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Abstract. The identification of spatial soil moisture patterns is of high importance for various applications in high latitude

permafrost regions, but challenging with common remote sensing approaches due to high landscape heterogeneity. Seasonal

thawing and freezing of near-surface soil lead to subsidence-heave cycles in the presence of ground ice, which can exhibit5

magnitudes of several centimeters
:::::::
typically

:::
less

::::
than

:::
10

:::
cm. Our investigations document higher Sentinel-1 InSAR seasonal

subsidence rates
:::::::::
(calculated

:::
per

:::::::
thawing

::::::
degree

::::
days

:
-
::
a

:::::::
measure

::
of

::::::::
seasonal

:::::::
heating) for locations with higher near-surface

soil moisture compared to dryer
::::
drier

:
ones. Based on this, we demonstrate that the relationship of thawing degree days -

a measure of seasonal heating - and subsidence signals can be interpreted to assess spatial variations of near-surface soil

moisture. A range of challenges, however, need to be addressed. We discuss the implications of using different sources of10

temperature data for deriving thawing degree days on the results. Atmospheric effects must be considered, as simple spatial

filtering can suppress large-scale permafrost-related subsidence signals and lead to the underestimation of displacement values,

making GACOS-corrected results preferable for the tested sites. Seasonal subsidence rate retrieval which considers these

aspects provides a valuable tool for distinguishing between wet and dry landscape features, which is relevant for permafrost

degradation monitoring in Arctic lowland permafrost regions. Spatial resolution constraints, however, remain for smaller typical15

permafrost features which drive wet versus dry conditions such as high and low centred polygons.

1 Introduction

Soil moisture information with high spatial resolution is required for numerous applications in Arctic regions. The satura-

tion of soils determines aerobic or anaerobic conditions and consequently carbon or methane release. Therefore soil wetness

representations facilitate the upscaling of fluxes and consequently the determination of greenhouse gas composition (Bartsch20

et al., 2023; Miner et al., 2022). Additionally, moisture conditions affect soil thermal properties. Wetter soils transfer heat more
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effectively and rapidly due to higher thermal conductivity and diffusivity (Farouki, 1981). Higher thermal inertia further leads

to a quicker response to external temperature changes in wetter soils (Campbell and Norman, 1998). Moreover, wet soils can

store more heat for a given temperature change because of higher heat capacity (Campbell and Norman, 1998). Thus, soil

moisture data is of high importance in Arctic permafrost regions, especially for permafrost and climate modelling (Subin et al.,25

2013; Göckede et al., 2017; Zwieback et al., 2019).

Landcover heterogeneity in permafrost lowlands is comparably high with complex spatial patterns of wet and dry soils

(Bartsch et al., 2023; Treat et al., 2024). Permafrost related processes frequently lead to changes in landsurface hydrology.

This includes drainage and formation of lakes (Nitze et al., 2017; Jones et al., 2011) and ice-wedge degradation, which can be

observed on sub-decadal timescales (Liljedahl et al., 2016). Polygonal features are associated with ice wedges. Polygons are30

a few meters in diameter and can differ in topography (low centred or high centred) leading to specific wet and dry patterns

which change over time (Liljedahl et al., 2016). In general, a change in surface wetness over several years can be associated

with permafrost change.

Surface wetness monitoring can be addressed with satellite data, commonly based on data acquired in the microwave domain

but also using optical data (Table 1). Thermal observations have been also
:::
also

:::::
been shown to be of value using the principle of35

thermal inertia, but their applicability is limited due to frequent cloud cover and the perturbation of meteorological conditions

and vegetation (Zhang and Zhou, 2016). Microwave retrievals make use of the high dielectric permittivity of liquid water in the

microwave domain as compared to other soil materials (Barrett et al., 2009). A clear advantage is the ability to penetrate cloud

cover, providing the potential for good temporal sampling. For global scale products, near-surface soil moisture is therefore

derived from microwave sensors. However, the used methods which are based on backscatter intensity (scatterometer or syn-40

thetic aperture radar) or brightness temperature (radiometers) are of limited applicability in Arctic environments(Wrona et al.,

2017; Högström et al., 2018; Kim et al., 2023). The presence of surface water within coarse scatterometer footprints may cause

deviations. Wind-induced variations in scattering properties generate biases in lake-rich areas (Högström and Bartsch, 2017).

Furthermore, short term variations of soil moisture derived from C band radar are influenced by temperature variations of the

organic layer (Högström et al., 2018). For passive microwave sensors radiative transfer models are applied utilizing the mea-45

sured brightness temperature, while for active sensors various approaches do exist including change detection and modelling

methods (Das and Paul, 2015). Global soil moisture products from active and passive microwave systems like from ASCAT

(Advanced Scatterometer, C-band, (Bartalis et al., 2007; Wagner et al., 2010)), AMSR2 (Advanced Microwave Scanning Ra-

diometer 2, multi-frequency, (Parinussa et al., 2015; Zhang et al., 2021)), SMOS (Soil Moisture and Ocean Salinity, L-band,

(Kerr et al., 2012; Sadri et al., 2020)) and SMAP (Soil Moisture Active Passive, L-band, (Colliander et al., 2017; Sadri et al.,50

2020; Entekhabi et al., 2010)) only provide very coarse spatial resolutions (10-50km) and are therefore not suitable for hetero-

geneous Arctic landscapes. As an alternative, higher but still comparably coarse resolution static data (75-500m) was applied

based on
:::
from

:
ENVISAT ASAR data (Advanced Synthetic Aperture Radar, active C-band sensor, HH-polarization) depicting

::::
were

::::
used

::
to
::::::

depict
:
spatial wetness patterns in tundra regionsusing ,

::::
with

:
winter minimum backscatter values representing

surface roughness
:::
and

:::::::
serving as a proxy

::
for

:::::
these

:::::::
patterns

:
(Widhalm et al., 2015). Although Quad-pol observations from55

synthetic aperture radar (SAR) backscatter at C-band have been shown to be promising (Zwieback and Berg, 2019), these data
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are usually not acquired. Experiments were made with airborne P-band observations (Ye et al., 2021), but such data are so far

not available from space. Recently, Treitz et al. (2024) utilized in situ surface roughness measurements in conjunction with

fully polarimetric RADARSAT-2 data to develop a surface roughness model in a localized study. This model, combined with

HH-polarized backscatter and local incidence angle data, was subsequently employed to model a time series of volumetric soil60

moisture.

Interferometric models using SAR data (InSAR) have previously been created to elucidate how changes in dielectric con-

stant, attributed to time-varying soil moisture, affect interferometric phase (De Zan et al., 2014). In recent years attempts have

been made to derive soil moisture changes from related closure phases data (e.g. Michaelides and Zebker (2020); Wig et al.

(2023); De Zan and Gomba (2018)). However, as this requires a triplet of interferograms, with one spanning over all three65

acquisition dates, this application is not feasible in areas with rapid loss of the degree of interferometric coherence as can be

the case in permafrost regions, depending on the used frequency. An alternative are wetness indices which can be derived from

multispectral data. Usually bands with reflectance in near-infrared and short-wave infrared are used in combination, e.g. for

the Normalized Difference Moisture Index (NDMI, (Cheţan et al., 2020)), or the Tasseled Cap Wetness index (TCW, (Frap-

pier et al., 2023)), which uses a transformation of multiple visible, near-infrared and shortwave infrared bands. These indices,70

however, do not give actual volumetric soil moisture content, but rather serve as proxies for soil wetness. Although spatial

resolution of multispectral data is substantially higher than for global soil moisture products, temporal sampling is limited due

to the requirement for cloud-free conditions in frequently cloud-covered Arctic regions (Sudmanns et al., 2020).

Another index that can serve as a proxy for soil moisture is the Topographic Wetness Index (TWI, (Riihimäki et al., 2021)),

which uses topographic information to depict steady-state soil moisture distribution. This index is for example widely used in75

carbon research (e.g. Mishra and Riley (2012); Obu et al. (2017); Virkkala et al. (2021)). It’s
::
Its applicability as a soil moisture

indicator is, however, limited as it solely depends on topographic information, which is merely one component influencing

spatial soil moisture patterns (Riihimäki et al., 2021).

InSAR has been already used for a range of permafrost monitoring applications across the Arctic (Bartsch et al., 2023).

Information derived from InSAR is expected to provide insight into active layer and soil properties (Schaefer et al., 2015;80

Chen et al., 2023; Li et al., 2023). Local InSAR seasonally aggregated subsidence patterns have been reported to be related to

wetness gradients (e.g. Liu et al. (2010); Strozzi et al. (2018); Bartsch et al. (2019, 2023)). Permafrost regions are characterized

by a continuous period of frozen soil conditions. Seasonal phase change occurs, with gradual thaw followed by gradual freeze

of the so called ’active layer’. The phase change results in a volume change, depending on the amount of ice/water in the soil.

A high subsidence in summer is expected when the water/ice content of the soil is high. Subsidence typically peaks towards85

the end of the unfrozen period, usually in late August in Arctic permafrost regions. However, the timing of this peak is subject

to variability influenced by factors such as latitude, local climatic conditions, and interannual fluctuations. Consequently,

variations in the peak thaw layer thickness’s timing might cause it to occur sooner in August or continue into early October.

Seasonally aggregated vertical displacement
:::::::
detected

:::
by

::::::
InSAR is in the order of a few centimeters , which can be captured

with InSAR techniques
::::::
several

::::::::::
centimeters (e.g. Strozzi et al. (2018)). The magnitude can vary from year to year depending90
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on the warming of the soil or changes in water content through variations in the water budget
:::
and

::
is
::::::::
typically

:::
less

::::
than

:::
10

:::
cm

::::::::::::::::::::
(Streletskiy et al., 2025)

::
but

::::
can

::::::
exceed

:::
this

::
in

:::::
more

:::::::
dynamic

::::::
regions.

Bartsch et al. (2019) suggested that the temporal evolution of seasonal subsidence reflects differences in soil properties

based on vegetation patterns which reflect soil conditions. Scheer et al. (2023) confirmed the linkage to ground ice content

although only a limited number of samples were available. Chen et al. (2020) and Chen et al. (2023) suggested the retrieval95

of equivalent water depth from InSAR subsidence. Seasonally aggregated subsidence may thus hold the potential to serve as

proxy for near-surface soil moisture similar to indices based on multispectral data which represent general landsurface wetness

and are available at a similar level of detail (including e.g. NDMI from sensors such as Landsat or Sentinel-2).

