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Abstract. The retrieval of methane from satellite measurements is sensitive to the reflectance of the surface, and. iIn many 

regions, especially those with agriculture, surface reflectance depends on the season, but this is not accounted for in many 

satellite products. Existing corrections for this effect do not take into account a changing relationship between reflectance and 

the methane correction value over time. It is an important issue to consider, as agricultural emissions of methane are significant 

and other sources, like oil and gas production, are also often located in agricultural lands. In this work, we use a set of 12 15 

monthly machine learning models to generate a seasonally resolved surface albedo correction for TROPOMI methane data 

across the Denver-Julesburg basin. We found that land cover is important in the correction, specifically the type of crops grown 

in an area, with drought-resistant crop covered areas requiring a correction of 5-6 ppb larger than areas covered in water-

intensive crops in the summer. Additionally, the correction over different land covers changes significantly over the seasonally 

resolved timescale, with corrections over drought-resistant crops being up to 10 ppb larger in the summer than in the winter. 20 

This correction will allow for more accurate determination of methane emissions by removing the effect of agricultural and 

other seasonal effects on the albedo correction. The correction may also allow for the deconvolution of agricultural methane 

emissions, which are seasonally dependent, from oil and gas emissions, which are more constant in time. 

1 Introduction 

The second most significant anthropogenic greenhouse gas (GHG), methane, has important climate implications. 25 

Providing 27 times the warming potential of carbon dioxide on a 100-year timescale, but with a much shorter lifetime of less 

than 10 years, a reduction in methane emissions could ease global warming and potentially help achieve 1.5 or 2 degree goals 

(Boucher et al., 2009; Collins et al., 2018). Agriculture is the largest contributor to global anthropogenic methane emissions 

(50.6341.0%), followed by the energy sector (38.428.65%) (Global Methane Tracker 2023 – Analysis, 2024). Methane 

emissions from the energy sector are dominated by oil and gas operations which, in the United States, are still expanding 30 

following phase-out trends in coal-fired power production (U.S. Energy Information Administration - EIA, 2024). From natural 
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gas production sites, methane emission rates are estimated to be 830 Mg/h, with a high fraction from super-emitting sites 

(Omara et al., 2018). 

Climate policy solutions generally rely on “bottom-up” inventories, which are derived from known emission rates for 

individual processes at a source. Bottom-up inventories are often at odds with top-down measurement techniques, which rely 35 

on measurements of atmospheric concentrations, and some have tried to reconcile these differences (Allen, 2014; Etiope and 

Schwietzke, 2019). Atmospheric measurements have expanded in both number and choice of platform with the advances of 

satellite monitoring systems (de Gouw et al., 2020; Jacob et al., 2016). Due to the prevalence of super-emitters skewing 

averages, Bboth bottom-up and top-down methods have relatively large and difficult to quantify uncertainties (sometimes well 

over 100% (Riddick et al., 2024)), especially when diverse sources of methane overlap (Allen, 2016, 2014). Bottom-up 40 

inventories rely on accurate reporting of emissions and emissions factors from private companies, and are extremely sensitive  

to super-emitting events that make up a minority of events, but a majority of the emissions (Allen, 2014; Riddick et al., 2024). 

Top-down methane emissions measurements rely on the accuracy of the instrumentation aboard the satellite, the retrieval 

method, as well as the methods used to calculate emissions from the column densities, such as a Bayesian inversion or a flux 

divergence method (Liu et al., 2021; Zhang et al., 2020). Improved methane inventories are invaluable to regulators and 45 

policymakers. Understanding the extent of methane emissions would help climate policymakers set more accurate and 

achievable goals and would allow regulators to effectively monitor those goals.  

The accuracy of the inventory depends quite significantly on the accuracy of the measurements. The TROPOspheric 

MOnitoring Instrument (TROPOMI), an imaging spectrometer aboard the Sentinel- 5 Precursor satellite, is known to have 

significant biases in the operational methane retrievals related to surface albedo (Lorente et al., 2021). There have been several 50 

recent updates to the dataset to mitigate this albedo effect using TROPOMI retrieval data over areas without emissions, and 

also by comparison with proxy retrievals from GOSAT, which are unaffected much less affected by surface albedo (Balasus 

et al., 2023; Lorente et al., 2021). The currently used albedo corrections (based on Lorente et. al.’s work)  are based on a long-

term correction and are best applied to annual or longer-term datasets. When applied to methane retrievals on a seasonal basis, 

we show here that some residual albedo effects are still apparent and may thus bias seasonal data. This study attempts to 55 

develop a seasonal albedo correction for the area of the Denver-Julesburg (DJ) basin in Colorado to account for these effects. 

