet et al., 2021). 

The Hugonnet et al. (2021) dataset, which is based on ASTER satellite stereo imagery, is available for the period 2000–2019. 

The mass balance at a 5-year time step is provided for RGI 6.0 glacier outlines. The error range of the Hugonnet et al. (2021) 215 

dataset is smaller than the Dussaillant et al. (2019) dataset, and the interpolation of glacier elevation changes is based on 

Gaussian process regressions. Therefore, we used the Hugonnet et al. (2021) dataset. 

2.5.2 Streamflow records 

Seven streamflow gauges (see Table 1 and Fig. 1) with daily records were used in this study. The gauged (ungauged) area 

represents 76% (24%) of the total area of the catchments that feed the lake. The quality of the Peruvian gauge data can be 220 

considered satisfactory since monthly streamflow gauging is performed to calibrate the rating curves, but on the Bolivian side, 

the quality of the Escoma and Achacachi data is questionable. According to SENAMHI–Bolivia, the river stage measured in 

Escoma and Achacachi are prone to systematic errors due to erroneous measurements made by the observers with limited 

measurement training (Escoma), and/or due to changes in the geomorphology of the riverbed (Achacachi). Streamflow gauging 

is only carried out twice in a hydrological year. 225 

Table 1. Main characteristics of the gauged and ungauged catchments that contribute to the lake. Glacier area was estimated using 

RGI 6.0 glacier outlines (RGI Consortium, 2017). Cropland area (including rainfed and irrigated area) was estimated using the 2010 

land cover maps of Peru and Bolivia (Ministerio de Desarrollo Rural y Tierras, 2010; Ministerio del Ambiente, 2015). Irrigable area 

was estimated using data from the inventories of agricultural land use rights (Peru) (https://snirh.ana.gob.pe), and irrigation systems 

(Bolivia) (Ministerio de Medio Ambiente y Agua, 2012). The reference year for irrigable area in Bolivia is 2012, and in Peru it has 230 
been updated to 2023. Elevations were extracted from a digital elevation model (DEM) at 90m spatial resolution from the Shuttle 

Radar Topographic Mission (SRTM, Jarvis et al., 2008). 

 

River 

Streamflow gauges  

 

Source 
Area  

[km2] 

Glacier 

area in 
2000  

[km2] 

Cropland 
in 2010 

[km2] 

Irrigable 
area 

 [km2] 

Elevation 

 [m a.s.l.] 

Min Max 

Ramis Ramis SENAMHI–Peru 14,943 19 2,680 150 3,812 5,735 

Ilave Ilave SENAMHI–Peru 7,814 0  262 39 3,813 5,587 

Coata Unocolla Coata Unocolla SENAMHI–Peru 4,475 0  261 113 3,813 5,447 

Huancane Huancane SENAMHI–Peru 3,518 0  333 19 3,814 5,079 
Suchez Escoma SENAMHI–Bolivia 2,933 101 68 19 3,819 5,939 

Katari Tambillo SENAMHI–Bolivia 2,612 3 255 31 3,832 5,905 

Keka Achacachi SENAMHI–Bolivia 802 53 70 68 3,835 6,024 

Ungauged catchments -  11,680 54 4,140 328 3,812 6,300 

2.5.3 Lake water levels 

We had access to data recorded at two water level gauges: Puno and Huatajata (see Fig. 1). The Puno gauge (also known as 

Muelle ENAFER) is managed by SENAMHI, Peru while the Huatajata gauge is managed by SENAMHI, Bolivia. The daily 235 
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historical water levels from Puno are more reliable. In the case of Huatajata, inconsistencies were detected in the records made 

prior to 1998. Additionally, during a field visit, it was observed that the Huatajata measurement scale is prone to displacement. 

Therefore, in this study we used data from Puno, which provides continuous daily water levels (in m a.s.l.) over the period 

1982–2016. 

3 Method 240 

3.1 Modeling framework used to quantify the water balance in a high mountain lake hydrosystem 

The water balance of Lake Titicaca was modeled at a daily time step for the hydrological period from September 1, 1981 to 

August 31, 2016 (hereafter 1982–2016) using a lumped mode store following the equation: 

𝑃𝑙𝑎𝑘𝑒 + 𝑄𝑖𝑛 − 𝐸𝑙𝑎𝑘𝑒 − 𝑄𝑜𝑢𝑡 =
𝑑ℎ

𝑑𝑡
± 𝑄𝑔𝑤 ± 𝜀                 (1) 

where 𝑃𝑙𝑎𝑘𝑒 , 𝑄𝑖𝑛 ,  𝐸𝑙𝑎𝑘𝑒  and 𝑄𝑜𝑢𝑡  are, respectively, direct precipitation over the lake, inflow from upstream catchments, 245 

evaporation from the lake, and downstream outflow. The term 𝑑ℎ/𝑑𝑡 represents the storage change in the lake over a time 

window. 𝑄𝑔𝑤 represents net groundwater exchange and 𝜀 represents the error that cannot be explained by the components of 

the water balance. The unit of the water balance terms is mm d-1.  

The WEAP platform (Yates et al., 2005) was adapted and used to represent the water balance dynamics. The models in WEAP 

typically seek a compromise between data availability and the complex representation of hydrologic processes. This is essential 250 

in the context of poorly-gauged regions, where it is not possible to represent all hydrological processes in sufficient detail. 

Unlike the study by Lima-Quispe et al. (2021), which also uses WEAP, this study uses a daily time step and a different approach 

to simulating irrigation water allocation. We acknowledge that there is an overlap in the precipitation and air temperature data, 

and in the irrigable area on the Bolivian side. However, in order to implement the model at daily time step, it was necessary to 

collect new data updated to the required time scale. In addition, new data were available, such as lake bathymetry and irrigable 255 

area on the Peruvian side. Figure 4 shows the main processes and parameters of the modeling chain used.  

3.1.1 Direct precipitation over the lake 

𝑃𝑙𝑎𝑘𝑒  was extracted from GMET for the outline of the lake. The large area and volume of Lake Titicaca favor absorption of 

solar radiation and results in higher water temperatures than the surrounding area, which, in turn, induce convection and higher 

precipitation over the center of the lake (Roche et al., 1992). However, the magnitude and spatial distribution of precipitation 260 

over the lake are not well understood. GMET included two precipitation gauges located on two different islands in the lake. In 

this study, the extracted data were used directly without correcting for scaling factors. Significant underestimation of 

precipitation could lead to a significant error. 
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3.1.2 Upstream inflow 

𝑄𝑖𝑛  was estimated using a conceptual modeling approach that combines a degree-day model to simulate snow and ice 265 

processes with the soil moisture model (SMM, part of WEAP) (Yates et al., 2005) to simulate the processes contributing to 

the generation and regulation of water storage and water flow in the catchments, including irrigation. The model was applied 

using the same 100-m elevation bands in each catchment to account for snow and ice accumulation and melt, and glacierized 

and non-glacierized areas were distinguished in each elevation band. 

 270 

Figure 4. Main processes and parameters (in red) of the modeling chain used to simulate the water balance of Lake Titicaca. 𝑷, 𝑻, 

𝑬𝑻𝒐, 𝑷𝒆, 𝑷𝒍𝒂𝒌𝒆, 𝑸𝒊𝒏, 𝑬𝒍𝒂𝒌𝒆, 𝑸𝒈𝒘, 𝑸𝒐𝒖𝒕, and 𝒉 stand for, respectively, precipitation, air temperature, reference evapotranspiration, 

effective precipitation, direct precipitation over the lake, upstream catchment inflow, evaporation from the lake, net groundwater 

exchange, downstream outflow and lake storage. Root zone and deep zone stores were modified based on Yates et al. (2005). 
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For snow and ice processes, a degree-day model was applied that considered two stores: one for ice and one for snow (see Fig. 275 

4) in a semi-distributed mode with 100m elevation bands. However, each glacier in each catchment was simulated separately. 

For snow accumulation, the liquid (𝑃𝑟𝑎𝑖𝑛, in mm) and solid (𝑃𝑠𝑛𝑜𝑤, in mm) fractions of total precipitation were estimated from 

a linear separation between the snow (𝑇𝑠) and rain (𝑇𝑙) temperature thresholds according to values (see Table 2) recommended 

in Ruelland (2023). Potential (maximum) snowmelt was calculated as 𝐷𝐷𝐹𝑠𝑛𝑜𝑤(𝑇 − 𝑇𝑚), where 𝐷𝐷𝐹𝑠𝑛𝑜𝑤 is the degree-day 

factor in mm day-1°C-1, 𝑇 is the air temperature in °C, and 𝑇𝑚 is the melting temperature threshold in °C. 𝑇𝑚 was calibrated 280 

according to two values (𝑇𝑚,𝑚𝑎𝑥 and 𝑇𝑚,𝑚𝑖𝑛), where the maximum value occurs in austral summer and the minimum value in 

winter. In outer tropical regions, the amplitude of the diurnal range of air temperature is indeed considerable in winter. This 

means that it is warmer during the daytime, which can increase melting, while cold conditions prevail at night. The seasonal 

variation of 𝑇𝑚 was calculated using the following equation:  

𝑇𝑚 =
𝑇𝑚,𝑚𝑎𝑥+𝑇𝑚,𝑚𝑖𝑛

2
+

𝑇𝑚,𝑚𝑎𝑥−𝑇𝑚,𝑚𝑖𝑛

2
sin (2𝜋

𝐷+81

365
)                (2) 285 

where 𝑇𝑚,𝑚𝑎𝑥 and 𝑇𝑚,𝑚𝑖𝑛 are the maximum and minimum temperature thresholds in °C, and 𝐷 is the Julian day. The maximum 

value of 𝑇𝑚 was assumed to occur on January 10 and the minimum on July 12. 

