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train 12 separate monthly models, starting from the annual
base model; a schematic representing this training process
is presented in Fig. 1. The remaining 20 % of the data were
used to calculate final fit statistics for each monthly model.
There is an unequal distribution of points across the months,5

which introduces some seasonal bias to the annual model.
This bias is subsequently removed when the monthly models
are trained. DTL is especially suited to this type of learn-
ing because (1) the initial learning phase trained on all train-
ing data helps the lower levels of the model learn to general-10

ize the task and (2) the subsequent training occurs on much
smaller monthly training datasets that help train higher, more
specific levels of the model. Various hyperparameters were
tuned using Optuna, a hyperparameter tuning package for
Python (Takuya et al., 2023). To monitor against overfitting,15

training and validation loss for the training period of each
model were calculated and are presented in Fig. S3.

2.3 Python

All of the computations were completed using Python, a
general-use, interpreted, object-oriented programming lan-20

guage ideal for building and implementing machine learn-
ing models and algorithms. A number of third-party pack-
ages were useful in the computations completed in this work:
Matplotlib for figure generation (Hunter, 2007); the machine
learning packages TensorFlow (Abadi et al., 2015), Keras25

(Chollet et al., 2015), XGBoost (Chen and Guestrin, 2016),
LightGBM (Ke et al., 2017), and CatBoost (Dorogush et
al., 2018); Pandas and GeoPandas for tabular and geospa-
tial data organization (Jordahl et al., 2020; The pandas de-
velopment team, 2024); Optuna and Fast and Lightweight30

AutoML Library (FLAML) for tuning ML models hyperpa-
rameters (Takuya et al., 2023); SciPy for scientific and statis-
tical functions (Virtanen et al., 2020); Shapely for manipu-
lation of geometric objects (Gillies et al., 2007); NumPy for
array manipulation (Harris et al., 2020); netcdf4 for open-35

ing and reading satellite data (Whitaker, 2008); Rasterio for
raster manipulation (Gillies et al., 2013); and tqdm to visual-
ize data processing progress (da Costa-Luis, 2019). Figure 1
was created using the Google Drawings suite, Fig. 2 was cre-
ated using Python Matplotlib, and Figs. 3–7 were created in40

Igor Pro 8.04.

2.4 Other geospatial data

River paths and extent data for the South Platte River and
North Platte River were downloaded from NOAA (National
Weather Service, 2024). Crop data were downloaded from45

CropScape, a geospatial thematic agricultural mapping soft-
ware (Han et al., 2014). Cartographic shapefiles containing
state, county, and urbanized area boundary lines were down-
loaded from the US Census Bureau (2024). Finally, data
visualizations were made to be color-accessible by Fabio50

Crameri’s scientific color maps (Crameri et al., 2020).

3 Results and discussion

The seasonal biases of the current TROPOMI operational
product, which includes the albedo correction from Lorente
et al., are studied in Fig. 2 for the area of interest. Figure 2 55

shows the ratio between co-located GOSAT and TROPOMI
methane retrievals as a function of surface albedo in the
shortwave infrared. In the ideal case, these ratios are equal
to 1 and there is no correlation between this ratio and sur-
face albedo (R= 0). When all data are used (Fig. 2a) the 60

Pearson correlation is indeed calculated to be low, i.e., be-
low a threshold of 0.1, which we chose here as a target value
for minimal correlation between SWIR surface albedo and
the albedo corrected methane retrieval. Though the signif-
icance of Pearson coefficients is up to interpretation, most 65

would agree that a value of< 0.1 signifies negligible correla-
tion (Akoglu, 2018; Schober et al., 2018). When the data are
shown by season, this is no longer true – Pearson correlations
with an absolute value greater than 0.1 indicate that there ex-
ists some correlation between the SWIR surface albedo and 70

the albedo corrected methane retrieval. The Lorente et al.
correction algorithm does account for some seasonality be-
cause the TROPOMI-retrieved variables include the surface
albedo SWIR which is used to calculate a correction value.
However, the seasonal correlation reappears after the Lorente 75

et al. correction because this correction assumes that the rela-
tionship between surface albedo SWIR and correction value
is static over time. Figure 2b and c demonstrate the change
in surface albedo as a function of season, with the density
of counts shifting from the left side of the plot, indicating 80

smaller albedos, to the center of the plot, indicating higher
albedos on average from summer to winter. The different sea-
sons also have different directions of change, with summers
having an inverse correlation and winters having a positive
correlation. The QA value used in processing the TROPOMI 85

retrieval data retained high-quality snow-covered scenes, so
some of this shift could be attributed to the SWIR reflectance
of snow over bare soil. Regardless of the reason, the shifting
albedo and seasonally variable albedo effect biases methane
retrieval data from TROPOMI at finer timescales. In order 90

to correct for this bias we employed a DTL neural network
machine learning algorithm.

3.1 Model evaluation

The DTL neural network models were trained and evaluated
as described in Sect. 2.2 and compared against the uncor- 95

rected methane retrieval, the Lorente et al. corrected methane
retrieval, and the blended TROPOMI–GOSAT product pro-
duced by Balasus et al., commonly referred to as the “Har-
vard dataset”, for their effectiveness in methane correction.
To evaluate against the other models, Pearson correlations 100

were calculated and presented in Fig. 3a, where different
constructions of Pearson values have been unified according
to Table S2. Pearson correlations have been calculated the
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Explanation for the editor:

In an earlier version of this manuscript, we compared several machine learning methods against each other, however this analysis was later cut from the manuscript as it was deemed unnecessary by our author team. Due to an oversight on our end, the references to these other methods were left in the manuscript. You will notice that these other methods (catboost, XGBoost, and lightGBM) are not mentioned anywhere else in the manuscript.

This change only affects the methods section where these methods are said to be  in use, when in fact they are not. Thank you for your understanding, and my apologies for missing this error until now.
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