Baseline Climate Variables for Earth System Modelling

- 3 Martin Juckes¹, Karl E. Taylor⁵, Fabrizio Antonio⁸, David Brayshaw², Carlo Buontempo³, Jian Cao⁴,
- 4 Paul J. Durack⁵, Michio Kawamiya⁶, Hyungjun Kim⁷, Tomas Lovato⁸, Chloe Mackallah⁹, Matthew
- 5 Mizielinski¹⁰, Alessandra Nuzzo⁸, Martina Stockhause¹¹, Daniele Visioni¹², Jeremy Walton¹⁰, Briony
- 6 Turner¹³, Eleanor O'Rourke¹³, Beth Dingley¹³.
- ¹Univesrity of Oxford, and UKRI STFC, UK
- 8 ²University of Reading, UK
- 9 ³ECMWF, Bonn, Germany
- 4Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China
- 11 ⁵PCMDI, Lawrence Livermore National Laboratory, Livermore, USA
- 12 ⁶JAMSTEC, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
- 13 ⁷Korea Advanced Institute of Science and Technology, Korea
- 14 *CMCC Foundation Euro-Mediterranean Center on Climate Change, Italy
- 15 ⁹CSIRO, Climate Science Centre, Australia
- 16 ¹⁰Met Office Hadley Centre, UK
- 17 ¹¹DKRZ, Germany
- 18 ¹²Department of Earth and Atmospheric Sciences, Cornell University, USA
- 19 ¹³CMIP International Project Office, UK
- 20 Correspondence to: Martin Juckes (<u>martin.juckes@physics.ox.ac.uk</u>)

21 **Abstract.**

22 | The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135132 variables which

23 have high utility for the evaluation and exploitation of climate simulations. The list reflects the most heavily used elements

of the Coupled Model Intercomparison Project phase 6 (CMIP6) archive. Successive phases of CMIP have supported strong

results in science and substantial influence in international climate policy formulation. This paper responds both to interest in

exploiting CMIP data standards in a broader range of climate modelling activities and a need to achieve greater clarity about

the significance and intention of variables in the CMIP Data Request. As Earth System Modelling (ESM) archives grow in

scale and complexity there are emerging problems associated with weak standardisation at the variable collection level. That

29 is, there are good standards covering how specific variables should be archived, but this paper fills a gap in the

30 standardisation of which variables should be archived. The ESM-BCV list is intended as a resource for ESM Model

Intercomparison Projects (MIPs) developing requests to enable greater consistency among MIPs, and as a reference for

32 modelling centres to enhance consistency within MIPs. Provisional planning for the CMIP7 Data Request exploits the ESM-

BCVs as a core element. The baseline variables list includes 98 variables which have modest or minor data volume

34 footprints and could be generated systematically when simulations are produced and archived for exploitation by the WCRP

25

26

27

31

community. A further 3534 variables are classed as high volume and are only suitable for production when the resource implications are justified.

1 Introduction

35

36

37

38

39

40

41

42 43

4445

46

47

48

49 50

51

52

53

54

55

56

57

58 59

60

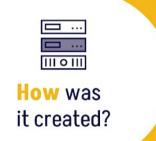
1.1 Context and motivation

With the publication of the Baseline Climate Variables for Earth System Modelling (hereafter ESM-BCV: see end of Section 4 for discussion of the name) we aim to address the growing need for climate model data archives to have more consistency between projects and between generations of models. We exploit substantial resources and knowledge that have been developed through the Coupled Model Intercomparison Project (CMIP; see Meehl et al. 1997). CMIP was established to collect data from models that could represent some aspects of the atmospheric, oceanic, land, and cryospheric components of the climate system and has grown over successive phases (Meehl et al., 2000, 2007; Taylor et al. 2012; Eyring et al., 2016) to provide both better representation of those processes and more complete coverage of the Earth system, including chemical, biogeochemical and ecosystem processes. CMIP has also expanded from the initial focus on model evaluation to become "a central element of national and international assessments of climate change" (Eyring et al., op. cit.). The CMIP community has led the way in developing climate model archives as a community resource with a range of users which extends far beyond the modelling centres responsible for developing models and delivering data products. The content of the archive is guided by the CMIP Data Request (CMIPDR; see Figure 1). The latest iteration of this request for CMIP6 (Juckes et al. 2020) contained over 2000 variables, a significant increase over the 970 variables requested for CMIP5 (PCMDI, 2013). The CMIP6 Data Request (CMIP6DR) collated data requirements from dozens of international science projects to create a database of climate variables indexed against priorities, objectives and experimental configurations. The CMIP6DR was seen by many as being too extensive and the mechanisms provided to enable data producers to filter the request down to an appropriate level were not able to compensate for this. A lack of clarity about priorities detracted from consistency of archive content (Section 1.3 below). The ESM-BCVs will provide a clear focus to enable greater consistency both within CMIP and between CMIP and other model intercomparison activities. It is, however, as the name suggests, only a baseline and further variables will generally be needed in many cases. This caveat notwithstanding, the majority of users are interested in a modest subset of the 2000+ variables.

The CMIP6 Data Request

The CMIP6 Data Request **defined all of the variables which should be output** from CMIP6 simulations. It consists of:

- o An XML database with the data requirements for all MIPs,
- A browsable online version,
- A python library providing both a programmable and a command line interface.


Why was it created?

CMIP6 was a global collaborative effort in which dozens of climate models ran a **coordinated set of experiments**. This created an extensive data archive to support **evaluation** and **intercomparison** of the climate models.

Data requirements were collected from the **23 CMIP6-endorsed MIPs**.

20 of the MIPs represented different scientific areas. Three MIPs represented the interests of communities which do not engage directly with the climate models:

- CORDEX requested data required to drive regional climate models
- ScenarioMIP did not make any data requests, but specified experiments to study climate change scenarios
- VIACS-AB compiled data requirements from climate change impacts and services experts

The scale and complexity of the data request:

 The diversity of both those proposing requests and the facilities offering services led to a large, and highly complex data request.

Too many high priority variables:

 Discussion at WGCM 22 (Barcelona, 2019) highlighted around 50% of variables were designated as priority one (Juckes, 2020)

62 Figure 1: CMIP6 Data Request storyboard

1.2 Expanding scope and impact of Earth system modelling

The scientific scope of the climate models used to analyse the impact of humanity on the global climate is continually expanding (e.g. Flato, 2011) and the community is now experimenting with kilometre resolution models (e.g. Hohenegger et al., 2023) and explicit modelling of human behavioural response to climate (e.g. Tan et al., 2023). A review of this diverse and growing literature is beyond the scope of the current paper, but it is clear that preservation of clarity and interoperability of existing and future data products will be a challenge for this wide-ranging community. As the range of modelling activities has expanded, a diverse range of models and model configurations has emerged to target different areas of climate science, resulting in a multiverse of models (Figure 2).

The WCRP Modelling Multiverse

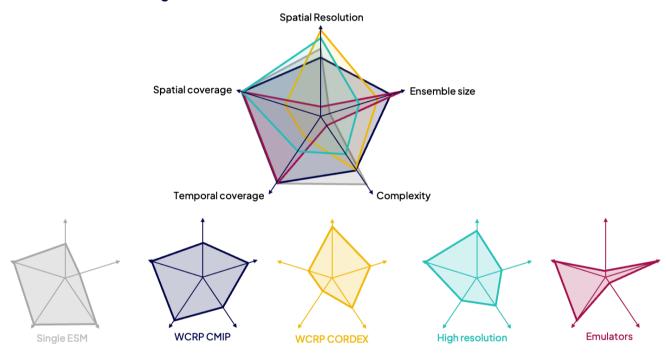


Figure 2: The Modelling Multiverse. The phase space covered by each climate modelling endeavour within the WCRP. Each type of model or modelling project has a different ability to model over different spatial resolutions, spatial coverage, temporal coverage, model complexities, and ensemble sizes. Each model type or modelling project is exemplified using a different colour. The elements of the radar charts are:

- Spatial resolution: the ability to resolve fine scale spatial features,
- Ensemble size: the ability to resolve details of internal variability,
- Complexity: the ability to resolve a wide range of physical and bio-geological climate processes,
- Temporal coverage: the ability to cover centennial time scales,
- Spatial coverage: the ability to cover the complete globe.

The exchange of interoperable climate model output across multiple Model Intercomparison Projects (MIPs) is now a mainstay of climate science and climate assessment, feeding into the development of policies on climate change mitigation and adaptation. Scientific work supported by CMIP has become the foundation for Intergovernmental Panel on Climate Change (IPCC) assessment reports which are alerting humanity to the risks of catastrophic climate change (Touzé-Peiffer et al., 2020), driving international commitments to decarbonisation of the economy (Paris Agreement, United Nations Environment Programme, 2015; Guterres, 2023).

With the growth in the scale and complexity of the models and the intercomparison projects that investigate their behaviour there is a growing interest in multi-variable multi-model analyses. There is an emerging requirement for consistent provision of variable collections across simulations generated by the entire WCRP multiverse of models. For robust simulation and analysis of the climate system on centennial time-scales multi-model ensembles are required. Through multiple phases of CMIP, an open and evolving community approach to creating intercomparisons which span multiple MIPs and all the elements of the WCRP Multiverse has been established. We refer to the collection of simulations generated through these activities as a MultiVerse Ensemble (MVE).

The success of MVEs in creating value which is greater than the sum of the parts has led to a growing ecosystem of MIPs and other community activities coordinating the specification of science goals, experimental configuration and data requirements for MVEs. Data requirements now must serve not only climate researchers but also a diverse community of stakeholders that rely on climate model output. Textual analysis of the 5152 Web of Science publications¹ which, on 24th August 2023, referenced CMIP6, shows two main clusters, one associated with model and climate system analysis and experiments and the other associated with impacts, adaptation, and scenarios (Figure 3). This analysis shows clearly how scenarios and impacts cluster has become of equal significance, in terms of quantity of publications, with the climate science research area.

9 1 The analysis is based on titles and abstracts of 5152 papers identified from Web of Science which either cite Eyring et al. (2016) or mention CMIP6 in the title or abstract. The clustering is based on terms which occur in at least 100 papers.



Figure 3: Word cloud of CMIP6 science. Word cloud generated by analysis of titles and abstracts of 5152 Web of Science articles. Words are grouped according to closeness defined by the frequency with which they appear in the same papers. Yellow indicates clustering of more commonly used words. Generated by VOSViewer.

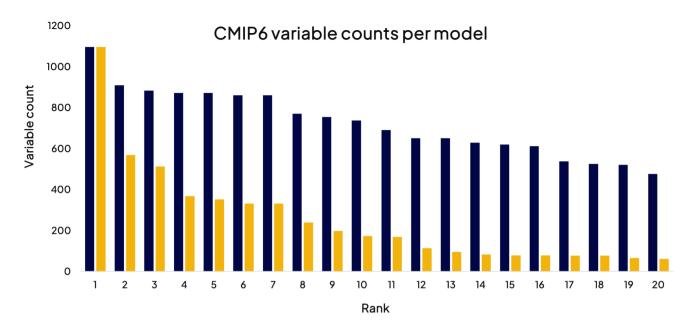


Figure 4: Variable provision in CMIP6. The number of variables (y-axis) published for the historical simulation by each model (as represented in the DKRZ Earth System Grid Federation (ESGF) index node August 2023) is shown in blue columns against the model rank, where models are ranked in order of decreasing variable count. Also shown, in orange, is the number of variables which are included by all models up to the given rank. For comparison, the total number of variables requested by all MIPs from the CMIP6 historical simulation was 2301, with 1484 of those assigned priority one by one or more MIPs.

1.3 Objectives of the Earth System Modelling Baseline Climate Variables list

As the name suggests, the list presented here is intended to define a baseline set of climate variables which can be produced by ESM activities, and which are of widespread interest. By including a rather limited subset of commonly analysed variables, we expect that modelling groups should easily be able to routinely provide all variables and that data centres should be able to accommodate the generated data volumes. For <u>indirect users such as</u> the climate and climate impacts research communities, the variables in the baseline set will facilitate consistent and efficient comparison of simulations across multiple intercomparison projects, both within and between existing and future CMIP eras, by enhancing standardisation at the variable collection level (see Figure 4 and discussion in Section 1.4 for the motivation behind this objective).

Use of the term "Earth System Modelling" in describing the list is meant to convey that these variables should be of interest from a wide range of models used in studying the climate of the Earth system. This includes, for example, not only models which have a detailed representation of interactions between the physical climate and the biosphere but also simpler models which play a role in advancing understanding of critical elements of the Earth system.

Although the list serves as a "baseline", it is not expected to be sufficient in addressing many of the specific science questions that are the focus of MIPs. Invariably, additional variables will be of value and, in some cases, essential in interpreting and understanding simulation results. There may also be some model intercomparison experiments that focus on

a single aspect of the Earth system where many of the baseline variables will be irrelevant or of little interest. As a trivial example, in the case of an atmospheric model run with prescribed sea surface conditions, all the baseline ocean variables, except sea surface temperature and sea ice fraction, will be irrelevant. On the other hand, none of the variables characterising bio-geochemical cycles and atmospheric chemistry appear in the baseline list even though they would be essential in understanding those aspects of the Earth system.

136 -

131

132

133

134

135

137

138

139

140

141

142

144

145

146 147

148

Even if the list cannot meet all the requirements of MIPs, it can be considered the minimal suite of variables to be archived from simulations meant to serve a broad range of WCRP stakeholders. For the climate and climate impacts research communities, the variables in the baseline list will enable consistent and efficient comparison of simulations across multiple intercomparison projects, both within and between existing and future CMIP eras. The baseline list of variables may also nurture development of evaluation tools once there is an expectation that a consistent set of climate variables will be made available from many MIP experiments.

143

The ESM-BCV will also provide a basis for comparison with parameter lists widely used in different communities, such as the variables used for exchange of meteorological observations in the GRIB² protocol, the Essential Climate Variables (ECVs: World Meteorological Organisation 2022a,b; WMO 2022a,b,c), or the Global Climate Indicators (GCIs)⁴ concept in climate services.

1.4 Variable output by model

- The CMIP6 archive contains a comprehensive range of data products, with 72⁵ models contributing to the "all-forcing 149 simulation of the recent past (historical)"⁶, but users looking for data to support multivariable analysis can run into problems 150 151 because of lack of consistency in the selection of variables which are available for each model. Thus, although there are 25 152 models providing 390 or more variables for the "historical" simulation (see Eyring et al., 2016; Eyring, 2016), the number of variables which those models have in common is only to 57 (see Figure 4)⁷. This lack of consistency can force analysts to be 153 154 selective about the models included in any analysis and lead to lack of interoperability between derived products. If, for 155 instance, a drought indicator is based on a cluster of models "A" which have a full range of precipitation, runoff and 156 evapotranspiration variables at monthly frequency and the growing season indicator is based on a cluster of models "B" 157 which have daily precipitation, cloud cover and temperature variables, including daily extremes, the differences between
- 2GRIB (General regularly distributed information in binary form) is the WMO standard for operational exchange of meteorological data (World Meteorological Organisation, 2023).
- 19 3ECVs (Essential Climate Variables) are a standard list of variables and associated quality targets used to harmonise Earth
- 20 Observation data products. https://gcos.wmo.int/index.php/en/essential-climate-variables
- 21 4 https://gcos.wmo.int/en/global-climate-indicators
- 22 5 This discussion is based on information from the ESGF index, accessed 24 August, 2023.
- 23 6 The all-forcing experiment of the recent past (historical) in CMIP is designed to enable the evaluation of model
- 24 simulations against present climate and observed climate change.
- 25 7 Data publication for CMIP6 is still ongoing, but the pattern of gaps in the archive persists as data volumes expand.

clusters ``A" and "B" may hamper combined use of the two products. If set A is defined by models which have, for the historical, ssp126 and ssp245 experiments, variables Amon.pr, Lmon.mrro, Lmon.evspsblveg, Lmon.evspsblsoi in the CMIP6 naming conventions and set B is defined by models which have day.pr, day.tasmin, day.tasmax, and day.clt for the same experiments, then set A has 34 models from 20 institutions, set B has 27 models from 19 institutions and the intersection is 20 models from 14 institutions. Publication of CMIP6 data is ongoing and details may evolve, but the patterns of inconsistency seen here represent a snapshot of the data landscape which confronts users dealing with the archive now.