Actual snowmelt (𝑀𝑠𝑛𝑜𝑤) was determined as a function of maximum snowmelt and snow accumulation. For ice melt (𝑀𝑖𝑐𝑒), 

the same approach was used as for potential snowmelt, except that 𝐷𝐷𝐹𝑠𝑛𝑜𝑤 was replaced by an ice degree-day factor (𝐷𝐷𝐹𝑖𝑐𝑒). 

Ice melts when it is not covered by the snowpack. The daily mass balance (𝐵, in mm w.e.) and effective precipitation in 290 

glacierized areas (𝑃𝑒𝑔, in mm w.e.) in each elevation band (𝑗) were computed as follows: 

𝐵𝑗 = 𝑃𝑠𝑛𝑜𝑤,𝑗 − 𝑀𝑠𝑛𝑜𝑤,𝑗 − 𝑀𝑖𝑐𝑒,𝑗                  (3) 

𝑃𝑒𝑔,𝑗 = 𝑃𝑟𝑎𝑖𝑛,𝑗 + 𝑀𝑠𝑛𝑜𝑤,𝑗 + 𝑀𝑖𝑐𝑒,𝑗                                (4) 

The annual mass balance in each evaluation band, 𝐵𝑎,𝑗, was estimated as the sum of the daily mass balance in a hydrological 

year. The annual mass balance was also calculated for individual glaciers (𝐵𝑎,𝑔) for comparison with the available glaciological 295 

and geodetic mass balance. 𝐵𝑎,𝑔 was calculated as: 

𝐵𝑎,𝑔 =
∑ (𝐵𝑎,𝑗×𝐴𝑔,𝑗)𝑛

𝑗=1

𝐴𝑔
                   (5) 

where 𝐴𝑔,𝑗 and 𝐴𝑔 are glacier area in the elevation band 𝑗 and total glacier area, respectively. 

The glacierized surface area (RGI Consortium, 2017) was fixed for the period simulated. The area provided for the year 2000 

was considered as an intermediate value for the period 1982–2016. Ice thickness was also assumed to be infinite. The air 300 

temperature in each elevation band (𝑇𝑗) was estimated as 𝑇𝐺𝑀𝐸𝑇,𝑗 + Γ(𝑍𝐺𝑀𝐸𝑇 − 𝑍𝑗), where 𝑇𝐺𝑀𝐸𝑇,𝑗  is the air temperature 

derived from GMET for each elevation band, 𝑍𝐺𝑀𝐸𝑇 is the mean areal elevation signal from GMET in the elevation band j, 𝑍𝑗 



13 

 

is the mean elevation of the elevation band, and Γ is a constant temperature lapse rate that was set to the value calculated from 

GMET (i.e. 5.8°C km-1). The precipitation extracted from GMET for each elevation band was used directly with no 

modification. 305 

Regarding SMM, it is a one-dimensional model based on two stores (see Fig. 4). The first store represents the root zone and 

the second the deep zone (Yates et al., 2005). The model without irrigation has seven free parameters as shown in Figure 4, of 

which crop coefficient (𝐾𝑐) can be set using reference values from the literature. In addition, there are two parameters 

associated with the initial state of the two stores called 𝑧1 and 𝑧2. An additional parameter was included for runoff routing 

using the Muskingum equation. SMM is driven by precipitation and reference evapotranspiration estimated by the modified 310 

Penman-Monteith method (Maidment, 1993) for a grass crop 0.12 m in height and with a surface resistance of 69 s m-1. The 

climate input data are detailed in Sect. 2.2. The effective precipitation in the elevation band 𝑗 of both the non-glacierized and 

glacierized fractions is given as: 

𝑃𝑒𝑗 = (𝑃𝑟𝑎𝑖𝑛,𝑛𝑔,𝑗 + 𝑀𝑠𝑛𝑜𝑤,𝑛𝑔,𝑗)𝐴𝑛𝑔,𝑗 + 𝑃𝑒𝑔,𝑗(1 − 𝐴𝑛𝑔,𝑗)               (6) 

where 𝑃𝑟𝑎𝑖𝑛,𝑛𝑔 and 𝑀𝑠𝑛𝑜𝑤,𝑛𝑔 refer to rainfall and snowmelt in the non-glacierized fraction in mm. The term 𝐴𝑛𝑔 is the relative 315 

area of the non-glacierized fraction.  

In SMM, water requirements (𝑊𝑅) for irrigation are determined by crop evapotranspiration (from seasonal crop coefficients 

(𝐾𝑐) and reference evapotranspiration) and the depletion of available water in the root zone store (see Fig. 4). Kc adjusts the 

reference evapotranspiration to reflect crop-specific characteristics (Allen et al., 1998), such as phenology. It was derived using 

cropping calendar and crop type data (Autoridad Nacional del Agua, 2009, 2010; Instituto Nacional de Estadística, 2015). The 320 

lower and upper irrigation threshold parameters (𝐿𝑖𝑟𝑟 and 𝑈𝑖𝑟𝑟, see Table 2 and Fig. 4) dictate both the timing and quantity of 

water used for irrigation (Yates et al., 2005). When the relative soil moisture of the root zone store drops below the lower 

threshold, a water requirement is triggered and irrigation is supposed to be applied up to the upper threshold (Yates et al., 

2005). The irrigation use of runoff (𝐼𝑈𝑅) method was used to allocate water. This method consists of setting or calibrating a 

percentage (𝐼𝑈𝑅) of a catchment's runoff (before the runoff reaches the main river) that can be used for internal irrigation. 𝐼𝑈𝑅 325 

focuses on water allocation at the catchment scale, especially when hundreds of irrigation systems are to be represented 

together. Simulating each of the irrigation systems shown in Figure 3 individually would not be feasible at the scale of this 

study, the 𝐼𝑈𝑅 approach is thus better suited. The irrigation net consumption, 𝐼𝑅𝑅𝑛𝑒𝑡, was calculated as: 

𝐼𝑅𝑅𝑛𝑒𝑡 = min(𝑄𝑤𝑖 × 𝐼𝑈𝑅, 𝑊𝑅) × (1 − 𝐼𝑅𝑅𝑟𝑓)                (7) 

where 𝑄𝑤𝑖 is runoff without irrigation in mm, 𝐼𝑈𝑅 is a calibration parameter expressed as a percentage, 𝑊𝑅 is the irrigation 330 

water requirement in mm, and 𝐼𝑅𝑅𝑟𝑓  is the irrigation runoff fraction expressed as a percentage. The term 

min(𝑄𝑤𝑖 × 𝐼𝑈𝑅, 𝑊𝑅) is the water withdrawn for irrigation. 𝐼𝑅𝑅𝑟𝑓 is calculated as: (i) in the first iteration, SMM simulates 

𝑄𝑤𝑖; (ii) in the second iteration, runoff is simulated assuming that the full 𝑊𝑅 is supplied; and (iii) finally, the 𝐼𝑅𝑅𝑟𝑓 is 

estimated based on how much runoff would flow due to irrigation alone. 
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3.1.3 Evaporation from the lake 335 

𝐸𝑙𝑎𝑘𝑒  was estimated using the Penman method for open water (Penman, 1948). This method is justified because it requires 

fewer data than an energy balance approach but is not as simple as a temperature-based approach. The Penman method also 

attempts to incorporate the energy balance in a simplified manner and includes mass transfer. The equation is given as: 

𝐸𝑙𝑎𝑘𝑒 =
∆

∆+𝛾

𝑅𝑛−𝐺

𝜆
+

𝛾

∆+𝛾
𝑓(𝑈2)(𝑒𝑠 − 𝑒𝑎)                 (8) 

where 𝐸𝑙𝑎𝑘𝑒  is the evaporation in mm d-1, ∆ is the slope of the vapor pressure curve in kPa °C-1, 𝜆 is the latent heat vaporization 340 

set at 2.45 MJ kg-1, and 𝛾 is the psychrometric constant kPa °C-1. The terms 𝑅𝑛 and 𝐺 are net radiation at the water surface and 

heat storage changes in MJ m-2 d-1, respectively. 𝑓(𝑈2) is the function of wind speed measured at 2 m above the lake surface 

that is equal to 𝑐(𝑎 + 𝑏𝑈2), where the constant of 𝑎 = 10, 𝑏 = 5.4, and 𝑐 = 0.26 for Lake Titicaca were taken from Delclaux 

et al. (2007). Also, 𝑒𝑠 is the vapor pressure at the evaporating surface in kPa, and 𝑒𝑎 is the vapor pressure at 2 m above the 

lake surface in kPa. ∆  is given as (𝑒𝑠 − 𝑒𝑎)/(𝑇𝑤 − 𝑇) , where 𝑇𝑤  and 𝑇  are evaporating surface temperature and air 345 

temperature in °C, respectively.  

