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Point-by-point answers to the comments of reviewer 1

General points

Authors: All points raised in the general part correspond to speci�c
comments and are, therefore, discussed in the next section.

All comments

Reviewer 1: Abstract: It would be helpful to say quickly in one sentence how
the OSSE is set-up to make life �di�cult� for the retrieval (includes plumes,
realistic aerosols, etc) to make the results more meaningful.
Authors: We added a sentence to the abstract that reads: �Since
CO2M will not be launched until 2026, our study is based on simulated
measurements over land surfaces from a comprehensive observing system
simulation experiment (OSSE) that includes realistic meteorology, aerosols,
surface BRDF (bidirectional re�ectance distribution function), solar-induced
chlorophyll �uorescence (SIF), and CO2 and CH4 concentrations.�

Reviewer 1: Also, has any other retrieval method demonstrated they
can meet the accuracy and precision requirements of CO2M, or is this the �rst?
If it is the �rst, it's important to say so. Though it looks like RemoTAP also
does, based on Lu et al 2022, is that also your read? If so then I guess say
nothing...
Authors: Lu et al. (2022) and Noël et al. (2024) both conclude that their
retrieval meet the requirements when applied to their simulated CO2M data.

Reviewer 1: Abstract: I think it would be good to modify the abstract
and conclusions to make it clear that you would have to re-train with real data
once CO2M data are available, and that could change the storyline because
of instrument artifacts, lack of su�ciently good training data (do you use
TCCON, or a model, or. . . ?). So while this is a solid proof-of-concept, we can
only really believe the amazing results once you apply it to real data somehow.
Authors: We added the following sentence to the end of the abstract and
a similar sentence to the conclusions: �While the presented results are a solid
proof of concept, the actual achievable quality can only be determined once
NRG-CO2M is trained on real data, where it is confronted, e.g., with unknown
instrument e�ects and systematic errors in the training truth.�

Reviewer 1: Abstract: The sentence �We employ a hybrid learning
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approach that combines advantages of simulation-based and measurement-based
training data to ensure coverage of a wide range of XCO2 and XCH4 values
making the training data also representative of future concentrations.� Is
important! But it downplays the excellent work you've done here. Even if your
NN approach didn't work, this one thing is great and could be utilized by any
researcher trying to do direct ML-retrievals of GHGs. Maybe change to �We
created a novel hybrid learning approach. . . �.
Authors: We rephrased one sentence of the abstract, which now reads: �We
created a novel hybrid learning approach that combines advantages of ...�.

Reviewer 1: You could also add a sentence like �This method could
easily be applied by future researchers training MLbased GHG retrievals, to
avoid this common problem.� Or something to that e�ect. I think it's just
important to highlight this contribution to the literature, in addition to your
actual ML model.
Authors: We added the following paragraph to the conclusions: �It should be
noted that the method could be applied to other instruments and applications.
In addition to generating representative training data, spectra could also be
modi�ed, e.g., to study the ability of a machine learning model to predict
changes in its target variable.�.

Reviewer 1: Abstract: I think you should also add a sentence to the e�ect
of �Our ML model also provides accurate estimates of both the noise-driven
uncertainties and the averaging kernels of XCO2 and XCH4 for each sounding.�
This is an important aspect of your model; not all ML models do this.
Authors: We added to the abstract: �In addition, NRG-CO2M also provides
estimates of both the noise-driven uncertainties and the averaging kernels of
XCO2 and XCH4 for each sounding.�

Reviewer 1: L43: BRDF -> surface BRDF
Authors: Done.

Reviewer 1: Fig1: For the love of god, please convince your CO2M
colleagues to work in W m-2 µm-1 sr-1 units. We messed this up for OCO2/3.
You can right this wrong.
Authors: I'm afraid it's too late for that. In the paper we aimed at
consistency with the MRD. Personally, I also like the SI units W m-2
µm-1 sr-1 more, but I think the instrument scientists are into photons per
second, probably because this has to be multiplied with the quantum yield
of the detectors to calculate the signal. It could have been worse: the
number of photons could be given in Mol and I assume that the imperial
measurement system could still provide some really nice area and length units :)