Temporal resolution is limited to year to year changes when data are seasonally aggregated, but is potentially of interest

for permafrost related long-term soil moisture change. Long-term (aggregated over several years) subsidence itself is usually100

interpreted as a sign for loss of ground ice of the underlying permafrost, as an impact of climate change (e.g. Liu et al.

(2015); Wang et al. (2022)). Such an approach does, however, require signal stability, and it necessitates an adequate degree

of coherence in yearly interferograms to establish connections between data from consecutive years, which can be achieved in

areas with limited vegetation growth only (Strozzi et al., 2018).

One of the major challenges for InSAR applications in Arctic permafrost regions is the limited availability of regular and105

spatially continuous SAR acquisitions (Bartsch et al., 2023). A second issue is the available wavelength. Longer L-Band is less

sensitive to vegetation changes and is therefore less prone to coherence loss, allowing longer intervals in-between acquisitions.

Shorter wavelengths such as C-band and X-band are usually only applicable in regions with low vegetation. X-band is in

general not freely available and time series are limited to small regions. With Sentinel-1 A and B, a freely accessible data

set in the C-band range is available, usable for InSAR in Arctic permafrost regions with limited vegetation cover (Sentinel-110

1A launched in April 2014, Sentinel-1B launched in April 2016 and ended December 2021) (Strozzi et al., 2018). L-band is

currently also mostly acquired on demand across the Arctic, however usually only one or two acquisitions are existing
::::
exist

for the unfrozen period , whereas
:::
and rarely any acquisition matches the timing of the maximum active layer depth. A general

challenge is the impact of snowmelt in spring. Signal decorrelation reduces the availability of image pairs at the time when

ground thaw is initiated.115

A further obstruction
::::::
obstacle

:
for such an application are atmospheric effects and ionospheric activities which disturb the

signal (e.g. Muskett (2017)). When atmospherically contaminated interferograms cannot be simply discarded (as, for example,

done in Liu et al. (2010)) owing to coherence restrictions, atmospheric corrections are a necessity. Available atmospheric

correction methods can be divided into methods with and without external data (Xiao et al., 2021). External data, such as

weather reanalysis or global positioning system soundings, can be utilized to mitigate turbulent atmospheric noise from affected120

interferograms, when sufficiently available (Dini et al., 2019; Jolivet et al., 2014, 2011; Michaelides et al., 2021). Corrections

like stacking or time series analysis, which do not rely on external data but rather on data redundancy of interferogram networks,

often do not capture the complexity of atmospheric effects (Xiao et al., 2021). On the other hand, methods incorporating

external data, like ground observations, satellite observations or numerical weather models increase processing efforts (Xiao

et al., 2021). The Generic Atmospheric Correction Online Service for InSAR (GACOS) tackles this problem by providing easy125
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Table 1. Summary of remote sensing techniques for near-surface soil moisture estimation (modified after Engman (1991); Moran et al.

(2004); Wang and Qu (2009))

Sensor type
Approach/

observed property
Basic principle Advantages Disadvantages

Applicability in

permafrost regions

Optical

reflectance indices

and derivatives

such as NDVI

albedo
high spatial resolution,

broad coverage

cloud coverage, strongly

perturbed by vegetation

and other hampering factors

limited applicability due

to frequent cloud coverage

in Arctic regions

(Sudmanns et al., 2020)

Thermal

Infrared
surface temperature thermal inertia

high spatial resolution,

broad coverage

cloud coverage, strongly

perturbed by vegetation,

influenced by meteorologic

conditions

limited applicability due

to frequent cloud coverage

in Arctic regions

(Sudmanns et al., 2020)

Passive

Microwave
brightness temperature dielectric properties

high temporal sampling,

broad coverage,

all weather

low spatial resolution,

perturbed by surface

roughness and vegetation

limited applicability in

heterogeneous Arctic

(Wrona et al., 2017),

(Kim et al., 2023)

Active

Microwave
backscatter dielectric properties

high spatial resolution,

all weather

perturbed by surface

roughness and vegetation

low reliability in

Arctic regions

(Högström et al., 2018),

(Kim et al., 2023)

Active

Microwave
backscatter surface roughness

high spatial resolution,

all weather

only in Arctic regions,

only static product

containing 4 classes

applicable in Arctic

tundra regions

(Widhalm et al., 2015)

Active

Microwave

InSAR

surface displacement
volume change high spatial resolution

only in permafrost regions,

only one static product per

thawing season,

atmospheric effects

applicability in Arctic

permafrost regions tbd

to apply corrections which use external information on atmospheric conditions (Iijima et al., 2021). By incorporating weather

model data as well as topographic information, Zenith Tropospheric Delay (ZTD) maps are produced and made available in

near real time. The effectiveness of this method has been demonstrated locally (e.g. Murray et al. (2019); Ulma et al. (2021)), in

some cases however with varying degrees of success (e.g. Wang et al. (2019)). Particularly capturing the smaller scale turbulent

atmospheric phase appears to be lacking, while the mitigation of elevation-dependent and long-wavelength components seems130

to be feasible (Li et al., 2022). The utility of this approach for permafrost applications has not yet been evaluated so far. This

requires testing with in situ data as well as common statistical assessments of phase residuals of the multi-baseline processing.

In situ subsidence data are scarce, but the assessment of phase residuals can be applied independently.

An atmospheric correction method frequently applied in permafrost-related studies is spatial filtering, such as high-pass

filtering (e.g. Strozzi et al. (2018); Michaelides et al. (2021); Rouyet et al. (2021)). This approach is also applicable for135

InSAR datasets of a daisy-chain network, that were processed in series and do not include overlapping interferograms in the
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time domain. The filtering method relies on the significant disparity in correlation length in the spatial frequency domain of

atmospheric and thaw subsidence induced effects (km- compared to m-scale) (Michaelides et al., 2021).

For seasonal aggregation, the timing of acquisitions in summer in relation to the day of year (DOY) presents another dif-

ficulty. The driver of ground thaw, the seasonal warming, can be expressed through the sum of positive degree days/degree140

days of thaw (DDT). Bartsch et al. (2019) suggest the use
:
of

:
DDT to facilitate the comparison of seasonal deformation across

different years. Scheer et al. (2023) implemented a DDT dependent methodology in combination with a normalization step.

The approach of DDT requires the availability of temperature data, which is available locally in very few cases only. Therefore,

the suitability of reanalyses data needs to be assessed for application across larger regions.

A further challenge is that in situ subsidence measurements as well as soil moisture measurements are scarce across the145

Arctic primarily due to logistic constraints (Högström et al., 2018; Strozzi et al., 2018; Bartsch et al., 2019). Spatially distributed

measurements are necessary in order to capture landscape heterogeneity, limiting soil moisture measurements to the near-

surface and mostly snapshots in time. However, both surface soil moisture and subsidence measurements are available from

a long-term monitoring site on central Yamal in Western Siberia and in NW Canada. They can potentially serve as reference

sites in addition to campaign data.150

In summary, the investigation of InSAR-derived aggregated seasonal subsidence rates
:::
per

:::::
DDT as soil moisture indicator

necessitates consideration of various retrieval challenges and assessing the applicability across different permafrost landscape

types.
::::::::
Hereafter,

:::
all

::::::::
references

::
to
::::::::::
subsidence

::::
rates

::::
refer

::
to

:::
the

:::::
DDT

:::::::
domain.

The purpose of this study is to investigate the potential of seasonally aggregated InSAR subsidence signals for retrieving

a soil moisture indicator index. An interpretation scheme of the relationship between DDT and Sentinel-1-based subsidence155

for soil moisture categories is derived and its performance is compared to other existing soil moisture approaches using near-

surface in situ soil moisture measurements. To ensure reliable results, correcting InSAR values for atmospheric effects is

essential. Thus, we assess various methods for correcting these disturbances using in situ subsidence measurements. Regions

with varying landscape histories are selected, including sites with relevant in situ measurements and auxiliary measurement.

2 Study regions160

Three primary study regions with in situ soil property information were investigated within this research (Inuvik in northwest-

ern Canada, central Yamal in northwestern Siberia, and Chersky in northeastern Siberia, Figure 1 and Table 2). These regions

cover permafrost related long-term monitoring sites. Two of these regions with in situ subsidence measurements and spatially

distributed in situ surface soil moisture records were selected for detailed assessment (Inuvik and central Yamal), with one site

also offering near-surface as well as borehole temperatures for DDT investigations (central Yamal). Chersky was selected to165

add to the statistical evaluation of processing results through analyses of the standard deviation of phase residuals. This third

region also provides in situ air temperatures and borehole temperatures.

The study regions lie in the zone of continuous permafrost, with Yamal also showing areas of discontinuous permafrost in

the southwest of the processed scene (permafrost extent data source: Obu et al. (2018)). Long-term permafrost monitoring is
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Figure 1. Study region locations: Chersky, northeastern Siberia; Inuvik, northwestern Canada; Yamal, northwestern Siberia; Tazovsiky,

northwestern Siberia. Background map: Permafrost zones (Obu et al., 2019)

available in these regions. In northeastern Siberia the North-East Science Station (NESS) was established in 1980 near the city170

Chersky. The Yamal study region includes the research station Vaskiny Dachi, where permafrost studies have been conducted

since 1988 (Leibman et al., 2015). The Trail Valley Creek research station (established in 1991; (Pomeroy et al., 1998)) is

located within the analysed Inuvik region. Various landscape types are represented within the selected regions.

The lake-rich Khalerchinskaya tundra is located northwest of the lower Kolyma River, in the northwest part of the scene

of the Chersky area. This region is underlain by ice-poor sands and dominated by a predominantly waterlogged landscape175

(Fyodorov-Davydov et al., 2004). The river valley is characterized by alluvial deposits (Shmelev et al., 2017) and features

regularly flooded shrub and herbaceous vegetation (JRC, 2003). The east and south of the scene is partly underlain by organic-

and ice-rich Yedoma deposits (Grosse et al., 2013) featuring needle-leaved and deciduous tree cover as well as herbaceous land

cover on mountain regions (JRC, 2003).
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The Yamal area is characterized by marine, coatal-marine
::::::::::::
coastal-marine and fluvial-marine lithology (Leibman et al., 2015)180

where shrub and herbaceous tundra dominates (Khitun and Rebristaya, 1998; Widhalm et al., 2017a; Stolbovoi and McCallum,

2002).