𝑅𝑛 is the sum of net shortwave (𝐾) and net longwave radiation (𝐿). 𝐾 is given as 𝐾𝑖𝑛(1 − 𝛼), where 𝐾𝑖𝑛 is the incident solar 

radiation (MJ m-2 d-1) and 𝛼 is the albedo of the water surface. The 𝐿 component is the difference between the incident flux 

(𝐿𝑖𝑛) emitted by the atmosphere and clouds and outgoing radiation (𝐿𝑜𝑢𝑡) from the evaporating surface. 𝐿𝑖𝑛 and 𝐿𝑜𝑢𝑡 can be 

estimated with Eq. (9) and Eq. (10), respectively. For 𝐿𝑖𝑛, we used the equation calibrated by Sicart et al. (2010) on the Zongo 350 

Glacier which is located at a distance of about 100 km from Lake Titicaca. The authors suggest that the calibration can be used 

in the tropical Andes. 

𝐿𝑖𝑛 = 𝐶 (
𝑒𝑎

𝑇+273.15
)

1/7

(1.67 − 𝜏𝑎𝑡𝑚0.83)𝜎(𝑇 + 273.15)4               (9) 

𝐿𝑜𝑢𝑡 = 𝜀𝑤𝜎(𝑇𝑤 + 273.15)4                (10) 

where for a daily time step, 𝐶 is equal to 1.24, 𝑒𝑎 is the vapor pressure in hPa, 𝜎 is the Stefan–Boltzmann constant (set at 355 

4.90×10-9 MJ m-2 K-4 d-1),  𝜏𝑎𝑡𝑚  is the atmospheric transmissivity (-) that can be approximated as 𝐾𝑖𝑛/𝑆𝑒𝑥𝑡𝑟𝑎 , 𝑆𝑒𝑥𝑡𝑟𝑎  is 

theoretical shortwave irradiance (MJ m-2 d-1) at the top of the atmosphere, and 𝜀𝑤 is water emissivity set at 0.98 (-). 

The  term 𝐺 (heat storage changes) in Eq. (8) was estimated using the approach and assumptions of the study conducted by 

Pillco Zolá et al. (2019) on Lake Titicaca. 

𝐺 = 𝑐𝑤𝜌𝑤
𝑉𝑚𝑖𝑥

𝐴𝑙𝑎𝑘𝑒

𝑑𝑇𝑤

𝑑𝑡
                 (11) 360 

where 𝑐𝑤 is the specific heat of water (4.18×10-3 MJ kg-1 °C-1), 𝜌𝑤 is the water density (1000 kg m-3), 𝑉𝑚𝑖𝑥 is the volume above 

the mixing depth in m3 and 𝐴𝑙𝑎𝑘𝑒 is the surface area of the lake in m2. 𝑑𝑇𝑤/𝑑𝑡 is the change in water temperature (°C) over 

the time interval (day). 
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Air temperature was obtained from GMET, while all the other meteorological variables were obtained from ERA5-Land (see 

Sect. 2.2). Since there are no long-term measurements of lake surface water temperature (LSWT) and the remotely sensed data 365 

sets do not cover the entire study period, the Air2Water model (Piccolroaz et al., 2013; Toffolon et al., 2014) was used to 

simulate LSWT. Calibration and evaluation were performed against ARC-Lake V3 remotely sensed data (MacCallum and 

Merchant, 2012) (see Appendix B). 

3.1.4 Downstream outflow 

𝑄𝑜𝑢𝑡  was simulated using the rating curve shown in Figure 5a. This curve was established 30 years ago based on a 370 

hydrodynamic simulation of the Desaguadero river (INTECSA et al., 1993b). The elevation corresponds to the vertical datum 

of Peru. The rating curve was used for the entire study period and implemented in the model in combination with lake 

bathymetry (see Fig. 5b) carried out between 2016 and 2019 by the ALT. 

 

Figure 5. Information used to simulate 𝑸𝒐𝒖𝒕 for (a) the rating curve and (b) bathymetry. The rating curve of the lake outlet to the 375 
Desaguadero river was obtained from the master plan (INTECSA et al., 1993b). In both figures the elevation is referenced to the 

Peruvian vertical datum. The bathymetry (i.e. the relationship between lake water level and storage volume) was recorded by ALT 

between 2016 and 2019. 

3.1.5 Storage change 

𝑑ℎ/𝑑𝑡 was calculated directly from the water levels measured in Puno gauge. Storage change is basically the difference 380 

between the water level of a current time step and the previous time step.  

3.1.6 Net groundwater exchange 

𝑄𝑔𝑤  was considered negligible. According to INTECSA et al. (1993a) the leakage from Lake Titicaca to the aquifers is very 

limited and the lake can be considered as an almost completely closed surface system. This is because the lake bed is composed 

of sediments with very low permeability. In this case, the only areas of high permeability would be limited to alluvial deposits 385 
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saturated by water that flows mostly towards the lake. According to the same study, the inputs from alluvial deposits were 0.56 

m3 s-1.  Therefore, omitting 𝑄𝑔𝑤 from the water balance is justified. 

3.2 Evaluation of the modeling framework 

The performance of the lake water balance model was evaluated using both the error term of Eq. (1) and root mean square 

error (𝑅𝑀𝑆𝐸) computed between observed and simulated water levels. Since the 𝑄𝑖𝑛 and 𝐸𝑙𝑎𝑘𝑒  were modeled, intermediate 390 

calibration and evaluation were necessary. Evaporation measurements are not available in the study area to evaluate the 

performance of the 𝐸𝑙𝑎𝑘𝑒 . Therefore, a formal calibration and evaluation procedure was implemented only for the 𝑄𝑖𝑛 

estimates. The procedure was applied sequentially, first to obtain the model parameters simulating snow and ice processes (see 

Appendix C), and then to calibrate and evaluate the upstream catchment model using the Nash-Sutcliffe efficiency index (Nash 

and Sutcliffe, 1970) calculated on the root-mean-square transformed streamflow (𝑁𝑆𝐸𝑠𝑞𝑟𝑡) in order to provide an intermediate 395 

fit between high and low flows (Oudin et al., 2006). 

3.2.1 Upstream catchment model 

The upstream catchment model shown in Figure 4 has 15 parameters. However, seven of the parameters were set to reduce the 

number of free parameters. Four parameters (𝑇𝑚,𝑚𝑎𝑥, 𝑇𝑚,𝑚𝑖𝑛, 𝐷𝐷𝐹𝑠𝑛𝑜𝑤 and 𝐷𝐷𝐹𝑖𝑐𝑒) related to snow and ice store were set to 

values obtained in the Zongo catchment (see Appendix C). The simulated mass balance of all glaciers of the Titicaca 400 

hydrosystem was compared with the geodetic mass balance (Hugonnet et al., 2021) for the period 2000–2009. Similarly, two 

parameters of the irrigation module, 𝐿𝑖𝑟𝑟 and 𝑈𝑖𝑟𝑟, were set to 80%. Winter et al. (2017) used a threshold of 100% for furrow 

irrigation in California. However, a value of 80% is reasonable for our study area because it is irrigated in conditions of limited 

water availability. 𝑋 (routing store) was set to default value (0.2) in WEAP. A total of eight free parameters were kept, as 

shown in Table 2. The procedure used to obtain the set of parameters with the best performance and subsequent evaluation 405 

consisted of the four steps.  

First (Step 1 in Fig. 6), the model was run for the period 1980–2016 (of which the first two years were used as a warm-up 

period) with 10,000 parameter sets generated from a random sample of hypercubes from the Monte Carlo approach within the 

parameter intervals tested (see Table 2). Second (Step 2 in Fig. 6), the best performing parameter sets in terms of 𝑁𝑆𝐸𝑠𝑞𝑟𝑡 

were identified along with subperiods consisting of (i) five continuous years (i.e. seven subperiods between 1982 and 2016); 410 

and (ii) five discontinuous years identified as the coldest, warmest, driest, and wettest (i.e. four discontinuous subperiods 

between 1982 and 2016). The 11 best performing parameter sets were selected using different subperiods. Third (Step 3 in 

Fig. 6), the mean of 11 streamflow simulations generated with the selected parameter sets was calculated. Fourth (Step 4 in 

Fig. 6), the performance of the mean of the streamflow simulations over the 11 subperiods was evaluated using the 𝑁𝑆𝐸𝑠𝑞𝑟𝑡 

criterion. 415 
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Two objectives justify the use of seven continuous and four discontinuous subperiods. The first objective was to evaluate the 

transferability of the model parameters to non-stationary conditions within the period 1982–2016, including particularly 

contrasted subperiods in terms of precipitation and temperature. In addition, continuous subperiods were suitable for assessing 

the transferability of the water allocation parameter (𝐼𝑈𝑅). If there had been a significant and sustained increase in irrigation 

withdrawals, the 𝐼𝑈𝑅 parameter would not be transferable over time and would therefore vary over the period 1982–2016. 420 

However, it is important to note that irrigable area, crop types, and 𝐾𝑐 remain under the assumption of stationarity. The second 

objective was to consider the parameterization uncertainty through uncertainty envelopes and confidence intervals in the 

simulations resulting from the 11 parameter sets used over the whole 1982–2016 period. 