Reviewer 1: Page6: How are clouds modeled in the radiative transfer? Do
they come from CAMS? From where does the e�ective radius for water and
ice come? Clouds were excluded in Noel et al (2024) for the FOCAL tests. It
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seems like you are trying to include them here, so more details are welcome,
since this is a speci�c di�erence to Noel et al.
Authors: On page 6, we included: �For the SCIATRAN RT simulations, we
used pressure, temperature, speci�c humidity, cloud ice content, cloud water
content, and cloud fraction from the ECMWF ERA5 reanalysis (Hersbach
et al., 2020). Since we focus mainly on cloud-free conditions, we used static
cloud microphysical properties for convenience, representing spherical water
droplets with a gamma particle size distribution with an e�ective radius of
12µm and fractal ice particles with an e�ective radius of 50µm (Fig. 3 of
Reuter et al. (2010) shows the corresponding volume scattering functions).� As
discussed in Sec. 2.5.2, we include some of the cloudy scenes in the training
data, especially, those with little cloud optical depth. This is intended to
make the prediction less sensitive to residual cloud contamination and mimics
imperfect cloud clearing of the training data set. However, as mentioned in
Sec. 3, all quality analyses are performed only for cloud-free scenes (�Since the
CO2M mission requirements are de�ned for cloud-free conditions, we �ltered
the evaluation data accordingly.�).

Reviewer 1: Section 2.2. It's not clear how these uncertainties in
dry-air column, temperature, CO2 pro�le etc are used. Are you saying that
you stochastically apply these terms to the truth training data before you
simulate the spectra? Or that you stochastically supply them as input to the NN
predictions, so the NN doesn't have perfect knowledge of things like temperature
pro�le, etc, when performing a retrieval on a given sounding? Please be clear.
A �owchart might be helpful here. I think you ARE supplying these to the NN
(you seem to say this in section 2.5) but please be explicit here. I think also
saying WHY you need to supply this information is important.
Authors: We added to Sect. 2.2: �'It should be noted that the input data
for the RT simulations of the OSSE are free of noise. The main use of noise
in our analyses is to generate realistically noisy training data. (Sect. 2.5).'
Additionally, we added to Sect. 2.5 the explanation: �It is important that the
training data set contains noise, as all input and target features will of course
be subject to inherent uncertainties during later training with real CO2M data.
In addition, the noise supports generalized learning and suppresses over�tting.�
Moreover, we added Fig. 1 of this document to the manuscript.

Reviewer 1: Side note: I worry that you are telling your NN technique the
answer by construction for each sounding, by supplying �truth data + gaussian
noise� to it. It might be �ne. But your �truth data + gaussian noise� for
temperature, co2, surface pressure, etc, is not biased; there are no systematic
errors. Instead, I would prefer that you had used a completely di�erent model
for your �prior information�. For instance, CarbonTracker for CO2, MERRA-2
for Temperature, humidity, surface pressure, etc. Your hypothesis would be that
it doesn't matter, but to me, that isn't clear.
Authors: The purpose of the training data set is, of course, to teach the
network the correct data and their relationships. Systematic errors bear the
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Figure 1: Baseline ANN training setup on the example of XCO2, including
the amount of noise added to the training features and to the target variable
(Sect. 2.2) and the PCA components used (Sect. 2.4). When training with actual
measured data in the future, the addition of noise will be omitted. Inst=Noise
of instrument model; IL=input layer; HL=hidden layer; OL=output layer.

risk that incorrect relationships are learned, which leads to a degradation in the
prediction quality. This risk is particularly present if biases in the target truth
correlate with input features (e.g. systematically too high CO2 concentrations
at high latitudes, or over bright surfaces). However, reliable information on
such biases and their covariance statistics do not exist which is why we have
not considered them and assumed Gaussian noise for convenience. At least our
results become better comparable to those of Noël et al. (2024) who also used
an unbiased a prior and an unbiased training truth for their machine learning
based post processing bias correction. In order to make the reader aware of
this point, we discuss in the introduction: �Obviously, such errors would have
the potential to reduce the accuracy of the prediction, but a realistic estimate
of the to be expected error patterns of the training truth is di�cult and beyond
the scope of this study.�

Reviewer 1: Near line 360. Feel free to add a contextual comment
like: �For comparative purposes, the dry air column dependence for the
operational OCO-2 XCO2 retrieval (v11.1) is roughly 85%, making it
highly dependent on the accuracy of the prior meteorology, the prior
surface elevation, and the instrument pointing (Jacobs et al., 2024,
https://amt.copernicus.org/articles/17/1375/2024/).�
Authors: Thanks, we added to section 3.3.1: �For comparison, the dry
column dependence of the FOCAL CO2M XCO2 retrieval is 100% by design
(Noël et al., 2024) and the dry column dependence of the operational OCO-2
XCO2 retrieval (v11.1) is approximately 85% (Jacobs et al., 2024).�

Reviewer 1: Near line 420. I don't get why removing the NIR band
doesn't increase the dependence on the dry air column to 100% ! Where is
information on the dry column coming from? I guess from the fact that your
prior co2 pro�les are pretty good, so it can partially deduce the dry column from
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the co2 bands alone?
Authors: It cannot come from a too good a priori XCO2 because this would
result in a larger dependency to the a priori. However, you probably meant the
a priori pro�le shape. We agree that the CO2 pro�le shape has to be somewhat
constraint in order to get dry column information from the CO2 bands. The
a priori pro�le shape will contribute to this, but for the ANN, it would be
su�cient that the CO2 pro�le shapes of the training data set vary not arbitrarily.

Reviewer 1: Also, regarding the increase in the dry column dependence when
you remove MAP, from 6% to 16%. Typical surface pressure uncertainties are
on order 1-2 hPa (or often even smaller). +- 2 hPa is 2/1000 roughly, and
10% of this is 2/10000. For a typical XCO2 of 400 ppm, this would induce an
uncertainty of 0.08 ppm. This implies that removing MAP from CO2M which
add an additional +- 0.08 ppm uncertainty to XCO2, due to errors in the prior
surface pressure, relative to the with-MAP case. Which basically means that,
according to your analysis, MAP really is not necessary. That's a pretty big
conclusion that you are currently glossing over. Please address this directly in
the manuscript. Presumably its due to some assumption you've made? FYI
this also a�ects your interpretation in the conclusions (near 520), where you
are implying that this is an important di�erence for the no-MAP case. It's
really not, honestly. OCO-2/3 would kill to only have a 15% dependence on the
dry air column, which leads to nearly negligible errors in the target gases.
Authors: Within the conclusions, we modi�ed the corresponding paragraph
which now reads: �This had an apparently small e�ect on accuracy and
precision, which is not consistent with the results of Lu et al. (2022), whose
retrieval method became signi�cantly less accurate under these conditions. We
can only speculate about possible reasons for this. i) We use a di�erent aerosol
microphysical model, which is consistent with the MACC aerosol model, but
is less complex than the one used by Lu et al. (2022). ii) Their CO2I-only
retrieval method is fundamentally di�erent from ours and also from FOCAL,
which may result in di�erent sensitivities to aerosol-induced biases. In this
context, it should be noted that our CO2I-only results are in good agreement
with those of Noël et al. (2024), suggesting that it may be possible to meet the
CO2M mission requirements without using MAP. iii) The statistics computed
by Lu et al. (2022) to quantify the systematic and stochastic errors di�er from
those computed by us. However, we observe that the dependence of the XCO2
prediction on the dry column increases when MAP is not used, which may
introduce systematic errors of the order of 0.1 ppm in reality when perfect
knowledge of the dry column cannot be expected.�

Reviewer 1: Near Line 470, and Figures 10+11. Can't you plot the
AK-corrected Truth minus Prediction, instead of straight truth � prediction?
You should! I *always* do this in my OSSE experiments, it is important. It
would also show if your hypothesis is correct on the source of this hotspot in the
di�erence plot of �gure 11. In fact a comparison of these two plots (with and
without AK-correction) would be very illuminating. Your statement on using
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the true pro�les as prior comes close to accomplishing this, but is not nearly
as powerful. Plus, you are expecting modelers to make the AK correction;
therefore I think It's important to set a good example and do the same, and
show the e�ect when you don't.
Authors: When AKs are taken into account, the di�erence between modeled
and true XCO2 is

