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Abstract. Snow provides critical water resources for billions of people, making the remote sensing of snow water equivalent 

(SWE) a highly prioritized endeavor, particularly given ongoing climate change impacts. Synthetic Aperture Radar (SAR) is 

a promising method for remote sensing of SWE because radar penetrates snow, and SAR interferometry (InSAR) can be 

used to estimate changes in SWE (ΔSWE) between SAR acquisitions. We calculated ΔSWE retrievals from 10 NASA L-

band (1–2 GHz, ~25 cm wavelength) Uninhabited Aerial Vehicle SAR (UAVSAR) acquisitions covering a ~640 km2 swath 30 

in northern Colorado during the winters of 2020 and 2021. UAVSAR acquisitions coincided with ~117 mm of accumulation 

in 2020 and ~282 mm of accumulation in 2021. ΔSWE retrievals were evaluated against measurements of SWE from repeat 

ground-penetrating radar (GPR) and terrestrial lidar scans (TLS) collected during the NASA SnowEx Time Series 

Campaigns at two field sites (total area = ~0.2 km2) as well as SWE measurements from seven automated stations distributed 

throughout the UAVSAR swath.  For single InSAR pairs, UAVSAR ΔSWE retrievals yielded an overall r of 0.72–0.79 and 35 

RMSE of 19–22 mm when compared with TLS and GPR ΔSWE retrievals. UAVSAR ΔSWE showed some scatter with 

ΔSWE measured at automated stations for both study years, but cumulative UAVSAR SWE yielded a r = 0.92 and RMSE = 

42 mm when compared to total SWE measured by the stations. Further, UAVSAR ΔSWE RMSEs differed by <10 mm for 

coherences (i.e., the complex interferometric coherence) of 0.10 to 0.90, suggesting that coherence has only a small influence 

on the ΔSWE retrieval accuracy. Given the evaluations presented here and in other recent studies, the upcoming NASA-40 

ISRO SAR (NISAR) satellite mission, with a 12-day revisit period, offers an exciting opportunity to apply this methodology 

globally.  

1 Introduction 

In snow-dominated watersheds, melt from seasonal snow drives streamflow and groundwater recharge (Li et al., 2017; 

Lorenzi et al., 2024). Globally, snowmelt supplies water resources for more than one-sixth of the population (Barnett et al., 45 

2005). However, warming temperatures are decreasing the probability of snowfall in historically snow-dominated 

watersheds (Klos et al., 2014; McCrystall et al., 2021), shifting snowpacks to higher elevations and more poleward latitudes, 

and effectively decreasing the predictability of streamflow in these basins (Siirila-Woodburn et al., 2021). Mountains store a 

disproportionately large amount of snow despite comprising a small fraction of the global land surface (Wrzesien et al., 

2019). Yet, in the mountains of the western United States, climate change has driven a 15–30% decline in snow water 50 

equivalent (SWE), the defining snowpack hydrologic variable, and SWE is expected to decline by an additional 25% by 

2050 (Mote et al., 2018; Siirila-Woodburn et al., 2021). The projected changes are acute globally; by 2100, snowmelt is 

projected to decline in the European Alps by 50% (Moraga et al., 2021), while basins in the Himalayas may see snowfall 

declines of 30–70% for the warmest climate scenarios (Viste and Sorteberg, 2015). Although snowpack monitoring via 

automated stations exists in some countries (e.g., SNOTEL stations in the United States; Fleming et al., 2023), location bias, 55 

limited elevational range, and large spatial variability in snow over short length scales results in an incomplete 

characterization of this resource (Dozier et al., 2016). Thus, satellite remote sensing methods for snowpack monitoring at 
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high resolution (<500 m, <weekly) have been set as a high priority for study and development by the National Academies of 

Sciences, Engineering, and Medicine (National Academies of Sciences, Engineering, and Medicine, 2018). 

The remote sensing of SWE is challenged by environmental factors (i.e., topography, vegetation) and by the 60 

spatiotemporally varying physical parameters of the snowpack (i.e., SWE, density, liquid water content, snow grain size). 

The NASA SnowEx Campaigns were conducted from 2017–2023 in the western United States to evaluate and develop 

remote sensing methods for snowpack monitoring, with the retrieval of SWE set as a primary goal (Durand et al., 2018). 

SWE is calculated as the product of snow depth and snow density, and there are two primary groups of techniques for remote 

sensing of SWE at high spatial resolutions (<500 m): i) depth-based optical-infrared methods and ii) radar-based methods. 65 

Depth-based optical-infrared methods (e.g., stereo satellite imagery, lidar) require cloud-free conditions and derive snow 

depths by differencing a snow-off digital elevation model (DEM) from a snow-on DEM (Currier et al., 2019; Hu et al., 

2023). Snow density model estimates or in situ measurements are required to convert the snow depths to SWE (e.g., Hedrick 

et al., 2018), which adds to the uncertainty of this technique (Raleigh and Small, 2017). Both satellite lidar (e.g., Besso et al., 

2024) and very-high resolution stereo satellite imagery (e.g., Hu et al., 2023) are being explored as depth-based methods for 70 

the remote sensing of SWE. Radar approaches are distinct from depth-based approaches because the radar signal penetrates 

the snowpack. Satellite radar approaches for snow depth and SWE retrievals are implemented from synthetic aperture radar 

(SAR) platforms and the techniques for snow depth and SWE remote sensing are primarily grouped into backscatter 

approaches, which use the amplitude component of the radar signal to derive snow depth and/or SWE, and time-of-flight 

approaches, which derive SWE from the signal path length and includes SAR interferometry (InSAR). A third approach, 75 

which uses the co-polar phase difference, has also been tested. Readers interested in the co-polar phase difference 

methodology are referred to Leinss et al. (2014) and Patil et al. (2020).  

Unlike optical-infrared methods, SAR approaches for snow remote sensing are not limited by cloud cover, primarily due 

to low atmospheric absorption at radar frequencies (Woodhouse, 2017). For SAR backscatter approaches, the radar signal is 

transmitted through the snowpack, and the signal is backscattered to the sensor via volume scattering from snow grains and 80 

rough scattering from the snow-ground interface (Tsang et al., 2022). Early backscatter work found that combined X- (8–12 

GHz, ~3 cm wavelength) and C-band (4–8 GHz, ~5 cm wavelength) SAR was capable of measuring snow depths from 0.5–

2.5 m (RMSE = 0.34 m; Shi and Dozier, 2000). More recent efforts have emphasized combined X- and Ku-band (12–18 

GHz, ~1.8 cm wavelength) SAR; these backscatter approaches are promising methods for measuring SWE in shallow 

snowpacks (<150 mm; Tsang et al., 2022), with the potential for retrieving SWE in deeper conditions (Borah et al., 2023). C-85 

band backscatter approaches are capable of measuring snow depths in deeper snowpacks (>1 m), albeit with higher 

uncertainty (Lievens et al., 2019, 2022). Backscatter approaches have known uncertainties in wet snow conditions, at large 

incidence angles, and in forests (Lievens et al., 2022; Tsang et al., 2022). InSAR is a unique method for retrieving SWE 

because the interferometric phase change has a near linear relation to SWE change (Guneriussen et al., 2001). In dry snow, 

this characteristic can be used to retrieve changes in SWE without a priori information on snowpack density with an 90 

estimated 7% uncertainty related to the linear approximation (Leinss et al., 2015). Applying the InSAR technique at low-
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frequency (e.g., L-band, ~25 cm wavelength) limits interaction between the radar signal and snow grains, increases the 

signal penetration in forests and in wet snow (Naderpour et al., 2022), and promotes increased coherence (described below) 

over longer temporal baselines (Ruiz et al., 2022).  A review of the transmissibility of L-band radar in snow is provided in 

Appendix A.1. With the upcoming launches of L-band SAR satellites, such as the NASA-ISRO SAR satellite (NISAR), the 95 

Radar Observing System for Europe satellite (ROSE-L), and the Tandem-L Interferometric Radar Mission, radar products 

will be publicly available at high spatial and temporal resolution across the globe (NISAR: 80 m spatial resolution, 12-day 

repeat; ISRO Space Applications Centre, 2023).  

InSAR is a change detection method that measures the phase change between repeat SAR acquisitions and relies upon a 

coherent reflection from the snow-ground interface (Guneriussen et al., 2001; Appendix A.2). The InSAR SWE retrieval 100 

technique was first established at C-band from the European Remote-Sensing Satellite (ERS) platform at a field site in 

Norway. The study showed that snowfall could be mistaken as a deformation signal in interferograms (the interferometric 

phase change data product; Guneriussen et al., 2001). Deeb et al. (2011) applied this technique to the ERS satellite using 

repeat acquisitions during an accumulation season to measure changes in SWE (ΔSWE) at a site on the North Slope of 

Alaska, United States that revealed ΔSWE spatial patterns correlated with the prevailing wind direction. Since then, the 105 

technique has been tested for multi-year, season-long ΔSWE retrievals from a tower mounted platform in Finland at Ku-, X-, 

C-, and L-band frequencies (Leinss et al., 2015; Ruiz et al., 2022), by several studies emphasizing one or two interferometric 

pairs (Conde et al., 2019; Marshall et al., 2021; Nagler et al., 2022; Palomaki and Sproles, 2023; Tarricone et al., 2023), and 

by two season-long studies that used a time series of interferometric pairs (Hoppinen et al., 2024; Oveisgharan et al., 2024). 