The Mackenzie delta area of the Inuvik region is covered by needle-leaved evergreen trees (JRC, 2003) and is characterized

by alluvial sediments (Geological Survey of Canada, 2014). The west of the scene is dominated by shrub cover and sparsely

herbaceous and shrub covered mountains (JRC, 2003). To the west and the east of the delta glacial sediments prevail (Geo-185

logical Survey of Canada, 2014). East of the delta the land cover is dominated by a mosaic of tree cover and other natural

vegetation with areas of shrub and herbaceous cover (JRC, 2003)
::::::::::::::::::::::::::::::::::::
(Bartholomé and Belward, 2005; JRC, 2003).

In order to support the discussion on the applicability of InSAR for permafrost-related features prone to degradation, a

fourth region was investigated in an area of discontinuous permafrost near the Tazovsky settlement, about 500km southeast of

the Yamal sites. The characteristics of polygonal tundra, which may vary in moisture regimes, are discussed, highlighting the190

relevance of InSAR results for characterizing different types of permafrost wetlands. This region is characterized by a relatively

flat, slightly dissected surface with a high number of wetlands, lakes and widely spread flat-topped and convex-hummocky

peatlands (Babkin et al., 2018). The temperature of permafrost ranges from 0 to –1.0°C, decreasing to –1.5°C in dome-shaped

peatlands (Koroleva et al., 2021). Polygonal features are widespread in this area and are usually linked to peatlands (Khomutov

et al., 2022). The features include high- and low-centered polygons. Low-centered polygons have comparably wet soils and/or195

water-filled ponds inside them. Further landscape features include watery troughs on peatlands, over-saturated wetlands and

wetlands without visible polygons.

The active layer
::::::::
thickness (maximum thaw depth; source: ESA Permafrost_cci, year 2019 of Obu et al. (2021)) is largest for

the Inuvik study region and the region around Tazovsky with on average 0.96 m and 0.94 m respectively. Yamal shows average

active layer
:::::::
thickness

:
values of 0.84 m and the Chersky area features lowest values with

:::
the

:::::::
thinnest

:::::
active

:::::
layers

::::
with

::::::
values200

circa 0.64 m.

3 Data

3.1 Sentinel-1

ESA’s Sentinel-1 satellites are operating C-band SAR instruments with a wavelengths of 5.6 cm. For our investigations we used

Single Look Complex (SLC) images in Interferometric Wide swath (IW) mode, which provide a ground sampling distance of205

2.3 m in range and 13.9 m in azimuth direction and a swath width of 250 km. Sentinel-1A was launched in April 2014 and

Sentinel-1B followed in April 2016. The constellation of two satellites offered a possible repeat cycle of 6 days, however due

to global acquisition strategies 12 days were more common and was also generally available for most Arctic regions. Regular

acquisitions started for most study regions in mid-2016, not always covering the entire thawing season of this year. End
::
At

:::
the

:::
end of 2021 Sentinel-1B stopped operating resulting in no recent Sentinel-1 data acquisitions for the Siberian study regions.210

Supplement Table S 1 indicates the acquisition dates of all Sentinel-1 SAR acquisitions used in this study. Paths and frames

of the investigated scenes can be found in Supplement Table S 2. The seasonal study periods were selected from the start
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of the thawing season, as soon as interferograms showed good coherence, until the onset of freezing (delineated from ERA5

reanalysis data).

3.2 In situ data215

In-situ data, including subsidence, soil moisture and temperature measurements were available for the three study regions. An

overview of the used data is provided in Table 2.

3.2.1 Yamal

Yearly in situ subsidence measurements were conducted at the CALM (Circumpolar Active Layer Monitoring) grid near the

research station Vaskiny Dachi on central Yamal. For this, L-shaped metal rods are inserted through holes in plates to the base220

of the active layer, with the hooked end tight on the plate. In winter, frost heave raises the plate, pushing the rod up, where

it becomes fixed by freezing. During spring thaw, the plate subsides with the ground surface, while the rod remains fixed.

The difference between the plate and the rod’s end is measured as ground movement. Surface subsidence measurements are

starting in 2016 with 5-6 points. Additional 20 points are available since 2018 and further 4 points since 2021. Measurements

were performed yearly end of August or start of September with the exception of 2016 where travel restrictions resulted in225

measurements not until mid of October
::::::::::
mid-October. The CALM grid is situated on a sloping plane

::::
plain where dry cryptogram

crust dominates the flatter upper part. Grasses and mosses as well as low and high shrubs can also be found in the remaining

parts along with patches of wet sedge (Widhalm et al., 2017a).

Soil moisture measurements were conducted at the 121 CALM grid points (Widhalm et al., 2017b) and at 7 transects

containing 12 to 34 individual points, as well as at 10 selected additional locations. Moisture values were measured at the top 5230

cm with Delta-T Devices HH2 soil moisture sensor. For the soil moisture values at the CALM grid measurements of 3 different

dates in August 2015 were averaged. The other points were measured only once, also in August 2015. The moisture conditions

in the Yamal Peninsula study region were normal in 2015, with total precipitation values of 185 mm for the months of June

through September, compared to median values of 188 mm over a 15-year period (measured at Maresale). Precipitation values

during the years of InSAR observations ranged from 120 mm in 2017 to 244 mm in 2021. For the comparison with InSAR235

results soil moisture values of points which were located within the same Sentinel-1 pixel were averaged. This resulted in 132

samples (68 CALM grid values, consisting of 121 valid samples and 64 pixels in the other categories, containing 146 valid

measurements).

Near-surface soil temperatures, for the derivation of DDTs based on in situ data, were measured with DS1921G-F5 Ther-

mochron iButtons between October 2016 and August 2017. Temperatures were recorded at 4 sites at the Yamal study region240

(locations shown in Figure 2). One point is located at the CALM grid, while the other 3 points are placed at monitoring sites

which were established within the Greening of the Arctic (GOA) project of the International Polar Year (IPY) (Walker et al.,

2009). Site VD1 is located on a gentle terrace hill-top with clayey soils and sedge and dwarf-shrub, moss tundra. VD2 is on

a broad hill-top, characterised by sandy and clayey soils dominated by dwarf-shrub, graminoid, moss tundra. The site VD3 is

characterised by dry dwarf-shrub-lichen tundra on sandy soils (Walker et al., 2009).245
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Additionally borehole temperature data at 50 cm depth of two of the GOA points (VD1 and VD2) were used.

3.2.2 Chersky

Borehole data from depths of 4 cm and 8 cm, as well as temperature data from an automatic weather station near the borehole

located approximately 15 km south of the city Chersky at the research site Ambolikha, were utilized. This site is located on

the floodplain of the Kolyma River and dominated by wet tussock tundra with tussock-forming sedges and cotton grasses on250

an organic peat layer overlain by alluvial mineral soils (Göckede et al., 2019).

3.2.3 Inuvik

At the Inuvik study site, in situ soil moisture measurements were conducted similarly to those on Yamal, using a Delta-T

Devices HH2 soil moisture sensor at the top 5 cm. The measurements were conducted in the region between north of the city

Inuvik and south of the Trail Valley Creek research station in July 2023. As this time was characterised by drought conditions,255

the maximum of multiple samplings was further used at each measurement point. The measurement points were recorded

in transects and irregular point locations. Again, samples within the same InSAR pixel were averaged for comparisons with

InSAR results. 78 pixels were used including 91 measuring points.

To investigate the effects of soil moisture change on InSAR results, soil moisture time series at Trail Valley Creek from

Boike et al. (2023) were analyzed. Soil moisture data at a depth of 5 cm for the years 2018 - 2022 were used.260

In situ subsidence data was available from Anders et al. (2018) for the years 2015 and 2016. Similar to the measurements

on Yamal, poles were anchored below the active layer. Measurements were performed twice per year, recording the distance

between the top of the pole and a plate on the surface.

3.3 Auxiliary data

Air temperature, utilized for deriving DDT values across the entire study regions, was derived from ERA5 reanalysis data.265

ERA5 combines model information with observations to produce a globally consistent dataset (Hersbach et al., 2023). We

used air temperature at 2 m above the surface in a temporal resolution of 2 hours at 0.25° spatial resolution.

Landsat 8 Level-2 (Bottom of Atmosphere) data (30 m spatial resolution) were acquired for the derivation of NDMI, which

utilizes bands in near-infrared and short-wave infrared spectrum to depict changes in water content of leaves. Dates were

selected close to the in situ soil moisture sampling dates, specifically on 10.08.2015 for Yamal and on 06.07.2023 for Inuvik.270

For the calculation of TWI, the ArcticDEM at 2 m spatial resolution was utilized, which is delineated from optical stereo

imagery.

ESA’s CCI Soil moisture product (Gruber et al., 2019; Dorigo et al., 2017; Preimesberger et al., 2021) was used for evaluation

purposes. This daily, global soil moisture product, at 0.25° spatial resolution, combines various active and passive microwave

products. Here, we utilized the passive microwave and combined (active and passive) product, which are provided in volumetric275

soil moisture units.
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(a) Chersky (b) Inuvik

(c) Yamal

Figure 2. Sample point and in situ data locations (see also Table 2 for in situ data description overview). (a) Chersky region: sample points

for time series plots (without in situ information) and borehole location (Background map data source: Google Satellite). (b) Inuvik region:

locations of in situ near-surface soil moisture measurements and in situ subsidence data (Background map data source: ESRI Satellite).