 Colorado ranks in the top 10 U.S. states in total energy production (U.S. EIA, 2020). The state produced nearly five-

times more crude oil in 2022 than in 2010 largely due to the expansion of horizontal drilling and hydraulic fracturing (Cook 

et al., 2018; Annual Energy Outlook 2023, 2025), and production of natural gas has more than doubled since the year 2000 

(Annual Energy Outlook 2023, 2025). The majority of crude oil produced in Colorado comes from the Niobrara shale 60 

formation, located mostly within Weld county, while the whole basin stretches from southern Colorado to Wyoming and from 

the front range uplift into Nebraska and Kansas. (Pétron et al., 2014; U.S. EIA, 2023). Weld County is also one of the richest 

agricultural counties east of the Rocky Mountains producing over 27% of the entire state’s agricultural sales. 80% of the land 

area in Weld county is used for agriculture, with 44% of that land used for cropland, and 53% used for pastureland (United 

States Department of Agriculture (USDA), 2017). Agriculture complicates the measurement and attribution of methane 65 
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emissions data in two major ways: 1) cropland seasonal albedo shifts are not currentlyunder- compensated for in current albedo 

corrections due to a variable relationship between albedo and correction over time, and 2) unreported methane emissions from 

animal feedlots like Concentratedfined Animal Feeding Operations (CAFOs))s occur in close proximity to oil and gas 

production. A seasonally resolved albedo correction would assist with both of the issues by 1) correcting the seasonal shifts in 

albedo while accounting for the changing relationship between albedo and correction value, and 2) allowing for more accurate 70 

top-down seasonal methane emissions quantification, which may allow deconvolution of consistent O&G emissions from 

seasonal agricultural emissions.  Co-llocation of large oil and gas production with massive agricultural operations makes the 

DJ basin and Weld county in particular a prime target for a machine-learning based seasonal albedo correction. 

Machine learning is a branch of artificial intelligence where computers are trained to recognize patterns and make 

decisions based on data, somewhat likesimilar to how humans learn from experience.Machine learning is a subfield of artificial 75 

intelligence where a machine imitates a human brain in an attempt to solve a problem presented to it.  Some machine learning 

models are considered a 'black box' because it can be difficult to understand how they make decisions. To address this, tools 

like SHapely Additive exPlanations (SHAP) help provide insights into how machine learning models arrive at their 

predictions.Some machine learning algorithms have been criticized in the past as being a “black box” approach where output 

data is produced but the algorithm does not and sometimes cannot clarify how the output data were calculated (Rudin, 2019). 80 

With the use of more transparent types of machine learning algorithms and the help of additional python modules such as 

SHapely Additive exPlanations (SHAP), clearer reasonings for output can be determined (Lundberg and Lee, 2017; Rudin, 

2019). Neural networks, a type of machine learning model, are inspired by the way the human brain processes information. 

They consist of layers of 'neurons' that work together to identify patterns in data A neural network is a kind of machine learning 

algorithm that more closely resembles the human brain, containing ‘neurons’ that make connections and associations with 85 

various weights between themselves to determine the output values (Martín Abadi et al., 2015).  Others have used machine 

learning previously to develop TROPOMI retrieval correction methods (Balasus et al., 2023). 