In general, these studies have found that InSAR ΔSWE retrievals are highly correlated with in situ measurements, but 110 

accuracy has varied on a case-by-case basis and in situ measurements for validation have been limited to point-based 

measurements that likely do not capture the spatial complexity of the snowpack. Additionally, only three of these studies 

have considered atmospheric signal delays, which represent a source of uncertainty because changes in atmospheric pressure 

and water content can further affect the ΔSWE retrieval accuracy (Gong et al., 2013). 

Here, coherence refers to the complex interferometric coherence and is a measure of the similarity of the backscattered 115 

radar signal properties between two acquisitions (Woodhouse, 2017). Coherence is considered an index for confidence in 

phase change measurements, where phase changes with higher coherences are considered more accurate, and coherence must 

be maintained for the accurate unwrapping of interferograms. Coherence is affected by forest cover, changes in soil 

conditions (e.g., soil moisture changes or freeze-thaw changes), changes in the dielectric permittivity of the snowpack (e.g., 

melt-refreeze cycles), snow metamorphism (Brangers et al., 2023), and significant snow accumulation/ablation events (Ruiz 120 

et al., 2022). Collectively, these factors indicate that as the temporal baseline (i.e., time interval) between interferometric 

pairs is extended and/or major snowpack changes occur, coherence will degrade (Deeb et al., 2011), particularly at higher 

frequencies (Ruiz et al., 2022). A review of the calculation of coherence is provided in Appendix A.2. 

Here, we calculated ΔSWE retrievals from 10 L-band NASA Uninhabited Aerial Vehicle SAR (UAVSAR; Rosen et al., 

2006) InSAR pairs collected during the NASA SnowEx Time Series campaigns in 2020 and 2021 over north-central 125 
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Colorado. During UAVSAR acquisitions, we collected spatially distributed ground-penetrating radar (GPR) at a very similar 

frequency to UAVSAR (UAVSAR = 1.26 GHz, GPR = 1.0 GHz) for all InSAR pairs, and we performed terrestrial lidar 

scans (TLS) for two InSAR pairs. Our study examines three components of InSAR ΔSWE retrievals. First, we leveraged our 

ground observations to evaluate the accuracy of the L-band InSAR technique for ΔSWE retrievals for two accumulation 

seasons in a dry continental subalpine snowpack. We then evaluated UAVSAR ΔSWE retrieval errors against coherence to 130 

examine it as a potential metric for ΔSWE retrieval accuracy. Finally, UAVSAR ΔSWE retrievals are summed across each 

individual winter season and compared with total SWE measured at seven automated stations to evaluate the accuracy of the 

technique across a time series. 

2 Overview of SnowEx 2020 and 2021 at Cameron Pass, Colorado 

The SnowEx 2020 Time Series campaign was originally planned for a single season at 13 field sites (Marshall et al., 2019), 135 

but was cut short due to the COVID-19 pandemic and subsequently restarted in 2021 at seven field sites. Weekly to bi-

weekly surveys were performed at Cameron Pass, Colorado (Figure 1a), coinciding with UAVSAR flights (Table 1). The 

flight line was typically ~40 km in length with a swath width of 16 km, but deviations from the spatial baseline and poor 

GNSS accuracy caused data acquisitions to be shortened for a few dates. The primary flight heading was southeast (141°), 

with a secondary northwest heading (321°) flown when time allowed. For the analysis, we used the 141° heading for all 140 

InSAR pairs except the 27 January to 3 February 2021 interval, which used the 321° heading. 

 

Figure 1: (a) Cameron Pass study area showing the Rocky Mountains, CO UAVSAR flight line overlaid on the Copernicus DEM 

(European Space Agency, 2021) with flight headings indicated by arrows. Locations are given for the Michigan River (MR) field site, 

Cameron Peak (CP) field site, and the Joe Wright (JW), Willow Park (WP), Lake Irene (LI), and Phantom Valley (PV) SNOTEL stations. 145 
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Inset depicts the location of the flight line in Colorado. Middle and right panels show uncrewed aerial vehicle (UAV) imagery collected 

during March 2020 at the (b) MR field site and February 2021 at the (c) CP field site. The MR field site was surveyed during 2020 and 

2021, whereas the CP field site was only surveyed during 2021. Key study areas, including snow pit locations, GPR transects, and 

terrestrial lidar regions of interest (Lidar ROI) are plotted. Arrows indicate the starting location and travel direction of the GPR transects. 

Table 1: UAVSAR flight dates and times, field survey dates, GPR survey times, and ground observations performed for each field survey 150 

date. For instances where both the 141° and 321° flight headings were used, flight times are given for both. Otherwise, only flight times 

for the 141° heading are listed. For 2021, GPR survey times are given for the Michigan River (MR) and the Cameron Peak (CP) field sites. 

Ground observations include GPR, TLS, snow pits (SP), and probed depths (PD). 

 

 155 

The region has a continental snow climate (e.g., Trujillo and Molotch, 2014), with a prairie snowpack at lower elevation 

(<2800 m) within the North Park region and montane and alpine snowpacks in the higher elevation Medicine Bow 

Mountains and Never Summer Range. Four SNOTEL stations and three automated stations that measured snow depth were 

located within the flight line (Figure 1a). The Joe Wright SNOTEL station, which was within 1.5 km of our field sites, 

receives a median peak SWE of 632 mm that occurs on a median date of 5 May (1979–2023). Vegetation within the flight 160 

line primarily consists of evergreen forest (58%) and shrubs (32%; Buchhorn et al., 2020). Engleman spruce (Picea 

engelmanii), subalpine fir (Abies lasiocarpa), and lodgepole pine (Pinus contorta) are the primary constituents of the forest, 

with interspersed Aspen (Populus tremuloides) groves (Fassnacht et al., 2018). From August to November 2020, the 

Cameron Peak fire burned >80 km2 of the flight line, including the Cameron Peak field site (CP; figure 1a) region (McGrath 

et al., 2023), which is not accounted for in these land cover estimates.  165 
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During SnowEx 2020, we surveyed the Michigan River field site (MR; Figure 1b), located in mostly open meadows 

vegetated by willows and grasses, though spruce/fir forests with <70% canopy cover inhabited portions of the northern and 

southern extent of the GPR transects. We measured stratigraphy, density, snow depth, and snow temperature in two snow 

pits (MR1, MR2; Figure 1b), following the SnowEx methodology outlined by Mason et al. (2023). Interval boards, which 

captured snow accumulation between surveys, were installed within 10 m of MR1 and at the nearby Joe Wright SNOTEL 170 

station. We recorded new snow depth, SWE, and density at each interval board on each site visit. Repeat GPR surveys (~1.6 

km in length; McGrath et al., 2021) were performed using a Sensors & Software PulseEkko 1.0 GHz GPR coupled to the 

snow surface via a sled and pulled behind and to the side of a snowshoer. Snow depths were probed every ~3 m along the 

GPR transect. Two snow-on terrestrial lidar scans were performed on 26 February and 12 March 2020, in addition to a snow-

off UAV-borne lidar scan performed in August 2020 (Williams, 2021). 175 

For SnowEx 2021, we expanded our surveys to include the Cameron Peak field site (CP; Figure 1c). At MR, GPR 

surveys (0.8 km in length; Bonnell et al., 2022) were altered to form a loop around the primary meadow, with a co-located 

snow pit (MR1) and interval board. Snow pits and interval boards were surveyed following the SnowEx methodology. Snow 

depths were manually probed along the eastern portion of the GPR transect at ~5 m intervals. We expanded to CP to 

leverage the reduced vegetation due to the Cameron Peak fire. CP has severely burned spruce/fir forest to the north and east, 180 

with an unburned stand in the central to southern portion (Figure 1c). A single snow pit and interval board was surveyed near 

the GPR transect (1.6 km in length) in the burned section. Snow depths were probed every ~5 m along the southeastern GPR 

transect, with ~200 m in the forest and ~200 m in the burned area. An automated station was installed near the CP snow pit, 

which measured snow depth, wind speed and direction, radiation, temperature, and soil moisture. Two snow-on terrestrial 

lidar scans were performed at both field sites on 10 February and 24 February 2021, with a snow-off terrestrial lidar scan 185 

performed on 27 May 2021 at CP (Williams, 2021). 