(c) Yamal region: locations of in situ near-surface soil temperature and soil moisture measurements (Background map data source: ESRI

Satellite. (b) and (c) show only a subset of the processed region, depicting the area where in situ data is available.
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Table 2. In Situ subsidence, soil moisture and temperature data overview (for locations see Figures 1 and 2)

Parameter Region Site name Distribution Sampling type Dates
Nr. of used

samples /

sites

subsidence

(plates)
Yamal CALM

irregular point

locations

yearly

measurements

2016 - 2021

measured end

of summer

6 - 27

per year

subsidence

(plates)

(Anders et al., 2018)

Inuvik Trail Valley Creek
irregular point

locations

2 measurements

per year

09.06.2015,

20.08.2015,

18.07.2016,

23.08.2016

2

near-surface soilmoisture
:::
soil

:::::::
moisture,

:::
top

:
5
::
cm

(Delta-T probe)

Yamal CALM regular grid
temporally

averaged

19.08.2015,

23.08.2015,

27.08.2015

121

near-surface soilmoisture
:::
soil

:::::::
moisture,

:::
top

:
5
::
cm

(Delta-T probe)

Yamal other transects & irregular
single

measurement
Aug. 2015 146

near-surface soilmoisture
:::
soil

:::::::
moisture,

:::
top

:
5
::
cm

(Delta-T probe)

Inuvik transects & irregular spatially averaged

Jul. 2023,

drought

conditions

91

near-surface soilmoisture
::
soil

:::::::
moisture,

:
5
:::
cm

::::
depth

:

(Boike et al., 2023)

Inuvik TVC fixed point location
regular time series

(1h interval)
2018-2023 1

near-surface

soil temperature

(iButtons)

Yamal
CALM, VD1,

VD2, VD3

spatially distributed

fixed point locations

regular time series

(4h interval)

01.01.2017 -

24.08.2017
4

temperature,

50 cm depth

(borehole)

Yamal VD1, VD2
spatially distributed

fixed point locations

regular time series

(daily interval)

01.01.2017 -

24.08.2017
2

temperature,

4 cm, 8 cm depth

(borehole)

Chersky Ambolikha fixed point location
regular time series

(daily interval)
2017 1

air temperature

(AWS)
Chersky Ambolikha fixed point location

regular time series

(daily means)
2017 1
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High resolution satellite imagery of Quickbird-2, WorldView-2 and WorldView-3 (Khairullin et al., 2019), topographic

surveys (Babkin et al., 2018), and unmanned aerial vehicle (UAV) images were available for the area surrounding the Tazovsky

settlement. The UAV images, acquired in 2022, covered an area of about 25 km2. Additionally, high-resolution satellite images

available via Google and Esri Satellite maps were used in the proximity.280

The Generic Atmospheric Correction Online Service for InSAR (GACOS (Yu et al., 2018)) was developed at Newcastle

University and provides high spatial resolution Zenith Tropospheric Delay (ZTD) maps based on numerical weather models.

Surface pressure, temperature and specific humidity from High Resolution ECMWF weather model at 0.1° and 6h resolutions

is
::
are

:
used as input as well as the 90 m resolution SRTM DEM (60°S - 60°N) and ASTER GDEM (at higher latitudes). An

iterative tropospheric decomposition model (Yu et al., 2017) is implemented in order to separate the stratified and turbulent285

components from the tropospheric delays and produce ZTD maps, which are globally available in near real time.

4 Methods

The described method is based on seasonal freezing and thawing of the active layer in permafrost regions. In the presence of

ice in the ground, the surface subsides throughout the thawing season. This can be measured using InSAR. Bartsch et al. (2019)

demonstrated that the displacement values follow a nearly linear progression with respect to DDT.
::::::::::
Alternatively,

::
a
::::::::::
dependency290

::
on

:::::::

√
DDT

:::
has

:::::
been

::::::::
employed

::
in

::::::
several

::::::::
previous

::::::
studies

::::
(e.g.

:::::::::::::::::::::::::::
Liu et al. (2012); Hu et al. (2018)

:
).
:
An overview of the major

processing steps is given in Figure 3. We utilize this relationship in order to link satellite data to in situ near-surface soil

moisture, which was collected for calibration and validation purposes. Special attention is payed to interfering atmospheric

effects, by testing various correction methods.

InSAR displacement results and atmospheric correction performance are evaluated by investigating displacement time series295

at sample point locations across all study regions. A comparison to in situ subsidence data is performed for the Yamal site, and

standard deviations of phase residuals are compared for unfiltered and GACOS-corrected results across all study regions.

GACOS corrected results and comparable soil moisture indices are evaluated against in situ soil moisture measurements

of Yamal and Inuvik. While in situ soil moisture measurements were limited to the top 5 cm, we posit that under typical

conditions, they are representative of the entire active layer, which can be measured using InSAR. An empirical relationship300

between GACOS corrected results and in situ soil moisture of Yamal calibration data (normal moisture conditions) is derived

and its quality compared to the CCI soil moisture product. An overview of the conducted evaluations is provided in Table 3.

4.1 InSAR processing

Our InSAR processing sequence largely follows the workflow outlined by Strozzi et al. (2018). This includes the application

of precise orbit files, co-registration and computation of interferograms with a multi-looking factor of 5 by 1 pixels. The inter-305

ferograms were processed in series in a daisy-chain network. Longer time-steps which would result in temporally overlapping

interferograms were often not possible due to decrease in coherence. Temporal baselines were therefore mostly 12 days, in

some cases also 24 or even 36 days, when acquisitions were missing or due to apparent coregistration errors or heavy influence
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Figure 3. Overview of the workflow used for the derivation of median surface displacements in degree day of thaw (DDT) domain (αDDT ).

Table 3. Evaluation and comparison of atmospheric correction and soil moisture indices across various study regions. (* in situ soil moisture

measurements represent drought conditions, + permafrost polygonal features spatial distribution)

Soil moisture indicators assessment Yamal Inuvik Chersky Tazovsky

subsidence rate αDDT (Sentinel-1) X X* X+

Normalized Difference Moisture Index (Landsat) X X*

Topographic Wetness Index (ArcticDEM) X X*

CCI Soil Moisture X

Atmospheric correction assessment

displacement time series visualization of sample points X X X

in situ subsidence comparison X X

standard deviations of phase residuals X X X

DDT retrieval discussion

In situ ground temperature X X

In situ air temperature X

Reanalyses air temperature X X
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of turbulent atmosphere, which lead to the exclusion of isolated acquisitions. Perpendicular baselines were on average 46 m,

with a maximum value of 152 m. The next processing steps comprise topographic phase removal, incorporating the Copernicus310

DEM with 30 m spatial resolution, adaptive phase filtering (Goldstein and Werner, 1998), phase unwrapping (Costantini, 1998),

and calculation of vertical displacements via short-baseline InSAR (Berardino et al., 2002) (assuming that all the displacement

is vertical) and terrain-corrected geocoding. The assumption of only vertical displacements holds true for the investigated in

situ site locations where only low slopes were being observed and horizontal displacements caused by mass movements, such

as solifluction can be ruled out. Areas with slopes of > 5° were subsequently masked to ensure the validity of this assumption.315

Reference points were selected at or close to airstrips of Inuvik (bedrock outcrop 6 km southeast of airstrip), Chersky and

Bovanenkovo (Yamal region). Areas of low coherence were masked out (average coherence < 0.8 and average coherence of

filtered interferograms < 0.5).

Opting for a daisy-chain network reduces atmospheric effects to the difference between the first and last scenes, which is a

an advantage of this processing method. However, this approach also increases noise in the integration, including that related to320

soil moisture changes. The use of a daisy-chain network makes it challenging to distinguish between surface deformations and

atmospheric effects. These atmospheric artifacts
::::::
artefacts, along with phase delays possibly arising from soil moisture changes

(which are considered as a possible limitation and will be discussed later), can introduce noise and inaccuracies into the

interferometric phase, leading to errors in the estimated deformation signals. Therefore two different compensation methods for

atmospheric effects were tested. First, a spatial filter of the linear-least-squares type, as implemented in the GAMMA software,325

was applied to the displacement maps. Different filter radii were assessed. Secondly, GACOS corrections were applied on

unwrapped interferograms. Artefacts were encountered in the GACOS products for some study regions (Supplement Figure S

1), stemming from the ASTER DEM for areas north of 60°N used by the provider (Yu et al., 2018). The data provider offers

the possibility to send in an alternative DEM for a requested area. However, in this case we opted for correcting the GACOS

files by masking out the artefacts and filling in the missing values with the median of a moving window.330

4.2 DDT and subsidence relationship

The data gap at the beginning of the thawing season, caused by low coherence values due to snow cover on the ground,

was accounted for by extrapolating the time series using linear regression (Bartsch et al., 2019). This ensured that every

depicted seasonal displacement time series starts with the onset of thaw at DDT = 0. The displacement values calculated for

the comparison to in situ data were then offset using the slope of the regression of the displacement time series. Utilising the335

assumed linear relation between DDT and seasonal surface subsidence, we derived the subsidence rate (displacement per DDT,

hereinafter referred to as αDDT ) at each pixel (Equation 1),
::::::::
reversing

:::
the

::::
sign

::
in

:::
the

:::::::
equation

::
to

:::::::
produce

::::::
higher

::::::
positive

::::::
values

::
for

:::::
areas

::::
with

::::::
higher

:::
soil

:::::::
moisture.

αDDT =−
:

n(
∑n

i=1DDTidi)− (
∑n

i=1DDTi)(
∑n

i=1 di)

n(
∑n

i=1DDT 2
i )− (

∑n
i=1DDTi)2

(1)
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di represents the total displacement between the first acquisition and time-step i, and n represents the maximum number of340

available dates.

Using αDDT allows for a calculation of displacement indices that are independent of acquisition time. However, it should be

noted that subsidence may precede at a faster rate at the non captured beginning of the thawing season, compared to the later

season (Schaefer et al., 2015). This can introduce a potential source of error.
::::::::
Therefore,

:::
as

::
an

:::::::::
alternative

::::::::
approach,

:::::::
α√

DDT ,
::::
was

:::::
tested,

::::::::::::
incorporating

:
a
::::::::::
dependency

:::
on

:::::::

√
DDT

::::::::::::::::::::::::::::::::::::
(Liu et al., 2012; Hu et al., 2018; Liu, 2024)

:
.The DDT was derived from the345

mean air temperature at 2 m height of daily averaged ERA5 data with a coarse spatial resolution of 0.25°, which might introduce

a source of uncertainty compared to the higher resolution of Sentinel-1 data. We calculated αDDT for each thawing season. In

order to derive general displacement patterns we calculated the median αDDT values of all processed years. Using the median

value aids mitigating the effect of remaining atmospheric disturbances within some of the processed years. The median αDDT

was further used to investigate the relationship of InSAR surface displacement signals and soil moisture conditions.350

4.3 Validation

In order to quantify the validity of InSAR measurements for soil moisture retrieval, the in situ near-surface soil moisture

dataset of Yamal was split into a calibration and validation dataset. For validation purposes, exclusively the data from Yamal

was selected due to its acquisition during typical moisture conditions, in contrast to the data from Inuvik, which was acquired

during drought conditions. To address high heterogeneity of soil moisture patterns and to deal with differences in scale and355

geolocation of in situ compared to InSAR data, the in situ records were grouped into discrete bins representing 10 % volumetric

soil moisture increments (comparable to Bartsch et al. (2020)). Median αDDT values were then computed for each bin within

the calibration dataset to establish a linear relationship
:::
and

::::::::
compared

::
to
:::
the

::::::
results

:::::::
derived

::::
using

:::::::
α√

DDT:::::
from

:::
the

:::::::::
alternative

:::::::
approach. The coefficient of determination (R2) was calculated to quantify the strength of this relationship, while P-values

were derived to ascertain its statistical significance. Additionally, the root mean square error (RMSE) was determined for360

the validation dataset to evaluate predictive accuracy. Additionally, classification accuracy was assessed for classifications

comprising a total of 6 or 3 moisture level classes. To achieve this, the αDDT values of samples from the validation dataset

were converted into moisture values using the established linear relationship. Subsequently, these values were categorized into

distinct moisture levels and compared to the true moisture classes.