Albedo corrections for the TROPOMI methane data have been described in the literature, with the most prominent 

being from Lorente et. al. which is now incorporated into the TROPOMI retrieval algorithm. Another well-formed effective 

albedo correction is from Balasus et. al. which also utilizes machine learning. Lorente et. al. used a B-spline interpolation of 90 

albedo dependence calculated over 2 years of data, while Balassus et al. trained a machine learning model on global data over 

a multi-year timescale, using the University of Leicester (UoL) Greenhouse Gases Observing Satellite (GOSAT) proxy 

retrievals as the target data (Balasus et al., 2023; Lorente et al., 2021) (Hereafter referred to as simply Balasus et al. and Lorente 

et al. when referring to the corrections they designed.). In this work we demonstrate that seasonal or monthly averaged methane 

retrievals over Colorado continue to be biased by albedo effects after the implementation of these correction algorithms. A 95 

major reason for using a seasonal or finer time resolution average is for deconvolution of agricultural emissions. Presently,  oil 

and gas operations are required to report on their emissions, but the accuracy is disputed (Zavala-Araiza et al., 2015). 

Meanwhile, agricultural operations are largely exempted from emissions reporting. The difficulty arises when agricultural and 

oil and gas operations are near to each other or co-located. Satellite methods for measuring emissions from oil and gas 
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operations are going tocan be biased by the unaccounted-for agricultural operations. Deconvolution of oil and gas emissions, 100 

which largely remain constant through the seasons, and agricultural operations, which cycle through the seasons, could be 

made more accurate if the measurements could be seasonally resolved. A seasonal albedo correction, as presented here, is a 

step towards making a seasonal measurement more accurate for better determination of emissions.  

2 Methods 

The two satellites used in this study, TROPOMI and GOSAT, have different spatial resolutions both in a latitude-105 

longitude grid, but also vertically with different numbers of vertical retrieval pressure levels, known as averaging kernels. 

Because of this, as well as other instrument sensitivities, we don’t do not expect TROPOMI and GOSAT to measure the same 

concentrations over the same places at the same time. Δ(TROPOMI – GOSAT) is an adjustment made here to place TROPOMI 

and GOSAT data onto common averaging kernel sensitivities and vertical profiles and determine the difference between the 

measurements on the same spatial scale. The calculation of this value is described in Balasus et. al. and involves interpolating 110 

GOSAT vertical pressure levels to TROPOMI’s vertical pressure grid in order to calculate what GOSAT would have retrieved 

with TROPOMI’s vertical sensitivity ((Balasus et al., 2023). This value is used as the target of the Machine Learning (ML) 

models training. The predictor variables were normalized using z-score normalization to ensure the predictor values are on the 

same scale for training purposes. 

2.1 Satellite Data 115 

2.1.1 TROPOMI 

TROPOMI is the push-broom imaging spectrometer aboard the European Copernicus Sentinel Sentinel-5 Precursor 

(S5P) satellite, capable of measuring methane among other chemicals. It has been described in detail previously (Levelt et al., 

2022; Veefkind et al., 2012). In this work, TROPOMI orbit files from April 2018 – December 2022 were downloaded from 

the ESA Copernicus open access hub. We used level 2 reprocessed and offline version 2.4 methane column data, XCH4, with 120 

internal TROPOMI-defined QA values of >= 0.5, indicating good-quality retrievals and better, including good-quality snow-

covered scenes, and the Short Wave Infra-Red (SWIR) surface albedo as co-retrieved with XCH4. The bounding box for 

machine learning training data used was Latitude: 34°N to 42°N, Longitude 106°W to 95°W, which encompasses the largest 

production regions of the Denver-Julesburg basin and extends into the surrounding states that also contain parts of the basin; 

Wyoming, Nebraska, and a small part of Kansas. 125 

A well-known artifactartefact in methane retrievals from TROPOMI is striping caused by small differences between 

across-track pixels, which can be mitigated by performing a stripe correction (Liu et al., 2021). This work utilizes an inherent 

stripe correction instead of a separate explicit stripe correction. 
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2.1.2 GOSAT 

The University of Leicester Full-Physics dataset (UoL-FP) proxy retrieval scheme was used (Parker and Boesch, 130 

2020). The proxy retrieval involves retrieving the CO2 column to act as a proxy for aerosol scattering effects (Schepers et al., 

2012). This dataset has been used extensively before as a measurement that is less affected by changing surface albedo (Balasus 

et al., 2023; Lorente et al., 2021). The data were downloaded from the Center for Environmental Data Analysis for the years 

2018 – 2020 on a global scale and the code calculating the co-location of TROPOMI and GOSAT data to calculate TROPOMI-

GOSAT pairs was based on that of Balasus et. al.  where pairs are calculated as pixel centers <5 km apart in space and <1 hr 135 

apart in time (Balasus et al., 2023). As our method requires a large amount of data and the region is much smaller we loosened 

the criteria to any pixel overlap in space and <2 hr apart in time. 