3 Methods 

3.1 UAVSAR processing 

Here, we provide an overview of the key UAVSAR processing steps. For additional and more detailed information, we 

direct readers to Appendix A.1–A.2. During the 2020 and 2021 airborne campaigns, UAVSAR deployed a fully polarized L-190 

band (1.26 GHz center frequency, 0.24 m wavelength), 80 MHz bandwidth, left-looking InSAR. The instrument was flown 

at an altitude of ~12,500 m and acquired data along a ~40 km stretch with a 16 km swath width (area = ~640 km2; Figure 1a; 

NASA UAVSAR, 2023). In 2020, overpasses were performed with a temporal baseline of seven days for the first three 

acquisitions (12, 19, & 26 February) and 15 days for the final acquisition (12 March). In 2021, overpasses had varying 

temporal baselines (typically five to eight days) and due to other aircraft commitments, one acquisition had a longer baseline 195 

(20 days for 3–23 February). Poor coherence prevented phase unwrapping at the field sites for one InSAR pair (10–16 March 

2021). The UAVSAR team at the NASA Jet Propulsion Laboratory processed the UAVSAR data and generated geocoded 
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amplitude, interferogram, unwrapped interferogram, and coherence products at ~5 m spatial resolution. We accessed the 

products from the Alaska Satellite Facility (ASF; NASA UAVSAR, 2020, 2021) and converted the products to geotiffs using 

uavsar_pytools (Hoppinen et al., 2022). InSAR measures phase deformation within a single ±π radians phase cycle, which 200 

equates to about ±108 mm SWE. Interferograms where ΔSWE exceeded a full phase cycle for some pixels require 

unwrapping for the accurate estimation of ΔSWE. Therefore, we focused on the unwrapped interferogram and coherence 

products, and outline key workflow steps for calculating ΔSWE, rather than total SWE, in Fig. 2. Although we included all 

four polarizations, we present the horizontal-transmit/horizontal-receive polarization (HH) for all intervals except the 3–23 

February 2021 interval, which used the vertical-transmit/horizontal-receive polarization (VH) due to incomplete phase 205 

unwrapping in the HH data product. Detailed radar SWE retrieval methodology is outlined in Appendix A.2. 
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Figure 2: Workflow diagrams for deriving ΔSWE from UAVSAR, GPR, and TLS products. For simplification, UAVSAR workflow is 

described in three steps. ENU indicates the east, north, and up look vectors provided by UAVSAR. 



10 

 

We tested for atmospheric delays following methods developed by Tarricone et al. (2023). We identified snow-free 

pixels in the unwrapped interferograms using the normalized difference snow index (NDSI; Dozier, 1989) calculated from 215 

Sentinel-2 imagery (European Space Agency, 2022; Figure S1) and regressed snow-free unwrapped phase pixels against the 

corresponding signal path lengths. Importantly, this method assumes that snow-free pixels are not undergoing any physical 

changes that would lead to a phase change. We tested whether an atmospheric correction was needed using three criteria 

outlined in Appendix A.2.2. Importantly, no unwrapped interferograms met all three criteria (Table S1). Therefore, we 

conclude that stratified atmospheric artifacts are either limited for all interferometric pairs or were more complicated than 220 

what our linear model identified. See Appendix A.2.2 for a more detailed description of the atmospheric correction. 

For these flights, UAVSAR had average look angles of 26–70° from near to far range. We calculated incidence angles in 

uavsar_pytools (Hoppinen et al., 2022; Equation A4) from the Copernicus 30 m DEM (rescaled to the UAVSAR grid) and 

the UAVSAR-provided look vector. The Copernicus DEM was chosen because it is the primary DEM used within the 

processing flow of ASF HyP3 and will be the basis for NISAR interferometric products. We evaluated incidence angles 225 

derived from the Copernicus DEM and the ΔSWE retrieval uncertainty caused by these incidence angles in Appendix A.2.5. 

UAVSAR acquisitions were collected during the winter over relatively short temporal baselines (< 21 days). Therefore, 

we consider changes at the snowpack surface to be the primary driver of phase deformation in the unwrapped 

interferograms, but we provide a discussion of other potential sources of phase deformation in Appendix A.2.1. Changes at 

the snow surface may include new snow accumulation, sublimation, redistribution, or melt. For both study periods, we 230 

conclude that the snowpack is dry, based on results presented in Section 4.1. Thus, for ΔSWE retrievals, we consider only 

the density of snow that accumulated between UAVSAR acquisitions. Surface densities were estimated by averaging density 

measurements of the snow that accumulated on the interval boards between UAVSAR acquisitions (Section 3.2). For 

instances where snow accumulation had occurred but had been removed from the interval board by, for example, wind 

redistribution, we used an average of the uppermost 10 cm of the snow pit-measured densities. For each interferometric pair, 235 

we converted surface densities to relative permittivity (Equation A5). Relative permittivities, unwrapped phase, and 

incidence angles were then used to calculate snow depth changes (Equation A6), which were subsequently converted to 

ΔSWE using the surface snow density (Equation A7). Because InSAR phase is relative (Woodhouse, 2017), we estimated 

absolute phase as the median difference between a 20% set of randomly selected GPR ΔSWE retrievals (Section 3.2) and 

coincident UAVSAR ΔSWE retrievals for each interval. The median differences were then subtracted from the UAVSAR 240 

ΔSWE retrievals for each interval and the 20% of the GPR observations used in this step were removed from subsequent 

analyses. Finally, we supplemented our analysis by evaluating an InSAR ΔSWE retrieval method that approximates ΔSWE 

from the InSAR phase change and the incidence angle (Leinss et al., 2015) and is thus independent of snow density and 

relative permittivity measurements. The methods and results of this analysis are reviewed in Appendix A.2.4.  

UAVSAR coherence values from corresponding TLS and GPR pixels were used to evaluate coherence as a measure of 245 

noise for ΔSWE retrievals. Coincident GPR and UAVSAR ΔSWE retrievals were binned by coherence and the root mean 

squared error (RMSE) of the UAVSAR ΔSWE retrievals was calculated for each bin. The effect of temporal baseline upon 



11 

 

coherence and UAVSAR ΔSWE retrieval accuracy was then evaluated by calculating the median coherence and RMSE for 

UAVSAR ΔSWE retrievals across all temporal baselines used in this analysis. 

3.2 Processing ground-based measurements 250 

3.2.1 In situ measurements 

Key in situ measurements included snow pit temperatures, pit-measured densities, pit-measured depths, interval board 

densities and SWE, and manually probed depths. Pit-measured temperatures were used to detect the possible presence of 

liquid water within the snowpack. Pit-measured densities were averaged to estimate bulk density, which was used in SWE 

calculations for the snow pits, GPR, TLS, and probed depths. Interval board densities were used for ΔSWE calculations in 255 

the UAVSAR workflow, however, for some dates, the interval boards yielded little-to-no accumulation due to wind 

redistribution or a lack of precipitation. For these dates, the pit-measured densities from the upper 0.10 m of the snowpack 

were averaged and used in the UAVSAR workflow. Probed depths were not repeated in identical locations but were 

geocoded using a Geode GNS2 receiver mounted on top of the probe and converted to SWE using the bulk snow densities. 

Because the probed depths had a sampling of 1–2 measurements per UAVSAR pixel and were not collected in repeated 260 

locations, we used the depth probe dataset to evaluate the GPR and TLS SWE accuracy, rather than evaluating the UAVSAR 

ΔSWE retrievals directly. 

3.2.2 GPR 

GPR locations were collected via an Emlid RS2 GNSS receiver onboard the GPR sled and post-processed with an Emlid 

base station located at the MR field site to ensure a spatial accuracy of <0.25 m. High accuracy is important, given that these 265 

transects were repeated and the product of interest is ΔSWE, which is sensitive to geolocation errors. Radargrams were 

processed in ReflexW (Sandmeier, 2019) in four general steps: (1) apply time-varying time-zero correction, (2) one-

dimensional de-wow filter to remove low-frequency noise, (3) trace interpolation to ~0.10 m, and (4) two-dimensional filter 

to remove instrument noise. After processing the radargrams, the ground reflector, identified as the highest magnitude 

positive amplitude reflector at depth, was picked and its corresponding two-way travel time (twt), representing the time-of-270 

flight through the snowpack, was exported. Further GPR collection and radargram processing details are presented in 

McGrath et al. (2021) and Bonnell et al. (2022). Bulk snow density was then estimated as the average bulk density between 

available snow pits and used to estimate bulk relative permittivity (Equation A5) and, thereby, the velocity of the radar 

signal (Equation A9). Using the estimated velocity, we converted twt to SWE (Equations A10, A7). A detailed summary of 

the GPR theory and methods is provided in Appendix A.3. We evaluated the accuracy of GPR SWE retrievals through a 275 

comparison with SWE from probed depths by calculating the median GPR SWE retrieval within a 1.5 m radius around each 

probed depth. GPR SWE retrievals were then binned at the spatial resolution of the UAVSAR grid by taking the median 
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value of all points within each grid cell. SWE retrievals from corresponding dates were then differenced to generate GPR 

ΔSWE. The GPR workflow is summarized in Fig. 2. 