4.4 Processing of auxiliary data365

To assess the performance of αDDT as a moisture indicator, other indices such as NDMI and TWI were also compared. The

NDMI was calculated for the Inuvik and Yamal sites, where in situ near-surface soil moisture measurements were available,

using Band 5 and 6 of the Level-2 (Bottom of Atmosphere) Landsat 8 data (Equation 2).

NDMI = (Band5−Band6)/(Band5+Band6) (2)
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The TWI is defined as370

TWI = ln(SCA/tanϕ) (3)

with SCA being the Specific Catchment Area and ϕ the slope angle. The ArcticDEM at 2 m spatial resolution was used for

its calculation.

For the discussion of the results in the context of permafrost-specific landscape features, different land-cover units were

manually digitized based on UAV observations, high-resolution satellite images, and online services of Google and Esri Satel-375

lite maps. Areas of high- and low-centered polygons were differentiated from other tundra (with and without wetlands) for 25

selected areas, each sized 1 km x 1 km. The average usage of different types of remote sensing data was 15% from UAV images,

77% from high-resolution satellite images, and 8% from online services. The average fraction of area covered by low-centered

polygons is 3.9% (ranging from 0.4 to 11.2%). High-centered polygons cover a larger average fraction of about 12% (ranging

from 4.4 to 29.0%).380

5 Results

5.1 Atmospheric correction

5.1.1 Spatial filter radius for InSAR processing

In order to specify the filter radius, some initial tests were performed and visually evaluated. Supplement Figure S 2 depicts

results of a displacement map with no applied filter, a spatial filter of radius ∼ 60 km and of radius 6 km. While atmospheric385

effects are still clearly noticable for the 60 km radius, they were mostly removed for the 6 km radius. Although it cannot be

excluded that also large-scale deformation signals have been removed, a radius of about 6 km (512 pixels) was chosen for

further investigations.

Comparison of unfiltered, GACOS corrected and spatial filter InSAR results for 23.06.2017 - 03.09.2017.

Sample points displacements by degree day of thaw (DDT) for Chersky, accounting for early thaw data gap in InSAR time390

series by extrapolation (approach following Bartsch et al. (2019), dotted lines correspond to linearly extrapolation part of the

time series). Point locations see Figure 2

5.1.2 Displacement time series, Chersky, Yamal and Inuvik

To investigate temporal InSAR subsidence results, we examined the displacement time series for selected sample points.

The points for Chersky were selected within an eastern and western part of the Sentinel-1 scene. They are located in areas395

of similar land cover within wet ecotopes, where summer subsidence can be expected (locations are shown in Figure 2). They

represent different patterns of tropospheric delay (e.g. Supplement Figure S 1). While the differences at point A are not as

pronounced for unfiltered and GACOS-corrected results, point B shows clear improvements with GACOS correction (Figure

A2) . The implausible heave signal observed during the thawing seasons of the years 2017 and 2018 in the unfiltered results
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was mostly corrected when GACOS correction was applied. However, as illustrated in Figures A1and ??a, this heave signal400

was not corrected everywhere. This might be attributed to unfiltered atmospheric effects, or, as similar patterns were observed

in two different years, also displacements at the reference point can not be ruled out. Unfiltered and GACOS-corrected results

exhibit distinct temporal fluctuations, whereas spatially filtered results are clearly smoothed. However, this smoothing also

results in a reduction of overall magnitude of displacement values.

Displacements by degree day of thaw (DDT) of a sample point location with in situ subsidence measurements on the CALM405

grid on Yamal. The early thaw data gap in the InSAR time series was accounted for by extrapolation (approach following

Bartsch et al. (2019), dotted lines correspond to linearly extrapolation part of the time series). CALM grid locations see Figure

2

For the Yamal region, the displacement time series is investigated for a long-term in situ subsidence point on the CALM

grid (Figure A3). While unfiltered and GACOS-corrected time series are very similar, spatially filtered data exhibit the same410

smoothing and reduction in subsidence magnitude as in the Chersky example. The depicted sample point, which exhibits an

average subsidence of 3 cm, falls within the mean range of other points measured on the CALM grid, with a mean subsidence

of 4.7 cm ± 2 cm (standard deviation). The agreement with in situ subsidence values may vary with sample location, which is

further investigated in the next section.

Displacements by degree day of thaw (DDT) of two sample points with in situ subsidence measurements for the years 2015415

and 2016 near the Trail Valley Creek (TVC) research station (Inuvik region). The early thaw data gap in the InSAR time series

was accounted for by extrapolation (approach following Bartsch et al. (2019), dotted lines correspond to linearly extrapolation

part of the time series). TVC location see Figure 2

In situ subsidence values for the Inuvik region were available for different years than InSAR data but were nonetheless used

to compare general magnitudes (Figure A4). In situ values were extrapolated similarly to InSAR data to account for the data420

gap between the first measurement and the start of the thawing season. The in situ subsidence rates of 2015 matched well with

InSAR data in terms of magnitudes. Higher rates, such as those observed in 2016, were also recorded with InSAR for the year

2023, particularly for point TVC1. However, for the spatially filtered results, the magnitude for 2023 at TVC1 was reduced.

GACOS was able to correct for some of the fluctuations in the unfiltered results; however, in the case of 2019, it introduced

additional artefacts.
:::::::
artifacts.

::::::::::
Comparison

:::
of

:::::::
GACOS

::::::
results

::
in

:::
the

:::::::

√
DDT

::::::
domain

:::::::::::
(Supplement

::::::
Figure

:::
S3)

:::::
shows

::::
that

:::
the

::
in425

:::
situ

::::
data

::::
align

:::::
more

::::::
closely

::::
with

:::
the

::::::
results

::
in

:::
the

::::
DDT

:::::::
domain.

:

Subsidence rate αDDT (median of all processed years) for (a) Chersky, (b) Inuvik, (c) Yamal. All regions are masked for

slopes >5°. The Chersky region has additionally been masked for areas higher than 150 m due to temperature lower than 2°C

or more (according to ERA5) than in lower regions during the Sentinel-1 acquisition time. (b) and (c) show subsets of the

processed regions, depicting the area where in situ data is available.430

5.1.3 In situ subsidence comparison, Yamal

The results of the InSAR time series were evaluated with in situ subsidence measurements at the CALM grid (Figure 2) on

Yamal (Bartsch et al., 2019). Results for the years 2016, 2017, 2018 and 2021 were compared (Figure 4). For the year 2019
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there was mostly no Sentinel-1 data available for this region and in 2020 missing acquisitions resulted in low coherence values

preventing the generation of reliable results. The number of available in situ points was extended over the years and some435

points exhibit data gaps, however, for the 2D boxplots of in situ and InSAR values, all available data points were included,

along with an indication of the number of available samples (Figure 4). While unfiltered and GACOS-corrected plots show

similar results, the spatially filtered results deviate and feature lower values, even heave, especially for the year 2016. All

methods (unfiltered, GACOS-orrected, spatial filtering) exhibit lower annual mean InSAR subsidence signal values across all

points with the longest available in situ time series compared to in situ measured values (Figure 4 bottom right). The lowest440

match to in situ values was derived for the spatially filtered results. The range of InSAR values is roughly similar for unfiltered

and GACOS-corrected results for these points, however while unfiltered values seem to disperse, GACOS-corrected values are

less scattered.

5.1.4 Standard deviation of phase residuals for all regions

Focusing on the GACOS-corrected results, the standard deviations of the phase residuals are further investigated in comparison445

to unfiltered results (Figure 5). The phase residuals are derived through a comparison between simulated interferograms of a

smoothed time series and the actual interferograms. Due to the absence of redundancy within the interferograms, the resulting

values primarily reflect the effects of the time series smoothing. The statistics for the whole processed scenes for each thawing

season were investigated, with terrain-slopes of > 5° being masked out in order to exclude αDDT values which may encounter

erroneous results for vertical subsidence due to additional horizontal displacement resulting from by mass movements, such450

as solifluction. The values improve for the GACOS-corrected results (see Figure 5 and also Figure A7, depicting differences

between unfiltered and GACOS corrected results) especially for the Chersky and Inuvik region. However, for the Yamal region

most years showed better values before the GACOS-correction.

5.2 Soil moisture

5.2.1 Soil moisture comparison, Yamal and Inuvik455

Comparing the displacement rates (displacement per DDT; αDDT maps see Figure ??) to soil moisture measurements (Figure

??
::
6a) showed higher αDDT rates and therefore higher

:::::
greater

:
subsidence signal values for points with higher soil moisture for

the Yamal study site. As the soil moisture measurements at the Inuvik site were conducted under drought conditions the soil

moisture values tend to be lower. The relationship identified for the Yamal site was confirmed for moisture values below 50%

vol. However, values for higher soil moisture deviated from this trend.460

Similarly, the TWI and NDMI were compared to in situ near-surface soil moisture values. Higher TWI values were associated

with higher soil moisture levels in the Yamal region (Figure ??
::
6b). However, the comparison for the Inuvik region did not

yield consistently increasing TWI values with rising soil moisture, with deviations found for moisture bins below 30% vol.