1.5 Stakeholder groups

164

172

- 165 CMIP, and hence the CMIPDR, has an extensive community of stakeholders. Table 1 lists the main stakeholder groups.
- 166 Some of these (darker shading) have a direct interest in the specific variables which are requested, archived and
- 167 disseminated. Others (lighter shading) are more concerned with derived products and messages and with the level of
- reliability and trust which can be associated with those products and messages.
- The existence of a set of baseline variables which is available consistently from virtually all models and experiments is of
- 170 particular importance to this second group because they often use derived products which depend on multiple variables from
- 171 multiple models and experiments.

2 Process and Methodology

- 173 The 2022 CMIP6 Community Survey (O'Rourke, 2023) received over 300 responses. There was very clear appreciation for
- the coordination effort and the principles behind the CMIP6DR but many respondents did suggest that there were too many
- 175 variables assigned priority "1" and this placed a burden on the modelling centres⁸. These responses reflected the discussion
- at the conference held by the WCRP Working Group on Coupled Modeling (2019) in Barcelona at which a community
- intention to reduce the number of variables at priority "1" from around 50% to a significantly smaller number emerged, with
- a suggestion to start with those prioritised by AR6 WG1 (see Juckes, 2020).
- 179 The 2022 CMIP6 community survey also received many responses highlighting a need for additional variables including
- 180 increased temporal resolution, more ocean variables, variables relevant to extremes, as well as those variables required to
- 181 support the CORDEX (Gutowski et. al. 2016) regional downscaling community and their downstream users. These
- requirements for additional variables are not addressed by the baseline list.
- 183184
- 185
 - 28 8 The prioritisation of variables in the CMIP6 Data Request was always conditional on an objective such as support for a
 - 29 specific MIP. For example, a variable might be priority 1 for SIMIP (Seaice MIP) but of no interest for LUMIP (Land Use
- 30 MIP).
- 31 32

<u>Title</u>		<u>Description</u>	Example or reference
	Climate System Science	Communities studying the global climate, including those studying geographically localised processes and their role in the global climate.	The endorsed CMIP6 MIPs; research teams and individual researchers at all career stages.
RS	Science of Climate Impacts and Mitigation	 Communities studying the impact of climate change and variability on environmental systems and socio-economic sectors. Regional climate modelling. 	VIACSAB, ScenarioMIP, CORDEX and GeoMIP.
TUSE	Climate modelling	Institutions and networks developing and running climate models	Institutions contributing to CMIP6.
DIRECT USERS	Climate Research Infrastructure	 Data centres supporting curation, dissemination and analysis. Software libraries and services, standards, protocols. 	-
	Climate Service	 Publicly funded organisations providing climate information and related services for public consumption. Not-for-profit organisations providing climate services. Commercial organisations providing support for customers. 	There is a large and growing ecosystem of climate service providers. Examples include: C3S, European Environment Agency, consulting firms.
M USERS	Providing support for those impacted by climate change	Organisations that work with individuals and communities which are being impacted by climate change. This could be seen as a category of climate service but is included to emphasise the significance of this role.	World Bank, United Nations Environment Programme (UNEP), Adaptation Fund, IPCC and United Nations Framework Convention on Climate Change (UNFCCC).
INDIRECT/DOWNSTREAM USERS	Public decision makers	The decision makers often rely on information from the downstream products provided by climate services and consultancies, some of which might be derived in part from CMIP data.	Parties to the UNFCCC, Local and national policy and decision makers.
	Commercial organisations impacted by climate change	Anything from the Panama Canal to a fruit orchard in Normandy, climate change will impact all sectors of society. Most critically, it is starting to impact the habitability of some cities and the security of food supply for many. They may have internal services, or procure services, or be supported by sectoral interest groups/representative bodies.	
	Concerned Public	The public may get their information from news bulletins, but key messages are often derived from CMIP and related activities.	

	Title	Description	Example or reference
	Climate- System- Science Communities studying the global climate, including those studying- geographically localised processes and their role in the global- climate.		The endorsed CMIP6 MIPs, with the exceptions of VIACSAB, ScenarioMIP, CORDEX and GeoMIP.
DIRE	Science of Climate Impacts and Mitigation	 Communities studying the impact of climate change and variability on environmental systems and socio-economic sectors. Regional climate modelling. 	VIACSAB, ScenarioMIP, CORDEX and GeoMIP.
CT USE	Climate- modelling-	Institutions and networks developing and running climate models	Institutions contributing to CMIP6.
RS-	Climate- Research- Infrastruct ure	 Data centres supporting curation, dissemination and analysis. Software libraries and services, standards, protocols. 	-
	Climate- Service-	 Publicly funded organisations providing climate information and related services for public consumption. Not-for-profit organisations providing climate services. Commercial organisations providing support for customers. 	There is a large and- growing ecosystem of- climate service providers. Examples include: C3S, European Environment- Agency, consulting firms.
HNDI REG T/ DOW NST REA	Providing support for those impacted by climate change	Organisations that work with individuals and communities which are being impacted by climate change. This could be seen as a category of climate service but is included to emphasise the significance of this role.	World Bank, United Nations Environment Programme- (UNEP), Adaptation Fund, IPCC and United Nations- Framework Convention on- Climate Change- (UNFCCC).
USE RS	Public- decision- makers	The decision makers often rely on information from the downstream products provided by climate services and consultancies, some of which might be derived in part from CMIP data.	Parties to the UNFCCC, Local and national policy and decision makers.
	Commerci al- organisatio ns- impacted-	Anything from the Panama Canal to a fruit orchard in Normandy, elimate change will impact all sectors of society. Most critically, it is starting to impact the habitability of some cities and the security of food supply for many. They may have internal services, or procure services, or be supported by sectoral interest	

	by climate change	groups/representative bodies.	
	Concerned Public	The public may get their information from news bulletins, but key- messages are often derived from CMIP and related activities.	

Table 1: CMIP data request stakeholder groups

2 Process and Methodology

the coordination effort and the principles behind the CMIP6DR but many respondents did suggest that there were too many variables assigned priority "1" and this placed a burden on the modelling centres⁹. These responses reflected the discussion at the WGCM-22 2019 meeting in Barcelona where a community intention to reduce the number of variables at priority "1" from around 50% to a significantly smaller number emerged, perhaps starting with those prioritised by AR6 WG1 (see Juckes, 2020).

The 2022 CMIP6 community survey also received many responses highlighting a need for additional variables including increased temporal resolution, more ocean variables, variables relevant to extremes, as well as those variables required to support the CORDEX (Gutowski et. al. 2016) regional downscaling community and their downstream users. These requirements for additional variables are not addressed by the baseline list.

The 2022 CMIP6 Community Survey (O'Rourke, 2023) received over 300 responses. There was very clear appreciation for

2.1 Launch and scoping workshops

The consultation process was launched in April 2022 by the CMIP International Project Office (IPO) with a request for feedback on the proposed process, an invitation to scoping meetings, and a target of establishing "a baseline set of variables for exchange of climate model data" (see Appendix 4). The announcement was sent to modelling centres and Data Request leads, the MIP Chairs and circulated by the World Climate Research Programme. Responses, 32 in all, were received from respondents across Asia, Europe and North America, whose CMIP6 involvement ranged from Data Request leads, modelling centre leads and MIP chairs, to users of CMIP data, for scientific and climate impact modelling as well as climate services provision. The findings from this survey were discussed at two scoping workshops held on May 12th and 17th 2022. The focus of the workshops was on finalising the process for defining the variable list, creating an author team for this paper, and creating an outline of the paper structure.

9 The prioritisation of variables in the CMIP6 Data Request was always conditional on an objective such as support for a specific MIP. For example, a variable might be priority 1 for SIMIP (Seaice MIP) but of no interest for LUMIP (Land Use MIP).

- 226 The scoping workshop report includes direction for authors to focus on clarifying the purpose and function of the list and
- 227 identifying the requirements of user groups.
- There was also concern about the selection criteria. There is clear agreement on the need for a baseline list and a recognition
- 229 of the utility of such a list for many user communities, and a high level of support for the process of expert elicitation
- adopted. Some contributors argued for a process based on defining specific variable selection criteria which could be applied
- consistently to every variable in the list, but there were no specific proposals for such criteria. Instead, the process adopted,
- 232 in line with the established approach in the CMIP6DR, the process adopted was to ask experts to consider the list against the
- agreed objectives (see section 1.2 above).

2.2 Shortlisting from the CMIP6 request

- The initial shortlist of baseline variables was arrived at based on the CMIP6 archive's model output statistics, which gauge
- 236 the willingness of modelling groups to report each variable and the user demand for each variable reported. The resulting
- shortlist of variables was then edited and augmented, based on community input.
- 238 -

234

- 239 | Selection of an initial shortlist of variables was based on the variables requested for CMIP6 but excluding all but priority-1
- 240 variables. Three scores were calculated ranking the variables according to the number of models contributing, volume of
- data downloaded, and number of files downloaded. The shortlist provided a starting point for the consultation and expert
- 242 discussion.
- 243

251

- 244 The formal steps taken were as follows:
- 245 (1) Extract the list of 1206 variables assigned default priority 1 in CMIP6, out of a total of 2062.
- 246 (2) For each variable, assign three ranking scores, r1, r2, r3:
- (a) r1: ranked according to the volume of data downloaded across the entire CMIP6 archive, retrieved from the ESGF dashboard (Fiore et al., 2021)¹⁰.
- (b) r2: ranked according to the number of files downloaded across the entire CMIP6 archive, retrieved from the ESGF dashboard.
 - (c) r3: ranked according to the number of models that provided the variable for the CMIP6 historical experiment.
- 252 (3) Rather than weighting the criteria we take Order the variables according to the minimum rank, $r_{min} = min(r1,r2,r3)$ of the
- 253 three scores.
- 254 | (4) Define the shortlist as the first 125 variables ordered by r_{min} , together with their supporting fixed fields (which are
- 255 necessary for correct interpretation of the data, e.g, grid cell area, or volume).
- 44 10 http://esgf-ui.cmcc.it/esgf-dashboard-ui/; the download statistics are from the server log files which record successful
- 45 responses to requests received over HTTP, including requests from scripts and from browsers. Some usage is not monitored,
- 46 such as multiple users accessing a shared processing space. Open access has been prioritised at the expense of
- 47 comprehensive usage information, but the majority of users are still accessing data via the mechanisms which do get tracked.

For details of the variables which were included in the shortlist see Appendix 1 and 2.

2.3 Community survey and analysis

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Following the creation of a shortlist, a community survey was designed to elicit expert feedback on the initial list. The survey was targeted at those providing access to and/or utilising the outputs of climate models within commercial, public and voluntary sectors together with academia. The survey was circulated to the CMIP mailing lists for modelling centres, data request, MIP chairs, circulated by WCRP and the author team and promoted through CMIP social media channels and was open to respondents for a period of just over six weeks between 23 August and 8th October, 2022. From the 44 responses received, the majority identified as climate data users, 12 identified as climate model data providers. The shortlisted variables were reviewed in detail by 29 respondents: these respondents were invited to review a selection of variables relevant to their expertise or data usage. 16 respondents reviewed 5 variables or less, the remainder reviewed a larger selection. A scoring methodology was provided to ensure review consistency. A full summary report of the survey responses has now been published (O'Rourke and Turner, 2022; see also the survey announcement in Appendix 4[to be included in supplementary material]).

2.4 Shortlist Revision and Consequences

- 270 In two further author team meetings in late 2022, the results of the survey were discussed and analysed in depth to consider
- 271 potential additions and deletions of some shortlisted variables.
- 272 In early 2024 checks of the ESGF dashboard revealed a previously undetected error in reporting the download statistics that
- 273 were relied on in arriving at the initial short list of variables. Data transfers associated with unsuccessful requests for partial
- 274 file downloads over very low capacity networks had been misreported in log files as successful, exaggerating the user
- 275 demand for some variables. The team at CMCC Foundation (Euro-Mediterranean Center on Climate Change) responsible for
- the dashboard were able to provide corrected download statistics based on a reanalysis of log files. The corrected download
- 277 reports were used to re-assess variables in the ESM-BCV list agreed on in 2022, resulting in four variables being removed
- and a different four being added (see Appendix 2, tables A5 and A6, for details of individual variables).
- 279 Further discussions by authors and a final meeting in June 2024 led to a review of the criteria for fixed model configuration
- 280 fields (they were retained if more than 12 models had provided the variable for at least one experiment).

3 The form and role and the baseline list

- The variable list presented here will be a baseline set of variables for global model intercomparison, evaluation, and
- 283 exploitation projects and programmes. This is intended as a starting point for more comprehensive lists tailored to specific
- applications. Many of the variable definitions in the list are used in modelling activities across the whole scope of WCRP
- activities, either through MIPs associated with CMIP (particularly in the Climate and Cryosphere, CliC, and Climate and

Ocean Variability, Predictability and Change, CLIVAR, core projects) or for output from activities such as CORDEX (Regional Information for Society, RIfS, and, Global Energy and Water Exchanges, GEWEX, core projects) and the Chemistry-Climate Model Initiative (part of the Atmospheric Processes and their Role in Climate, APARC core project) which are shadowing CMIP data protocols: the ESM-BCV list will support progress towards greater consistency and interoperability in data outputs from this extensive range of activities.

3.1 Form of the list

286

287

288

289

290

291

303

304 305

- The baseline variable list should also provide a model for clarity and interoperability. This scope of this paper covers selecting and defining the physical quantities along with their spatio-temporal sampling structures.
- 294 Some variables are categorised as "high volume" and should be considered as optional when resource constraints apply.
- 295 These variables have a particularly high value for many users, but are likely to be too resource intensive for many climate
- 296 simulations. They are included so that they can benefit from the visibility afforded by the baseline list, but are not expected
- to be systematically produced to the same extent as the other variables in the list.
- This paper is concerned with the scientific definition of the baseline variables with a simple semantic structure. Each entry is identified by a short name (composed of CMIP6 CMOR table and variable short name), title, a description, a standard name and units, a format that has evolved since CMIP3 (WGCM Climate Simulation Panel, 2007circa ~2003). Syntax rules for list entries are given in Table 2. The identifier will be considered as a registration identifier and is not expected to be used in CMIP7 era products. New naming conventions are under discussion (K. Taylor, personal communication).
 - We have not been able to eliminate redundancy from the list: for instance, there is redundant information in variables on 8 atmosphere levels and the same variables on 19 levels. The evidence from CMIP6 usage statistics is that both variations are very highly used.

<u>Item</u>	Syntax Rules
<u>Variable Title</u>	The title should match the rules set out in the "Style Guide for Variable Titles in CMIP6" (Juckes, 2018).
<u>Variable</u>	The standard name must be included in the current CF conventions standard name list.
Standard Name	
<u>Variable Units</u>	The units must have the same dimensions as canonical units of the standard name. I.e. the same
	combination of base dimensions as defined by the the International System of Units (International Bureau
	of Weights and Measures, 2019)11. The baseline variables list published here uses combinations of four
	dimensions: time, length, mass, and temperature.
Structure Title	The title should match the rules set out in the "Style Guide for Variable Titles in CMIP6" (Juckes, 2018).

306

52 11 The University Corporation for Atmospheric Research (UCAR) Udunits package (https://www.unidata.ucar.edu/software/udunits/) can be used to check consistency of unit dimensionality.

Item	Syntax Rules
Variable Title	The title should match the rules set out in the "Style Guide for Variable Titles in CMIP6" (Juckes, 2018).
Variable	The standard name must be included in the current CF conventions standard name list.
Standard Name	
Variable Units	The units must have the same dimensions as canonical units of the standard name. I.e. the same
	combination of base dimensions as defined by the the International System of Units (BIPM, 2019) ¹² . The
	baseline variables list published here uses combinations of four dimensions: time, length, mass, and
	temperature.
Structure Title	The title should match the rules set out in the "Style Guide for Variable Titles in CMIP6" (Juckes, 2018).