 

Figure 6. Procedure used to evaluate the upstream catchment model to estimate the 𝑸𝒊𝒏 in each gauged catchment. 425 

3.2.2 Sensitivity assessment of model predictability to irrigation and to snow and ice processes 

To evaluate the sensitivity of the modeling chain to net irrigation consumption and to snow and ice processes, different 

processes were progressively excluded from the modeling structure. Three model structures were tested under the following 

configuration: (i) BasicModel+IRR+SNOW/ICE, which represents the full reference model structure (as shown in Fig. 4); (ii) 

BasicModel+IRR, where the processes associated with snow and ice (accumulation and ablation) are excluded, but irrigation 430 

is maintained; and (iii) BasicModel, where both snow and ice processes and irrigation consumption are excluded. The objective 

was to evaluate whether a simpler structure in terms of the hydrological processes considered performed better or worse than 

a more complex structure in simulations of catchment streamflow and lake water levels. This is justified because, a priori, 

snowfall as well as the proportion of glacierized area and irrigable area are very limited in the catchments that contribute to 

the lake (see Table 1) and their impact on the streamflow and water level prediction may be negligible. In addition, the data 435 

used to represent and control these processes are very limited, which can lead to inaccuracies that could worsen the simulations 

of streamflow and lake water levels instead of improving them. Table 2 shows the active and inactive parameters in the three 

model structures. 

 

 440 
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Table 2. Parameters of the upstream catchments model of Lake Titicaca and associated fixed values or ranges tested. The ranges 

presented were used to generate the random sample of hypercubes in the Monte Carlo approach. 

Parameter Name Unit BasicModel+IRR+SNOW/ICE BasicModel+IRR  BasicModel 

𝑇𝑠 Snow threshold temperature  °C -1 - - 

𝑇𝑙 Rain threshold temperature °C 3 - - 

𝑇𝑚,𝑚𝑎𝑥 Melting temperature threshold  °C -0.2 - - 

𝑇𝑚,𝑚𝑖𝑛 Melting temperature threshold °C -2.5 - - 

𝐷𝐷𝐹𝑠𝑛𝑜𝑤 Snow degree-day factor mm d-1 °C-1 2.3 - - 

𝐷𝐷𝐹𝑖𝑐𝑒 Ice degree-day factor mm d-1 °C-1 7.7 - - 

𝑆𝑤 Soil water capacity mm [150; 250] [150; 250] [150; 250] 

𝑅𝑅𝐹 Runoff resistance factor - [4; 15] [4; 15] [4; 15] 

𝐾𝑠 Root zone conductivity mm d-1 [1; 6] [1; 6] [1; 6] 

𝐹 Preferred flow direction - [0.3; 0.87] [0.3; 0.87] [0.3; 0.87] 

𝐷𝑤 Deep water capacity mm [300; 600] [300; 600] [300; 600] 

𝐾𝑑 Deep conductivity mm d-1 [1; 3] [1; 3] [1; 3] 

𝑍1 Initial condition % 30 30 30 

𝑍2 Initial condition % 30 30 30 

𝐿𝑖𝑟𝑟 Lower threshold  % 80 80 - 

𝑈𝑖𝑟𝑟 Upper threshold % 80 80 - 

𝐼𝑈𝑅 Irrigation use of runoff % [30; 80] [30; 80] - 

𝑘 Time travel d [0.5; 5] [0.5; 5] [0.5; 5] 

𝑋 Diffusion  - 0.2 0.2 0.2 

 # of free parameters  8 8 7 

3.2.3 Transferring parameters to the ungauged catchments 

The approach used to transfer the parameters to the ungauged catchments consisted of the following steps: (i) the median of 

the parameter sets obtained for the seven gauged catchments was calculated for each subperiod, thus generating 11 parameter 445 

sets; (ii) the upstream catchment model was run for the 11 parameter sets; and (iii) the mean of the 11 streamflow simulations 

was calculated, including the confidence interval. 

4 Results 

4.1. Modeling chain performance  

4.1.1 Performance of the geodetic mass balance simulated by the model for Titicaca glaciers 450 

Figure 7 shows the comparison between the simulated and geodetic mass balance. The scatter plots reveal significant variability 

in model performance, with some glaciers (represented by each point) close to the identity line and others deviating 

significantly. The model simulates a more negative glacier mass balance compared to the geodetic glacier mass balance. Figure 

7a displays glaciers according to their surface area, while Figure 7b shows them based on their mean elevation. The model 

performed more effectively in the catchments that concentrate 92% of the glacierized area (Achacachi, Ungauged catchments, 455 

Tambillo and Escoma). The model performed very poorly in Ramis (see Table 3), but the proportion of glacierized area in that 

catchment is very small (0.1%). Therefore, the proportion is expected to have a limited impact on streamflow predictions. 

Additionally, the model performs much better in the case of large glaciers than small glaciers (see Table 3). For example, for 
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large glaciers representing 84% of the glacierized area, the weighted simulated mass balance for all catchments has a bias of 

11%, which is within the error range of the geodetic mass balance (see Table 3). Much more obvious is the dependence on 460 

elevation (see Fig. 7b). The model performed very poorly on glaciers with mean elevations below 5,100 m a.s.l., which 

represent only 10% of the simulated glaciers. At elevations above 5,200 m a.s.l., i.e. 68% of the glaciers, the points are 

distributed around the identity line. The notable variability in model performance (Fig. 7b) could be attributed to inaccuracies 

in precipitation data for some catchments, as estimating precipitation in high-elevation remote areas remains a complex 

challenge (Ruelland, 2020). At the catchment scale, the underestimation and overestimation of glacier-wide mass balance are 465 

compensated for, and the biases are relatively small (Table 3). 

 

 

Figure 7. Scatter plots comparing simulated and geodetic glacier mass balance for 2000–2009, based on the remotely-sensed 

observation from Hugonnet et al. (2021). Dot size represents (a) glacier area and (b) mean elevation. The dashed line indicates the 470 
identity line, while the gray line represents the error in geodetic glacier mass balance. 

Table 3. Comparison of simulated and geodetic glacier mass balance (MB) in upstream catchments for the period 2000–2009. The 

catchment scale mass balance was calculated as an area weighted average of each glacier. The error corresponds to the geodetic 

glacier mass balance and was calculated as a weighted average for each catchment. 

Catchment 

Small glaciers (<1 km2) Large glaciers (≥1 km2) 

Area 

[km2] 

Simulated 
MB 

[mm we] 

Geodetic 
MB 

[mm we] 

Error 

[mm we] 

Area 

[km2] 

Simulated 
MB 

[mm we] 

Geodetic 
MB 

[mm we] 

Error 

[mm we] 

Achacachi 13 -330 -395 402 40 -306 -610 299 

Escoma 6 -1,973 -453 428 95 -1,246 -929 313 

Ramis 5 -2,331 -656 453 14 -2,002 -624 329 

Tambillo 2 -506 -352 364 2 -43 -343 326 
Ungauged 11 -1,505 -464 411 43 -251 -462 311 

All glaciers 37 -1,322 -462 414 194 -760 -683 311 
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4.1.2 Performance and sensitivity of the upstream catchment model to irrigation and to snow and ice processes 475 

Figure 8 shows the distribution of the performance of the three modeling options (BasicModel+IRR+SNOW/ICE, 

BasicModel+IRR, and BasicModel) in the evaluation made for each catchment. A striking feature is that the performance in 

the catchments on the Peruvian side (Ramis, Ilave, Coata Unocolla and Huancane) was significantly better than in the 

catchments on the Bolivian side (Escoma, Tambillo and Achacachi). The performance of the three models is distributed 

symmetrically in the boxplots in each catchment. This suggests that there are no significant differences in performance between 480 

the three models. Therefore, 𝑄𝑖𝑛 is not very sensitive to net irrigation consumption nor to snow and ice processes. This reflects 

the fact that the upstream catchments of Lake Titicaca are dominated by a pluvial monsoonal climate regime and that 

contributions from glacierized areas and snow have little influence on the 𝑄𝑖𝑛 prediction. However, in terms of mean and 

median 𝑁𝑆𝐸𝑠𝑞𝑟𝑡, BasicModel+IRR+SNOW/ICE and BasicModel+IRR generally performed slightly better than BasicModel, 

but the differences are marginal, in most cases the difference is between 1% and 3%. However, in Achacachi, the 𝑁𝑆𝐸𝑠𝑞𝑟𝑡 485 

obtained with the BasicModel+IRR+SNOW/ICE is 6% higher than the value obtained with models BasicModel+IRR and 

BasicModel. 