2.2 Machine Learning Methods 

A neural network is a system of neurons, similar to a brain, with the capability to learn (Kriesel, n.d.). Here it is taught 

using training data with known correct answers (supervised learning), to generalize and associate data. A neural network can 140 

find reasonable solutions to similar problems of the same class that were not explicitly trained. Here, A a neural network 

machine learning algorithm was trained on a large subset of co-located TROPOMI and GOSAT data gridded to a 0.1°x0.1° 

latitude/longitude square grid, totaling 17,634 points with 31 variables, described in Table S1, each to develop a hybrid 

TROPOMI/GOSAT dataset, which combines the measurement accuracy and lack of albedo effect of the GOSAT proxy 

retrieval with the data coverage of TROPOMI. The variables were selected based on previous ML work on this topic with a 145 

fewsome minor changes (Balasus et al., 2023). We chose to incorporate the retrieved and corrected XCH4, which is corrected 

based on the onboard albedo correction from Lorente et al. Wand we  also chose to remove the surface classification variable 

because our relatively smaller area of study has relatively few bodies of water. Furthermore, we chose to remove wind speed 

variables so that we would not introduce a bias or double counting if this model were to be used with the flux divergence 

method of quantifying methane emissions, which requires wind speed and direction (Beirle et al., 2021). The predictor 150 

variables were normalized using z-score normalization to ensure the predictor values are on the same scale for training 

purposes. A neural network can be described as “deep” if it has 3 or more “hidden layers” or levels in the network. Hidden 

layers are the strata of neurons which receive input from above and output to below and are “hidden” because the only layers 

the user interacts with are the top- level input and the bottom- level output while there may be hundreds or even thousands of 

layers sandwiched between. The term “Transfer learning” is used to describe a model that has been trained previously and is 155 

subsequently trained again starting from the previous training endpoint. A Deep Transfer Learning (DTL) method was used 

where an annual base model was trained and tested on 80% of the total points, randomly sampled.. These same points were 

then separated by the month of their collection, and used to train 12 separate monthly models, starting from the annual base 

model; a schematic representing this training process is presented in Fig. 1. The remaining 20% of the data were used to 

calculate final fit statistics for each monthly model. There is an unequal distribution of points across the months, which 160 
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introduces some seasonal bias to the annual model. This bias is subsequently removed when the monthly models are trained. 

DTL is especially suited to this type of learning because 1) the initial learning phase trained on all training data helps the lower 

levels of the model learn to generalize the task, and 2) the subsequent training occurs on much smaller monthly training da tasets 

that help train higher, more specific levels of the model. Various hyperparameters were tuned using Optuna, a hyperparameter 

tuning package for Python (Takuya et al., 2019).  To monitor against overfitting, training and validation loss for the training 165 

period of each model were calculated and are presented in Figure S3. 

 

Figure 1. Schematic representation of the data training process. Blue represents the annualized, long-term model, while orange 

represents the short term monthly-seasonal model and data. Transfer learning, the process by which a pre-trained model is trained 

again, usually on more specific data, was utilized here to generate 12 monthly models with the deeper understanding that comes 170 
from larger data quantities in the annualized model combined with the better specialization of the monthly-seasonal training data, 

represented by the orange circles with the blue center. 

2.3 Python 

All of the computations were completed using Python, a general-use, interpreted, object-oriented, programming 

language ideal for building and implementing machine learning models and algorithms (Van Rossum and Drake, 2009). A 175 

number of third-party packages were useful in the computations completed in this work. Matplotlib for figure generation 

(Hunter, 2007); the machine learning packages: TensorFlow (Martín Abadi et al., 2015), Keras (Chollet and others, 2015), 

XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017), and Catboost (Dorogush et al., 2018); Pandas and 

Geopandas for tabular and geospatial data organization (Jordahl, 2014; McKinney, W. and others, 2010); Optuna and Fast and 
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Lightweight AutoML Library (FLAML) for tuning ML models hyperparameters (Takuya et al., 2019; Wang et al., 2021); 180 