Table 2: Syntax rules for items in the baseline variables list.

3.2 Role from the modeller's perspective

The list of baseline variables will, in the first place, aid the model development process as a set of diagnostics for which known good output is created by the model. For instance, this set can be used in regression tests when evaluating new model versions, in order to detect significant changes in output.

The greater the overlap between what is output by the model and the baseline list, the bigger the contribution the model will be able to make in intercomparison exercises, and the more widely the variables produced by the model will be used. Thus, producing and publishing as many of the listed baseline variables as possible should be an aspiration in the development and use of the model.

From the model developer's perspective, transparency in the process of creating the baseline variables list is important, because it clarifies the purpose of the list. The value of having a list and using it should be well-understood. It is not expected that all models will be able to generate all variables, but the exclusion of specialised variables from the list will ensure that most models can produce most variables. The process for maintaining and extending the list should be equally transparent. If a modelling group is unable to provide a variable (especially one on the baseline list), they should be encouraged to provide a reason using - for example - one of those listed in Table 3. The process for providing feedback should be lightweight and transparent.

Reason Description		Comments		
Resource Constraints The level of resources needed to implement the required workflow and handle the data streams is not available		Resource constraints may be due to staff availability or limits on the data volume or throughput that can be supported.		
		Errors could result from an undetected coding error or disruption of a workflow. Even if the coding error is easy		

12The University Corporation for Atmospheric Research (UCAR) Udunits package (https://www.unidata.ucar.edu/software/udunits/) can be used to check consistency of unit dimensionality.

58 17

	variable was not generated correctly, and it is not expected to be corrected.	to correct, repeating the workflow to generate the missing variable may be too costly.
Local Priorities	We need to choose between a range of different data requirements, and other variables, not in the baseline request, were found to have a higher priority for our users.	This is similar to Resource Constraints but draws attention to a different prioritisation rather than an overall resource limit.
Model Structure	The model does not support generation of the requested variable.	For example, an ocean ecosystem model can be phosphate-based rather than nitrogen-based (though the latter is more common). In that case the model may not be able to output nitrate concentrations in the ocean, but it is simply a matter of choice of the model developers and not a matter of model quality.

Table 3: Reason codes for omission of variables from a model's archived data.

3.3 Role from the infrastructure provider perspective

Data infrastructure such as the Earth System Grid Federation (ESGF, https://esgf.llnl.gov/), the Climate and Forecast Conventions (CF, https://cfconventions.org/) and the CMIPDR, along with secondary data portals, cloud platforms, and collaborations (e.g., the Copernicus Climate Change Service C3S, https://climate.copernicus.eu/ and PANGEO https://pangeo.io/), together with underlying physical infrastructure, staff, and curation systems provided by host institutions, disseminates climate datasets created by a variety of international modelling centres building on the data standards set by the community. This standardisation ensures that user analysis can be performed across the multimodel ensemble, and facilitates the scaling of data processing systems to provide and work with volumes at the magnitudes involved in CMIP. For automated data processing options, standard compliance is essential (but see comments on incomplete compliance above). For example, ESGF aims to enhance its compute services as part of its future architecture plans (Kershaw et al., 2020). Secondary data evaluation or analysis packages such as ESMValtool (Weigel et al., 2021) and the Program for Climate Model Diagnosis & Intercomparison (PCMDI) metrics package (Lee et al., 2022, 2024) also rely on these data standards. The CMIP approach is founded on the Climate and Forecast (CF) metadata standards for NetCDF data. The CMIP project has built upon these with the Data Reference Syntax (DRS; Taylor et al., 2018) defining file naming and data structure conventions and the Controlled Vocabularies (Durack et al., 2024) defining the terms within these components. A baseline variable list with common variable definitions will furthermore enable portals and indexers to support crossproject data discovery and data analysis. The unique identification of the baseline variables and a consequent versioning and maintenance of the list will ensure traceability of the variable usage in future. The I-ADOPT Framework ontology (Magagna et al., 2021) provides a standard for this, which is implemented by the NERC vocabulary server providing e.g. the CF Standard Names (http://vocab.nerc.ac.uk/collection/P07/current/). The quality of data and metadata is of crucial importance. There are certain metadata which must have correct values for the

60 18

data to be ingestible by applications such as ESMValTool (Weigel et al., 2021).

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

Reliable and maintained software tools for creating standard compliant datasets are available for the modelling centres, but a range of issues associated with implementation workflows has led to incomplete compliance in CMIP archives. A scan of files from the CMIP archive (Petrie et al., 2024) revealed a wide range of technical errors. Some of these are related to mistakes in the specification of cell methods, which might be obviated by improved documentation - particularly for those cell methods which are used by the baseline variables. It should also be noted however, that most of the errors would have little impact on the use of a majority of software applications. Experience shows that time-consuming or resource-intensive data quality checks applied before data publication can reduce the amount of time and energy that has to be invested in correcting issues and replacing datasets. The CMIP6 requirements specified compliance with the CF Conventions and correct implementation of metadata specified in CVs and the data request (the latter can be verified with the PrePARE tool, Nadeau et al., 2023). More detailed data checks such as the World Data Center for Climate quality control approach for CMIP5 (Stockhause et al., 2012) or for the C3S Climate Data Store (CDS, Buontempo et al., 2022) include range, outlier, and time axis checks alongside CF compliance.

Underlying archive services which host ESGF and other climate data infrastructures will also benefit from greater consistency between different intercomparison projects. Stability of data specifications and data structures will allow archives to develop and maintain systems that exploit these structures with confidence that they will persist and be relevant for the duration of the data exploitation cycle.

3.4 Role from the data user's perspective

Data users of CMIP are a diverse community ranging from climate modellers, to scientists from a wide range of disciplines, to private sector product developers, and it is therefore hard to define who a "typical" user is. Historically climate scientists were representing the most important component of the user landscape. Their use of the data was to understand processes and study the future evolution of the climate and its potential impact on the natural system and human activities. There is no obvious boundary between climate impacts scientists and downstream exploitation of CMIP data for climate services (either public or private).

Data users of CMIP are a diverse community ranging from climate modellers, to scientists from a wide range of disciplines, to private sector product developers, and it is therefore hard to define who a "typical" user is. Historically climate scientists were representing the most important component of the user landscape. Their use of the data was to understand processes and study the future evolution of the climate and its potential impact on the natural system and human activities. There is no obvious boundary between climate impacts scientists and downstream exploitation of CMIP data for climate services (either public or private). CMIP data represents an important source of quantitative information for a large variety of actors and researchers operating well beyond the baseline-remit of the "climate science" community. These users include academics and industry working in areas which could possibly be called the climate adaptation and climate service community. A key need from this community, however, is the access to high-quality quantitative climate projection data, particularly focussing

on ECVs (e.g., wind-speeds, insolation, precipitation, surface air temperature) mostly close to the surface. These correspond to a very small subset (~10) of the many variables CMIP makes available, but the existence of high-frequency and highresolution climate data would enable much deeper integration of climate model output with "downstream impact models" (which often describe highly complex responses to a given set of meteorological time series input). An example of this lies in the energy systems research and applications (Craig et al., 2022; Dubus et al., 2022); the models used to inform electricity system planning typically operate on hourly-timesteps (as many of the fundamental design constraints relate to this timescale) and thus, to couple effectively, hourly gridded climate data (e.g., relating to wind resources at individual sites and timesteps) becomes essential. It would be extremely beneficial for the application community to ensure both widespread output of a small-but-comprehensive set of essential surface climate variables at the highest feasible sub-daily frequency along with a very strict observance of data and metadata standards for them. The contrast between this and previous CMIP archives would be considerable: in the current archives any analyst that wishes to look at more than a few essential surface climate variables must make a choice between having heterogeneous diagnostics, with different multi-model ensembles for each variable, or limiting the number of models involved, or making extreme compromises on the data frequency provided (e.g., daily rather than sub-daily). Neither of these is ideal. By establishing a clear and realistic baseline we hope to ensure that there is a greater level of consistency in the data collections, allowing more robust multivariable analysis and enabling much stronger linking of raw output from climate models with "downstream impact models", facilitating the translation of climate risk into meaningful and applicable information for end-users and wider society.

The ambition is to achieve 90% of models providing 90% of the low volume and configuration baseline variables across major intercomparison programmes such as CMIP7. In fact, in the last CMIP6 exercise only 29% of models provided 29% of priority 1 variables, 90% of models provided 8% or more, and only 2 models provided 50% or more.

13 These figures are for August 2023. Figures taken in March 2022 were very similar: 28% of models providing 28% or more of priority 1 variables, 90% or models providing 7.8% or more. 2 models providing more than 50%.

20

64

65

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

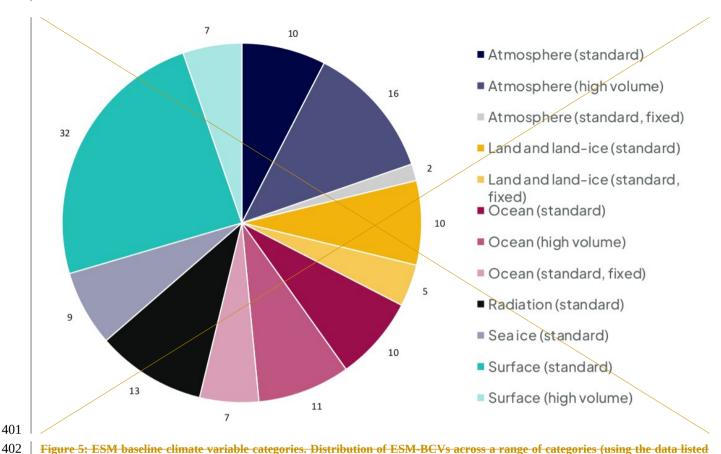


Figure 5: ESM baseline climate variable categories. Distribution of ESM-BCVs across a range of categories (using the data listed in Table A7). A variable is considered as "high-volume" (dark shading) if 10 thousand years of simulation generates more than 1,500 GB of data from a 1-degree resolution model with 60 atmospheric levels and 500 oceanic levels archived (assuming single precision data storage without compression).

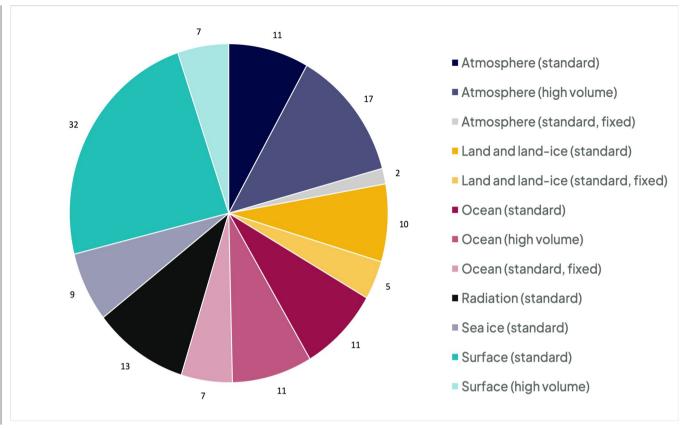


Figure 5: ESM baseline climate variable categories. Distribution of ESM-BCVs across a range of categories (using the data listed in Table A7). A variable is considered as "high-volume" (dark shading) if 10 thousand years of simulation generates more than 1,500 GB of data from a 1-degree resolution model with 60 atmospheric levels and 500 oceanic levels archived (assuming single precision data storage without compression).

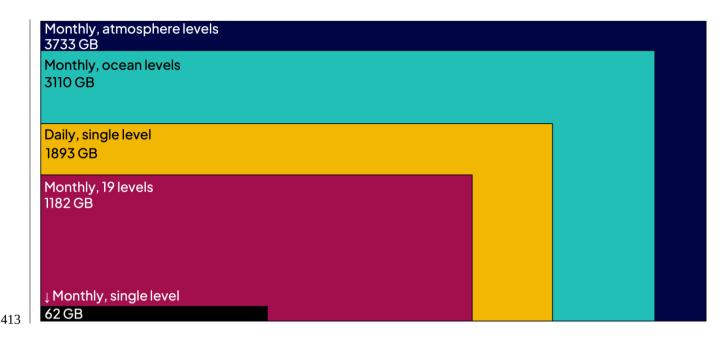


Figure 6 Example data volumes expressed as GB per 10,000 years of simulation for a notional 1-degree resolution model with 60 atmospheric levels and 50 oceanic levels (see Table A8 for details). Each rectangle area (both visible and obscured) represents the nominal volume for a specific output category. Single precision data storage without compression are here considered.

4 Results

The ESM-BCV list, after shortlisting and revision, contains 132 variables listed in Appendix 1 (tables A1, A2 and A3). In the final list there are 121118 time series and 14 fixed fields. Of the time-varying fields, 3534 are classified as high volume (see Figure 6 and Table A8 for the illustrative data volumes that determined the categorization). The high-volume category includes sub-daily data, daily data on 19 pressure levels (see Appendix 5 for details) and monthly data on ocean model levels. The remaining 8684 lower volume time-varying fields and the 14 fixed field variables should be considered top priority for most WCRP MIP climate simulations, although it is recognised that in the short term, at least, it may not be possible to provide 100% of them in all cases. More details are given in Figure 5 and Table A7.

The shortlisting was based on four criteria: limiting consideration to CMIP6 priority 1 variables, number of files downloaded, volume of data downloaded, and the number of models for which a variable was provided.

428 Although all four criteria were formally included in the shortlisting process, they had differing impacts:

- 1. Limiting consideration to CMIP6 priority 1 variables prevented only one variable from making the short list (monthly Temperature of Soil, Lmon.tsl).
 - 2. The criteria based on the number of files downloaded added one variable which would have otherwise not been included (daily Total Cloud Cover Percentage, day.clt).
 - 3. The short list of low-frequency variables (monthly and lower frequency) would have been unaffected had we only considered the number of contributing models.
 - 4. If download volumes were used as the only criterion, the resulting list of higher-frequency variables (daily and higher) would have been the same as considering all four criteria (apart from "day.clt).

438 | -

Thus, for fixed and monthly-mean fields, the shortlist was largely based on the model participation statistic, and for the high frequency fields it was based on volume of data downloaded. This process resulted in a shortlist of 147 variables.

During the subsequent community consultation, 27 variables were removed from the shortlist (see Table A5) and <u>1542</u> were added (see Table A6), resulting in the <u>135432</u> variables listed in Appendix 1.

We can support the reasonableness of the ESM-BCV list by pointing out that it is not dissimilar to past lists of CMIP high priority standard output. Modelling groups participating in MIPs have been producing many of these variables for over two decades. It is informative to compare the ESM-BCV list with the 118 high priority variables specified for CMIP3 (WGCM Climate Simulation Panelsee Taylor et al., 2007). Some variables in the CMIP3 list were dropped prior to CMIP6 because they were designed to monitor model limitations which are no longer relevant (e.g., imposed ocean "flux corrections" are no longer needed). Eliminating such variables, we find 80% of the variables remaining are also included in the BCV list. This indicates that although list development followed different procedures in the past, nevertheless, there is a high degree of continuity in the perceived value of these variables.

The process of consultation, in defining the short list as well as agreeing subsequent revisions, has helped to spread awareness of the scope and impact of the CMIP variable metadata and has driven new engagement in the process. There was strong support for the utility of the list (80% of survey respondents rating usefulness four or five out of five). There was also support for the process, but with caveats raised about the possible bias towards past requirements rather than future needs (O'Rourke et al. 2023). The author discussions leading to finalisation of the list went beyond evaluation of the community consultation. The name of the list, which started as "Baseline Climate Variables" changed twice. Firstly to "Baseline Climate Variables for Earth System Models" in order to avoid any appearance of detracting from the Global Climate Observing System (GCOS)GCOS Essential Climate Variable work (World Meteorological Organisation, 2022c) by clearly emphasising the focus here on model data and finally to Baseline Climate Variables for Earth System Modelling to avoid the potentially

restrictive interpretation of Earth System Models only being those with a comprehensive range interactions between the biosphere and physical climate components.