3.2.3 Lidar Scans 280 

Repeat snow-on terrestrial lidar scans were performed in 2020 on 26 February and 12 March at the MR site and in 2021 on 

10 February and 24 February at the MR and CP sites. Snow-off lidar scans include a UAV-borne lidar scan that was 

performed for the MR site in August 2020 and a terrestrial lidar scan performed for the CP site on 27 May 2021. Terrestrial 

lidar scans were aligned and georeferenced by UNAVCO, Inc. (Williams, 2021). The USGS processed a bare-earth digital 

elevation model (DEM) from the UAV-borne lidar scan (Bauer et al., 2023). Lidar point clouds were reprojected and surface 285 

or bare ground returns were classified. These points were then converted to rasters, gridded and aligned to the UAVSAR 

grid, using the average elevation value per pixel. We derived snow depths for each snow-on scan date by subtracting snow-

free rasters from snow-on rasters. Snow depth rasters were converted to SWE using the bulk density from the snow pits. 

ΔSWE was calculated for 26 February to 12 March 2020 and for 10–24 February 2021 by differencing the corresponding 

SWE rasters. To align TLS datasets with the 3–23 February 2021 InSAR pair, we subtracted the SWE measured on the 290 

interval board between 2–10 February 2021 from the UAVSAR ΔSWE retrievals. TLS ΔSWE was then directly compared 

with the UAVSAR ΔSWE retrievals. The terrestrial lidar workflow is summarized in Fig. 2. 

3.3 Comparison between UAVSAR and automated stations 

We obtained daily observations of snow depth, SWE, and air temperature from the Joe Wright SNOTEL station (ID 551) 

and daily observations of SWE from an additional three SNOTEL stations within the UAVSAR swath for the 2020 and 2021 295 

seasons (Figure 1a; Table S2). Daily snow depths were obtained from three automated stations (two with sonic sensors and 

one with a snow stake paired with a time-lapse camera) within 4.5 km of the Joe Wright SNOTEL station (Table S2). We 

converted the snow depths to SWE by calculating density from Joe Wright SNOTEL station measurements of SWE and 

snow depth. SWE estimates were then smoothed with a five-day moving median filter to reduce the effects of new snow 

settlement.  300 

We expanded our UAVSAR analysis beyond our relatively small field sites (~0.2 km2 total area) to include 

measurements from the four SNOTEL stations and three automated stations within the swath (Table S2). We calculated the 

median UAVSAR ΔSWE within a 3×3 pixel grid (~15 m x ~15 m) around each station, added the ΔSWE retrievals for each 

interval, and matched the ΔSWE time series to the station time series by adding the station’s SWE at the start of the 

UAVSAR flights to the UAVSAR ΔSWE time series. Because of spatially extensive missing data within the 10–16 March 305 

2021 interferometric pair, we adjusted the UAVSAR ΔSWE time series at each station with the ΔSWE measured by the 

station. Median coherence was calculated within each 3×3 grid for the SNOTEL stations to evaluate the effects of coherence 

upon the ΔSWE retrieval time series. Last, station-measured SWE was compared with cumulative InSAR SWE for the final 

dates of the 2020 and 2021 UAVSAR acquisitions. 
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4 Results 310 

4.1 Field observations of SWE and snow density 

UAVSAR flights coincided with 117 mm of SWE accumulation (18% of peak SWE; Figure 3a) during the 2020 campaign 

(4 weeks) and 282 mm of accumulation (48% of peak SWE; Figure 3b) during the 2021 campaign (9 weeks). SWE at the in 

situ interval boards increased on average by 34 ±12 mm and 31 ±29 mm per flight interval during the 2020 and 2021 

campaigns, indicating that ΔSWE at the field sites was likely within a full phase cycle (±108 mm; Appendix A.2.3) for most 315 

UAVSAR acquisitions. New snow density, used for UAVSAR ΔSWE calculations, ranged between 106 and 145 kg m–3 

across all study dates in 2020 (Figure 3c), and over a larger range, 118–219 kg m–3, in 2021 (Figure 3d). Bulk density, used 

for GPR and TLS SWE calculations, increased minimally between most flights (mean = +20 kg m–3; Figure 3c–d), with a 

notable exception being the 12–19 February 2020 pair (mean = +72 kg m–3).  

 320 

Figure 3: Joe Wright SNOTEL SWE and snow depth, bulk SWE and interval board SWE (ΔSWE) recorded at snow pits MR1, MR2, and 

CP1 for (a) water year (WY) 2020 and (b) WY 2021. SNOTEL density, bulk density and interval board density (ρnew) recorded at snow 

pits for (c) WY 2020 and (d) WY 2021. SNOTEL air temperature (Ta) and error bar plots of snow pit temperatures for (e) WY 2020 and 

(f) WY 2021. UAVSAR acquisitions are represented as vertical dashed gray lines for plots (a–d). Bar graphs and error bar plots are paired 

and centered on the field survey date. Error bar plots show the median and the 25 and 75% quantiles. 325 

Surface melting can lead to significant decorrelation of the radar signal and cause increased uncertainty in the ΔSWE 

retrievals. There were three notable warm periods during the campaigns (7–9 March 2020, 2–10 March 2021, and 21–22 
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March 2021), but median snow pit temperatures during our survey dates remained <–1.1°C (Figure 3e–f). We did observe 

near-surface melt-freeze crusts in the snow pits during certain surveys, but our observations suggest that liquid water content 

was absent or minimal during UAVSAR flight times (Table 1) at our study sites throughout the campaigns.  330 

GPR SWE retrievals from the 2020 MR field site showed that median SWE increased by 127 mm between 12 February 

and 11 March (Figure 4a), with the largest median ΔSWE occurring during the 12–19 February interval (+99 mm). The 2021 

MR (Figure 4b) and CP (Figure 4c) field sites showed similar dynamic ranges, with GPR SWE retrievals increasing by 249 

mm at the MR site and 233 mm at the CP site between 15 January and 22 March. For both sites, the largest median ΔSWE 

occurred during the 2–24 February interval (MR = +97 mm, CP = +110 mm). GPR SWE retrievals and SWE converted from 335 

depth probe measurements are highly correlated, with an overall Pearson’s correlation coefficient (r) of 0.97 and an overall 

RMSE of 35 mm (Figure S2). 
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Figure 4: GPR SWE retrievals from the (a) 2020 and (b) 2021 MR field site, and (c) the 2021 CP field site. For (a), the transect begins at 0 

m at the southern transect terminus and progresses northward (Figure 1b). For (b), the transect starts at 0 m at the northeast corner and 340 

progresses clockwise (Figure 1b). For (c), the transect starts at 0 m at the southeast corner and progresses counter-clockwise (Figure 1c). 

GPR SWE retrievals in (a–c) have been smoothed with a 5 m moving median filter. 

4.2 UAVSAR ΔSWE retrievals at the field sites 

UAVSAR ΔSWE retrievals along the GPR transect at the 2020 MR field site saw a mean cumulative increase of 40 mm for 

the three intervals (Figure 5c–e; Table S3). The largest median ΔSWE occurred during the 12–19 February interval (median 345 
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= +97 mm), with modest SWE increases observed for both the 19–26 February (median = +16 mm) and 26 February to 12 

March (median = +8 mm) intervals. The largest ΔSWE retrieval range was observed for the 12–19 February interval 

(minimum = +60 mm, maximum = +149 mm). The expanded 2.7 km × 3.6 km region around the MR site reveals a 

somewhat different pattern than ΔSWE retrievals along the transect, with less accumulation for 12–19 February (+67 mm) 

and negligible SWE changes for 19–26 February (0 mm) and 26 February to 12 March (+1 mm; Figure 5c–e). 350 

 

Figure 5: (a) National Agriculture Imagery Program (NAIP) imagery from Summer 2023. (b) Median coherence across all dates. (c–l) 

UAVSAR ΔSWE retrievals for each 2020 and 2021 date interval at the MR field site. GPR ΔSWE retrievals are overlain, but reduced to 

5% of the total sample size for visual clarity. ΔSWE colors are minimized/maximized at approximately one phase cycle (±108 mm). All 

dates used the 141° flight heading and HH polarization, except for the 27 January to 3 February 2021 interval which used the 321° heading 355 

and the 3–23 February 2021 interval which used the VH polarization. No GPR points are visible for the 3–23 February 2021 interval 

because no coincident InSAR ΔSWE retrievals were successfully unwrapped. 
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UAVSAR ΔSWE retrievals along the GPR transects at the 2021 MR field site saw a median cumulative increase of 104 

mm for six of the seven 2021 intervals (no data for 3–23 February 2021), whereas the median cumulative increase for the 

expanded 2.7 km × 3.6 km region was +143 mm (Figure 5f–l). At the CP site, the median cumulative SWE across the seven 360 

surveys was 203 mm along the GPR transect and 171 mm from the 2.2 km x 3 km expanded region around the CP field site 

(Figure 6c–i). The largest median ΔSWE for the expanded regions occurred during the 3–23 February interval (MR median 

= +103 mm, CP median = +107 mm). Minimum UAVSAR ΔSWE retrieval medians from the expanded regions were 

observed on 27 January to 3 February at CP (median ΔSWE = –2 mm) and 3–10 March at MR (median ΔSWE = –6 mm). 