 

Figure 8. Performance distributions of the three modeling options (BasicModel+IRR+SNOW/ICE, BasicModel+IRR and 

BasicModel) in each gauged catchment in evaluation. The size of the sample in each boxplot is 11 (resulting from the procedure 490 
presented in Figure 6).  

4.1.3 Performance of the modeling chain with respect to lake water levels 

Figure 9 shows the simulation of daily water levels in Lake Titicaca over the 1982–2016 period. Three different estimates of 

𝑄𝑖𝑛, were used, one from BasicModel+IRR+SNOW/ICE, one from BasicModel+IRR, and one from BasicModel. The results 

show that the models are able to simulate the amplitude and frequency of annual, interannual, and decadal water level 495 
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fluctuations reasonably well. Visually, the performances of the three 𝑄𝑖𝑛 estimates appear to be relatively similar. Based on 

the 𝜀 term, BasicModel+IRR performed better than BasicModel+IRR+SNOW/ICE and BasicModel. The difference in the 𝜀 

term between BasicModel+IRR+SNOW/ICE and BasicModel+IRR was 0.01 mm. When both snow and ice processes and net 

irrigation consumption were excluded, the error increased by 0.03 mm d-1. However, the differences in error were marginal. 

Figure 9 shows that in the mostly dry years of the 1990s, BasicModel+IRR+SNOW/ICE and BasicModel+IRR simulated daily 500 

water levels better. However, the performance measured by the 𝑅𝑀𝑆𝐸 differed in the error term. In that case, BasicModel 

performed best. This is because the 𝑅𝑀𝑆𝐸 was calculated using daily water level data (cumulative change in storage over 

time), whereas the 𝜀 term was computed directly from the water balance at each time step. Inaccuracies in some time steps 

were then propagated to later time steps due to the slow response of the lake. The 𝑅𝑀𝑆𝐸 obtained was very small compared 

to the average water level (3,809.7 m a.s.l.). 505 

A striking feature of Figure 9 is the systematic underestimation of daily water levels between 2001 and 2010. This is related 

to inaccuracies in the estimation of water balance terms. The hydrological response of Lake Titicaca is relatively slow, and it 

was possible to verify that significant errors were present between 2001 and 2004, but were not underestimated over the whole 

decade (2001–2010) (see Fig. D1). In 2001, the outflow gate to regulate outflows into the Desaguadero river was completed 

and dredging of the Desaguadero river had begun. This could mean fewer outflows into the Desaguadero and consequently 510 

more storage in the lake. However, even assuming there were no downstream outflows in those years would not compensate 

for the underestimation. Looking for other sources of error, discussions with the Lake Titicaca Authority (ALT) revealed that 

the lake sometimes received inflows from the Desaguadero river, especially in wet years. This could be the case, since 2001 

and 2004 were wet hydrological years, but other than verbal communication, there are no records to support such a claim. 

BasicModel+IRR+SNOW/ICE produced a reasonably realistic simulation with an even smaller error, with marginal 515 

differences, than BasicModel. Consequently, BasicModel+IRR+SNOW/ICE can be considered as a reference structure to 

provide an estimate of the water balance of the Lake Titicaca hydrosystem.  

 

Figure 9. Performance of the modeling chain compared with the water levels of Lake Titicaca measured in Puno. Modeling was 

evaluated using the error (𝜺) term of the lake water balance and 𝑹𝑴𝑺𝑬. Three simulations of water levels are presented because the 520 
models produced three different estimates of 𝑸𝒊𝒏. 
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4.2. Simulated water balance 

4.2.1. Simulated water balance in upstream catchments 

Table 4 shows the mean annual water balance for the hydrological period 1982–2016 simulated by 

BasicModel+IRR+SNOW/ICE. Some terms (𝐴𝐸𝑛𝑖, 𝐼𝑅𝑅, and 𝑄𝑖𝑛) were calculated as the average of 11 ensemble members. At 525 

the scale of all upstream catchments (Table 4), annual precipitation is 723 mm, of which 6% is estimated to be snowfall. Thus, 

despite the elevations at which the study area is located (>3,810 m a.s.l.), the precipitation regime is clearly dominated by 

rainfall. This regime has a unimodal pattern with a strong seasonal cycle between the rainy and dry seasons (see Fig. 10). This 

is very characteristic of the outer tropical areas, where precipitation occurs mainly in the summer and the dry season in winter. 

In the upstream catchments, snowmelt accounts for 6% of total input (𝑃𝑟𝑎𝑖𝑛 + 𝑀𝑠𝑛𝑜𝑤 + 𝑀𝑖𝑐𝑒). Snow remains on the ground 530 

for only a very short time, as there is practically no time lag between snowfall and snowmelt (see Fig. 10). Snowfall and 

snowmelt have a less accentuated seasonal cycle, as the rare precipitation that occurs in the dry season is mostly snow. The 

contribution of ice melt was simulated to be 6 mm yr-1 on average, which represents only 1% of the total input in upstream 

catchments. However, the contribution of ice melt is slightly higher in the Achacachi and Escoma catchments, where the 

simulated value is 7%. Most ice melt occurs between October and November (see Fig. 10) because the temperature is above 535 

the melting threshold and glaciers are mostly free of snow cover. ∆𝑖𝑐𝑒 is negative, indicating a loss in ice stock.  

Annual actual evapotranspiration (𝐴𝐸) was simulated at 570 mm of which 2% corresponds to net irrigation water consumption 

(IRR). AE is highest between January and March, and lowest between July and  

September (see Fig. 10). 𝐼𝑅𝑅 is concentrated in the transition season (see Fig. 10). The simulated streamflow is about 153 mm, 

which represents 21% of the total outflow in upstream catchments ( 𝐴𝐸 + 𝑄𝑖𝑛 ), the remaining 79% being actual 540 

evapotranspiration. 𝐼𝑅𝑅 represents 7% of 𝑄𝑖𝑛. The seasonal cycle of 𝑄𝑖𝑛 shows that the peak is in February, while 𝑄𝑖𝑛 is low 

from June to November. The predictive uncertainty associated with the upstream catchment model parameters is shown in Fig. 

10 for the terms 𝐴𝐸, 𝐼𝑅𝑅 and 𝑄𝑖𝑛. The prediction range of 𝐴𝐸 is very narrow (see Fig. 10) compared to that of 𝐼𝑅𝑅 and 𝑄𝑖𝑛 

indicating that evapotranspiration is less sensitive to the model parameters. The range of prediction of 𝐼𝑅𝑅 is quite wide (see 

Fig. 10), indicating that the simulations are very sensitive to SMM parameters. The range of the prediction of 𝑄𝑖𝑛, is also wide 545 

(see Fig. 10). However, the average predictions fitted the measured streamflow and model performance reasonably well (see 

Fig. 8). 

 

 

 550 
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Table 4. Mean annual water balance [mm] in the upstream catchments for the hydrological period 1982–2016 simulated with 555 
BasicModel+IRR+SNOW/ICE. 𝑷, 𝑷𝒓𝒂𝒊𝒏, 𝑷𝒔𝒏𝒐𝒘, 𝑴𝒔𝒏𝒐𝒘, 𝑴𝒊𝒄𝒆, 𝑨𝑬𝒏𝒊, 𝑰𝑹𝑹, ∆𝒊𝒄𝒆, ∆𝒔𝒏𝒐𝒘, ∆𝑺𝑴 and 𝑸𝒊𝒏  represent total precipitation, 

rainfall, snowfall, snowmelt, ice melt, actual evapotranspiration in non-irrigated area, net consumption of irrigation water, variation 

in ice storage, variation in snow storage, variation in soil moisture storage, and streamflow in upstream catchments, respectively. 

The water balance follows the equation 𝑸𝒊𝒏 = 𝑷 − 𝑨𝑬𝒏𝒊 − 𝑰𝑹𝑹 − ∆𝒊𝒄𝒆 − ∆𝒔𝒏𝒐𝒘 − ∆𝑺𝑴. 