4.1 Provenance

465

470

- 466 The CMIP6 variables derive from many sources. Many variables were inherited from CMIP5 Standard Output (PCMDI,
- 467 2013). Revisions and extensions in CMIP6 came from Griffies et al. (2016) for Omon variables, van den Hurk (2016) for
- 468 lans surface variables, Notz et al. (2016) for sea-ice variables, Gerber and Manzinii (2016) for daily atmospheric fields,
- 469 Haarsma et al. (2016), Ruane et al. (2016) for 6hrPlev.hurs, Jones et al. (2016) for carbon cycle and terrestrial biosphere.

4.2 Limitations, extensions, and revision

- 471 As noted in the introduction, the ESM-BCV list is deliberately limited in scope so that it can be implemented across a wide
- 472 range of modelling activities without incurring unreasonable cost. The need for additional variables in many important use-
- 473 <u>cases was discussed, such as the need for more variables to close the carbon budget, accurately reflect ocean heat content, or</u>
- 474 monitor ocean currents. Coverage of these use cases is deliberately omitted here and is being picked up in the CMIP AR7
- 475 | Fast Track Data Request 14. The latter request contains, in the version 1.0 release, over 1800 variables which are associated
- with specified scientific or climate impacts use cases.
- 477 It has also been noted that the use of model levels for ocean variables results in high volume datasets which can be difficult
- 478 for some users to exploit because of the complexity of the vertical coordinates used in models. Discussions about a potential
- 479 shift to an agreed set of layers in a standard coordinate system are taking place within the ocean theme of the CMIP AR7
- 480 | Fast Track Data Request. Some overlapping spatial dimensions (P8 and P19 atmospheric levels) and temporal frequencies
- 481 (3hr and 1hr) are still part of the list to enable a certain flexibility, e.g. for MIPs proposal, to either retain or avoid such
- 482 redundancies in the compilation of a specific experiment request.
- 483 Revision of the list, that is to say changing the variables included in the baseline rather than constructing a larger list which
- 484 builds on the baseline as is being done for the CMIP AR7 Fast Track Data Request, has also been discussed. It is clear that
- 485 revision will be needed to accommodate changes in scientific focus, but this need for revision needs to be balanced against a
- need for stability associated with the central aim of enhancing interoperability between distinct activities and distinct phases
- 487 of CMIP.

78 (https://wcrp-cmip.org/cmip7-data-request-harmonised-thematic-variables/) [both links accessed 26th June, 2034]).

^{76 14}The process for extending the list was launched by a CMIP Panel decision "G1 [Gateway 1] DR Strategic Approach"

⁽https://airtable.com/shrIAHOuVw8ktdoe1, items 9 and 10, approved July 24, 2023) and announced in Dec. 2023

5 Conclusion

488

- 489 The set of 132 ESM-BCVs presented here provides a reference collection of variables for MIPs which will facilitate greater
- 490 consistency in data requests. By identifying variables which have high utility in many applications, the ESM-BCV list will
- also enable modelling centres to develop, standardise, and rationalise workflows.
- 492 The baseline list presents a standardised set which should be within reach of any modelling centre aspiring to generate data
- 493 for community evaluation and exploitation. There will always be circumstances in which variables need to be omitted,
- 494 especially the high-volume subset of 3534 variables, but we expect this baseline set to lead to enhanced consistency in the
- 495 expanding WCRP climate projections archive.
- 496 The ESM-BCV list should be considered a snapshot of variables currently considered by modelling groups and users to be of
- 497 general high value. Its similarities with earlier CMIP lists of high priority variables attests to its likely continued relevance
- 498 long into the future, but the expectation is that periodically a reassessment of community priorities will result in minor
- 499 modifications to the list.
- The baseline variable list has grown out of the CMIP6DR (Juckes et al., 2020) and is dominated by variables already present
- 501 in earlier requests (PCMDI, 2013). It has been shaped by feedback about the problems caused for users by inconsistencies in
- 502 the CMIP6 archive and for providers by late finalisation of the request (see Figure 3 for more details). The baseline variable
- 503 list will reduce the workload for data providers, service providers and users by providing a reusable and reliable basic set of
- 504 variables. For users in the climate services and other communities outside the research community, the baseline variables
- 505 will promote greater consistency and transparency in the derived products used by these communities, which typically
- depend on multiple variables and multiple climate models.
- Although the baseline set includes little over 7% of the variables found in the CMIP6 Data Request, the consultation process
- 508 revealed that most climate-service users tend to use an even smaller subset of the variables. A more detailed analysis of the
- 509 needs of the user and stakeholder landscape is required and may call for a further differentiation of the baseline variables
- 510 portfolio.
- There has been considerable interest in the creation and sharing of standard indices of climate variability (e.g. Klein Tank et
- 512 al., 2009). The level of standardisation of definitions of these indices is not sufficiently advanced to support reliable direct
- 513 collection through the data request. The underlying challenge providing a central reference for these indices will, however,
- be picked up by the CMIP7 Rapid Evaluation Framework (REF) project 15.
- 515 The ESM-BCV list is intended to address issues associated with the rapid expansion and relatively weak prioritisation of the
- 516 CMIP6 data request (around 50% of variables were classified as top priority, more than most models provided). The list
- 517 provides a starting point for any model workflows which are intended to support community multi-ESM ensembles.
- The list falls well short of the scope needed to support scientific analysis or detailed climate impacts assessment. In either of
- those cases additional variables will need to be defined for MVEs which target specific science goals or climate impacts
- 81 15 The figure for the number of ocean levels here is based on what was submitted to the CMIP6 archive. Some modelling
- 82 centres submitted data at lower resolution than the full model grid.

work. For instance, work on dynamical processes in the atmosphere will require high resolution models and specialised atmospheric variables to capture details of those processes. Work on the terrestrial biosphere will typically use lower resolution models and a broad range of land surface variables. Work on climate impacts will require a range of surface and near-surface variables archived at sufficient frequency to support analysis of impact on social, economic, and biological systems. For CMIP7, the baseline list will form the core of the data request and be complemented by a set of topic themed papers to be developed through a process which is based on that described here for the baseline variables ¹⁶.

We have not made a detailed comparison of the EM-BCVs and the GCOS Essential Climate Variables in this paper. This work is part of a wider set of changes to the way that climate model data standards are supported within WCRP. Care needs to be taken when comparing model output with observations: for instance the cloud cover variables used to compare models with each other are not directly comparable with observations.

Appendix 1: The baseline climate variables

There are 135132 ESM-BCVs. Of these, 3534 are flagged as "high volume" and 14 are fixed model configuration fields.

533 They are listed in Tables A1,2,3 below.

CMIP6 Identifier	Realm (frequen cy)	Title	Units	CF Standard Name			
	Model Configuration Field						
fx.rootd	Land (f)	Maximum Root Depth	m	root_depth			
fx.orog	Grid (f)	Surface Altitude	m	surface_altitude			
fx.sftgif	Grid (f)	Land Ice Area Percentage	%	land_ice_area_fraction			
fx.sftlf	Grid (f)	Percentage of the Grid Cell Occupied by Land (Including Lakes)	%	land_area_fraction			
	N	Model Configuration Surface Field,	Area Mea	n, Masked (Land)			
fx.mrsofc	Land (f)	Capacity of Soil to Store Water (Field Capacity)	kg m-2	soil_moisture_content_at_field_capacity			
		Model Configuration Surface Fiel	d, Area M	ean, Ocean Grid			
Ofx.sftof	Ocean (f)	Sea Area Percentage	%	sea_area_fraction			
	M	odel Configuration Field on Sea Fl	oor, Area	Mean, Ocean Grid			
Ofx.deptho	Ocean (f)	Sea Floor Depth Below Geoid	m	sea_floor_depth_below_geoid			
Ofx.hfgeou	Ocean (f)	Upward Geothermal Heat Flux at Sea Floor	W m-2	upward_geothermal_heat_flux_at_sea_floor			
Model Configuration Field, Area Sum (No Height Dependence)							
fx.areacella	Grid (f)	Grid-Cell Area for Atmospheric Grid Variables	m2	cell_area			
	Model Configuration Field, Area Sum, Ocean Grid (No Height Dependence)						
Ofx.areacello	Ocean (f)	Grid-Cell Area for Ocean	m2	cell_area			

¹⁶ Launched November 2024: https://wcrp-cmip.org/event/ref-project-launch/ [accessed 2024/12/03].

	Variables					
Model Configuration Integer Field of Flag Values, Ocean Grid						
Ofx.basin Ocean (f) Region Selection Index 1 region						
	Model Configuration Field on Ocean-Model Levels and Grid, Area Mean					
Ofx.masscello	Ocean (f)	Ocean Grid-Cell Mass per Area	kg m-2	sea_water_mass_per_unit_area		
Ofx.thkcello	Ocean (f)	Ocean Model Cell Thickness	m	cell_thickness		
Model Configuration Field on Soil-Model Levels, Masked (Land)						
Efx.slthick	Land (f)	Thickness of Soil Layers	m	cell_thickness		

Table A1: ESM Baseline Climate Variables: 14 fixed model configuration fields. These ESM-BCVs are listed under 10 different structures. For masked fields, the nature of the unmasked points is indicated in brackets, e.g. "Masked (Land)" implies that only land points are included. All are global fields. The "Model Configuration" fields have no temporal dimension. Area means and sums are taken over grid cells, time means are taken over the sampling period, e.g. a day or a calendar month. The frequency in column 2 indicates the frequency of stored data points, which may be time means or instantaneous values. The abbreviation is `f' for fixed.

CMIP6 Identifier	Realm (frequency)	<u>Title</u>	<u>Units</u>	CF Standard Name			
	Temporal Maximum, Near-Surface Field (2m)						
day.tasmax	Surface (d)	<u>Daily Maximum Near-</u> <u>Surface Air Temperature</u>	<u>K</u>	<u>air_temperature</u>			
		Temporal Minimum, Near	r-Surface	Field (2m)			
day.tasmin	Surface (d)	Daily Minimum Near- Surface Air Temperature	<u>K</u>	air_temperature			
		Time-Mean on 19 P	ressure Lo	<u>evels</u>			
Amon.hur	Atmosphere (m)	Relative Humidity	<u>%</u>	relative humidity			
Amon.hus	Atmosphere (m)	Specific Humidity	<u>1</u>	specific humidity			
Amon.ta	Atmosphere (m)	<u>Air Temperature</u>	<u>K</u>	<u>air temperature</u>			
Amon.ua	Atmosphere (m)	Eastward Wind	<u>m s-1</u>	eastward wind			
Amon.va	Atmosphere (m)	Northward Wind	<u>m s-1</u>	northward_wind			
Amon.wap	Atmosphere (m)	Omega (=dp/dt)	<u>Pa s-1</u>	lagrangian tendency of air pressure			
Amon.zg	Atmosphere (m)	Geopotential Height	<u>m</u>	geopotential_height			
		Time and Area Mean	on Single	Level			
Amon.prw	Atmosphere (m)	Water Vapor Path	<u>kg m-2</u>	atmosphere mass content of water vapor			
Amon.clivi	Atmosphere (m)	Ice Water Path	<u>kg m-2</u>	atmosphere mass content of cloud ice			
Amon.clt	Atmosphere (m)	Total Cloud Cover Percentage	<u>%</u>	cloud area fraction			
Amon.clwvi	Atmosphere (m)	Condensed Water Path	<u>kg m-2</u>	atmosphere mass content of cloud condens ed water			
Amon.hfss	Surface (d)	Surface Upward Sensible Heat Flux	<u>W m-2</u>	surface upward sensible heat flux			
Amon.rlds	Radiation (m)	Surface Downwelling Longwave Radiation	<u>W m-2</u>	surface downwelling longwave flux in air			
Amon.rldscs	Radiation (m)	Surface Downwelling Clear-Sky Longwave Radiation	<u>W m-2</u>	surface downwelling longwave flux in air assuming clear sky			

Amon.rlus	Radiation (m)	Surface Upwelling Longwave Radiation	<u>W m-2</u>	surface upwelling longwave flux in air
Amon.rluscs	Radiation (m)	Surface Upwelling Clear- Sky Longwave Radiation	<u>W m-2</u>	surface upwelling longwave flux in air assu ming clear sky
Amon.rlut	Radiation (m)	TOA Outgoing Longwave Radiation	<u>W m-2</u>	toa outgoing longwave flux
Amon.rlutcs	Radiation (m)	TOA Outgoing Clear-Sky Longwave Radiation	<u>W m-2</u>	toa outgoing longwave flux assuming clea r sky
Amon.rsds	Radiation (m)	Surface Downwelling Shortwave Radiation	<u>W m-2</u>	surface downwelling shortwave flux in air
Amon.rsdscs	Radiation (m)	Surface Downwelling Clear-Sky Shortwave Radiation	<u>W m-2</u>	surface downwelling shortwave flux in air assuming clear sky
Amon.rsdt	Radiation (m)	TOA Incident Shortwave Radiation	<u>W m-2</u>	toa incoming shortwave flux
Amon.rsus	Radiation (m)	Surface Upwelling Shortwave Radiation	<u>W m-2</u>	surface upwelling shortwave flux in air
Amon.rsuscs	Radiation (m)	Surface Upwelling Clear- Sky Shortwave Radiation	<u>W m-2</u>	surface upwelling shortwave flux in air as suming clear sky
Amon.rsut	Radiation (m)	TOA Outgoing Shortwave Radiation	<u>W m-2</u>	toa outgoing shortwave flux
Amon.rsutcs	Radiation (m)	TOA Outgoing Clear-Sky Shortwave Radiation	<u>W m-2</u>	toa outgoing shortwave flux assuming clea r_sky
day.clt	Atmosphere (d)	Total Cloud Cover Percentage	<u>%</u>	cloud_area_fraction
day.rsds	Radiation (d)	Surface Downwelling Shortwave Radiation	<u>W m-2</u>	surface downwelling shortwave flux in air
Amon.pr	Surface (m)	Precipitation	<u>kg m-2</u> <u>s-1</u>	precipitation_flux
Amon.evspsb <u>l</u>	Surface (m)	Evaporation Including Sublimation and Transpiration	<u>kg m-2</u> <u>s-1</u>	water evapotranspiration flux
Amon.hfls	Surface (m)	Surface Upward Latent Heat Flux	<u>W m-2</u>	surface_upward_latent_heat_flux
Amon.prc	Surface (m)	Convective Precipitation	<u>kg m-2</u> <u>s-1</u>	convective_precipitation_flux
Amon.prsn	Surface (m)	Snowfall Flux	<u>kg m-2</u> <u>s-1</u>	snowfall_flux
Amon.ps	Surface (m)	Surface Air Pressure	<u>Pa</u>	<u>surface air pressure</u>
Amon.psl	Surface (m)	<u>Sea Level Pressure</u>	<u>Pa</u>	air_pressure_at_mean_sea_level
Amon.tauu	Surface (m)	Surface Downward Eastward Wind Stress	<u>Pa</u>	surface downward eastward stress
Amon.tauv	Surface (m)	Surface Downward Northward Wind Stress	<u>Pa</u>	surface downward northward stress
<u>Amon.ts</u>	Surface (m)	Surface Temperature	<u>K</u>	surface_temperature
day.pr	Surface (m)	<u>Precipitation</u>	<u>kg m-2</u> <u>s-1</u>	precipitation_flux
CFday.ps	Surface (d)	Surface Air Pressure	<u>Pa</u>	surface_air_pressure
<u>day.psl</u>	Surface (d)	<u>Sea Level Pressure</u>	<u>Pa</u>	air_pressure_at_mean_sea_level