The NDMI values exhibited only low spread, and their comparison with near-surface soil moisture data revealed no discernible
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Figure 4. 2D boxplots (depicting median values - filled circles; quartiles - boxes; minimum, maximum - whiskers; and outliers - empty

circles) for in situ subsidence measured at the CALM grid on Yamal vs. InSAR subsidence for all available points per year (note available

number of samples varying per year, indicated in box on the right hand side). Lower right: scatterplot of mean subsidence values for 6

long-term sample points (measured in 3 - 4 years) for each method and all available years (each point representing one year).

stringent relationship. While NDMI values tend to be lower for low soil moisture levels on Yamal, the opposite is observable465

for the Inuvik region.

Distribution of TWI values for near-surface soil moisture bins of Yamal and Inuvik (at minimum 6 samples per bin).

Distribution of NDMI values for near-surface soil moisture bins of Yamal and Inuvik (at minimum 6 samples per bin).

5.2.2 Accuracy assessment, Yamal

In order to derive a measure of quality for the applicability of αDDT values as a soil moisture proxy, a linear relationship for470

the Yamal calibration dataset was derived (Figure 7a). For this the median αDDT values of 6 soil moisture bins were calculated.

The number of sample points per soil moisture bin ranges from 4 (soil moisture range < 70 % vol) to 16 (soil moisture range
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(a) Chersky

(b) Inuvik

(c) Yamal

Figure 5. Boxplots of standard deviations of the phase residuals for the whole processed scenes (terrain-slopes of >5° were masked out) for

unfiltered and GACOS corrected results for (a) Chersky, (b) Inuvik and (c) Yamal. Number of used Sentinel-1 scenes specified on top of the

plots.
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Figure 6. Distribution of
::
(a) GACOS corrected αDDT values,

:::
(b)

::::
TWI

:::::
values

:::
and

:::
(c)

:::::
NDMI

:::::
values

:
for near-surface soil moisture bins of

Yamal and Inuvik (at minimum 6 samples per bin).
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Figure 7. Relationship of averaged (10 % vol bins) in situ near-surface soil moisture of the Yamal calibration dataset with
::
(a) median αDDT

values
:::
and

::
(b)

::::::
median

:::::::
α√

DDT :::::
values for each bin. (αDDT :::

and
::::::
α√

DDT:
values represent median values of all years.) Error bars indicate

standard deviation per bin. The dashed line depicts the linear regression of all depicted points (equation and R2 indicated on bottom
::
top left).

The dotted line shows the relationship of the moisture values < 60 % vol.

Table 4. Count and standard deviation of near surface soil moisture sample points (Yamal) for each bin value used in Figure 7a

soil moisture bin

[% vol]

number of

sample points

standard deviation of

αDDT [mm/DDT]

<30 8 0.0093

30-40 13 0.0071

40-50 16 0.0097

50-60 13 0.0065

60-70 10 0.0069

>70 4 0.0026

40 - 50 % vol). The standard deviations of αDDT * 100 000 for each bin are below 0.97
::::::
0.0097 [

::::::::
mm/DDT] (Table 4). The

obtained linear regression has a coefficient of determination of R2 = 0.72
:::
for

:::
the

:::::
αDDT::::::

values
::::::
(Figure

:::
7a)

:::::::::
compared

::
to

::::
0.68

::
of

::
the

:::::::
α√

DDT::::::
values

::::::
(Figure

::::
7b). While the intercept of the linear regression

::
for

::::::
αDDT::::::

values is statistically insignificant with a475

P-value of 0.91, the slope of the regression has a P-value of 0.03 indicating statistical significance. Values of > 60 % vol reveal

to have greater deviations from what appears to be a nearly perfect correlation of values < 60 % vol, with P-values of 0.0036

and 0.0008 for intercept and slope, respectively.
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Figure 8. Scatterplot of in situ soil moisture values and calculated soil moisture values for the validation dataset of Yamal (used soil-moisture

- αDDT relationship see Figure 7
:
a). The 1:1 line is depicted as a grey dotted line.

Although the linear regression excluding values > 60 % appears to show a better fit, it does not follow physical intuition, as

its intercept is -37.6 % vol and therefore not applicable for αDDT values closer to 0. The derived equation for all 6 moisture480

bins (equation given in Figure 7
:
a) was subsequently used to predict soil moisture values of the validation dataset (Figure 8). A

RMSE of 14 % vol was delineated for the validation data.

For the purpose of using αDDT as an approximation for soil moisture conditions, we also calculated the accuracy of a

possible classification of predicted soil moisture values within the soil moisture bins (indicated in Figure 7). For these 6 classes

an accuracy of 25 % is achieved. A reduction of classes into 3 bins of < 40, 40-60 and > 60 % vol would result in an accuracy485

of 53 %
:::::
(maps

::
of

::::::::::
categorized

:::
soil

:::::::
moisture

:::
are

:::::::::
presented

::
in

:::::
Figure

:::
9).

To compare this accuracy assessment to other remotely sensed soil moisture products, we investigated values of ESA’s CCI

soil moisture product (Gruber et al., 2019; Dorigo et al., 2017; Preimesberger et al., 2021). Due to the coarser resolution of

0.25°, our in situ data is covered by only two pixels. The mean soil moisture values for the investigation period are only 19 -

22 % vol for the passive microwave product and 18 % vol for the combined solution (passive and active microwave, see Figure490

10). These products have an RMSE of 30 % vol and 33 % vol for passive and combined solutions, respectively,
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(a) Chersky (b) Inuvik

(c) Yamal

Figure 9.
::::
Maps

::
of

:::::::::
categorized

:::
soil

::::::
moisture

::::::
derived

::::
from

::::::::::
InSAR-based

:::::
αDDT:::

for
::
(a)

:::::::
Chersky,

::
(b)

::::::
Inuvik,

::
(c)

::::::
Yamal.

:::
All

:::::
regions

:::
are

::::::
masked

::
for

:::::
slopes

::::
>5°.

:::
The

:::::::
Chersky

:::::
region

:::
has

:::::::::
additionally

::::
been

::::::
masked

::
for

:::::
areas

:::::
higher

:::
than

::::
150

::
m

:::
due

::
to

:::::::::
temperature

::::
lower

::::
than

:::
2°C

::
or
:::::

more

::::::::
(according

::
to

:::::
ERA5)

::::
than

::
in

:::::
lower

::::::
regions

:::::
during

:::
the

::::::::
Sentinel-1

::::::::
acquisition

:::::
time.

:::
N.a.

:::::
values

:::::::
represent

::::::
values

:::
that

:::
fall

::::::
outside

:::
the

::::
valid

::::
range.

:::
(b)

:::
and

::
(c)

:::::
show

:::::
subsets

::
of

:::
the

:::::::
processed

:::::::
regions,

:::::::
depicting

::
the

::::
area

:::::
where

::
in

:::
situ

:::
data

::
is

:::::::
available.

25



Figure 10. Boxplot of in situ measured near-surface soil moisture values compared to values of the CCI soil moisture products (passive, and

combined product, (Gruber et al., 2019; Dorigo et al., 2017; Preimesberger et al., 2021)), and soil moisture values calculated with the InSAR

approach for Yamal. Black x’s indicate
:::::::
represent

:
mean values

::
and

::::::
circles

::::::
indicate

::::::
outliers.

6 Discussion

6.1 Soil moisture

Our InSAR derived soil moisture approach delivers static values intended to serve as a proxy for general soil moisture condi-

tions. While yearly products are feasible, median values are recommended to account for irregular values caused by uncorrected495

sources of error.

:
It
::
is
:::::::::
important

::
to

::::
note

::::
that

:::
the

::::::::::
relationship

:::::::
between

::::::
αDDT::::

and
:::
soil

::::::::
moisture

::::
was

::::::
derived

:::::
using

:::
in

:::
situ

::::::::::::
measurements

:::
of

::::::::::
near-surface

::::
soil

::::::::
moisture.

::::::::
However,

:::::
since

:::::
thaw

:::::::::
subsidence

::::::::
observed

::::
via

::::::
InSAR

:::::::
reflects

::
an

:::::::::
integrated

::::::::
response

::::
from

::::
the

:::::
entire

::::::
thawed

::::
soil

::::::
column

:::::::::::::::::::::::::::::
(Liu et al., 2012; Chen et al., 2023)

:
,
::::::
αDDT :::::

likely
:::::::::
represents

:
a
::::::::
weighted

:::::::
average

::
of

::::
soil

::::::::
moisture

:::::
across

:::
the

::::::
active

:::::
layer.

:::::
Given

:::
the

::::::::::
pronounced

:::::::
vertical

:::::::::
variations

::
in

:::
soil

::::::::
moisture

::::
and

:::
ice

::::::
content

:::
in

:::::
Arctic

:::::::::
lowlands,

:::::
using500

::
in

:::
situ

::::::::::
near-surface

::::
soil

::::::::
moisture

:::
data

::::
may

:::::::::
introduce

:::::::
potential

::::::::::
uncertainty

:::::
when

::::::::::
interpreting

::::::::::::
InSAR-derived

::::
soil

:::::::
moisture

:::
as

:::::::::::
representative

::
of

:::
the

:::::
entire

:::::
active

:::::
layer.

:

Our investigations showed higher subsidence values for points of higher in situ near-surface soil moisture compared to

dryer ones (Figure ??
::
6a). This effect could be demonstrated for both study sites, Yamal and Inuvik. The relationship was

more pronounced at the Yamal site, where in situ data measurements where conducted under normal moisture conditions. This505

observed relationship aligns with findings from Antonova et al. (2018), who identified more prominent subsidence in wetter

parts of thermokarst basins. They attributed this to higher ground ice contents of these parts and higher ground heat flux found

in wet parts due to their higher thermal conductivity.

Other wetness indices were compared with in situ near-surface soil moisture data, similar to previous αDDT investigations.

This analysis aimed to evaluate the performance of αDDT relative to the other indices, specifically to determine whether these510
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indices also demonstrated strong correlations with the in situ measurements. The NDMI derived from multispectral data (Gao,

1996) exhibited varying correlations with soil moisture values across the investigated study sites at in situ sampling point

locations (Figure ??
::
6c). The TWI (Beven and Kirkby, 1979), a static wetness index derived from topographic information

and often used as a proxy for soil moisture, exhibited similar performance to the InSAR results at the Yamal site (Figure ??).

However, at the Inuvik site, the analysis did not indicate the suitability of TWI as a measure for near-surface soil moisture.515

These findings suggest a better suitability of αDDT for deriving near-surface soil moisture conditions.