Catchment 𝑃 𝑃𝑟𝑎𝑖𝑛 𝑃𝑠𝑛𝑜𝑤 𝑀𝑠𝑛𝑜𝑤 𝑀𝑖𝑐𝑒 𝐴𝐸𝑛𝑖  𝐼𝑅𝑅 ∆𝑖𝑐𝑒 ∆𝑠𝑛𝑜𝑤 ∆𝑆𝑀 𝑄𝑖𝑛 

Ramis 777 726 51 51 3 610 7 -3  0 2 162 

Ilave 685 656 29 29 0 528 5 0  0 0 153 

Coata 889 776 113 113 0 615 21 0  0 0 253 

Huancane 664 647 17 17 0 498 5 0  0 -1 163 

Escoma 618 533 85 82 56 490 5 -53  0 1 175 

Tambillo 537 526 11 10 1 447 7 0  0 49 33 

Achacachi 741 573 168 142 49 524 40 -24  0 11 190 

Ungauged 699 683 16 13 5 558 20 -2  0 2 121 

All catchments 723 679 44 43 6 559 11 -5  0 5 153 

 560 
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Figure 10. Seasonal cycle (monthly average for the period 1982–2016) of the water balance in the upstream catchments of Lake 

Titicaca simulated with BasicModel+IRR+SNOW/ICE. 𝑷, 𝑷𝒔𝒏𝒐𝒘, 𝑴𝒔𝒏𝒐𝒘, 𝑴𝒊𝒄𝒆, 𝑨𝑬, 𝑰𝑹𝑹, and 𝑸𝒊𝒏 represent, total precipitation, 

snowfall, snowmelt, ice melt, actual evapotranspiration, irrigation net water consumption, and streamflow  in the upstream 565 
catchments, respectively. For some terms (𝑨𝑬, 𝑰𝑹𝑹, and 𝑸𝒊𝒏) the gray bars were estimated as the mean of the 11 ensemble members 

resulting from the procedure shown in Fig. 6. The predictive uncertainty is presented for both the entire prediction range (i.e. all 

predictive uncertainty) and for the 95% confidence interval. "All predictive uncertainty" was estimated as the maximum and 

minimum values of the ensemble members. The terms associated with snow and ice are not subject to predictive uncertainty because 

fixed parameters were used (see Table 2). 570 
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4.2.2 Simulated water balance in the lake 

Figure 11a shows the annual evolution of the water balance and Table 5 shows long-term average values. Over the period 

1982–2016, average annual precipitation over the lake was 744 mm (σ = 144 mm) and inflow from upstream catchments 958 

mm (σ = 392 mm). This means that 44% of the inflows come from direct precipitation over the lake, while the remaining 

portion (56%) comes from upstream catchments. Regarding outflows, annual evaporation from the lake is 1,616 mm (σ = 28 575 

mm) and the downstream outflow is 121 mm (σ = 191 mm). Thus 93% of the losses are due to evaporation and 7% to 

downstream outflow. The measured storage change for the period 1982–2016 was -50 mm, indicating a drop in water level. 

The simulated change in storage was -35 mm, which indicates an overestimation. Therefore, the water balance closure has an 

error of about -15 mm. Compared to evaporation,   𝑃𝑙𝑎𝑘𝑒 and 𝑄𝑖𝑛 showed significant interannual variability (see Fig. 11a). 

𝐸𝑙𝑎𝑘𝑒  was subject to less pronounced interannual variability, but showed an increasing trend over the period 1982–2016 due 580 

to the increase in temperature (about +0.1°C/decade). This means that the interannual variability of water levels depends to a 

large percent on variations in precipitation over the lake and in the upstream catchments. The highest values of both 𝑃𝑙𝑎𝑘𝑒 and 

𝑄𝑖𝑛 occurred between 1985 and 1986 and caused large floods around the lake and in the Desaguadero river, where discharges 

reached about 900 mm yr-1. In the 1990s, inflows were the lowest in the period studied, resulting in a mostly negative change 

in storage. Substantial inflows to the lake in the early 2000s led to a significant positive change in storage, although this was 585 

followed by another dry period that lasted until 2012. 

Figure 11b shows a very marked seasonal cycle for precipitation and upstream inflow. For example, the monthly peak in 

upstream inflow is about 230 mm (in February), while in the dry season the values are very close to 15 mm (in September). 

One of the features is the lag of upstream inflow with respect to direct precipitation over the lake, evidence for the relatively 

slow hydrological response in the upstream catchments because of the size of the catchment area. The seasonal cycle of 590 

evaporation is less marked than that of precipitation and upstream inflow. Although air temperature shows strong seasonality, 

evaporation is also influenced by other meteorological variables, and heat storage plays a critical role in the seasonal cycle. 

The peak of the mean monthly evaporation is around 170 mm (in January), while the minimum value is around 95 mm (in 

August). In Figure 11b, it is also interesting to observe the seasonal cycle of the error term, which is mostly positive in the 

rainy season and mostly negative in the dry season. This could indicate that the lake receives net groundwater inflow during 595 

the rainy season and is subject to net outflow during the dry season. However, the magnitudes cannot be directly attributed to 

net groundwater flow because the error term includes both the uncertainty associated with estimating the other terms of the 

water balance (𝑃𝑙𝑎𝑘𝑒, 𝑄𝑖𝑛, 𝐸𝑙𝑎𝑘𝑒 , and 𝑄𝑜𝑢𝑡) and assumptions concerning the groundwater flow. 

 

 600 
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Table 5. Lake Titicaca water balance components simulated for the period 1982–2016. The lake water balance follows the equation 

𝑷𝒍𝒂𝒌𝒆 + 𝑸𝒊𝒏 − 𝑬𝒍𝒂𝒌𝒆 − 𝑸𝒐𝒖𝒕 − 𝒅𝒉/𝒅𝒕 + 𝜺 = 𝟎. 605 

Components mm yr-1 mm month-1 

𝑃𝑙𝑎𝑘𝑒 744 62 

𝑄𝑖𝑛 958 80 

𝐸𝑙𝑎𝑘𝑒 1,616 135 

𝑄𝑜𝑢𝑡 121 10 

𝑑ℎ/𝑑𝑡 -50 -4 

𝜀 -15 -1 

 

 

Figure 11. Water balance of Lake Titicaca for the period 1982–2016 in terms of (a) interannual variability and (b) seasonal cycle. 

The values in parentheses correspond to the mean annual or monthly values for the period 1982–2016. The lake water balance 

follows the equation 𝑷𝒍𝒂𝒌𝒆 + 𝑸𝒊𝒏 − 𝑬𝒍𝒂𝒌𝒆 − 𝑸𝒐𝒖𝒕 − 𝒅𝒉/𝒅𝒕 + 𝜺 = 𝟎. 610 

5 Discussion and conclusions 

5.1 Main findings 

This study presents three main novelties. First, our integrated modeling framework accurately simulates the daily water balance 

of Lake Titicaca without requiring scaling factors. Consequently, the propagation of uncertainty in estimating components of 

the water balance is significantly reduced. For instance, Figure 12 illustrates how omitting the calibrated precipitation scaling 615 

factor used by Lima-Quispe et al. (2021) leads to unrealistic simulations of lake water levels. Our modeling approach also 
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benefits from: (i) a rigorous calibration and evaluation procedure for simulating upstream inflows (see Fig. 6); (ii) the 

estimation of evaporation from the lake using the Penman method, while accounting for lake surface water temperature 

(LSWT) and heat storage; and (iii) estimates of reference evapotranspiration and lake evaporation that accounts for climate 

variability, using ERA5-land dataset for humidity, wind speed, and solar radiation. This study provides a realistic water balance 620 

that estimates most hydrologic processes (see Table 4 and Table 5), although the role of groundwater remains a major unknown. 

Its magnitude is expected to be a small component of the total water balance. 

 

Figure 12. Comparison of simulated water levels by BasicModel+IRR+SNOW/ICE (aggregated to monthly time step) with those 

obtained by Lima-Quispe et al. (2021) without applying the scaling factor on precipitation over the lake. 625 

Second, through the hydrologic sensitivity analysis, we demonstrate that net irrigation withdrawals and snow and ice melt have 

minimal impact on lake level fluctuations, indicating that it is primarily driven by rainfall and evaporation variability. However, 

this does not diminish the importance of glaciers. In fact, glaciers are significant at the scale of the headwater catchments, 

particularly for supplying water to large cities such as El Alto and La Paz (Buytaert et al., 2017; Soruco et al., 2015), 

maintaining wetlands like the bofedales (Herrera et al., 2015), and supporting irrigation (Buytaert et al., 2017). In most gauged 630 

catchments, incorporating irrigation resulted in only slight improvements in modeling performance. Nonetheless, this approach 

made it possible to estimate the net consumption due to irrigation at the scale of the catchments that contribute to the lake. 

Although this consumption is currently low, it is expected to increase significantly due the climatic and anthropogenic changes 

in the study area. It should also be noted that this process was based not only on soil water deficit but also on local knowledge 

of farmers' water allocation practices.  635 

Third, we disentangle the role of the change in heat storage in estimating 𝐸𝑙𝑎𝑘𝑒 . Annual evaporation (1,616 mm yr-1) is 

comparable to the evaporation (~1,600) of other low-latitudes lakes (Wang et al., 2018) and aligns with previous studies of 

Lake Titicaca (~1,600) (Delclaux et al., 2007; Pillco Zolá et al., 2019). Despite the low air temperature over Lake Titicaca due 

to its high altitude, the evaporation rate is quite high. This is largely due to net radiation, although humidity, wind speed, and 



28 

 

changes in heat storage also play a significant role in the seasonal variation. Regarding heat storage changes, the lake reaches 640 

maximum heat gain in October and the maximum heat loss in May (Fig. 13a). Neglecting changes in heat storage leads to 

overestimating evaporation during the lake’s heating period and underestimating it during the cooling period (Fig. 13b). A 

similar finding was reported by Bai and Wang (2023) for Lake Taihu in China. Although several studies have investigated 

evaporation from Lake Titicaca using various methods (Carmouze, 1992; Delclaux et al., 2007; Pillco Zolá et al., 2019), our 

estimates are innovative because they are based on long-term data, including recent periods. Additionally, the accuracy of our 645 

estimates was underpinned by a water balance with a small error term, which enhances the reliability of our findings. 