LImon.snc	Land (m)	Snow Area Percentage	<u>%</u>	surface snow area fraction			
Time and Area Mean on Single Level, Masked (Land)							
<u>LImon.snw</u>	Land (m)	Surface Snow Amount	<u>kg m-2</u>	surface snow amount			
<u>Lmon.evspsb</u> <u>lsoi</u>	Land (m)	Water Evaporation from Soil	<u>kg m-2</u> <u>s-1</u>	water_evaporation_flux_from_soil			
Lmon.evspsb lveg	Land (m)	Evaporation from Canopy	<u>kg m-2</u> <u>s-1</u>	water_evaporation_flux_from_canopy			
<u>Lmon.lai</u>	Land (m)	<u>Leaf Area Index</u>	<u>1</u>	<u>leaf area index</u>			
<u>Lmon.mrfso</u>	Land (m)	Soil Frozen Water Content	<u>kg m-2</u>	soil frozen water content			
Lmon.mrro	Land (m)	Total Runoff	<u>kg m-2</u> <u>s-1</u>	runoff_flux			
Lmon.mrros	Land (m)	Surface Runoff	<u>kg m-2</u> <u>s-1</u>	surface_runoff_flux			
Lmon.mrso	Land (m)	Total Soil Moisture Content	<u>kg m-2</u>	mass_content_of_water_in_soil			
	Weighted	Time-Mean on Single Level	, Ocean C	Grid, Masked (Sea Ice)			
SImon.sithic <u>k</u>	Seaice (m)	Sea Ice Thickness	<u>m</u>	sea_ice_thickness			
SImon.sitem ptop	Seaice (m)	Surface Temperature of Sea Ice	<u>K</u>	sea ice surface temperature			
		Time and Area Mean on Sin	gle Level,				
Oday.sos	Ocean (d)	Sea Surface Salinity	0.001	sea_surface_salinity			
Oday.tos	Ocean (d)	Sea Surface Temperature	<u>degC</u>	<u>sea_surface_temperature</u>			
Oday.zos	Ocean (d)	Sea Surface Height Above Geoid	<u>m</u>	sea surface height above geoid			
Omon.hfds	Ocean (m)	Downward Heat Flux at Sea Water Surface	<u>W m-2</u>	surface downward heat flux in sea water			
Omon.mlotst	Ocean (m)	Ocean Mixed Layer Thickness Defined by Sigma T of 0.03 kg m-3	<u>m</u>	ocean mixed layer thickness defined by si gma t			
Omon.sos	Ocean (m)	Sea Surface Salinity	0.001	sea surface salinity			
Omon.tos	Ocean (m)	Sea Surface Temperature	<u>degC</u>	sea surface temperature			
Omon.zos	Ocean (m)	Sea Surface Height Above Geoid	<u>m</u>	sea surface height above geoid			
SImon.simas <u>S</u>	Seaice (m)	Sea-Ice Mass per Area	<u>kg m-2</u>	sea_ice_amount			
SImon.sitime frac	Seaice (m)	Fraction of Time Steps with Sea Ice	1	fraction of time with sea ice area fraction above threshold			
	Weighted Time-Mean on Single Level, Masked (Snow on Sea Ice)						
SImon.sisnthi <u>ck</u>	Seaice (m)	Snow Thickness	<u>m</u>	surface snow thickness			
	Time-Mean Surface Field, Ocean Grid (Area Mean or Vertices)						
Omon.tauuo	Ocean (m)	Sea Water Surface Downward X Stress	<u>N m-2</u>	downward x stress at sea water surface			

Omon.tauvo	Ocean (m)	Sea Water Surface Downward Y Stress	<u>N m-2</u>	downward y stress at sea water surface		
		<u>Time-Mean Near-Surf</u>	face Field	(10m)		
Amon.uas	Surface (m)	Eastward Near-Surface Wind	<u>m s-1</u>	eastward wind		
Amon.vas	Surface (m)	Northward Near-Surface Wind	<u>m s-1</u>	northward wind		
day.sfcWind	Surface (d)	Near-Surface Wind Speed	<u>m s-1</u>	wind_speed		
day.uas	Surface (d)	Eastward Near-Surface Wind	<u>m s-1</u>	eastward_wind		
day.vas	Surface (d)	Northward Near-Surface Wind	<u>m s-1</u>	northward wind		
<u>Amon.sfcWi</u> <u>nd</u>	Surface (m)	Near-Surface Wind Speed	<u>m s-1</u>	wind speed		
	<u>Mo</u>	nthly-Mean Daily Maximum	<u>, Near-Su</u>	rface Field (2m)		
Amon.tasma <u>x</u>	Surface (m)	Daily Maximum Near- Surface Air Temperature	<u>K</u>	air_temperature		
	<u>M</u> (nthly-Mean Daily Minimum	Near-Su	rface Field (2m)		
<u>Amon.tasmin</u>	Surface (m)	Daily Minimum Near- Surface Air Temperature	K	air_temperature		
	ı	Time-Mean Near-Sur	face Field	<u>l (2m)</u>		
Amon.hurs	Surface (m)	Near-Surface Relative Humidity	<u>%</u>	relative humidity		
Amon.huss	Surface (m)	Near-Surface Specific Humidity	1	specific_humidity		
day.hurs	Surface (d)	Near-Surface Relative Humidity	<u>%</u>	relative_humidity		
day.huss	Surface (d)	Near-Surface Specific Humidity	1	specific_humidity		
day.tas	Surface (d)	Near-Surface Air Temperature	<u>K</u>	<u>air_temperature</u>		
Amon.tas	Surface (d)	Near-Surface Air Temperature	<u>K</u>	<u>air_temperature</u>		
Time-Mean on Single Soil-Model Level, Masked (Land)						
Lmon.mrsos	Land (m)	Moisture in Upper Portion of Soil Column	kg m-2	mass content of water in soil layer		
Time-Mean on Single Level, Ocean Grid						
SImon.siconc	Seaice (m)	Sea-Ice Area Percentage (Ocean Grid)	<u>%</u>	sea ice area fraction		
SIday.siconc	Seaice (d)	Sea-Ice Area Percentage (Ocean Grid)	<u>%</u>	sea ice area fraction		
Time-Mean Weighted by Sea-Ice Area, Single Level, on Ocean Grid Vertices, Masked (Sea Ice)						

SImon.siu	Seaice (m)	X-Component of Sea-Ice Velocity	<u>m s-1</u>	sea ice x velocity
SImon.siv	Seaice (m)	Y-Component of Sea-Ice Velocity	<u>m s-1</u>	sea ice y velocity
		Time and Global Mean	on a Sing	le Level
Omon.zostog	Ocean (m)	Global Average Thermosteric Sea Level Change	<u>m</u>	global average thermosteric sea level chan ge
CMIP6- Identifier	Realm- (frequency)	Title	Units	CF Standard Name
		Temporal Maximum, Near	-Surface	Field (2m)
day.tasmax	Surface (d)	Daily Maximum Near- Surface Air Temperature	K	air_temperature
		Temporal Minimum, Near	-Surface	Field (2m)
day.tasmin	Surface (d)	Daily Minimum Near- Surface Air Temperature	K	air_temperature
		Time-Mean on 19 Pı	essure Lo	evels
Amon.hur	Atmosphere (m)	Relative Humidity	%	relative_humidity
Amon.hus	Atmosphere (m)	Specific Humidity	1	specific_humidity
Amon.ta	Atmosphere (m)	Air Temperature	K	air_temperature
Amon.ua	Atmosphere (m)	Eastward Wind	m s-1	eastward_wind
Amon.va	Atmosphere (m)	Northward Wind	m s-1	northward wind
Amon.wap	Atmosphere (m)	Omega (=dp/dt)	Pa s-1	lagrangian_tendency_of_air_pressure
Amon.zg	Atmosphere (m)	Geopotential Height	m	geopotential_height
		Time and Area Mean	on Single	
Amon.prw	Atmosphere (m)	Water Vapor Path	kg m-2	atmosphere_mass_content_of_water_vapor
Amon.clivi	Atmosphere (m)	Ice Water Path	kg m-2	atmosphere_mass_content_of_cloud_ice
Amon.clt	Atmosphere (m)	Total Cloud Cover Percentage	%	cloud_area_fraction
Amon.clwvi	Atmosphere (m)	Condensed Water Path	kg m-2	atmosphere_mass_content_of_cloud_condens ed_water
Amon.hfss	Surface (d)	Surface Upward Sensible Heat Flux	W m-2	surface_upward_sensible_heat_flux
Amon.rlds	Radiation (m)	Surface Downwelling Longwave Radiation	W m-2	surface_downwelling_longwave_flux_in_air
Amon.rldscs	Radiation (m)	Surface Downwelling Clear-Sky Longwave Radiation	W m-2	surface_downwelling_longwave_flux_in_air _assuming_clear_sky
		Curface Harvelling		
Amon.rlus	Radiation (m)	Surface Upwelling Longwave Radiation	W m-2	surface_upwelling_longwave_flux_in_air
Amon.rlus Amon.rlut	Radiation (m) Radiation (m)		W m-2	toa_outgoing_longwave_flux toaoutgoing_longwave_flux
		Longwave Radiation TOA Outgoing Longwave		
Amon.rlut	Radiation (m)	Longwave Radiation TOA Outgoing Longwave Radiation TOA Outgoing Clear-Sky	W m-2	toa_outgoing_longwave_flux toa_outgoing_longwave_flux_assuming_clea

		Clear-Sky Shortwave- Radiation		_assuming_clear_sky		
Amon.rsdt	Radiation (m)	TOA Incident Shortwave Radiation	W m-2	toa_incoming_shortwave_flux		
Amon.rsus	Radiation (m)	Surface Upwelling Shortwave Radiation	W m-2	surface_upwelling_shortwave_flux_in_air		
Amon.rsuscs	Radiation (m)	Surface Upwelling Clear- Sky Shortwave Radiation	W m-2	surface_upwelling_shortwave_flux_in_air_as suming_clear_sky		
Amon.rsut	Radiation (m)	TOA Outgoing Shortwave Radiation	W m-2	toa_outgoing_shortwave_flux		
Amon.rsutcs	Radiation (m)	TOA Outgoing Clear-Sky Shortwave Radiation	W m-2	toa_outgoing_shortwave_flux_assuming_clear_sky		
day.clt	Atmosphere (d)	Total Cloud Cover Percentage	%	cloud_area_fraction		
day.rsds	Radiation (d)	Surface Downwelling Shortwave Radiation	W m-2	surface_downwelling_shortwave_flux_in_air		
Amon.pr	Surface (m)	Precipitation	kg m-2 s-1	precipitation_flux		
Amon.evspsb	Surface (m)	Evaporation Including Sublimation and Transpiration	kg m-2 s-1	water_evapotranspiration_flux		
Amon.hfls	Surface (m)	Surface Upward Latent Heat Flux	W m-2	surface_upward_latent_heat_flux		
Amon.prc	Surface (m)	Convective Precipitation	kg m-2 s-1	convective_precipitation_flux		
Amon.prsn	Surface (m)	Snowfall Flux	kg m-2 s-1	snowfall_flux		
Amon.ps	Surface (m)	Surface Air Pressure	Pa	surface_air_pressure		
Amon.psl	Surface (m)	Sea Level Pressure	Pa	air_pressure_at_mean_sea_level		
Amon.tauu	Surface (m)	Surface Downward Eastward Wind Stress	Pa	surface_downward_eastward_stress		
Amon.tauv	Surface (m)	Surface Downward Northward Wind Stress	Pa	surface_downward_northward_stress		
Amon.ts	Surface (m)	Surface Temperature	K	surface_temperature		
day.pr	Surface (m)	Precipitation	kg m-2 s-1	precipitation_flux		
CFday.ps	Surface (d)	Surface Air Pressure	Pa	surface_air_pressure		
day.psl	Surface (d)	Sea Level Pressure	Pa	air_pressure_at_mean_sea_level		
LImon.snc	Land (m)	Snow Area Percentage	%	surface_snow_area_fraction		
Time and Area Mean on Single Level, Masked (Land)						
LImon.snw	Land (m)	Surface Snow Amount	kg m-2	surface_snow_amount		
Lmon.evspsb lsoi	Land (m)	Water Evaporation from Soil	kg m-2 s-1	water_evaporation_flux_from_soil		
Lmon.evspsb lveg	Land (m)	Evaporation from Canopy	kg m-2 s-1	water_evaporation_flux_from_canopy		
	T 17)	Took Asso Indon	1	leaf_area_index		
Lmon.lai	Land (m)	Leaf Area Index	T	lear_area_muex		
Lmon.lai Lmon.mrfso	Land (m) Land (m)	Soil Frozen Water Content	kg m-2	soil_frozen_water_content		

			s-1	
Lmon.mrros	Land (m)	Surface Runoff	kg m-2 s-1	surface_runoff_flux
Lmon.mrso	Land (m)	Total Soil Moisture- Content	kg m-2	mass_content_of_water_in_soil
	Weight	ed Time-Mean on Single Level	, Ocean C	Grid, Masked (Sea Ice)
SImon.sithic k	Seaice (m)	Sea Ice Thickness	m	sea_ice_thickness
SImon.sitem ptop	Seaice (m)	Surface Temperature of Sea Ice	K	sea_ice_surface_temperature
		Time and Area Mean on Sin	gle Level,	-Ocean Grid
Oday.sos	Ocean (d)	Sea Surface Salinity	0.001	sea_surface_salinity
Oday.tos	Ocean (d)	Sea Surface Temperature	degC	sea_surface_temperature
Omon.hfds	Ocean (m)	Downward Heat Flux at Sea Water Surface	W m-2	surface_downward_heat_flux_in_sea_water
Omon.mlotst	Ocean (m)	Ocean Mixed Layer Thickness Defined by Sigma T	m	ocean_mixed_layer_thickness_defined_by_s gma_t
Omon.sos	Ocean (m)	Sea Surface Salinity	0.001	sea_surface_salinity
Omon.tos	Ocean (m)	Sea Surface Temperature	degC	sea_surface_temperature
Omon.zos	Ocean (m)	Sea Surface Height Above- Geoid	m	sea_surface_height_above_geoid
SImon.simas s	Seaice (m)	Sea-Ice Mass per Area	kg m-2	sea_ice_amount
SImon.sitime frac	Seaice (m)	Fraction of Time Stepswith Sea Ice	1	fraction_of_time_with_sea_ice_area_fraction_above_threshold
	Weigl	hted Time-Mean on Single Lev	el, Maske	ed (Snow on Sea Ice)
SImon.sisnthi ek	Seaice (m)	Snow Thickness	m	surface_snow_thickness
	Time	-Mean Surface Field, Ocean C	Grid (Area	Mean or Vertices)
Omon.tauuo	Ocean (m)	Sea Water Surface Downward X Stress	N m-2	downward_x_stress_at_sea_water_surface
Omon.tauvo	Ocean (m)	Sea Water Surface Downward Y Stress	N m-2	downward_y_stress_at_sea_water_surface
		Time-Mean Near-Sur	ace Field	(10m)
Amon.uas	Surface (m)	Eastward Near-Surface Wind	m s-1	eastward_wind
Amon.vas	Surface (m)	Northward Near-Surface Wind	m s-1	northward_wind
day.sfcWind	Surface (d)	Near-Surface Wind Speed	m s-1	wind_speed
day.uas	Surface (d)	Eastward Near-Surface Wind	m s-1	eastward_wind
day.vas	Surface (d)	Northward Near-Surface	m s-1	northward_wind

		Wind		
Amon.sfcWi nd	Surface (m)	Near-Surface Wind Speed	m s-1	wind_speed
	₽•	Ionthly-Mean Daily Maximum	, Near-S ı	ırface Field (2m)
Amon.tasma		Daily Maximum Near-	TZ	
X	Surface (m)	Surface Air Temperature	K	air_temperature
	A	Ionthly-Mean Daily Minimum	, Near-Sı	urface Field (2m)
		Daily Minimum Near-		
Amon.tasmin	Surface (m)	Surface Air Temperature	K	air_temperature
		Time-Mean Near-Sur	face Fiel	d (2m)
Amon.hurs	Surface (m)	Near-Surface Relative Humidity	%	relative_humidity
Amon.huss	Surface (m)	Near-Surface Specific Humidity	1	specific_humidity
day.hurs	Surface (d)	Near-Surface Relative Humidity	%	relative_humidity
day.huss	Surface (d)	Near-Surface Specific Humidity	1	specific_humidity
day.tas	Surface (d)	Near-Surface Air Temperature	K	air_temperature
Amon.tas	Surface (d)	Near-Surface Air Temperature	K	air_temperature
	5	Fime-Mean on Single Soil-Mod	lel Level,	Masked (Land)
Lmon.mrsos	Land (m)	Moisture in Upper Portion of Soil Column	kg m-2	mass_content_of_water_in_soil_layer
		Weighted Time-Mean on Sin	gle Leve	l, Ocean Grid
SImon.siconc	Seaice (m)	Sea-Ice Area Percentage (Ocean Grid)	%	sea_ice_area_fraction
SIday.siconc	Seaice (d)	Sea-Ice Area Percentage (Ocean Grid)	%	sea_ice_area_fraction
Tim	e-Mean Weight e	ed by Sea-Ice Area, Single Leve	el, on Occ	ean Grid Vertices, Masked (Sea Ice)
SImon.siu	Seaice (m)	X-Component of Sea-Ice- Velocity	m s-1	sea_ice_x_velocity
SImon.siv	Seaice (m)	Y-Component of Sea-Ice- Velocity	m s-1	sea_ice_y_velocity
		Time and Global Mean	on a Sing	gle Level
_		Global Average		
Omon.zostog		Thermosteric Sea Level		global_average_thermosteric_sea_level_cha
a	Ocean (m)	Change	m aviables '	Those ESM DCVs are listed under 17 differ

Table A2: ESM Baseline Climate Variables: 8684 low volume variables. These ESM-BCVs are listed under 17 different structures. For masked fields, the nature of the unmasked points is indicated in brackets, e.g. "Masked (Land)" implies that only land points are included. All are global fields. Area means and sums are taken over grid cells, time means are taken over the sampling period, e.g. a day or a calendar month. The frequency in column 2 indicates the frequency of stored data points, which may be time means or instantaneous values. The abbreviations are: `m' for monthly, `d' for daily.