To quantify the performance of the investigated method, results were evaluated for their correlation with in situ soil moisture

measurements. An empirical function for a calibration dataset was derived and assessed for its accuracy using a validation

dataset. The in situ dataset from Yamal was chosen as it was collected under typical moisture conditions rather than drought

conditions. Binned and averaged in situ soil moisture and αDDT data yielded a comparably high coefficient of determination520

of 0.72 (Figure 7)
::
a),

:::::::
slightly

::::::
higher

::::
than

:::
the

:::::::::
alternative

::::::::
approach

::::::
based

::
on

::::::::

√
DDT

:::::
values

:::::::
(Figure

:::
7b). It was noted that

excluding higher soil moisture levels of > 60 % vol would result in nearly perfect correlation
::
for

::::::
αDDT::::::

values. However,

to account for all relevant moisture levels, the function derived from all moisture values was used in the further course. This

function also appears to be more plausible, as its intercept is 1.9 which would mean no deformation for basically dry soils.

However, it should be noted that the coefficient of determination for unaveraged calibration data would be only 0.15. Binning525

was conducted (comparable to Bartsch et al. (2020)) to account for differences in the in situ data’s representativeness (point

measurements versus spatial resolution of InSAR data). A comparison of in situ observed moisture levels to predicted ones for

the validation dataset revealed no bigger discrepancies for higher soil moisture values (Figure 8). A RMSE of 14 % vol could

be achieved.

Results were further compared to the CCI soil moisture product. A direct comparison between the CCI soil moisture dataset530

and the InSAR data is challenging due to the significant difference in their spatial resolutions. The CCI dataset has a much

coarser resolution, with each pixel covering an area approximately 106 times larger than that covered by each pixel in the

InSAR dataset. Consequently, any differences observed between the two datasets when comparing them to in situ data may be

partly attributed to this resolution discrepancy. The CCI soil moisture comparison showed RSME values that are twice the value

of the InSAR approach. The moisture values of the CCI products are much lower than was measured in the field (Figure 10),535

with just 1 % of field data being lower than what was indicated by the CCI soil moisture products (passive and passive- active

combined). The active product of CCI soil moisture was not used, as it provides only saturation values. However, comparisons

of in situ values and the active product derived from ASCAT were previously performed by Högström et al. (2018) for five

Arctic regions. The in situ data were scaled to the satellite product to enable comparison. ASCAT has been shown to be drier

than in situ in most cases, what agrees with our result.540

We further assessed the accuracy of a potential soil moisture classification product based on αDDT values. A classification

with 6 moisture classes would yield a 25 % accuracy. Therefore, it is suggested to only use 3 moisture categories, for which

the accuracy would improve to 53 %. It should be noted that assessed soil moisture values used for the derivation of the linear

relationship were within the range of 20 - 80 % vol. However, it can be assumed that a proposed classification of 3 moisture

categories is conservative enough to also account for moisture values outside of the tested range.545
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6.2 DDT normalization

As shown in Figure A2, the time series of GACOS-corrected results still show interfering fluctuations. However, this issue may

be addressed by simply utilizing the slope of the time series (αDDT ). What is further visible (Figure A2) is the data-gap at

the beginning of the time series, which may differ in length for different years or study regions. Nevertheless, this should be

of lesser concern if a linear trend is to be assumed over DDT, which, based on our findings, appears to be mostly the case in550

our study regions. It is important to note, however, that active layer thaw is presumed to be grater
::::::
greater in early summer and

decreasing in August and September (Short et al., 2014). Although this is not consistently reflected in our DDT plots (Figure

A2), it cannot be completely ruled out.

The uncertainties for ERA5 data in the Arctic, which were used to derive DDT, represent another potential source of error. A

comparison of ERA5 values with those from an ERA5 independent automatic weather station near Chersky revealed slightly555

lower measured values at the weather station than ERA5 values (see also Figure 13). The seasonal maxima of DDT for the

years 2016 - 2022 (missing data for 2018) differed by about 100 - 150°C, which corresponds to approximately 7 - 10% of

the maximal ERA5 DDT values and would result in slightly different αDDT values. DDTs of the automatic weather station

yielded αDDT values 17% lower than those of ERA5 (Figure 13).

It also needs to be considered that ERA5 2 m height air temperatures may deviate from top-soil temperatures, resulting in560

variations in αDDT values. In order to investigate these variations, we compared ERA5 results to ground temperatures at 4

points on Yamal, measured between October 2016 and August 2017 near the surface using iButtons (Figure 2). While the point

at the CALM grid showed good agreement with ERA5 values in the positive temperature range, the other points demonstrated

lower in situ temperatures than ERA5 temperatures (Figure 11). Although the in situ time series ended on August 24th and

maximum DDT values were not yet reached (80% of maximal ERA5 DDT value), we compared maxima of ERA5 and in situ565

DDT values for this date (aggregated from values shown in Figure 11). Only the in situ values of the CALM grid had higher

DDT values than ERA5 (147.2 higher, 21% of ERA5). The other points showed higher differences, ranging from 340 to 404,

which is 48 to 55% of the maximal ERA5 value on August 24th. These differences can be explained by insulating vegetation

cover, as ERA5 represents air temperature at 2 m compared to near-surface soil temperature. Furthermore, quality issues and

coarse resolution of ERA5 data may play a role. The αDDT values differ significantly from ERA5-derived αDDT values in the570

range of -7 * 10−6 to 87 * 10−6
:::::
-0.087

::
to

:::::
0.007

:
[
:::::::
mm/DDT] (Figure 12).

αDDT derived with DDT values of even deeper soil layers would naturally deviate even more from those derived with ERA5

data (Figures 12 and 13). The resulting displacement rates (αDDT ) are shown to be larger for deeper soil layers, as derived

from borehole data of 50 cm depth (Yamal) and 4 cm and 8 cm depth (Chersky).

6.3 Atmospheric corrections575

In order to achieve reliable InSAR results for soil moisture comparisons, the issue of atmospheric disturbances had to be

addressed. Investigations of displacement time series (Figures A2, A3 and A4) revealed that the applied spatial filter not only

reduces spatial variations but also flattens temporal fluctuations. While a reduction in temporal variations seems to be more
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Figure 11. Comparison of in situ iButton near-surface soil temperatures (Table 2) and 2m height air temperatures derived from ERA5 for 4

different points on Yamal. In situ point locations see Figure 2. R2 for CALM: 0.85, VD1: 0.79, VD2: 0.80, VD3: 0.71.

reasonable than the often high variability of unfiltered or GACOS-corrected results, the spatially filtered results mostly lacked

any large scale spatial deformations, which may not always represent actual conditions. In this regard, a filter size of 6 km is580

too small; however, larger filter sizes would not account for small scale effects of the turbulent atmosphere. Comparisons with

in situ subsidence values (Figure 4) further illustrated that spatially filtered results were greatly reduced in magnitude. This not

only led to lower subsidence values, but also resulted in measured heave signals, which deviate from in situ measured results.

:::::
While

::::::::
additional

::::::::
temporal

:::::::
filtering

::
is

:::::::::
recognized

::
as

::
an

:::::::::
important

:::::
aspect

::
of

::::::
InSAR

::::
time

:::::
series

::::::::
analysis,

::
it

:::
was

:::
not

:::::
tested

::
in

::::
this

:::::
study,

::
as

::::::
αDDT ,

::::::::::
representing

:::
the

:::::
linear

:::::::::
regression

::::
rate,

::
is

:::::::
unlikely

::
to

::
be

:::::::::::
significantly

:::::::::
influenced

::
by

::::::
further

::::::::
temporal

:::::::
filtering.

:
585

GACOS-corrected products, on the other hand, showed promising results. After correcting GACOS data for encountered

artefacts (see Supplement Figure S 1), the derived results were able to compensate for some improbable summer heave signals

visible in the Chersky time series of unfiltered results (Figure A2). However, some atmospheric effects remained (Figure

A1), which may lead to the encountered fluctuations within the time series. It should also be noted that GACOS can sometimes

introduce new artifacts
::::::
artefacts

:
(see also year 2019 of Figure A4) and may not necessarily guarantee an improvement of results590

due to scarcity of GPS stations and the coarse weather model resolution. However, the comparison of standard deviations of

phase residuals showed improvements compared to unfiltered results, especially for the Chersky and the Inuvik region. As the

differences of the median values (unfiltered - GACOS, Figure A7) seem to show a dependency on study area, this may indicate

varying effectiveness of GACOS corrections depending on region. The differing results for the Yamal region, however, also

indicate that although in this area the GACOS corrections may not always lead to an improvement (see also Figure A3),595

some years may still benefit from this correction.
:::
One

::::::
reason

:::
for

::
the

:::::::::::
performance

:::::::::
differences

::::::::
observed

::
in

::::::
various

:::::::
regions

::::
may

::
be

:::
the

::::::
coarse

:::::::
temporal

:::::::::
resolution

::
of

::::
the

:::::::
weather

:::::
model

::::
used

:::
in

:::::::
GACOS

:::
for

:::
the

::::::::
turbulent

::::::::::
component.

::::::::
Although

::::::::::
corrections

::
are

::::::::
provided

:::
for

:::
the

:::::::
specific

:::::
times

::
of

:::::::
satellite

:::::::::::
acquisitions,

:::
the

::::::::::
interpolated

:::::::
solution

::::
may

:::::
align

::::
more

:::::::
closely

::::
with

:::
the

::::::
6-hour
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Figure 12. InSAR Displacements of the thawing season 2017 by degree day of thaw (DDT) for 4 sample points on Yamal. DDT was derived

from ERA5 2 m height air temperature, in situ near-surface iButton data and from borehole temperatures at 50 cm depth (time series shortened

due to in situ data availability, see Table 2). Interpolations (linear regression) are plotted as dotted lines. In situ point locations see Figure 2.

:::::::
intervals

::
of

:::
the

:::::::
weather

:::::
model

::
in

:::::
some

::::
areas

::::
than

::
in

::::::
others.

:::::::::
Moreover,

::
the

:::::::
limited

:::::::::
availability

::
of

::::
GPS

:::::::
stations

::
in

:::::
certain

:::::::
regions

:::
may

::::
also

:::::::::
contribute

::
to

::::
these

:::::::::
variations.

:
600

Even though the standard deviation values of the phase residual were mostly slightly higher for GACOS-corrected results

than for unfiltered ones in the Yamal region, the comparison to in situ subsidence data showed the closest match for GACOS

within this area.