 365 

Figure 6: (a) Summer 2023 NAIP Imagery of the CP study site. (b) Median coherence across all dates. (c–i) UAVSAR ΔSWE retrievals 

for each 2021 date interval at the CP field site. GPR ΔSWE retrievals are overlain but reduced to 5% of the total sample size. ΔSWE colors 

are minimized/maximized at approximately one phase cycle (±108 mm). All dates used the 141° flight direction and HH polarization, 

except for the 27 January to 3 February interval which used the 321° direction and the 3–23 February interval which used the VH 

polarization. 370 

UAVSAR ΔSWE retrievals appear to capture detailed spatial distributions of ΔSWE across all dates at each field site. In 

particular, larger SWE accumulation is observed in the open meadows and avalanche paths in the MR study area than the 

surrounding forests (mean difference = 66%, range of mean differences = –2 to +29 mm; Figure 5). These patterns are 

particularly noticeable at the MR site for the 12–19 February 2020 interval (Figure 5c), which recorded a median ΔSWE 

increase of +98 mm in open meadows and avalanche paths, whereas ΔSWE in the surrounding forests increased by a median 375 

of +69 mm. A similar spatial pattern exists at the CP site, as the burned area consistently recorded a larger ΔSWE than 



18 

 

adjacent unburned forests. This is best observed in the 20–27 January 2021 interval (Figure 6d). During this interval, we 

calculated an average of 31 mm ΔSWE in the burned area and 15 mm ΔSWE in the unburned forests. Median coherence 

across the time series is somewhat higher for unforested areas in both the MR and CP field sites (+0.05; Figures 5b,6b). This 

subtle difference is further illustrated within the CP field site, where median coherence of the seven-day baseline InSAR 380 

pairs increased from 0.56 in 2020 pre-burn forests to 0.60 in 2021 post-burn areas (p = <0.0001). 

4.3 Evaluating UAVSAR ΔSWE retrievals with GPR 

UAVSAR ΔSWE retrievals have a relatively low pixel-wise correlation with GPR ΔSWE retrievals for any single InSAR 

pair (r = –0.24 to 0.20; Table S4). However, compiling the measurements across all surveys increases the ΔSWE dynamic 

range and correlation substantially (r = 0.79; Figure 7a). Here, we present a time series that includes only InSAR pairs from 385 

the HH polarization for all dates except the 3–23 February 2021 pair, which is represented by the VH polarization. For this 

time series, we observe RMSEs from 16–34 mm (Table S4) for single InSAR pairs, with an overall RMSE = 22 mm (Figure 

7a). Although pixel-wise comparisons between UAVSAR and GPR ΔSWE retrievals exhibit scatter, the box plot 

distributions for ΔSWE at co-located GPR-UAVSAR pixels are nearly identical, yielding absolute median differences 

between median GPR ΔSWE and median UAVSAR ΔSWE of 0–4 mm (Figure 7b,c; Table S2). Although we primarily 390 

present analyses based on the HH polarization, we find that UAVSAR ΔSWE retrievals have nearly equivalent RMSE 

values across all four polarizations (RMSE = 19–22 mm; Table S4). 

 

Figure 7: (a) UAVSAR ΔSWE retrievals compared with coincident GPR ΔSWE retrievals, with reported Pearson’s correlation coefficient 

(r) and RMSE (n = 2833). Points in (a) are colored by point density. (b) 2020 box plot distributions of GPR and UAVSAR ΔSWE 395 
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retrievals paired by date. (c) 2021 box plot distributions of GPR and UAVSAR ΔSWE retrievals paired by date. Box plots show the 

median, 25th and 75th quantiles, and the maximum and minimum, with outliers (>1.5 times the interquartile range) shown as points. 

We explored the possibility of coherence as an error metric for UAVSAR ΔSWE retrievals and found that RMSE 

exhibited a narrow range (21–25 mm) for coherence bins between 0.1 and 0.7 (Figure 8a). However, RMSE at very low 

coherence (0–0.1) is double the RMSE at very high coherence (0.9–1.0). Average coherence was highest for ~weekly 400 

baselines, but average coherence for the 15-day baseline (0.51) was within the range of average coherence for the five-to-

eight-day temporal baselines (Figure 8b). Of note, the 20-day baseline had average coherence >0.40 (Figure 7d) but yielded 

the highest RMSE (33 mm; Figure 8b). 

 

Figure 8: Histograms of (a) UAVSAR coherence values and (b) temporal baseline from co-located GPR and UAVSAR pixels. RMSE is 405 

shown for each bin. In (b), RMSE points are colored by mean coherence per temporal baseline bin. 

4.4 Evaluating UAVSAR ΔSWE retrievals with TLS 

TLS ΔSWE retrievals had median values of +9 mm for the MR field site during the 26 February to 12 March 2020 interval, 

and +55 and +39 mm at the MR and CP field sites during the 10–24 February 2021 surveys (Figure 9a,d,g). TLS SWE 

retrievals have a high correlation with SWE converted from depth probes, with a r of 0.83 and RMSE of 66 mm (n = 189; 410 

Figure S3). For each set of TLS acquisitions, UAVSAR ΔSWE retrievals had median values of +6, +60, and +45 mm, 

respectively (Figure 9b,e,h). Spatial patterns were similar between the two methods of ΔSWE retrievals. Large portions of 

data are missing in Fig. 9e due to coherence-related phase unwrapping errors. RMSEs were comparable between the 2020 

survey (MR = 20 mm) and the 2021 surveys (MR = 15 mm, CP = 20 mm). UAVSAR ΔSWE retrievals have an overall 
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RMSE of 19 mm and an r of 0.72 when compared with TLS. Coherence was used to color points on the UAVSAR-TLS 415 

comparison plots (Figure 9c,f,i) and shows that scatter is approximately equal throughout the range of observed coherences. 

 

Figure 9: Results of the ΔSWE comparison between TLS and UAVSAR. Rows are organized by date and field site. Columns include TLS 

ΔSWE (left column), UAVSAR ΔSWE (middle column), and the comparison between TLS and UAVSAR (right column). SWE measured 

at the interval board on 10 February 2021 was subtracted from UAVSAR ΔSWE for 3–23 February 2021 to align with the TLS survey 420 

dates. Comparison plots are colored by coherence. The number of pixels (n) and Pearson’s correlation coefficient (r) are reported for each 

comparison. 
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4.5 Evaluation of UAVSAR time series at automated stations 

UAVSAR SWE retrievals overestimated SWE accumulation for the 12–19 February 2020 InSAR pair by an average of 

163% at the automated stations but underestimated SWE accumulation by an average of 88% between 19 February and 12 425 

March (Figure 10a–e). 2021 cumulative UAVSAR SWE retrievals record net increases at all seven sites (+109 to +219 mm), 

which is similar to the net increases recorded by the stations (+101 to +242 mm; Figure 10a–g). Median coherence for the 

2020 season was lowest at the Lake Irene SNOTEL station (median coherence = 0.30) and highest at the Phantom Valley 

SNOTEL station (median coherence = 0.63), whereas median coherence for the 2021 season was lowest at the Montgomery 

Snow Stake (median coherence = 0.49) and highest at the Lake Irene SNOTEL station (median coherence = 0.60). The 430 

lowest median coherence for all sites was observed for the 26 February to 12 March 2020 interval (median coherence = 

0.31), an interval that yielded negative SWE retrievals for three of the five operating stations (–17 to –3 mm). At the end of 

the UAVSAR campaigns, cumulative UAVSAR SWE retrievals from the seven stations (n = 12) yielded an RMSE = 42 mm 

and an r = 0.92 (Figure 10h). 