CMIP6 Identifier	Realm	Title	Units	CF standard Name	
	2000	Synoptic Field on Three Pres			
6hrPlevPt.ta	Atmosphere (6)	Air Temperature	<u>K</u>	air temperature	
6hrPlevPt.ua	Atmosphere (6)	Eastward Wind	m s-1	eastward wind	
6hrPlevPt.va	Atmosphere (6)	Northward Wind	<u>m s-1</u>	northward wind	
	, , , , , ,	Synoptic Near-Sur	•	-	
		Eastward Near-Surface			
3hr.uas	Surface (3)	Wind	<u>m s-1</u>	eastward_wind	
		Northward Near-Surface			
3hr.vas	Surface (3)	Wind	<u>m s-1</u>	northward wind	
		Synoptic Near-Surfa	<u>ace Field (2</u>	<u>2m)</u>	
01 1		Near-Surface Specific			
3hr.huss	Surface (3)	<u>Humidity</u>	1	specific humidity	
Ohr too	Surface (3)	Near-Surface Air Temperature	K	air tamparatura	
3hr.tas	Surface (5)	Temperature Time Manage 10 D		<u>air_temperature</u>	
	1	Time-Mean on 19 P	ressure Le	1	
Eday.hus	Atmosphere (d)	Specific Humidity	1	specific humidity	
Eday.ua	Atmosphere (d)	Eastward Wind	<u>m s-1</u>	eastward wind	
Eday.va	Atmosphere (d)	Northward Wind	<u>m s-1</u>	northward wind	
Eday.ta	Atmosphere (d)	<u>Air Temperature</u>	<u>K</u>	<u>air temperature</u>	
Eday.zg	Atmosphere (d)	Geopotential Height	<u>m</u>	geopotential height	
		Time-Mean on 8 Pr	essure Lev	<u>/els</u>	
day.hur	Atmosphere (d)	Relative Humidity	<u>%</u>	relative humidity	
day.hus	Atmosphere (d)	Specific Humidity	1	specific humidity	
day.ta	Atmosphere (d)	<u>Air Temperature</u>	<u>K</u>	<u>air temperature</u>	
day.ua	Atmosphere (d)	Eastward Wind	<u>m s-1</u>	eastward wind	
day.va	Atmosphere (d)	Northward Wind	<u>m s-1</u>	northward wind	
day.wap	Atmosphere (d)	Omega (=dp/dt)	<u>Pa s-1</u>	lagrangian tendency of air pressure	
		Time and Area Mean	on Single	<u>Level</u>	
			<u>kg m-2</u>		
3hr.pr	Surface (3)	<u>Precipitation</u>	<u>s-1</u>	<u>precipitation flux</u>	
			<u>kg m-2</u>		
E1hr.pr	Surface (1)	<u>Precipitation</u>	<u>s-1</u>	precipitation_flux	
<u>Time-Mean Near-Surface Field (2m)</u>					
Cl. Dl. J		Near-Surface Relative	0/	1.0.1.00	
<u>6hrPlev.hurs</u>	Surface (6)	<u>Humidity</u>	<u>%</u>	<u>relative humidity</u>	
	1	Time-Mean on Atmosph	<u>iere-Mode</u>	<u> Levels</u>	
	<u>Atmosphere</u>	D	0/		
Amon.cl	(<u>m</u>)	Percentage Cloud Cover	<u>%</u>	cloud area fraction in atmosphere layer	
Amon eli	<u>Atmosphere</u>	Mass Eraction of Cloud Ica	ka ka 1	mass fraction of cloud ice in air	
Amon.cli	<u>(m)</u>	Mass Fraction of Cloud Ice	<u>kg kg-1</u>	mass_fraction_of_cloud_ice_in_air	

Amon.clw	Atmosphere (m)	Mass Fraction of Cloud Liquid Water	<u>kg kg-1</u>	mass fraction of cloud liquid water in a
Time-Mean, Area Sum, Field on Ocean-Model Levels				
Omon.wmo	Ocean (m)	Upward Ocean Mass Transport Time Mass Field on O	<u>kg s-1</u>	upward ocean mass transport
0 11 11	1	Time-Mean Field on Oc	<u>:ean-Mode</u>	<u>El Levels</u> T
Omon.thkcell o	Ocean (m)	Ocean Model Cell Thickness	<u>m</u>	<u>cell_thickness</u>
Omon.massce llo	Ocean (m)			
Omon.so	Ocean (m)	Sea Water Salinity	0.001	sea water salinity
Omon.thetao	Ocean (m)	Sea Water Potential Temperature	<u>degC</u>	sea water potential temperature
Omon.bigthet ao	Ocean (m)	Sea Water Conservative Temperature	<u>degC</u>	sea_water_conservative_temperature
Omon.umo	Ocean (m)	Ocean Mass X Transport	<u>kg s-1</u>	<u>ocean mass x transport</u>
Omon.uo	Ocean (m)	Sea Water X Velocity	<u>m s-1</u>	sea water x velocity
Omon.vmo	Ocean (m)	Ocean Mass Y Transport	kg s-1	ocean mass y transport
Omon.vo	Ocean (m)	Sea Water Y Velocity	m s-1	sea water y velocity
Omon.wo	Ocean (m)	Sea Water Vertical Velocity	<u>m s-1</u>	upward sea water velocity
CMIP6- Identifier	Realm	Title	Units	CF standard Name
Synoptic Field on Three Pressure Levels, Cell Mean				
6hrPlevPt.ta	Atmosphere (6)	Air Temperature	K	air_temperature
6hrPlevPt.ua	Atmosphere (6)	Eastward Wind	m s-1	eastward_wind
6hrPlevPt.va	Atmosphere (6)	Northward Wind	m s-1	northward_wind
		Synoptic Near-Su	rface Field	(10m)
3hr.uas	Surface (3)	Eastward Near-Surface Wind	m s-1	eastward_wind
3hr.vas	Surface (3)	Northward Near-Surface Wind	m s-1	northward_wind
		Synoptic Near-Sur	ace Field (2	2m)
3hr.huss	Surface (3)	Near-Surface Specific Humidity	1	specific_humidity
3hr.tas	Surface (3)	Near-Surface Air Temperature	K	air_temperature
		Time-Mean on 19 I	ressure Le	vels
Eday.hus	Atmosphere (d)	Specific Humidity	1	specific_humidity
Euay.nus		T 1 T . T . 1	m o 1	eastward_wind
Eday.ua	Atmosphere (d)	Eastward Wind	m s-1	eastwaru_winu
	Atmosphere (d) Atmosphere (d)	Eastward Wind Northward Wind	m s-1	northward_wind

day.hur	Atmosphere (d)	Relative Humidity	%	relative_humidity
day.hus	Atmosphere (d)	Specific Humidity	1	specific_humidity
day.ta	Atmosphere (d)	Air Temperature	K	air_temperature
day.ua	Atmosphere (d)	Eastward Wind	m s-1	eastward_wind
day.va	Atmosphere (d)	Northward Wind	m s-1	northward wind
day.wap	Atmosphere (d)	Omega (=dp/dt)	Pa s-1	lagrangian_tendency_of_air_pressure
		Time and Area Mean	on Single	
			kg m-2	
3hr.pr	Surface (3)	Precipitation	s-1	precipitation_flux
	Ì		kg m-2	
E1hr.pr	Surface (1)	Precipitation	s-1	precipitation_flux
		Time-Mean Near-Sur	face Field	(2m)
		Near-Surface Relative		
6hrPlev.hurs	Surface (6)	Humidity	%	relative_humidity
		Time-Mean on Atmosph	iere-Mode	l Levels
	Atmosphere-			
Amon.cl	(m)	Percentage Cloud Cover	%	cloud_area_fraction_in_atmosphere_layer
	Atmosphere-			
Amon.cli	(m)	Mass Fraction of Cloud Ice	kg kg-1	mass_fraction_of_cloud_ice_in_air
Amon.clw	Atmosphere (m)	Mass Fraction of Cloud Liquid Water	kg kg-1	mass_fraction_of_cloud_liquid_water_in_ai
	(m)	*		M - J-l Tl-
	<u> </u>	'ime-Mean, Area Sum, Field	on Ocean- .	Model Levels i
		Upward Ocean Mass	, ,	
Omon.wmo	Ocean (m)	Transport	kg s-1	upward_ocean_mass_transport
		Time-Mean Field on Oc	ean-Mode	el Levels
Omon.thkcell		Ocean Model Cell		
0	Ocean (m)	Thickness	m	cell_thickness
Omon.massce				
llo	Ocean (m)	C 747 (C 31 1)	0.004	11.00
Omon.so	Ocean (m)	Sea Water Salinity	0.001	sea_water_salinity
Omon thatas	Occan (m)	Sea Water Potential	dogC	see water petential temperature
Omon.bigthet	Ocean (m)	Temperature Sea Water Conservative	degC	sea_water_potential_temperature
	Ocean (m)	Sea water Conservative Temperature	dogC	sea_water_conservative_temperature
Omon umo		Ocean Mass X Transport	degC	ocean_mass_x_transport
Omon.uo	Ocean (m)	Sea Water X Velocity	kg s-1 m s-1	sea_water_x_velocity
Omon, ao	Occui (III)	oca water 12 verocity	111 3-T	Sca_water_x_verocity
Omon.vmo	Ocean (m)	Ocean Mass Y Transport	kg s-1	ocean_mass_y_transport
Omon.vo	Ocean (m)	Sea Water Y Velocity	m s-1	sea_water_y_velocity
		Sea Water Vertical		
Omon.wo	Ocean (m)	Velocity	m s-1	upward_sea_water_velocity

Table A3: Baseline Climate Variables, high volume list of <u>3534</u> variables. Abbreviations for frequency are as for Table A1, extended to include The abbreviations are: `3' and `6' for 3- and 6-hourly respectively.

<u>Variable</u>	<u>Condition</u>
-----------------	------------------

Ofx.thkcello	To be provided if ocean grid cells have a fixed thickness	
Omon.thkcello	To be provided if ocean grid cells have a time varying thickness	
Omon.masscello	To be provided if ocean grid cells have a time varying mass	
Omon.bigthetao	Contributed only for models using conservative temperature as the prognostic field. Note that in this case bigthetao is needed to enable analysis of model processes but Omon.thetao still needs to be provided in order to enable comparison with observations.	
Eday.ua, va, ta, hus	The "day" versions of these fields provide data on 8 pressure levels which are a	
day.ua, va, ta, hus	subset of the 19 levels used in the "Eday" versions, so, in general, only one version	
	should be archived. Both options are included so that modelling centres can provide the greater detail afforded by 19 levels when resources permit.	
	the greater detail afforded by 19 levels when resources permit.	
Variable	the greater detail afforded by 19 levels when resources permit. Condition	
Variable Ofx.thkcello		
	Condition	
Ofx.thkcello	Condition To be provided if ocean grid cells have a fixed thickness	
Ofx.thkcello Omon.thkcello	Condition To be provided if ocean grid cells have a fixed thickness To be provided if ocean grid cells have a time varying thickness	
Ofx.thkcello Omon.thkcello Omon.masscello	To be provided if ocean grid cells have a fixed thickness To be provided if ocean grid cells have a time varying thickness To be provided if ocean grid cells have a time varying mass	
Ofx.thkcello Omon.thkcello Omon.masscello Omon.bigthetao	Condition To be provided if ocean grid cells have a fixed thickness To be provided if ocean grid cells have a time varying thickness To be provided if ocean grid cells have a time varying mass Contributed only for models using conservative temperature as the prognostic field The "day" versions of these fields provide data on 8 pressure levels which are a subset of the 19 levels used in the "Eday" versions, so, in general, only one version	
Ofx.thkcello Omon.thkcello Omon.masscello Omon.bigthetao Eday.ua, va, hus	Condition To be provided if ocean grid cells have a fixed thickness To be provided if ocean grid cells have a time varying thickness To be provided if ocean grid cells have a time varying mass Contributed only for models using conservative temperature as the prognostic field The "day" versions of these fields provide data on 8 pressure levels which are a	

Table A4: Variables which are only provided under specific conditions.

550 Appendix 2: Variables removed from and added to the shortlist

CMIP6					
Identifier	Realm	Title	Units	CF standard Name	R
6hrLev.ta	Atmosphere (6)	Air Temperature	K	air_temperature	S
6hrLev.ua	Atmosphere (6)	Eastward Wind	m s-1	eastward_wind	S
6hrLev.va	Atmosphere (6)	Northward Wind	m s-1	northward_wind	S
6hrLev.hus	Atmosphere (6)	Specific Humidity	1	specific_humidity	S
CFday.hur	Atmosphere (d)	Relative Humidity	%	relative_humidity	D
CFday.hus	Atmosphere (d)	Specific Humidity	1	specific_humidity	D
CFday.ta	Atmosphere (d)	Air Temperature	K	air_temperature	D
CFday.ua	Atmosphere (d)	Eastward Wind	m s-1	eastward_wind	D
CFday.va	Atmosphere (d)	Northward Wind	m s-1	northward_wind	D
CFday.zg	Atmosphere (d)	Geopotential Height	m	geopotential_height	D
CFday.wa					
р	Atmosphere (d)	Omega (=dp/dt)	Pa s-1	lagrangian_tendency_of_air_pressure	D
				cloud_area_fraction_in_atmosphere_	
CFday.cl	Atmosphere (d)	Percentage Cloud Cover	%	layer	D
LImon.snd	Land (m)	Snow Depth	m	surface_snow_thickness	E
		Downwelling Longwave			
Efx.rld	Radiation (f)	Radiation	W m-2	downwelling_longwave_flux_in_air	О
Efx.rlu	Radiation (f)	Upwelling Longwave Radiation	W m-2	upwelling_longwave_flux_in_air	О
Efx.rsu	Radiation (f)	Upwelling Shortwave Radiation	W m-2	upwelling_shortwave_flux_in_air	О
Efx.rsd	Radiation (f)	Downwelling Shortwave	W m-2	downwelling_shortwave_flux_in_air	О

		Radiation			
Efx.fldcap acity	Land (f)	Field Capacity	%	volume_fraction_of_condensed_wate r_in_soil_at_field_capacity	О
Efx.siltfrac	Land (f)	Silt Fraction	1	volume_fraction_of_silt_in_soil	О
Efx.wilt	Land (f)	Wilting Point	%	volume_fraction_of_condensed_wate r_in_soil_at_wilting_point	О
fx.areacellr	Grid (f)	Grid-Cell Area for River Model Variables	m2	cell_area	О
fx.zfull	Grid (f)	Altitude of Model Full-Levels	m	height_above_reference_ellipsoid	О
day.rlut	Radiation (d)	TOA Outgoing Longwave Radiation	W m-2	toa_outgoing_longwave_flux	X
day.rlds	Radiation (d)	Surface Downwelling Longwave Radiation	W m-2	surface_downwelling_longwave_flux _in_air	X
E3hr.sfcW ind	Surface (3)	Near-Surface Wind Speed	m s-1	wind_speed	X
			mol	mole_concentration_of_dissolved_m	
Oyr.o2	Ocean (y)	Dissolved Oxygen Concentration	m-3	olecular_oxygen_in_sea_water	X
Ofx.volcell					
0	Ocean (f)	Ocean Grid-Cell Volume	m3	ocean_volume	D

Table A5: Variables which were included in the shortlist and removed in the revision process. Reasons: S: specialist variables of use for a limited range of applications; D: duplicate or near duplicate of another variable in the list; E: included in the shortlist as a result of a clerical error, these variables do not meet shortlisting criteria; O: These variables were included following an initial decision to include all fixed variables, but as they have extremely low usage, only being published for 12 or fewer models, they were subsequently removed.; X: Low usage in corrected download statistics.