The overall lower InSAR subsidence compared to in situ values (Figure 4) has also been reported in other studies in Arc-

tic regions (Short et al., 2014; Antonova et al., 2018) and may have multiple causes. First, in situ measurements are point605

measurements, and medium-scale InSAR measurements may therefore underestimate true displacements due to spatial aver-

aging (Short and Fraser, 2023). Furthermore, it cannot be excluded that the selected reference point (airstrip at Bovanenkovo)
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Figure 13. InSAR Displacements of the thawing season 2017 by degree day of thaw (DDT) for a sample point of the Chersky region. DDT

was derived from ERA5 2 m height air temperature, an automatic weather station (AWS) data and from borehole temperatures at 4 cm and 8

cm depth. In situ point location see Figure 2.

also experiences some degree of surface deformation. The assumption of a linear relationship between DDT and thaw sub-

sidence may also play a role. Potential faster subsidence rates during the unmonitored beginning of the thawing season may

lead to an underestimation of subsidence values. In addition, soil moisture variations may have an effect on measured InSAR610

results. Soil drying, which leads to a line-of sight shortening, results in an uplift signal (Zwieback et al., 2015), potentially

contributing to lower subsidence values compared to in situ measurements. The effect is estimated to be 10%-20% of the radar

wavelength (Zwieback et al., 2017). Further effects were reported due to vegetation growth and the inherent decrease in plant

moisture (Zwieback and Hajnsek, 2016), which may also cause additional uplift signals. An investigation of soil moisture

change at Trail Valley Creek (data source of soil moisture time series: Boike et al. (2023)) for consecutive Sentinel-1 acquisi-615

tions, compared with changes in InSAR displacement signals (see Figure 14), revealed no significant relationship, leading to

the assumption that this source of error is of subordinate importance in this case. Furthermore, it should be noted that validat-

ing InSAR displacement values was not the primary objective of this study. An underestimation of subsidence values is less

relevant if it occurs consistently, as the linear relationship between displacement and moisture values was derived from these

biased data.620

6.4 Limitations for InSAR-processing

The demonstrated relationship between soil moisture and InSAR subsidence signals exemplifies the potential of InSAR data to

derive maps of soil moisture classes needed for e.g. upscaling carbon fluxes and climate modeling. However, some inhibiting

factors have to be addressed. As illustrated, GACOS corrections are an adequate and easily implementable solution to reduce

atmospheric effects. Some remnants may subsist
::::::
persist, especially effects of the turbulent atmosphere (Li et al., 2022). Further-625

31



Figure 14. Comparison of InSAR displacement signals from consecutive Sentinel-1 acquisition dates and corresponding soil moisture change

(derived from Boike et al. (2023)), measured at Trail Valley Creek in the Inuvik study area.

more, ionospheric effects are not accounted for with this correction. It is therefore essential to carefully select interferograms

and use thawing seasons of years with minimal interfering effects in the derivation of soil moisture class maps.

Additionally, the selection of an adequate reference point is crucial and can prove to be difficult. Moreover, errors may

increase with distance from the reference point (Short, 2017; Antonova et al., 2018), which has to be taken into account when

processing whole Sentinel-1 scenes.630

Another potential source of uncertainty is the impact of time-varying soil moisture on interferometric phase. A link between

subsidence change and soil moisture change could not be observed at the study site of Trail Valley Creek (Figure 14). The

variation in soil moisture between consecutive acquisition dates is mostly below 10 % vol, which is much lower compared

to other studies (Wig et al., 2023). Therefore the influence of soil moisture change appears subordinate compared to other

disturbances (including atmosphere). However this phase term remains coupled with the ground motion information and thus635

persists as a potential source of error in the results.

6.5 Permafrost features characterization

Delineated soil wetness should also be reflected in certain land-cover features related to polygonal tundra. Slightly higher

αDDT and subsidence can indeed be observed for areas with polygonal features compared to other non-wetland tundra (Fig-

ures A5 and Figure A6). However, no visible differentiation is detectable between high-centered and low-centered polygons.640

The derived αDDT values for the subsidence of the polygonal features are similar to those of wetlands without visible polyg-

onal features. Both areas with low- and high-centered polygons are expected to be characterized by strong microtopography,

resulting in a mix of wet and dry parts, which leads to medium αDDT values (not as low as for in situ points with very high

soil moisture content, see Figure ??
:
6a).
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7 Conclusions645

A representation of soil moisture classes is in high demand for applications in Arctic permafrost regions. In this study, we

proposed a novel approach for deriving a soil moisture index based on InSAR subsidence signal rates. We illustrated the

relationship between Sentinel-1 InSAR subsidence signal per DDT and surface soil moisture, with lower rates attributed to

surface subsidence signals for drier regions and seasons, demonstrating its potential as a proxy for near-surface soil moisture

classes. Compared to conventional coarser scale datasets such as ESA’s CCI Soil Moisture product, which underestimated in650

situ values with an RMSE of around 30 % vol, our proposed method achieved an RMSE of 14 % vol. Although this approach

provides only static information and does not account for seasonal fluctuations in soil moisture, it is assumed to be a valid

indicator for general or predominant moisture conditions for permafrost regions. It is recommended to distinguish only three

soil moisture categories. Its application for upscaling carbon fluxes and climate modeling remains to be tested.

Spatial patterns of wet and dry areas can be derived, but not all features typical for permafrost can be resolved. It is also655

pointed out that the ERA5 2 m height air temperature used for the calculation of DDTs may result in different subsidence rates

(αDDT ) compared to using top-soil temperatures.

Phase delays arising from soil moisture changes represent a limitation that should be considered in future studies, with

potential benefits from leveraging insights gained from ongoing research.

Limiting factors for the utilisation of InSAR also include atmospheric effects. Atmospheric correction is therefore essential660

for InSAR applications to derive reliable results, especially in cases where coherence loss prevents the use of interferograms

overlapping in time. We tested two easy to apply filtering methods for implementation in Arctic regions. Our study showed

that while spatial filtering corrects for spatial and temporal variabilities, the suppression of larger scale displacement signals

leads to a reduction of subsidence signal values, resulting in a poorer match with in situ values. GACOS-corrected results

showed a reduction of atmospheric effects within the investigated time series, as well as an improvement in standard deviation665

values of phase residuals and
:::::
often the best match with in situ subsidence values. However, it should be noted that smaller scale

tropospheric variations (<75 km) may not be captured
:::::::
corrected

:
(Murray et al., 2019). While long-wavelength components may

be accounted for, the turbulent atmosphere phase mostly cannot be removed (Li et al., 2022). Nevertheless, our investigations

showed that GACOS-corrected results are more suitable than spatial filtering and better suited for the derivation of soil moisture

classes.670

In upcoming years, InSAR processing of Sentinel-1 data is anticipated to benefit from the release of the Extended Timing

Annotation Dataset (ETAD), which includes correction layers for tropospheric delay and ionospheric delay among others

(Gisinger et al., 2022). Similar to GACOS the tropospheric delay is based on weather model data. However, data provision is

currently only planned for newly acquired scenes, which prohibits its application for past years.

L-band missions, which have the potential to better preserve coherence, would reduce the importance of the investigated675

correction methods. Comprehensive L-band datasets are however mostly acquired on demand, and available data acquisition

dates rarely meet requirements for the proposed investigation method. Nevertheless, with the launch of the upcoming NISAR

mission, improved data coverage is anticipated in the near future.
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8 Appendix

Subset of digitized land-cover features, left with WorldView-3 image as background map and right with αDDT .680

αDDT values for different land-cover features at the Tazovsky study region.

Difference of the in Figure 5 depicted median values of unfiltered - GACOS corrected values for each year, differentiated by

study site.
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results
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Figure A2.
:::::
Sample

:::::
points

::::::::::
displacements

:::
by

:::::
degree

:::
day

::
of

::::
thaw

:::::
(DDT)

::
for

:::::::
Chersky,

::::::::
accounting

:::
for

::::
early

::::
thaw

:::
data

:::
gap

::
in

::::::
InSAR

:::
time

:::::
series

::
by

::::::::::
extrapolation

::::::::
(approach

:::::::
following

:::::::::::::::
Bartsch et al. (2019)

:
,
:::::
dotted

::::
lines

:::::::::
correspond

:
to
:::::::

linearly
::::::::::
extrapolation

:::
part

::
of

:::
the

::::
time

:::::
series).

:::::
Point

::::::
locations

:::
see

:::::
Figure

::
2

45



Figure A3.
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Figure A4.
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::::
with

::
in

:::
situ

::::::::
subsidence

:::::::::::
measurements

:::
for

::
the

:::::
years

::::
2015

:::
and

::::
2016

:::
near

:::
the

::::
Trail

:::::
Valley

:::::
Creek

:::::
(TVC)

:::::::
research

:::::
station

::::::
(Inuvik

::::::
region).

:::
The

::::
early

::::
thaw

::::
data

:::
gap

::
in

:::
the

:::::
InSAR

::::
time

:::::
series

:::
was

::::::::
accounted

::
for

::
by

::::::::::
extrapolation

::::::::
(approach

:::::::
following

:::::::::::::::
Bartsch et al. (2019)

:
,
:::::
dotted

::::
lines

::::::::
correspond

::
to

::::::
linearly

::::::::::
extrapolation

:::
part

::
of

::
the

::::
time

::::::
series).

::::
TVC

::::::
location

:::
see

:::::
Figure

:
2
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Figure A5.
::::
Subset

::
of
:::::::
digitized

::::::::
land-cover

:::::::
features,

:::
left

:::
with

::::::::::
WorldView-3

:::::
image

::
as

:::::::::
background

::::
map

:::
and

::::
right

:::
with

::::::
αDDT .

Figure A6.
::::
αDDT:::::

values
:::

for
:::::::
different

::::::::
land-cover

::::::
features

::
at

::
the

:::::::
Tazovsky

:::::
study

:::::
region.
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Figure A7.
::::::::
Difference

::
of

::
the

::
in
::::::

Figure
:
5
:::::::
depicted

::::::
median

:::::
values

::
of

:::::::
unfiltered

::
-
::::::
GACOS

:::::::
corrected

::::::
values

::
for

::::
each

::::
year,

::::::::::
differentiated

:::
by

::::
study

:::
site.
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