 

Figure 13. Seasonal variations in (a) heat storage and (b) the role of heat storage in seasonal variation of evaporation from the lake. 

Figures are based on long-term (1982–2016) average values. 

The periods of rising and falling water levels are closely linked to direct precipitation over the lake and upstream inflows (see 650 

Fig. 11a), which is mostly influenced by interannual precipitation variability. Understanding the effects of climate oscillations 

on precipitation variability is therefore crucial for understanding water level changes. Some authors (e.g. Garreaud and 

Aceituno, 2001; Jonaitis et al., 2021) noted that the interannual variability of precipitation in the region is mainly driven by 

the El Niño Southern Oscillation (ENSO). During its warm phase, conditions are typically dry, while during the cold phase, 

conditions are usually wet, although this relationship is not always consistent (Garreaud et al., 2003). For instance, Jonaitis et 655 

al. (2021) observed negative precipitation anomalies during La Niña phase and positive anomalies during El Niño phases in 

the Lake Titicaca region, though these anomalies were not statistically significant. Segura et al. (2016) argue that El Niño plays 

an important role in interannual precipitation variability, and that decadal and interdecadal variations are influenced by sea 

surface temperature (SST) anomalies in the central-western Pacific. Therefore, variations in water level cannot be attributed 

to ENSO alone. Sulca et al. (2024) found that interannual variations in water levels are related to SST anomalies in the southern 660 

South Atlantic, and that interdecadal and multidecadal variability can be explained by Pacific and Atlantic SST anomalies. 

Additionally, they noted that multidecadal variations are linked to North Atlantic SST anomalies and southern South Atlantic 

SST anomalies.  
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5.2 Limitations of the modeling framework 

Model forcing and evaluation data are the main sources of uncertainty. Daily precipitation and air temperature from GMET 665 

rely strongly on the spatial representativeness of ground-based measurements that are very sparse at elevations above 4,000 m 

a.s.l. As a result, the estimated snow and ice processes above that elevation may be affected by significant inaccuracies. In 

part, this could explain the poorly simulated mass balances at some glaciers compared to geodetic observations (which are also 

uncertain). As shown by Ruelland (2020), the lack of high-altitude stations can have serious implications for correct estimations 

of precipitation and temperature lapse rates, and thus the difficulty of realistically representing the accumulation and ablation 670 

processes. The precipitation estimated by GMET on the lake can also be questioned because it is only based on a few stations 

located on certain islands, which does not guarantee they correctly represent local convective phenomena (Gu et al., 2016; 

Nicholson, 2023) due to the very large surface area of the lake. Consequently, the underestimation of lake water levels in the 

early 2000s may be associated with underestimation of precipitation.  

The simulation of snow and ice processes also needs discussing. The degree-day approach used in the present study might not 675 

be perfectly suited to simulate the melting of snow and ice at daily time steps in tropical glaciers, where melting energy is not 

always correlated with air temperature (Sicart et al., 2008; Rabatel et al., 2013). It may be more appropriate to use models 

based on energy balance, although they require large quantities of data. For instance, Frans et al. (2015) applied the DHSVM 

model driven by reanalysis data fitted with local measurements in the Zongo catchment. For streamflow prediction over the 

period 1992–2010, while the performance they obtained at the monthly time step was satisfactory, this was not the case when 680 

the evaluation was conducted at a daily time step. The authors argue that the poor performance was due to inaccuracies in the 

forcing data. This suggests that using a more sophisticated model does not necessarily lead to more realistic streamflow 

simulations and that uncertainty in the input data may be more important than the structure of the model used. Another 

limitation is the direct transfer of snow and ice model parameters obtained in the Zongo catchment to the whole Titicaca 

hydrosystem. Although temperature index-based model parameter transfer has been shown to work relatively well, i.e., with 685 

only a small reduction in model performance in southern Swiss Alps (Carenzo et al., 2009) and in western Canada (Shea et al., 

2009). The unsatisfactory performance of mass balance simulations on some glaciers may rather be due to inaccurate 

precipitation and air temperature data. On the other hand, the estimated glacier mass balances did not consider changes in 

glacier area, thickness and volume over time. The variation in ice stock over the period 1982–2016 is negative (-5 mm yr-1), 

which is consistent with the effects of global warming and in agreement with in-situ observations (Rabatel et al., 2013). As the 690 

surface area of the glaciers in our model was obtained in 2000 and considering glacier shrinkage worldwide, melting before 

the year 2000 may be underestimated, and after the year 2000, it may be overestimated. However, the biases are limited to 

some extent by the choice of an intermediate glacier area for the modeled period. If it is intended to simulate future changes 

in glaciers, it may be beneficial to include morphometric glacier changes in the model, drawing inspiration from simple 

approaches in the literature (e.g., Seibert et al., 2018). To initialize the model, global glacier thickness datasets could be used 695 

(e.g., Farinotti et al., 2019; Millan et al., 2022) 
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Estimates of lake evaporation and reference evapotranspiration have also certain limitations that are worth mentioning. 

Reanalysis data were used for some forcing data (humidity, solar radiation and wind speed). Wind speed data were adjusted 

using the bias found at one meteorological station, which is not necessarily representative of the entire spatial domain. 

However, we believe that the impact is not very significant because the aerodynamic component accounts for only about 20% 700 

of the reference evapotranspiration and evaporation. This is consistent with previous research in the study area, which indicated 

that, rather than the aerodynamic component, it is the radiative component that contributes significantly to reference 

evapotranspiration (Garcia et al., 2004) and evaporation from the lake (Delclaux et al., 2007). Concerning evaporation, the 

estimated change in heat storage is based on certain assumptions that could be questionable. Instead of water temperature at 

different depths, we used lake surface water temperature (LSWT), as suggested by Pillco Zolá et al. (2019), and the magnitude 705 

and seasonal variation in our evaporation estimates are in agreement with those of Carmouze (1992) based on temperature 

measurements taken at different depths. 

Concerning irrigation, the main limitations are linked to the stationarity of the irrigable area and crop types. Some authors (e.g. 

Geerts et al., 2006) reported an increase in quinoa production in the Altiplano. However, quinoa is usually a rainfed crop and 

consequently requires limited irrigation. Information was also missing concerning changes in the crops cultivated over time. 710 

𝐾𝑐 derived from satellite images (Pôças et al., 2020) could be an interesting way to fill this gap. However, small irrigation 

systems predominate in our study area, which could have implications for the accuracy of the estimates. In addition, the 

location of the inventoried irrigation systems is referential, since there are no maps showing delimited areas and it would 

consequently first be necessary to delimit the irrigable area and then to use spectral indices to derive the crop coefficients. 

Despite these limitations, it should be noted that reference evapotranspiration was driven by time-varying meteorological data. 715 

The water requirement is thus not entirely stationary. 

The contributions of groundwater in the catchments were only simulated with the deep store of the SMM. This is an important 

simplification because it neglects the dynamic interaction between rivers and aquifers. The use of pumped groundwater for 

irrigation was also not taken into consideration because irrigation inventories (Ministerio de Medio Ambiente y Agua, 2012) 

indicated that the proportion of groundwater in the supply was very small. Therefore, we would expect the impacts on 720 

streamflow prediction and water supply results to be negligible. Groundwater-lake interaction was also neglected. Figure 11b 

shows that the error term exhibits a seasonal variation, being positive during the rainy season and predominantly negative 

during the dry season. Linking the error term to net groundwater flow suggests that groundwater-lake interactions are 

seasonally variable. Lake water levels fluctuate by an average of 67 cm over the hydrological year, reaching a maximum in 

April and a minimum in December. In Figure 11b, the error term has the highest positive values between December (26 mm) 725 

and January (54 mm), indicating a gain in net groundwater flow to the lake. When the lake reaches high water levels, losses to 

groundwater tend to dominate. This dynamic suggests that there could be a reversal of the hydraulic gradient throughout the 

year depending on the water level of the lake and the groundwater. However, it is important to note that the error term reflects 

not only the net groundwater flow, but also the uncertainty in estimating the other components of the water balance. 
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5.3 Prospects 730 

Despite the aforementioned limitations, our modeling framework and its associated results on the water balance components 

will be useful to support decision making in water resources management in Lake Titicaca because they represent climatic, 

glacio-snow-hydrological, and water allocation components. Contrary to the perceptions of some stakeholders, who often 

attribute the lake's water level variations to water withdrawals for irrigation or glacier retreat, this study demonstrates that Lake 

Titicaca’s variations are primarily driven by rainfall and evaporation variability. In the next stage, water management scenarios 735 

could be evaluated in the context of climate change. Some of the management scenarios that could be explored include 

increasing the irrigable area, the efficiency of irrigation systems, and releases lake. Designing these scenarios would require 

collaborative work with stakeholders, in particular with the Lake Titicaca Authority. Exploring future scenarios will be crucial 

to identify and plan intervention actions to ensure the sustainability of Lake Titicaca. Such experiments could also serve as a 

replicable model for other poorly-gauged large lakes around the world. The conceptual models within the modeling framework 740 

are easy to apply, require minimal data, and are computationally inexpensive. Several of these models are part of the WEAP 

platform, which is openly accessible for developing countries (for academic purposes and public institutions). Additionally, 

we provide in the current article detailed equations for models that are not included in this platform. 