<u>Variable</u>	Reason
Oday.sos	This variable was considered to be of high importance for characterising the ocean
	state.
Oday.tos	This variable was considered to be of high importance for characterising the ocean
	state.
<u>CFday.ps</u>	This variable is important for models which have vertical coordinates which are
	defined in terms of surface pressure, such as the sigma coordinate. Where needed, it
	should be included as an auxiliary variable, not as an independently requested
	variable.
Ofx.thkcello	To ensure full information about the ocean model grid
Omon.thkcello	To ensure full information about the ocean model grid
Omon.masscello	To ensure full information about the ocean model grid
Omon.bigthetao	This variable is of fundamental importance for those models that use conservative
	potential temperature as a prognostic variable, but appeared low in the shortlisting
	because this was a minority of models on CMIP6.
SIday.siconc	<u>To provide basic information about sea-ice cover</u>
<u>LImon.snc</u>	High usage in corrected download statistics (see Section 2.4)
Omon.zostoga	High usage in corrected download statistics (see Section 2.4)
Lmon.evspsblveg	High usage in corrected download statistics (see Section 2.4)
SImon.sitimefrac	High usage in corrected download statistics (see Section 2.4)
Eday.ta	Added in response to review comments
Oday.zos	Added in response to review comments

Amon.rluscs	Added in response to review comments
-------------	--------------------------------------

Variable	Reason
Oday.sos	This variable was considered to be of high importance for characterising the ocean
	state.
Oday.tos	This variable was considered to be of high importance for characterising the ocean
	state.
CFday.ps	This variable is important for models which have vertical coordinates which are defined in terms of surface pressure, such as the sigma coordinate. Where needed, it should be included as an auxiliary variable, not as an independently requested variable.
Ofx.thkcello	To ensure full information about the ocean model grid
Omon.thkcello	To ensure full information about the ocean model grid
Omon.masscello	To ensure full information about the ocean model grid
Omon.bigthetao	This variable is of fundamental importance for those models that use conservative potential temperature as a prognostic variable, but appeared low in the shortlisting because this was a minority of models on CMIP6.
SIday.sicone	To provide basic information about sea-ice cover
LImon.snc	High usage in corrected download statistics (see Section 2.4)
Omon.zostoga	High usage in corrected download statistics (see Section 2.4)
Lmon.evspsblveg	High usage in corrected download statistics (see Section 2.4)
SImon.sitimefrac	High usage in corrected download statistics (see Section 2.4)

Table A6: Variables added in the review process

Appendix 3: Summary Tables

	<u>Standard</u>	<u>High Volume</u>	<u>Fixed</u>
<u>Atmosphere</u>	<u>11</u>	<u>17</u>	2
Land and Landice	<u>10</u>		<u>5</u>
<u>Ocean</u>	<u>11</u>	<u>11</u>	<u>7</u>
Radiation	<u>13</u>		
Sea ice	<u>9</u>		
<u>Surface</u>	<u>32</u>	<u>7</u>	
<u>Total</u>	<u>86</u>	<u>35</u>	<u>14</u>
	Standard	High Volume	Fixed
Atmosphere	10	16	2
Land and Landice	10		5
Ocean	10	11	7
Radiation	13		
Sea ice	9		
Surface	32	7	

Total	84	34	14

Table A7. The counts of baseline climate variables in different categories. For explanation of the "high volume" category, see table A8.

	Examples	GB/10k years of simulation
Monthly single level	Amon.tas, Omon.tos	62
Monthly, 19 levels	Amon.ua	1182
Daily single level	day.tas	1893
Monthly, atmosphere levels	Amon.clw	3733
Monthly, ocean levels	Omon.uo	3110

Table A8: Example data volumes. Based on a 1-degree resolution model with 60 atmospheric levels and 50 oceanic levels¹⁷. Single precision data storage without compression. A variable is considered as "high-volume" (dark shading) if 10 thousand years of simulation generates more than 1,500 GB of data.

- 566 | Appendix 4: Invitation to Participate
- 567 Invitation to participate in a DATA REQUEST exercise on variable prioritisation (April 13th, 2022)
- Greetings from the newly established CMIP International Project Office. As part of the CMIP community, you are invited to participate in a DATA REQUEST exercise on variable prioritisation. We are supporting the WGCM Infrastructure Panel (WIP) to implement this activity.
- If you would like to participate in this activity, please complete this form https://forms.office.com/r/qCNtTfywqN <see
- 573 Express interest in attending an online workshop in May

below> before 11am UTC 21 April 2022. This will enable you to:

- 574 Express interest in being a paper author or reviewer
 - Contribute your thoughts on methodological approach (the questions are based on reviewing this list of parameters, indicating how you feel about the number prioritised, the methodology proposed, any additional quantitative criteria you feel should be taken into account in short-listing, any science/impact based prioritisation issues for consideration and any thoughts you have on alternative methodological approaches to prioritisation)
 - If you have any questions about this, or would like to reach out to the new CMIP IPO about anything else, please do contact myself or CMIP-IPO Director, Eleanor O'Rourke eleanor.orourke@ext.esa.int.
- 116 17 https://wcrp-cmip.org/cmip7-data-request-harmonised-thematic-variables/ [accessed 2024/12/04]
- 117 42

559 560

561

562

563

564

565

572

575

576

577

578

579 580

581

583 Form Introduction

CMIP DATA REQUEST variable prioritisation: Event registration, input and author EoI

CMIP has expanded and now has a substantial range of communities, all with their own specialised requirements. The WGCM Infrastructure Panel (WIP) are aware that there are too many variables being listed as top priority and that conflicts are emerging between what the data centres and data users (including intermediary platforms such as C3S) would consider highest priority.

The Data Request function of the WIP wish to address the immediate challenge of establishing an agreed variable prioritisation methodology from the CMIP modelling community and some means of giving authority to "priority = 1" statements; a community intention discussed at WGCM 2019 in Barcelona. It is envisaged that these prioritised variables can form a baseline set of variables for exchange of climate model data, in following FAIR data and Open Science principles. The intention is to publish these as a Geoscientific Model Development (GMD) paper.

The CMIP community are therefore invited to provide input to, and consider self-nomination for paper authorship of, a paper setting out an appropriate methodology for prioritising variables that could be considered as a baseline set of variables for exchange of climate model data, in any intercomparison project, in accordance with FAIR data and Open Science principles. There are three sections to this survey, it will take you 5-10 minutes to complete, longer if you wish to provide detailed responses.

- 602 Section 1- Your details (required)
 - Section 2 Workshop preference and EOI for paper roles (author/reviewer) (required)
- Section 3 Your thoughts on methodological approach (optional) -these will be used to underpin workshop discussions

This participation form has been developed by the CMIP International Project Office, hosted by ESA Climate Office, in consultation with the WCRP WGCM Infrastructure Panel. This workstream is being led by Martin Juckes, UKRI-STFC working alongside Charlotte Pascoe NCAS/CEDA and Alison Parent, CEDA. If you have any problems completing this form/accessing the links please contact: briony.turner@ext.esa.int

This participation form has been issued by CMIP IPO to the Modelling Centre leads, data request leads and the MIP Chairs and can be shared more widely if you are aware of others that would wish to input into this activity.

Please note this Registration & Author Expression of Interest form closed 18:00 UTC 26 April 2022 however you can still share your thoughts on the methodological approach and indicate which workshop you'd like to attend until 18:00 UTC 6 May 2022.

This activity is supported by the CMIP IPO and is made possible by funding from IS-ENES3 part of the European Union's Horizon 2020 research and innovation programme under grant agreement No 82408.

Appendix 5: Pressure levels for atmospheric variables

622 The pressure levels defined in the CMIP6 Data Request and brought into the ESM-BCV list are listed below.

119 43

624 625 626 627 628 629 630	 19 pressure levels (plev19): 100,000., 92500., 85,000., 70,000., 60,000., 50,000., 40,000., 30,000., 25,000., 20,000., 15,000., 10,000., 7,000., 5,000., 3,000., 2,000., 1,000., 500., and 100.hPa 8 pressure levels (plev8): 100,000., 85,000., 70,000., 50,000., 25,000., 10,000., 5,000., and 1,000.hPa The usage and the range of levels used may be modified in CMIP7 following detailed discussion of scientific requirements being led by the atmosphere theme of the CMIP AR7 Fast Trask Data Request¹⁸.
631	Data Availability
632	The prioritisation data is available as an Excel workbook in Juckes, M., (2023) (https://doi.org/10.5281/zenodo.8263526).
633	Author contributions
634	Conceptualisation: MJ. Funding acquisition: na. Methodology: MJ, BT, EO. Project administration: BT, EO, BD. Writing
635	and original draft preparation: all. Revision and verification of ESGF download statistics: FA, AN. Writing, review and
636	editing: all.
637	Competing interests
638	The contact author has declared that none of the authors has any competing interests
639	Acknowledgements
640	The work developing the baseline variables was coordinated and led by Martin Juckes, UKRI-STFC. Its implementation was
641	supported by the CMIP International Project Office, hosted by the European Space Agency. All figures have been
642	commissioned by the CMIP International Project Office and are under a Creative Commons Attribution 4.0 International
643	licence. The ESGF download statistics are provided by the Euro-Mediterranean Center on Climate Change, CMCC
644	Foundation. Thanks to John Dunne for chairing the discussions leading to final consensus on the published list. $\underline{\text{We}}$
645	gratefully acknowledge the valuable feedback provided in reviews by Claire Macintosh and Young Ho Kim, and in
646	comments by Anne Marie Treguier, Isla Simpson, Alistair Adcroft, Baylor Fox-Kemper, Nathan Gillett, Christopher Danek,
647	Gaëlle Rigoudy, and Gavin A. Schmidt.

18 See https://wcrp-cmip.org/cmip7/cmip7-data-request/public-consultation/ [accessed 2024/12/04]

122 44

Financial Support

The work developing the baseline variables has been made possible by funding from IS-ENES3 part of the European Union's
Horizon 2020 research and innovation programme under grant agreement No 824084 and through NERC funding for the UK
National Centre of Atmospheric Science. The work of PJD and KET was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344. It is a
contribution to the science portfolio of the U.S. Department of Energy, Office of Science, Earth and Environmental Systems
Sciences Division, Regional and Global Model Analysis Program. LLNL Release Number: LLNL-JNRL-853910

655 References

- 656 BIPM. (2019). The International System of Units. Bureau international des poids et mesure
- 657 https://www.bipm.org/documents/20126/41483022/SI-Brochure-9.pdf
- 658 Buontempo, C., Burgess, S. N., Dee, D., Carlo, Samantha N. Burgess, Dick Dee, Bernard Pinty, B., Jean-Noël Thépaut, J.-
- 659 N., Michel Rixen, M., Samuel Almond, S., David Armstrong, D., Anca Brookshaw, A., López-Alos, A., Angel Lopez Alos, Bill
- 660 Bell, B., Cedric Bergeron, C., Chiara Cagnazzo, Edward Comyn-Platt, Eduardo Damasio-Da-Costa, Anabelle Guillory, Hans
- 661 Hersbach, András Horányi, Julien Nicolas, Andre Obregon, Eduardo Penabad Ramos, Baudouin Raoult, Joaquín Muñoz-
- 662 Sabater, Adrian Simmons, Cornel Soci, Martin Suttie, Freja Vamborg, James Varndell, Stiin Vermoote, Xiaobo Yang, and
- 663 Juan Garcés de Marcilla. "The Copernicus Climate Change Service: Climate Science in Action", Bulletin of the American
- 664 Meteorological Society 103, 12 (2022): E2669-E2687, doi: https://doi.org/10.1175/BAMS-D-21-0315.1 , 2022.
- 665 Craig, M. T., Wohland, J., Stoop, L. P., Kies, A., Pickering, B., Bloomfield, H. C., Browell, J., De Felice, M., Dent, C. J.,
- 666 Deroubaix, A., nFrischmuth, Frischmuth, F., Gonzalez, P. L.-M., Grochowicz, A., Gruber, K., Härtel, P., Kittel, M., Kotzur,
- 667 L., Labuhn, I., Lundquist, J. K., Pflugradt, N., van der Wiel, K., Zeyringer, M., and ... Brayshaw, D. J.: (2022). Overcoming
- 668 the disconnect between energy system and climate modeling, Joule, 6. Joule, 6(7), 1405–1417,
- 669 =https://doi.org/10.1016/j.joule.2022.05.010, 2022.
- 670 Dubus, L., Brayshaw, D. J., Huertas-Hernando, D., Radu, D., Sharp, J., Zappa, W., and Stoop, L. P.: (2022). Towards a
- 671 | future-proof climate database for European energy system studies. *Environmental Research Letters*, _-17(12), 121001.
- 672 https://doi.org/10.1088/1748-9326/aca1d3, 2022.
- 673 ∣ Durack, P. J., Taylor, K. E., Mizielinski, M., Doutriaux, C., Nadeau, D., and& Juckes, M.:__ (2024).
- 674 WCRP-CMIP/CMIP6_CVs: 6.2.58.68, (6.2.58.68). Zenodo. https://doi.org/10.5281/zenodo.12197151, 2024.
- 675 Evring, V. (2016), ES-DOC CMIP6 Tier 1 Experiment: historical, ES-DOC. Available at: https://view.es-doc.org/?
- 676 renderMethod=id&project=cmip6&id=713f15b6-e289-44e9-ba74-0d0e827e42ac&version=1&client=esdoc-search
- 677 | (Accessed: 16 August 2023).
- 678 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: (2016). Overview of the
- 679 Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev.,
- 680 <u>9. Geoscientific Model Development</u>, 9(5), 1937–1958, =https://doi.org/10.5194/gmd-9-1937-2016, 2016.
- 681 | Fiore, S., Nassisi, P., Nuzzo, A., Mirto, M., Cinquini, L., Williams, D., and Aloisio, G.: Sandro, et al. "A climate change
- 682 community gateway for data usage & data archive metrics across the earth system grid federation." CEUR workshop
- 683 proceedings WORKSHOP PROCEEDINGS. Vol. 2975. CEUR-WS, 2021.-https://iris.unitn.it/handle/11572/329932, 2021.-
- 684 Flato, G. M.<u>: (2011).</u> Earth system models: An overview. -*WIREs Climate Change*, 2(6), 783–<u>80,</u>
- 685 800. https://doi.org/10.1002/wcc.148, 2011.
- 686 Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E.,
- Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt,
- 688 H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S.,