Scipy for scientific and statistical functions (Virtanen et al., 2020); Shapely for manipulation of geometric objects (Gillies and 

others, 2007); Numpy for array manipulation (Harris et al., 2020); netcdf4 for opening and reading satellite data (Whitaker, 

2008); Rasterio for raster manipulation (Gillies et al., 2013). and tqdm to visualize data processing progress (da Costa-Luis 

and Yorav-Raphael, 2013). Figure 1 was created using the Google drawing suite, Fig. 2 was created using Python matplotlib, 

Figs. 3-7 were created in Igor Pro 8.04. 185 

2.4 Other Geospatial Data 

River paths and extent data for the South and North Platte Rivers were downloaded from NOAA (Rivers of the U.S., 

2024). Crop data were downloaded from CropScape, a geospatial thematic agricultural mapping software (Han et al., 2014).  

Cartographic shapefiles containing state, county, and urbanized area boundary lines were downloaded from the US Census 

Bureau (Cartographic Boundary Files - Shapefile, 2024). Finally, data visualizations were made to be color-accessible by 190 

Fabio Crameri’s scientific color maps (Crameri et al., 2020). 

3 Results and Discussion 

The seasonal biases of the current TROPOMI operational product, which includes the albedo correction from Lorente 

et al.. (2021), are studied in Fig. 2 for the area of interest. Figure 2 shows the ratio between co-located GOSAT and TROPOMI 

methane retrievals as a function of surface albedo in the short-wave infrared (SWIR). In the ideal case, these ratios are equal 195 

to 1 and there is no correlation between this ratio and surface albedo (R=0). When all data are used (Fig 2a) the Pearson 

correlation is indeed calculated to be low, i.e. below a threshold of 0.1, which we chose here as a target value for minimal 

correlation between SWIR surface albedo and the albedo corrected methane retrieval. Though the significance of Pearson 

coefficients is up to interpretation, most would agree that a value of <0.1 issignifies negligible correlation (Akoglu, 2018; 

Schober et al., 2018). When the data are shown by season, this is no longer true - Pearson correlations with an absolute value 200 

greater than 0.1 indicate that there exists some correlation between the SWIR surface albedo and the albedo-corrected methane 

retrieval. The Lorente et al.This correction algorithm does account for some seasonality because the TROPOMI retrieved 

variables include the surface albedo SWIR which is used in the Lorente et al. algorithm to calculate a correction value. 

However, tThe seasonal correlation reappears after the Lorente et al. correction because this correction assumes that the 

relationship between surface albedo SWIR and correction value is static over time. This is not entirely surprising, as the built-205 

in albedo correction is not designed to be seasonal and was calculated for use across the entire dataset, and not our small subset 

in Colorado. Figure 2b&c demonstrate the change in surface albedo as a function of season, with the density of counts shifting 

from the left side of the plot, indicating smaller albedos, to the center of the plot, indicating higher albedos on average f rom 

summer to winter. The different seasons also have different directions of change, with summers being having an inverse 

correlation and winters being having a positive correlation. The QA value used in processing the TROPOMI retrieval data 210 
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retained high-quality snow-covered scenes, so some of this shift could be attributed to the SWIR reflectance of snow over bare 

soil. Regardless of the reason, the shifting albedo and seasonally variable albedo effect biases methane retrieval data from 

TROPOMI at finer time scales. In order to correct for this bias we employed a DTL neural network machine learning algorithm. 

Figure 2. Albedo effect on methane retrievals on seasonally-averaged TROPOMI data. TROPOMI bias corrected methane level 2 

retrieval data averaged from April 2018 to December 2022 (a) All months, (b) summer months (July-Sept.), and (c) winter months 215 
(Jan.-Mar.). The TROPOMI data are co-located in space and time with UoL GOSAT proxy retrievals treated as ground-truth. The 

dashed line represents perfect overlap and no correlation. Pearson R values represent the correlation between surface albedo and 

XCH4 retrievals. Our target Pearson R values are -0.1 < R value < 0.1. 