 435 

Figure 10: Time series of 2020 and 2021 UAVSAR ΔSWE retrievals compared with SWE from (a) the Joe Wright SNOTEL station (JW), 

(b) the Phantom Valley SNOTEL station (PV), (c) the Lake Irene SNOTEL station (LI), (d) the Willow Park SNOTEL station (WP), (e) 

the Colorado Avalanche Information Center weather station (CAIC), (f) the Cameron Peak field site weather station (CPWS), and (g) the 

Montgomery Snow Stake site (MSS). Mean 9-pixel coherence is shown for each UAVSAR point. (h) Comparison between SNOTEL SWE 

and cumulative UAVSAR SWE for the last UAVSAR flight for each year. For sites (e–g), only snow depth was observed and SWE was 440 

estimated using density recorded at the closest SNOTEL station (Joe Wright SNOTEL). Methods describing the alignment of the 

UAVSAR time series to the automated stations are described in Section 3.3. 
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5 Discussion 

5.1 Accuracy of L-band InSAR ΔSWE retrievals  

From our evaluation with GPR and TLS, we established the RMSE for L-band InSAR ΔSWE retrievals as 19–22 mm for 445 

single InSAR pairs (Figures 7,9). For cumulative InSAR SWE, we estimated a RMSE of 42 mm at seven automated stations 

(Figure 10).  Previous studies have established that UAVSAR ΔSWE retrievals resemble the spatial patterns of lidar-derived 

ΔSWE retrievals, but differences between the two datasets were not systematic (Marshall et al., 2021; Palomaki and Sproles, 

2023). Marshall et al. (2021) evaluated UAVSAR ΔSWE retrievals over a 4 km2 relatively flat and non-forested region of 

Grand Mesa, Colorado using airborne lidar and found very low error for the technique (RMSE = 9 mm). UAVSAR ΔSWE 450 

retrievals have been evaluated using GPR and automated station measurements in Valles Caldera, New Mexico (Tarricone et 

al., 2023) and from in situ and SNOTEL measurements of ΔSWE in the mountains of Idaho (Hoppinen et al., 2024). Both 

studies identified and corrected significant atmospheric artifacts and contained at least one InSAR pair that was collected 

when liquid water content was present in the snowpack, but estimated study-wide errors of similar magnitude found by our 

study (RMSE = 15–40 mm; Table S4). 455 

UAVSAR ΔSWE retrievals had higher RMSE in 2020 than in 2021 (Table S4), and the agreement between the InSAR 

time series and the automated stations was poorer in 2020 than in 2021 (Figure 10). One potential explanation for the lower 

agreement in 2020 was the significant deviation (>10 m) from the cross track and vertical baselines of the aircraft during the 

2020 flights (Jones et al., 2016; NASA UAVSAR, 2023). UAVSAR ΔSWE spatial patterns are similar to those of TLS 

ΔSWE (Figure 9) and the comparison of UAVSAR and GPR ΔSWE site-wide distributions reveal nearly identical medians 460 

(absolute median difference = 2 mm; Figure 7b–c). We found that low coherence did not substantially increase the RMSE of 

UAVSAR ΔSWE retrievals as the RMSE was less than 35 mm for >10-day temporal baselines (Figure 8). However, lower 

coherence for InSAR pairs with >10-day temporal baselines exhibited issues with phase unwrapping. Collectively, these 

findings suggest a high degree of accuracy and reliability for InSAR ΔSWE retrievals, particularly in relatively simpler 

environments (i.e., dry snow conditions, non-forested areas, slopes <20°) and when atmospheric delays are limited. 465 

 

5.2 Considerations for future evaluations of InSAR ΔSWE retrievals  

The NISAR satellite mission holds promise for global repeat 12-day ΔSWE retrievals, providing the opportunity to evaluate 

the L-band InSAR technique in a range of environments and to better assess its uncertainties. In our evaluation, we used two 

ground-based methods that many snow community researchers have access to and showed that both methods are capable of 470 

assessing InSAR ΔSWE retrieval accuracy. Both methods can be used to derive spatially continuous SWE measurements 

over large areas and are therefore advantageous over standard in situ SWE measurement methods (Holbrook et al., 2016; 

McGrath et al., 2019). Below we outline advantages, considerations, and challenges of GPR and TLS for InSAR evaluation. 
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Few methods match the sophistication of InSAR for change detection. Of the two techniques we employed in our 

evaluation, lidar is the most applicable for change detection (Deems et al., 2013), but its methodology for ΔSWE retrievals is 475 

not straightforward. There are two conceptual paths for ΔSWE retrievals from lidar: (1) subtraction of two repeat snow-on 

lidar elevation surveys or (2) subtraction of two bulk SWE datasets derived from lidar. The first option is complicated by 

snow compaction, while the second option requires accurate bulk snow densities and a snow-off bare-earth digital terrain 

model, which may be difficult to acquire in densely vegetated areas. We chose the second option because bulk density 

variability is less of a concern for the relatively small areas surveyed by the TLS (Bonnell et al., 2023). We found the best 480 

agreement between UAVSAR and TLS ΔSWE retrievals for surveys that were aligned on the same date, as differential SWE 

accumulation/redistribution increased uncertainty (Figure 9). Note that if the TLS platform is set up on top of the snowpack, 

accurate TLS ΔSWE retrievals may be hindered by small shifts in the TLS platform as it settles in the snow (Currier et al., 

2019). 

Repeat GPR transects also have several challenges. Our survey methodology involved marking our transects and post-485 

processing the onboard GPS sensor (±0.25 m accuracy), but it is likely that our tracks were offset by ±1–2 m from the 

transect for some surveys. Further, as SWE increases throughout a season, the twt to the ground reflector increases, 

effectively increasing both the GPR horizontal footprint and the potential for clutter in the radargram (Daniels, 2004). 

Surface-coupled GPR has the potential to both compact the snow below the sled and remove snow from the surface (e.g., 

McGrath et al., 2019), which may further increase the uncertainty of GPR ΔSWE retrievals, particularly in low density snow 490 

on the surface of the snowpack. These complications may explain the low Pearson’s correlation coefficients observed 

between UAVSAR and GPR ΔSWE retrievals for single InSAR pairs (r = –0.24 to +0.2; Table S4), as well as the low GPR-

UAVSAR ΔSWE retrieval relation (r2 <0.1) described by Tarricone et al. (2023). However, as our analysis shows, repeat 

GPR transects are effective at evaluating the InSAR technique if there is enough data collected across a range of SWE 

accumulation magnitudes (Figure 7). 495 

A major difference between UAVSAR and planned NISAR interferograms is the spatial resolution (~5 m vs. 80 m), 

which may complicate future NISAR ΔSWE retrieval ground-based evaluations. GPR surveyed along transects scaled well 

to the resolution of UAVSAR, but a different survey design (i.e., spiral or grid) may be required to provide sufficient 

coverage of the NISAR pixels. Thus, GPR may have increased uncertainty in its scalability due to a difficulty of repeating 

complicated survey designs. Lidar is scalable to coarser resolutions (e.g., 50 m; Painter et al., 2016) and TLS and drone-500 

mounted lidar (e.g., Feng et al., 2023) may be valuable tools for evaluating InSAR ΔSWE retrievals at small field sites. 

However, at larger scales, comprehensive airborne lidar surveys will be required to fully evaluate NISAR ΔSWE retrievals. 

5.3 Remaining questions for the L-band InSAR ΔSWE retrieval technique 

L-band InSAR has been seen as a promising technique for high resolution snow monitoring for over a decade (Deeb et al., 

2011), yet insufficient opportunities existed for robust evaluations. In the last few years, airborne InSAR campaigns over 505 

seasonal snowpacks have created opportunities for a more thorough evaluation of this technique. Our study, and others, show 



24 

 

that this technique can have high accuracy, but there are several areas of uncertainty that need to be considered, including 

forested environments, wet snowpacks, complex topography that results in steep incidence angles, spatially varying 

atmospheric delays, and the integration of InSAR ΔSWE retrievals with other remote sensing methods and models.  

Recent UAVSAR studies (Hoppinen et al., 2024; Marshall et al., 2021; Palomaki and Sproles, 2023; Tarricone et al., 510 

2023), including this study, have largely focused on ΔSWE retrievals in open environments. We found that ΔSWE retrievals 

were 66% higher on average in the open areas around the MR field site than below forest cover. Forest canopy interception 

and sublimation may play a role in this signal, because this process is known to drive a 20–30% reduction of total snowfall at 

the nearby Fraser Experimental Forest (Montessi et al., 2004). On the other hand, a contrast between lower snow surface 

densities in the forest compared with the potentially higher densities we measured in the open could explain a similar 515 

magnitude of the signal. Unfortunately, we are unable to validate the forest ΔSWE retrievals as only 20% of GPR 

observations in 2020 and 10% of GPR observations in 2021 were collected below spruce/fir canopy (15–70% canopy cover). 

Forests interfere with the radar signal, reducing coherence and potentially biasing retrievals, particularly for longer temporal 

baselines (Li et al., 2022; Ruiz et al., 2022). However, coherence only improved by +0.05 from forests to open areas at our 

field sites and even the removal of canopy due to the Cameron Peak wildfire only increased coherence by +0.04. Thus, 520 

because of its canopy penetrative capabilities, the L-band InSAR ΔSWE retrieval technique may be the first satellite-based 

technique viable for SWE monitoring in forests. 

At our site, UAVSAR flights occurred during the accumulation season when the snowpack was likely dry (Figure 3e–f). 