- 689 McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H.,
- 690 Uotila, P., Valdivieso, M., Wang, O., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and
- 691 diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–
- 692 3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
- 693 Guterres, A.: (2023). Planet Hurtling towards Hell of Global Heating, Secretary-General Warns Austrian World Summit,
- 694 Urging Immediate Emissions Cuts, Fair Climate Funding. UN Press Release.
- 695 = https://press.un.org/en/2023/sgsm21799.doc.htm, 2023.
- 696 Gerber, E. P. and Manzini, E.: The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6:
- 697 assessing the stratosphere–troposphere system, Geosci. Model Dev., 9, 3413–3425, https://doi.org/10.5194/gmd-9-3413-
- 698 2016, 2016.
- 699 Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin,
- 700 G., O! Rourke, E., Rixen, M., Solman, S., Stephenson, T., and Tangang, F.: (2016). WCRP COordinated Regional
- 701 Downscaling Experiment (CORDEX): aA diagnostic MIP for CMIP6, Geosci, Model Dev., 9. Geoscientific Model
- 702 Development, 9(11), 4087–4095, =https://doi.org/10.5194/gmd-9-4087-2016, 2016.
- 703 Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S.,
- 704 Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J.,
- 705 Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High
- 706 Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci, Model Dev., 9, 4185–4208,
- 707 https://doi.org/10.5194/gmd-9-4185-2016, 2016.
- 708 Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J., Bastin, S., Behravesh, M.,
- 709 Bergemann, M., Biercamp, J., Bockelmann, H., Brokopf, R., Brüggemann, N., Casaroli, L., Chegini, F., Datseris, G., Esch,
- 710 M., George, G., Giorgetta, M., Gutjahr, O., Haak, H., Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D.,
- 711 Kluft, L., Kölling, T., Kornblueh, L., Kosukhin, S., Kroll, C., Lee, J., Mauritsen, T., Mehlmann, C., Mieslinger, T.,
- 712 Naumann, A. K., Paccini, L., Peinado, A., Praturi, D. S., Putrasahan, D., Rast, S., Riddick, T., Roeber, N., Schmidt, H.,
- 713 Schulzweida, U., Schütte, F., Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C. C., von Storch, J.-S., Vogel, R.,
- 714 Wengel, C., Winkler, M., Ziemen, F., Marotzke, J., and Stevens, B.: ... Stevens, B. (2023). ICON-Sapphire:
- 715 simulating Simulating the components of the Earth system and their interactions at kilometer and subkilometer scales,
- simulating of the Latin system and then interactions at knowleter and subknowleter scales
- 716 Geosci. Model Dev., 16. Geoscientific Model Development, 16(2), 779–811, =https://doi.org/10.5194/gmd-16-779-2023,
- 717 | 2023.
- 718 International Bureau of Weights and Measures; The International System of Units, 9th edition
- 719 https://www.bipm.org/documents/20126/41483022/SI-Brochure-9.pdf (last access: 1 November 2024), 2019.
- 720 Intergovernmental Panel on Climate Change IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis
- 721 Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on
- 722 Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi:
- 723 | 10.59327/IPCC/AR6-9789291691647.001, 2023.-
- 724 Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Broykin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J. G.,
- 725 Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T., and Zaehle, S.: C4MIP The Coupled
- 726 Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6, Geosci. Model Dev., 9, 2853–
- 727 2880, https://doi.org/10.5194/gmd-9-2853-2016, 2016.
- 728 Juckes, M.: (2020). CMIP Data Request Schema 2.0. <u>https://doi.org/10.5281/ZENODO.4287148, 2020.</u>

- 729 Juckes, M.: (2018). Style Guide for Variable Titles in CMIP6 (0.01). Zenodo. https://doi.org/10.5281/zenodo.2480853,
- 730 2018.-
- 731 Juckes, M., Taylor, K. E., Durack, P. J., Lawrence, B., Mizielinski, M. S., Pamment, A., Peterschmitt, J.-Y., Rixen, M.,
- 732 and Sénési, S.: (2020). The CMIP6 Data Request (DREQ, version 01.00.31), Geosci, Model Dev., 13. Geoscientific
- 733 Model Development, 13(1), 201–224, -https://doi.org/10.5194/gmd-13-201-2020, 2020.
- 734 Juckes, M.: (2023).—WCRP Baseline Variables MIP Prioritisation raw data [Data set]. CMIP IPO.
- 735 https://doi.org/10.5281/zenodo.8263526, 2023.
- 736 Kershaw, P., Abdulla, G., Ames, S., and Evans, B.: (2020), ESGF Future Architecture Report.
- 737 https://doi.org/10.5281/ZENODO.3928223, 2020.
- 738 Klein Tank, A., Zwiers, F., and Zhang, X.: Guidelines on Analysis of Extremes in a Changing Climate in Support of
- 739 Informed Decisions for Adaptation. World Meteorological Organization, 2009.
- 740 Lee, J., Gleckler, P., Ordonez, A., Ahn, M.-S., Ullrich, P., Vo, T., Boutte, J., Doutriaux, C., Durack, P., Shaheen, Z.,
- 741 Muryanto, L., Painter, J., and Krasting, J.: (2022). PCMDI/pcmdi_metrics: PMP Version 2.5.1 (v2.5.1) [Computer
- 742 | software]. Zenodo. https://doi.org/10.5281/ZENODO.7231033, 2020.
- 743 Lee, J., Gleckler, P. J., Ahn, M.-S., Ordonez, A., Ullrich, P. A., Sperber, K. R., Taylor, K. E., Planton, Y. Y., Guilyardi, E.,
- 744 Durack, P., Bonfils, C., Zelinka, M. D., Chao, L.-W., Dong, B., Doutriaux, C., Zhang, C., Vo, T., Boutte, J., Wehner, M. F.,
- 745 Pendergrass, A. G., Kim, D., Xue, Z., Wittenberg, A. T., and Krasting, J.: Systematic and objective evaluation of Earth
- 746 system models: PCMDI Metrics Package (PMP) version 3, Geosci. Model Dev., 17, 3919–3948,
- 747 https://doi.org/10.5194/gmd-17-3919-2024, 2024.
- 748 Magagna, B., Schinder, S., Stoica, M., Moncoiffe, G., Devaraju, A., and & Pamment, A.: (n.d.): *I-ADOPT Framework*
- 749 ontology [Computer software]. -https://w3id.org/iadopt/ont/1.0.3 (accessed 1 November 2024) 2023.
- 750 Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.: (1997). Intercomparison makes for a better climate
- 751 model. Eos, Transactions American Geophysical Union, 78(41), 445. https://doi.org/10.1029/97EO00276, 1997.
- 752 Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.: The Coupled Model Intercomparison Project (CMIP), B.
- 753 Am. Meteorol. Soc., 81, 313–318, 2000.
- 754 Meehl, G. A., Covey, C., Taylor, K. E., Delworth, T., Stouffer, R. J., Latif, M., McAvaney, B., and Mitchell, J. F. B.:
- 755 The THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research, B. Am. Meteorol. Soc., 88, 1383–
- 756 1394, 2007.
- 757 Nadeau, D., Doutriaux, C., & Taylor, K. E.: (2022). Climate Model Output Rewriter (CMOR3) (3.7) [Computer software].
- 758 https://github.com/PCMDI/cmor, 2022.
- 759 Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J., Tremblay, B., and Vancoppenolle, M.: The CMIP6
- 760 | Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations, Geosci. Model
- 761 Dev., 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016, 2016.
- 762 O'Rourke, E.: Eleanor. (2023). CMIP6 Community Survey Results. Zenodo. https://doi.org/10.5281/zenodo.8113057, 2023.-
- 763 O'Rourke, E. and Turner, B. (eds): . (2022) Priority variables for evaluation and exploitation of WCRP climate simulations
- 764 workshop report. Top priority variables community workshop 12 and 17 May 2022. Available from:
- 765 https://doi.org/10.59555/TUOC4428, 2022-.

- 766 O'Rourke, E., Turner, B., and Dingley, B. (2023). Baseline variables for climate model intercomparison and evaluation -
- Community survey summary report. Zenodo. https://doi.org/10.5281/zenodo.8248691, 2023.
- 768 Pascoe, C., Lawrence, B. N., Guilyardi, E., Juckes, M., and Taylor, K. E.: (2020). Documenting numerical experiments in
- 769 support of the Coupled Model Intercomparison Project Phase 6 (CMIP6), Geosci, Model Dev., 13. Geoscientific Model
- 770 Development, 13(5), 2149–2167, =https://doi.org/10.5194/gmd-13-2149-2020, 2020.
- 771 Petrie, R., Eggleton, F., and& Juckes, M.: (2024). CF Compliance errors in the CMIP6 archive. Zenodo.
- 772 https://doi.org/10.5281/zenodo.12820690, 2024.
- 773 | Program for Climate Model Diagnosis and Intercomparison (PCMDI): (2013). Standard Output [Excel file], Lawrence
- Livermore National Laboratory, https://pcmdi.llnl.gov/mips/cmip5/docs/standard_output.xls [accessed July 3rd, 2024], 2013.
- Petrie, R., Denvil, S., Ames, S., Levavasseur, G., Fiore, S., Allen, C., Antonio, F., Berger, K., Bretonnière, P.-A., Cinquini,
- 776 L., Dart, E., Dwarakanath, P., Druken, K., Evans, B., Franchistéguy, L., Gardoll, S., Gerbier, E., Greenslade, M., Hassell, D.,
- 777 Iwi, A., Juckes, M., Kindermann, S., Lacinski, L., Mirto, M., Nasser, A. B., Nassisi, P., Nienhouse, E., Nikonov, S., Nuzzo,
- 778 A., Richards, C., Ridzwan, S., Rixen, M., Serradell, K., Snow, K., Stephens, A., Stockhause, M., Vahlenkamp, H., and
- 779 Wagner, R.: ... Wagner, R. (2021). Coordinating an operational data distribution network for CMIP6 data, Geosci. Model
- 780 Dev., 14. Geoscientific Model Development, 14(1), 629–644, =https://doi.org/10.5194/gmd-14-629-2021, 2021,
- 781 Ruane, A. C., Teichmann, C., Arnell, N. W., Carter, T. R., Ebi, K. L., Frieler, K., Goodess, C. M., Hewitson, B., Horton, R.,
- 782 Kovats, R. S., Lotze, H. K., Mearns, L. O., Navarra, A., Ojima, D. S., Riahi, K., Rosenzweig, C., Themessl, M., and Vincent,
- 783 K.: The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6,
- 784 Geosci. Model Dev., 9, 3493–3515, https://doi.org/10.5194/gmd-9-3493-2016, 2016.
- 785 Stockhause, M., Höck, H., Toussaint, F., and Lautenschlager, M.: (2012). Quality assessment concept of the World Data
- 786 Center for Climate and its application to CMIP5 data, Geosci, Model Dev., 5. Geoscientific Model Development, 5(4), 1023–
- 787 1032, =https://doi.org/10.5194/gmd-5-1023-2012, 2012.
- 788 Stockhause, M. and, & Lautenschlager, M.: (2017). CMIP6 Data Citation of Evolving Data, ≡Data Science Journal, 16,
- 789 30. https://doi.org/10.5334/dsj-2017-030, 2017.
- 790 Tan, J., Duan, Q., Xiao, C., He, C., and Yan, X.: (2023). A brief review of the coupled human-Earth system modeling:
- 791 Current state and challenges, -The Anthropocene Review, 10, 664–684,
- 792 205301962211491. https://doi.org/10.1177/20530196221149121, 2023.
- 793 Taylor et al.: IPCC Standard Output from Coupled Ocean-Atmosphere GCMs, Program for Climate Model Diagnosis &
- 794 Intercomparison, 2007, https://pcmdi.llnl.gov/mips/cmip3/variableList.html (accessed 15th May 2024).
- 795 Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc.,
- 796 93, 485–498, 2012.
- 797 Taylor, K. E., Juckes, M., Balaji, V., Cinquini, L., Denvil, S., Durack, P. J., Elkington, M., Guilyardi, E., Kharin, S.,
- 798 Lautenschlager, M., Lawrence, B., Nadeau, D., and Stockhause, M.: CMIP6 Model Output Metadata Requirements, Data
- 799 Reference Syntax (DRS) and Controlled Vocabularies (CVs), (2018). CMIP6 Global Attributes, DRS, Filenames, Directory
- 800 Structure, and CV's. https://doi.org/10.5281/zenodo.12768887, 2024.docs.google.com/document/d/1h0r8RZr f3-
- 801 SegBMMh7aqLwv3snpD6 MrDz1q8n5XUk/edit?usp=sharing&usp=embed_facebook
- 802 Touzé-Peiffer, L., Barberousse, A., and Le Treut, H.: (2020). The Coupled Model Intercomparison Project: History, uses,
- and structural effects on climate research. *WIREs Climate Change*, 11(4). https://doi.org/10.1002/wcc.648, 2020.

- 804 United Nations: Paris Agreement, United Nations Treaty Collection, Chapter XXVII 7. d, adopted 2015-12-12 and inforce
- 805 2016-11-04, 2015.
- 806 United Nations Environment Programme. (2015). Paris Agreement. https://wedocs.unep.org/20.500.11822/20830
- 807 van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., Douville, H., Colin, J., Ducharne, A.,
- 808 Cheruy, F., Viovy, N., Puma, M. J., Wada, Y., Li, W., Jia, B., Alessandri, A., Lawrence, D. M., Weedon, G. P., Ellis, R.,
- Hagemann, S., Mao, J., Flanner, M. G., Zampieri, M., Materia, S., Law, R. M., and Sheffield, J.: LS3MIP (v1.0) contribution
- 810 to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project aims, setup and expected outcome,
- 811 Geosci, Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, 2016.
- 812 WCRP Working Group on Coupled Modeling: Report of the 22nd session of the WCRP Working Group on Coupled
- 813 Modeling (WGCM), vol. 14 of WCRP Report, World Climate Research Programme (WCRP), Geneva, Switzerland, 2019.
- 814 Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., Schlund, M., Adeniyi, K., Andela, B., Arnone, E., Berg, P., Caron,
- 815 L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, C. W., Paçal, A., Pérez-Zanón, N., Predoi... Eyring, V.,
- 816 Sandstad, M., Sillmann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, J., and Eyring, V.: (2021). Earth System Model
- 817 Evaluation Tool (ESMValTool) v2.0 diagnostics for extreme events, regional and impact evaluation, and analysis of Earth
- 818 system models in CMIP, Geosci, Model Dev., 14. Geoscientific Model Development, 14(6), 3159–3184,
- 819 https://doi.org/10.5194/gmd-14-3159-2021, 2021.
- 820 WGCM Climate Simulation Panel: IPCC Standard Output from Coupled Ocean-Atmosphere GCMs, Program for Climate
- 821 Model Diagnosis & Intercomparison, https://pcmdi.llnl.gov/mips/cmip3/variableList.html (accessed 5th December 2024),
- 822 | 2007.
- 823 | World Meteorological Organisation: The 2022 GCOS Implementation Plan, WMO GCOS 244, World Meteorological
- 824 Organisation, https://library.wmo.int/idurl/4/58104 (last access: 5 December 2024), 2022a.
- 825 WMO (2022a). Manual on Codes International Codes, Volume I.2, Annex II to the WMO Technical Regulations: Part B –
- 826 Binary Codes, Part C Common Features to Binary and Alphanumeric Codes, WMO-No. 306, ISBN 978-92-63-10306-2,
- 827 World Meteorological Organisation, https://library.wmo.int/?lvl=notice_display&id=10684
- 828 WMO (2022b), GCOS 2022 Implementation Plan (Writing Team; Zemp, Michael, Oingchen Chao, Albertus Johannes Han-
- 829 Dolman, Martin Herold, Thelma Krug, Sabrina Speich, Kazuto Suda, Peter Thorne, and Weidong Yu.), GCOS 244.
- 830 GOOD 272, World Meteorological Organisation, https://library.wmo.int/records/item/58104-the-2022-gcos-
- 831 implementation-plan-gcos-244 (accessed 2023-10-30).
- 832 World Meteorological Organisation: GCOS-22: WMO (2022c). The 2022 GCOS ECVs Requirements, WMO GCOS-
- 833 World Meteorological Organization (WMO); United Nations Educational, Scientific and Cultural Organization (UNESCO);
- 834 | Intergovernmental Oceanographic Commission (IOC); United Nations Environment Programme (UNEP); International
- 835 Science Council (ISC). GCOS 245, World Meteorological Organisation, https://library.wmo.int/idurl/4/58111 (last
- 836 access: 5 December 2024), 2022b.

World Meteorological Organisation: WMO (2023). Manual on Codes – International Codes, Volume I.2, Annex II to the WMO Technical Regulations, World Meteorological Organisation, https://library.wmo.int/idurl/4/35625 (last accessed 5 December 2024), 2023.