∆X = X̂ −
∑

wi[c
apr
i +Ai(c

mod
i − capri )] (1)

where X̂ is the retrieved XCO2, w is the weighting of layer i, capr is the a
priori pro�le, and cmod is the model pro�le. Most of our analyses have been
done with an a priori equal to the truth, i.e. MACC. In this case, capr becomes
cmod, so that the di�erence between retrieved and true XCO2 becomes

∆X = X̂ −Xmod. (2)

This is the quantity we analyze to assess the systematic errors, as shown
in Fig. 6 and 7. This means using the truth as a prior has the advantage that
all deviations from the truth can be directly attributed to retrieval de�ciencies
without explicitly accounting for the AKs. However, it has the disadvantage
that it rewards retrievals that put little weight on the measurement and much
weight on the a priori. In order to demonstrate, that this is not the case here,
we performed the anaylses of the Berlin scene on purpose with a constant a
priori so that it is clear that the retrieved XCO2 variability only comes from
the measurement but not the a priori.

If we understand the comment correctly, you are suggesting to also show
results for the Berlin scene with AKs applied. In this case, ∆XCO2 would
become

∆X = Xcon −
∑

wi[c
con
i +Ai(c

mod
i − cconi )] (3)

where Xcon is the retrieved XCO2 using the constant a priori and ccon is
the constant a priori pro�le. Using the AKs, we can compute Xcon from the
retrieval result X̂ obtained using the model as a priori:

Xcon = X̂ −
∑

wi(1−Ai)(c
con
i − cmod

i ) (4)

so that

∆X = X̂ −Xmod. (5)

This equation is the same as Eq. 1 which means, that the di�erence between
the prediction using the truth as a priori and the model equals the di�erence
between the prediction using the constant a priori and the model with AKs
applied. In other words, instead of applying the AKs to the model, we can also
use the truth as a priori (as, e.g., in Fig. 6 and 7). We added the corresponding
�gures to the appendix of the manuscript (see Fig. 2 and 3 of this document).
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Figure 2: As Fig. 11, but using the true CO2 concentration pro�les as a prior
instead of their scene-wide average.

Figure 3: As Fig. 12, but using the true CH4 concentration pro�les as a prior
instead of their scene-wide average.
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Reviewer 1: L502: short correlation length parts -> or short correlation
length parts
Authors: Done.

Reviewer 1: I think the conclusions section really needs a paragraph
on what it would take to �operationalize� this algorithm for real satellite data.
Presumably you would train it on observed spectra, along with your method to
extend it to larger truth values of XCH4 and XCO2? What would you use for
the training truth: TCCON, Models, something else? Would your methods to
get at the AK and posterior Xgas uncertainties still work? Would you have any
reason to expect worse performance?
Authors: We replaced the last paragraphs of the conclusions, which now
reads:

�In order to use NRG-CO2M to retrieve XCO2 and XCH4 as well as
the associated uncertainties and averaging kernels from real CO2M radiance
measurements, once available, the PCAs and the training of the ANNs would
have to be repeated with real data. In this case, the training truth could,
e.g., consist of model data con�rmed by an ensemble of models as done for
NASA's OCO-2 XCO2 bias correction (O'Dell et al., 2018) or by corresponding
TCCON measurements as done for FOCAL's GOSAT and GOSAT-2 XCO2
bias corrections (Noël et al., 2021). We expect that at least one full year should
be used for training, although the modi�cation of the training spectra makes
them representative of a wider range of atmospheric conditions.

In the analysis of real data, several e�ects, the detailed investigation of which
is beyond the scope of this paper, may lead to somewhat degraded retrieval
quality. These include unknown systematic errors in the training truth, a priori,
and met pro�les, non-ideal sampling of the training data set, and potential
instrument or RT features that are not well approximated by our spectrum
modi�cation method. Therefore, the actual retrieval quality achievable can
only be determined after NRG-CO2M has been trained on and applied to real
data.

However, due to the quality achieved in the analysis of synthetic CO2M data,
the proposed retrieval algorithm NRG-CO2M can be considered as a promising
candidate to meet the high accuracy and precision mission requirements
of CO2M while providing high data yield and negligible computational
requirements, making it a valuable addition to the ensemble of conventional
algorithms.�
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