3.1 Model Evaluation 

The DTL neural network models were trained and evaluated as described in Sect. 2.2 and compared against the 220 

uncorrected methane retrieval, the Lorente et. al. methane corrected retrieval, and the blended TROPOMI/GOSAT product 

produced by Balasus et. al., commonly referred to as “Harvard dataset”, for their effectiveness in methane correction. To 

evaluate against the other models, Pearson correlations were calculated and presented in Fig 3a where different constructions 

of Pearson values have been unified according to Tab. S2., where the Pearson correlations have been calculated the same ways 

as in Fig. 2 with the correlation between GOSAT/TROPOMI and surface albedo. To reiterate, a Pearson correlation of 0 is the 225 

preferred value, as the difference between the two data sets does not depend on surface albedo. The surface albedo is the SWIR 

albedo as retrieved by TROPOMI. with uncorrected data as x = surface albedo SWIR as retrieved by TROPOMI and y = raw 

co-located proxy retrieval GOSAT data / TROPOMI XCH4, for the Lorente et al. correction, y = raw co-located proxy retrieval 

GOSAT data / TROPOMI bias corrected XCH4. Because the Harvard dataset and the data in this work both used sensitivity 

adjusted GOSAT proxy retrieval data in the calculation of the corrected TROPOMI data, the same sensitivity adjusted GOSAT 230 
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data are used to determine the Pearson value, with x = surface albedo SWIR as retrieved by TROPOMI, and y = sensitivity 

adjusted co-located proxy retrieval GOSAT data / TROPOMI corrected XCH4. Figure 3b depicts the 95% confidence intervals 

about the mean of the 12 months of the Pearson values and is helpful in determining the most effective model. Dashed lines in 

both figures represent the ideal values indicating no correlation (Kuckartz et al., 2013), with values in Fig. 3a being between 

the dashed lines at -0.1 and 0.1 Pearson correlation value, and Fig. 3b being the average and center of the 95% confidence 235 

margin of error on the line at 0 Pearson correlation value. 

 

Figure 3. Comparison of the model developed in this work with Lorente et. al., and Balasus et. al. corrections, and uncorrected 

TROPOMI retrieval data. Pearson value describes the Pearson correlation value of (sensitivity corrected GOSAT / measured or 

calculated TROPOMI value) and surface albedo SWIR for the ML model- predicted data, the Pearson correlation value of (raw 240 
GOSAT / calculated value) and surface albedo SWIR for scalar corrections, and the Pearson correlation value of (raw GOSAT / 

raw TROPOMI value) and surface albedo SWIR for the uncorrected data. (b) points represent the average and error bars describe 

95% confidence intervals of the 12 months. 

Only the models devised by this work entirely remove the seasonality described by the uncorrected data. Additionally, the 

Pearson values remain within our goal 0.1 Pearson correlation value for each month. As expected, the uncorrected data reach 245 

the farthest outside of this range and remain outside for the greatest number of points. The Lorente et. al. correction, which 

was not designed to handle seasonalityhandles seasonality with a temporally static correction based on SWIR surface albedo, 

significantly improves upon the uncorrected data, but preserves the seasonal trend in the data, demonstrating larger, positive 

correlations in the winter months and cycling through the seasons. The Balasus et. al. blended dataset improves this further by 
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reducing the seasonality of the correlation, but this dataset still displays correlations outside the 0.1 correlation threshold 250 

desired. Finally, this work’s devised monthly models always fall between the ideal -0.1 and 0.1 Pearson values. In comparing 

the mean and 95% confidence intervals, we observe the steady improvement in the progression of models, with this work’s 

monthly models providing for the Pearson value closest to 0 and with the smallest 95% confidence interval. All this 

demonstrates that the use of the monthly models provides a small, but measurable improvement over previously designed 

models for albedo correction in this specific region around the Denver-Julesburg basin. 255 