However, SWE monitoring is needed for snowpacks that accumulate at or near 0°C and for the melt season, making ΔSWE 

retrieval evaluation prioritized in wet snowpacks. Liquid water in the snowpack raises both the real and imaginary 525 

components of relative permittivity, which decreases the snowpack radar velocity and increases absorption of the radar 

signal, causing decreased signal penetration (Tsai et al., 2019). Even if the backscattering interface is unchanged, reduced 

radar velocity causes ΔSWE retrieval overestimation if the liquid water content is not considered (Bonnell et al., 2021; 

Tarricone et al., 2023). Tarricone et al. (2023) evaluated ΔSWE retrievals with the Landsat fractional snow-covered area 

product and found reasonable snowpack ablation over a 14-day period in Valles Caldera, New Mexico, but Hoppinen et al. 530 

(2024) found reduced ΔSWE retrieval accuracy in wet snowpacks. Wet snow detection techniques have been developed and 

implemented at C-band (e.g., Gagliano et al., 2023; Nagler and Rott, 2000; Nagler et al., 2016) and similar techniques should 

be evaluated at L-band frequencies (e.g., Park et al., 2014). 

6 Conclusion 

During the winters of 2020 and 2021, UAVSAR collected L-band InSAR datasets over 12 mountainous regions of the 535 

western United States, including continental snowpacks of Colorado, intermountain snowpacks of Idaho and Montana, 

maritime snowpacks of California, and shallow mountain snowpacks in New Mexico. At the Cameron Pass field site, we 

used extensive GPR and TLS to evaluate UAVSAR ΔSWE retrievals over a three-pair time series (4 weeks) that saw 121 
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mm SWE accumulation in 2020 and a seven-pair time series (9 weeks) that saw 206 mm SWE accumulation in 2021. Our 

analysis was not complicated by the presence of liquid water within the snowpack and we emphasized GPR and TLS 540 

collection in open areas at our field sites. Our results indicate accurate statistical distributions for the L-band InSAR method 

for areas without forest cover (absolute median difference = 2 mm compared to GPR), but low correlation coefficients (r = –

0.24 to +0.2) for individual InSAR pairs warrants caution for ΔSWE interpretation at the single pixel scale. UAVSAR 

ΔSWE retrievals exhibited distinct and repeated spatial patterns relating to the land cover, as forests averaged 66% less 

ΔSWE per InSAR pair than open meadows, burned forests, and avalanche alleyways in forests. We expanded our in situ 545 

SWE observations to include seven automated weather stations distributed throughout the swath and highlighted the utility 

of the InSAR method for measuring cumulative SWE (RMSE = 42 mm), a requirement for any SWE remote sensing 

method. We found that the range in RMSE from coherences of 0.10–0.90 was <10 mm, indicating that low coherence does 

not necessarily inhibit the accurate retrieval of ΔSWE. Although our ground observations did not target forested areas, we 

found the median coherence in the forests averaged 0.05 less than in the open, suggesting ΔSWE retrievals may be viable in 550 

these environments but the location of the amplitude-center as forest cover increases remains an active question. 

Collectively, our study supports the use of L-band InSAR for measuring SWE in mountain snowpacks, further highlighting 

the potential for NISAR and other upcoming L-band SAR satellites to contribute substantially to global SWE monitoring. 

Appendix A: Radar for SWE retrievals 

A.1 L-band transmissibility 555 

At L-band frequencies (1–2 GHz, ~0.25 m wavelength), dry snow is fully transmissible because of limited interactions 

between snow grains and the radar signal (Tsai et al., 2019). The bulk of reflected energy is returned from the snow-ground 

interface for areas without dense vegetation (Nagler et al., 2022), but uncertainty regarding the source of the primary 

backscattering surface increases with increased vegetation density because the L-band signal interacts with tree trunks, large 

branches, and dense vegetation (Ottinger and Kuenzer, 2020). 560 

A.2 The InSAR technique for ΔSWE retrievals 

A.2.1 Introduction to the InSAR technique 

SARs emit polarized radar signals at a given frequency and narrow bandwidth and record the amplitude and phase of 

backscattered signal (Woodhouse, 2017). InSAR is a change-detection technique that calculates the phase change between 

two radar signals operating at identical wavelengths and polarizations. Guneriussen et al. (2001) proposed a method for 565 

removing the snow accumulation signal from interferometric pairs where at least one of the acquisitions occurred during the 

snow season. Their proposed method forms the basis for most published InSAR ΔSWE retrieval techniques and is the one 

we implement. We applied this technique to repeat airborne acquisitions and assume the phase deformation is primarily due 
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to the accumulation or redistribution of snow. We accessed unwrapped interferograms from the ASF Distributed Active 

Archive Center (DAAC). Interferograms were unwrapped by the UAVSAR team, following the Integrated and Correlation 570 

Unwrapping method (Goldstein and Werner, 1998). This technique relies on the interferometric coherence (𝛾), which is 

calculated as 

𝛾 =
𝐸[𝑢1 𝑢2

∗ ]

√𝐸[|𝑢1|2]√𝐸[|𝑢2|2]
      (A1), 

where 𝐸 is the expected value of a given variable and 𝑢1 and 𝑢2 are the amplitudes for the two image pairs (Woodhouse, 

2017). 575 

In the case of snow, the amplitude center is assumed to be the snow-ground interface and any deformation in phase is 

expressed as 

𝜑 = 𝜑𝑓𝑙𝑎𝑡 + 𝜑𝑡𝑜𝑝𝑜 + 𝜑𝑎𝑡𝑚 + 𝜑𝑠 + 𝜑𝑒𝑟𝑟     (A2), 

where the total interferometric phase change (𝜑) is expressed as the sum of the phase changes that arise from changes in 

the relative distance between the radar platform and the ground target for flat Earth (𝜑𝑓𝑙𝑎𝑡) and topography (𝜑𝑡𝑜𝑝𝑜), changes 580 

in the atmospheric conditions that cause signal delays (𝜑𝑎𝑡𝑚), the changes in phase caused by the change in snow depth or 

SWE (𝜑𝑠), and phase changes caused by instrument noise (𝜑𝑒𝑟𝑟; Deeb et al., 2011). Instrument noise can manifest as random 

error or systematic error, which can result from a non-constant flight track (Jones et al., 2016). Topographic corrections are 

minimized by the UAVSAR instrument, as it performs acquisitions within a repeated 10 m tube, but both the topographic 

and flat Earth contributions towards total phase change are accounted for in the UAVSAR unwrapped interferograms. 585 

However, atmospheric delays, caused by changes in atmospheric pressure and water vapor mass that occur between 

acquisitions, may influence the interferometric phase change (Bevis et al., 1992). 

A.2.2 Atmospheric correction for UAVSAR 

Atmospheric delays are generally described as stratified or turbulent, where stratified delays are manifested as phase ramps 

or are correlated with topography and occur due to relatively homogeneous differences in atmospheric conditions, whereas 590 

turbulent delays are more difficult to identify and are caused by heterogeneous differences in atmospheric conditions (Hu 

and Mallorquí, 2019). Modeling atmospheric delays from airborne platforms is complicated, primarily due to the relatively 

coarse vertical resolution of most atmospheric reanalysis/forecast products that extends higher than the UAVSAR flight 

altitude (~12.5 km). Three recently developed methods may be applicable for our study: (1) a statistical approach that 

models delays assuming a stratified atmosphere (Tarricone et al., 2023), (2) an approach that integrates phase delays along 595 

the signal path using ERA5 atmospheric data (Hoppinen et al., 2024), and (3) modeling the turbulent delay from atmospheric 

pressure and precipitable water using the High Resolution Rapid Refresh Model (HRRR; Gong et al., 2013). We chose the 

Tarricone et al. (2023) approach, which has higher spatial resolution than either the ERA5 or HRRR methods, and developed 

a workflow to evaluate the need for a stratified atmospheric correction. 
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The workflow estimates an atmospheric correction as a best-fit plane across the UAVSAR scene, by regressing the 600 

unwrapped phase at snow-free pixels with the radar signal path length. Before the analysis, we defined requirements that the 

atmospheric correction had to meet in order to be implemented: (1) regression slope estimators needed to be identical across 

all four polarizations and the estimator’s p-value needed to be <0.05, (2) coefficients of determination (r2) were required to 

be >0.20, and (3) the root mean squared error (RMSE) of atmospherically corrected ΔSWE had to improve the RMSE of 

uncorrected ΔSWE by >20%. 605 

Sentinel-2 Level 2A (Surface Reflectance) 2020 and 2021 products were accessed in Google Earth Engine at 10 m 

resolution. Clouds were removed for each image and an average image was composited for all Sentinel-2 acquisitions 

between UAVSAR flights. Normalized difference snow index (NDSI; Dozier, 1989) between green and shortwave infrared 

(SWIR) bands was calculated as 

𝑁𝐷𝑆𝐼 =  
𝐵𝑎𝑛𝑑𝑔𝑟𝑒𝑒𝑛−𝐵𝑎𝑛𝑑𝑆𝑊𝐼𝑅

𝐵𝑎𝑛𝑑𝑔𝑟𝑒𝑒𝑛+𝐵𝑎𝑛𝑑𝑆𝑊𝐼𝑅
     (A3). 610 

We then masked out forests from the scene using the Copernicus Global Land Cover 100 m dataset (Figure S1). Snow-free 

pixels were identified as NDSI < 0.2, based on visual inspection of the optical imagery. We then regressed the unwrapped 

phase at snow-free pixels against the radar signal path length to estimate a phase ramp for each InSAR pair. We calculated 

RMSE for both atmospherically corrected and uncorrected datasets using SNOTEL ΔSWE calculated from the four 

SNOTEL stations (Table S2) where we took the median of the nearest nine UAVSAR ΔSWE pixels but removed stations 615 

that had coherence <0.5. No single interferogram met our listed requirements (Table S1). We conclude that stratified 

atmospheric delays may be present, but do not substantially affect the accuracy of ΔSWE retrievals. 