Appendices 

Appendix A. Performance of the ERA5-Land dataset 745 

ERA-Land (Muñoz-Sabater et al., 2021) dataset is available from 1950 to the present at a spatial resolution of 0.1° and a hourly 

time resolution. Data were aggregated at a daily time step. The quality of the ERA5-Land dataset was evaluated using data 

recorded at a station located at El Alto airport as it was the only one with reliable humidity and wind speed data and relatively 

long time series. For relative humidity, the performance was acceptable, as ERA5-Land was able to adequately reproduce both 

the annual magnitudes and the seasonal cycle. For wind speed, ERA5-Land satisfactorily represented the seasonal cycle but 750 

with a significant systematic bias (see Figure A1a). The bias evaluated at the El Alto airport was used to correct the wind speed 

(Figure A1b) in the spatial domain of the study. 



32 

 

 
Figure A1. Wind speed performance of ERA5-Land evaluated at El Alto gauge in terms of (a) seasonal cycle and (b) interannual 

variation for the period 2003-2020. 755 

Appendix B. Simulation of lake water surface temperature (LSWT) 

A conceptual lumped model called Air2Water was thus used to estimate LSWT from air temperature (Piccolroaz et al., 2013; 

Toffolon et al., 2014). The Air2wateR 2.0.0 version available in R was used. ARC-Lake V3 data (MacCallum and Merchant, 

2012) available for the period 1995–2012 were used to calibrate and evaluate the Air2wateR model. The spatial resolution of 

ARC-Lake V3 is 0.05° and the temporal resolution is daily. The model was calibrated for the period 1995–2003 and evaluated 760 

using the period 2004–2012 (see Figure B1). The performance of Air2Water in the independent control period was acceptable 

and captured seasonal and interannual variations very well. LSWT of ARC-Lake V3 had previously been compared with data 

measured at a buoy located in Lake Titicaca that recorded LSWT (Lazzaro et al., 2021) between 2019 and 2023. The 

comparison was made between the cell intersecting the measurement point and compared the range of fluctuations and 

seasonality, since there is no temporal link between the two sources of data. Measured LSWT and LSWT obtained from ARC-765 

Lake V3 fluctuated in a similar range and showed the same seasonal cycle (see Figure B2). 

 
Figure B1. Lake surface water temperature (LSWT) simulated with the Air2wateR model (Piccolroaz et al., 2013; Toffolon et al., 

2014) for Lake Titicaca and its calibration and evaluation performances. 
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 770 

Figure B2. Lake surface water temperature (LSWT) obtained from the buoy site (16.25ºS, 68.68ºW) in Arc-Lake V3 (MacCallum 

and Merchant, 2012) and OPLT (Lazzaro et al., 2021). 

Appendix C. Parameters of the snow and ice model 

On-site observations are only available on the Zongo catchment, which is the glacier-dominated catchment adjacent to our 

study area (see Fig. 1). Streamflow are measured at the Tubo gauge for a catchment of 3.5 km2 of which 52% is glacierized 775 

area. The annual mass balance estimated by the glaciological method (based on direct sampling of changes in the mass of the 

glacier) was also available for the hydrological period 1991–2016 (see Fig. C1b). The approach used was to obtain the snow 

and ice model parameters (see parameters in Fig. 4 and Table C1) in the Zongo catchment and then transfer them directly to 

BasicModel+IRR+SNOW/ICE. Firstly, the catchment model parameters were calibrated against the streamflow of the Tubo 

gauge for the hydrological period 2000–2010. The previous two hydrological years were used as a warm-up period. The 780 

irrigation module was disabled because the non-glacierized area was completely dominated by rocks and no crops are 

cultivated at the high elevations of the Zongo catchment. The parameters with the best performance against observed 

streamflow were obtained from 10,000 simulations generated with random hypercube sampling of the Monte Carlo approach. 

The range of parameters tested is shown in Table C1. 𝑁𝑆𝐸𝑠𝑞𝑟𝑡 was used as the objective function to select the best-performing 

parameter sets for the calibration period. Secondly, the model was evaluated against the mass balance observed from 785 

glaciological method (see Sect. 2.5.1.) for the period 1992–2016 using the 𝑅𝑀𝑆𝐸 criterion. The evaluation was performed 

with other internal variables of the model, because the goal was to obtain the set of parameters associated with the snow and 

ice stores. Good internal consistency of the glacier model was thus desirable. In addition, the 25-year time window made it 

possible to evaluate the ability of the model to simulate the interannual and decadal variation in the mass balance of the Zongo 

glacier. Figure C1 shows the model’s calibration (see Fig. C1a) and evaluation (see Fig. C1b) performances. Figure C1a shows 790 

that the model reproduced streamflow reasonably well. Mass balance was also simulated reasonably well. The 𝑅𝑀𝑆𝐸 obtained 

(349 mm) is in the range of the error of the mass balance based on the glaciological method (400 mm) (Sicart et al., 2007). 
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Figure C1. Performance of the catchment model in the Zongo catchment versus (a) observed streamflow at the Tubo gauge, and (b) 

annual mass balance estimated using the glaciological method. The mass balance estimated using the glaciological method has an 795 
error of 400 mm year-1 (Sicart et al., 2007).   

Table C1. Parameters of the model implemented in the Zongo catchment and their associated fixed values or ranges tested in order 

to obtain the parameters of the snow and ice model. 

Parameter Meaning Unit Fixed values or ranges tested 

𝑇𝑠 Snow threshold temperature  °C -1 

𝑇𝑙 Rain threshold temperature °C 3 

𝑇𝑚,𝑚𝑎𝑥 Maximum melting temperature threshold  °C [-0.5; 1] 

𝑇𝑚,𝑚𝑖𝑛 Minimum melting temperature threshold °C [-3; -0.5] 

𝐷𝐷𝐹𝑠𝑛𝑜𝑤 Snow degree-day factor mm d-1 °C-1 [1; 6] 

𝐷𝐷𝐹𝑖𝑐𝑒 Ice degree-day factor mm d-1 °C-1 [2; 15] 

𝑆𝑤 Soil water capacity mm [150; 250] 

𝑅𝑅𝐹 Runoff resistance factor - [4; 15] 

𝐾𝑠 Root zone conductivity mm d-1 [1; 6] 

𝑃𝐹𝐷 Preferred flow direction - [0.3; 0.87] 

𝐷𝑤 Deep water capacity mm [300; 600] 

𝐾𝑑 Deep conductivity mm d-1 [1; 3] 

𝑍1 Initial condition % 30 

𝑍2 Initial condition % 30 

𝐿𝑖𝑟𝑟 Lower threshold  % 0 

𝑈𝑖𝑟𝑟 Upper threshold % 0 

𝐼𝑈𝑅 Irrigation use of runoff % 0 

𝑘 Time travel d [0.5; 5]  

𝑋 Diffusion  - 0.2 

  # of free parameters 11 
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Appendix D. Simulated and observed water levels 

 800 

Figure D1. Performance of the modeling chain compared with the water levels of Lake Titicaca measured in Puno. Three simulations 

of water levels are presented because the models produced three different estimates of 𝑸𝒊𝒏. 

 

Code availability. SMM (https://www.weap21.org/webhelp/Two-bucket_Method.htm) and the lake water balance model 

(https://www.weap21.org/WebHelp/River_Reservoir_Flows.htm) are part of the WEAP platform (https://www.weap21.org/). 805 

The models used for snow processes and lake evaporation are not part of WEAP; therefore, the detailed equations are presented 

in the Methods section. These models were implemented in WEAP using the user-defined variables 

(https://www.weap21.org/webhelp/User_Defined_Variables.htm). 

 

Data availability. The data used in this study are available at their respective websites: GMET (can be accessed directly at 810 

WEAP), ERA5-Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land), CLACIOCLIM 

(https://glacioclim.osug.fr/Glacier-du-Zongo-127), Observatorio Permanente del Lago Titicaca 

(https://olt.geovisorumsa.com/Datos.html), geodetic mass balance (https://www.theia-land.fr/en/product/rate-of-glacier-

elevation-changes-from-2000-to-2019/) and ARC-Lake v3 (https://researchdata.reading.ac.uk/186/). Measured streamflow 

and lake water levels should be requested from SENAMHI-Peru and SENAMHI-Bolivia. 815 
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