A.2.3 Calculating InSAR ΔSWE retrievals 

Assuming all other phase terms are accounted for (Equation A2), ΔSWE can be calculated from the snow phase term, the 

radar wavelength (𝜆; ~0.238 m), the local incidence angle (𝜃𝑖𝑛𝑐), and the relative permittivity (𝜀𝑠). Because the radar 620 

signal intersects the snowpack obliquely, the unwrapped phase must be projected to the surface normal using the local 

incidence angle. We calculated incidence angles in uavsar_pytools (Hoppinen et al., 2022) as 

𝜃𝑖𝑛𝑐 = (– 𝑛̂ ∙ ‖𝑙𝑘𝑣‖)       (A4), 

where 𝑛̂ ∙ ‖𝑙𝑘𝑣‖ is the dot product of the surface normal calculated from a DEM and the magnitude of the UAVSAR-

provided look vector (containing the east, north, and up components).  625 

Relative permittivity describes the ratio of the dielectric permittivity of a material to the dielectric permittivity of free 

space (Daniels, 2004). In dry snow, relative permittivity is determined primarily by the snow density, whereas liquid water 

content becomes the defining variable in wet snow (Bonnell et al., 2021; Koch et al., 2014). We concluded that the 

snowpack was dry throughout our field campaigns (Section 4.1). We calculated relative permittivity from the Kovacs et al. 

(1995) equation, which was found to have a RMSE = 54 kg m–3 for densities derived in Colorado (Bonnell et al., 2023). The 630 

equation, 
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𝜀𝑠 = (1 + 0.845
𝜌𝑠

1000
)

2

      (A5), 

calculates the relative permittivity of snow from the snow density (𝜌𝑠) in kg m–3 and represents the median of published dry 

snow relative permittivity equations (Di Paolo et al., 2020). We estimated the relative permittivity of the snowpack surface 

using an estimate of the snowpack surface density. The change in snow depth (𝛥𝑑𝑠) is given as 635 

𝛥𝑑𝑠 =–
𝜆𝜑𝑠

4𝜋
×

1

𝑐𝑜𝑠 𝜃𝑖𝑛𝑐–√𝜀𝑠–𝑠𝑖𝑛2𝜃𝑖𝑛𝑐 
     (A6). 

At the UAVSAR wavelength and for a given 𝜃𝑖𝑛𝑐 = 1.2 radians and a snow surface 𝜀𝑠 = 1.270 (𝜌𝑠 = 150 kg m–3), phase 

wrapping occurs at 𝛥𝑑𝑠 = 0.72 m, or ΔSWE = 108 mm. Finally, ΔSWE is calculated by multiplying the snow depth by the 

surface density:  

𝑆𝑊𝐸 = 𝑑𝑠 × 𝜌𝑠       (A7). 640 

A.2.4 Evaluation of the Leinss et al. (2015) linear approximation for InSAR ΔSWE retrievals 

For dry snow, InSAR phase change has a near-linear dependence upon the change in SWE (Guneriussen et al., 2001; Leinss 

et al., 2015; Oveisgharan et al., 2024), and such a relation can be leveraged to derive InSAR ΔSWE independent of density 

or relative permittivity measurements. In our study, we calculated ΔSWE using the density-dependent method (Equation 

A6–A7) because surface density was a target variable during the surveys (Figure 3) and several previous studies have opted 645 

to use the density-dependent method because airborne platforms yield a much larger range of incidence angles than satellite 

platforms (e.g., Hoppinen et al., 2024; Marshall et al., 2021; Nagler et al., 2022; Tarricone et al., 2023). We evaluated the 

utility of the Leinss et al. (2015) approximation for ΔSWE using the 16–22 March 2021 HH InSAR pair. The equation, 

  𝛥𝑆𝑊𝐸 =  
𝜑𝑠𝜆

2𝜋𝛼
(1.59 + 𝜃

𝑖𝑛𝑐

5

2 )

−1

     (A8), 

modifies Eq. A6 using the Matzler (1996) permittivity model such that ΔSWE is calculated from the phase change, the radar 650 

wavelength, the incidence angle, and an optimization parameter (𝛼). Readers are referred to Leinss et al. (2015) for a review 

of the optimization parameter. Given the range of incidence angles and snow densities at our field sites, we chose 𝛼 = 1.02. 

The linear approximation results in nearly identical ΔSWE retrievals (r=0.99; Figure S4a–c) and the comparison with GPR 

ΔSWE retrievals yields nearly identical statistical distributions and performance statistics (Figure S4d–f). We conclude that 

the Leinss et al. (2015) approximation may be an appropriate alternative for ΔSWE retrievals from airborne platforms. 655 

A.2.5 Incidence angle analysis 

The incidence angles used to calculate ΔSWE from the UAVSAR unwrapped phase datasets were derived by down-

sampling from the Copernicus 30 m DEM. The Copernicus 30 m DEM was derived from TanDEM-X acquisitions, which 

operates at 9.6 GHz center frequency and the DEM has increased uncertainty over forested landscapes. Here, we evaluated 

the uncertainty for ΔSWE retrievals caused by errors in the Copernicus-derived incidence angles by calculating incidence 660 
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angles from a 0.5 m lidar digital terrain model collected in September 2021 (Adebisi et al., 2022) over a subset of the 

UAVSAR swath that includes our field sites. Although the Copernicus-derived incidence angles display similar trends 

compared to the lidar-derived incidence angles, a comparison between the two products reveals high variability between the 

two products (r = 0.08, RMSE = 20°; Figure S5a–c). ΔSWE retrieval uncertainty was estimated through a Monte Carlo 

simulation with 100 000 realizations around a mean incidence angle of 52.8° and a 20° standard deviation, approximated 665 

from the RMSE of the Copernicus-derived incidence angles (Figure S5d). A density of 150 kg m–3 and phase change of 0.5π 

were used for the ΔSWE inversion (Figure S5e). From the standard deviation of simulated ΔSWE, we estimate a ΔSWE 

retrieval uncertainty of ±7 mm that can be attributed to the use of the Copernicus-derived incidence angles. 

A.3 GPR for SWE retrievals 

GPR is a geophysical method for subsurface imaging that, when set up in the common-offset configuration, can measure the 670 

twt from the antennas to a reflector of interest. We used a L-band GPR with a 1.0 GHz center-frequency and a 1.0 GHz 

bandwidth. GPR is a well-validated tool for estimating spatially distributed snow depth and SWE (Koh et al., 1996; 

Lundberg et al., 2006; McGrath et al., 2019). GPR surveys aggregate signal traces to form radargrams, which map reflection 

amplitudes with corresponding twt. For SWE retrievals, the reflector of interest is the snow-ground interface, which 

manifests as the highest magnitude reflector at depth, due to the high contrast between snow and soil permittivity. The radar 675 

velocity (𝑣𝑠) of the snowpack can be estimated from the snowpack relative permittivity (Equation A5),  

  𝑣𝑠 =
𝑐

√𝜀𝑠
        (A9), 

where 𝑐 is the velocity of electromagnetic waves in free space (Daniels, 2004). Then, the twt of the ground reflector can be 

converted to snow depth, 

  𝑑𝑠 = 𝑣𝑠
𝑡𝑤𝑡

2
       (A10), 680 

which is subsequently converted to SWE (Equation A7).  

 

Data availability. Upon acceptance, UAVSAR ΔSWE products will be archived with Dryad. GPR datasets used in this analysis are 

archived with the NSIDC (Bonnell et al., 2022; McGrath et al., 2021). Snow pits from the 2020 season are archived at the NSIDC (Mason 

et al., 2023), while snow pits from 2021 and probed snow depths from both seasons are under review at the NSIDC. SNOTEL station data 685 

is publicly available from the NRCS and was used for the following stations: Joe Wright 

(https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=551), Lake Irene (https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=565), Willow Park 

(https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=870), and Phantom Valley (https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=688). 

CPWS weather station data is archived at HydroShare (Kampf et al., 2022). TLS point clouds are available at UNAVCO Inc. (Williams, 

2021). NASA UAVSAR datasets are available from UAVSAR or the ASF DAAC, including InSAR pair products (i.e., unwrapped phase, 690 

coherence) and SLC products (i.e., look vectors; NASA UAVSAR, 2020, 2021). The Copernicus 30 m DEM, Copernicus Global 100 m 

Land Cover Dataset, and Sentinel-2 Level 2A imagery were accessed via Google Earth Engine (Gorelick et al., 2017). 
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