3.2 Model Results 

The python library SHapely Additive exPlanations (SHAP) was used to determine the relative importances of the 

different variables incorporated into the model (Lundberg and Lee, 2017). The importance of a variable indicates how much 

each variable contributes to the difference between the actual model output and the average model output. The importances of 

the variables were calculated on a monthly basis to show how the importances change over time, and two representative 260 

months, one for winter, one for summer, are shown in Fig. 4. Figure 4a depicts the model outputs for the month of January in 

a decision plot. Decision plots are generally used to show how models make their determinations and what variables are 

affecting their decisions the most. Here the decision plot is showing that the range of correction values stretches from 

approximately -40 to 40 ppb, indicating small significant changes in the total methane concentrations (~2-4%)., Tthis change 

is larger than the mission specifications of bias less than 1.5%, and much larger than the measured mean bias of the corrected 265 

TROPOMI XCH4 data of 0.2% (Apituley et al., 2022; Landgraf et al., 2023). That the corrections are larger than the biases 

suggests that the corrections are significant and important. Contrasting the general shapes of the decision plots, Fig. 4a appears 

to be more cone shaped, having a much starker taper in the less important variables, while Fig. 4b appears more cylindrical, 

sporting a milder taper. This indicates that the relative importance of predictor variables changes between seasons. A single  

model would miss this detail entirely, but the set of 12 monthly models allows for this change to occur. Additionally, the final 270 

model output value for Fig. 4b remains in the same range of approximately -40 to 40 ppb. Together, this indicates that while 

outputs remain in the same range, the difference in the importance of the variables changes the method that the models use to  

predict the outcome. This difference of importance is indicative that the relationship between variables and the correction value 

are changing over time. 
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 275 

Figure 4. Decision plots depicting relative importances of predictor variables on a seasonal basis. SHAP importances were calculated 

for a) January and b) July and the contributions from each predictor variable are shown. Variables are ordered from top to bottom 

by importance in January. Color scale indicates the final model output value, which is the Δ(TROPOMI – GOSAT) value. Expected 

value is the average prediction made by the model across all possible combinations of features, and is thus the same value for all 

trials using the same model. 280 

While the training process attempted to minimize the differences between TROPOMI and GOSAT data, thus 

effectively reducing the dependence on SWIR surface albedo, not all training iterations were successful in this due to the 

multitude of features to incorporate. As part of our model validation, we only considered those that reduced the correlation 

between XCH4 and surface albedo SWIR as viable models. Due to this validation method, we call our machine learning 

product an “albedo correction”. Figure 4 shows that other features may be more important than the surface albedo SWIR in 285 

the actual model calculation. “importance” in a ML model is the magnitude of effect that variable has on the final output value 

of the model. The variables that appear higher on the y-axis than “surface albedo SWIR” tended to be more important and 

should be analyzed as well. Some of these variables have clear reasonings as to why they are more important: XCH4 apriori, 

XCH4 corrected, and XCH4 are all the measurements of methane mixing ratio that were either priors for the TROPOMI 
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measurement (XCH4 apriori) or direct measurements of the methane mixing ratio by TROPOMI (XCH4 and XCH4 corrected). 290 

XCH4 and “XCH4 corrected” directly measure methane mixing ratios via TROPOMI, serving as primary data sources for our 

predictive models. The reasoning for other important variables is not so clear: “surface albedo SWIR precision” and “chi 

square SWIR”. The precision of the surface albedo SWIR measurement being important was not expected, but may be the 

result of a well-trained model successfully making the association between the SWIR albedo measurement and its precision. 

A less precise measurement would be less heavily relied upon for the model’s predictions, so the importance may come from 295 

the association between the precision measurement and how much a particular measurement affected the model during training. 

Similarly, the “chi square SWIR” is a goodness of fit check that ensures that the SWIR measurements by the instrument fall 

within an appropriate distribution. Poor goodness of fit could allow the model to rely less heavily on that particular traini ng 

data point in making future predictions. Additionally, there were some factors that appear lower on the y-axis that are somewhat 

unexpected, such as aerosol optical thickness SWIR and solar zenith angle. Aerosol optical thickness SWIR describes the 300 

atmospheric density of aerosols that reflect in the SWIR band, which could be expected to be important for this prediction due 

to the importance of the other factors affecting the SWIR band that appear towards the top of the axis. Solar zenith angle is a 

fundamental factor in the calculation of the methane mixing ratio because it describes the angle of incident light, which is 

integral to remote sensing by satellites. That this factor is relatively unimportant suggests that this information is well 

incorporated in the retrieval. The importances of variables here differ from the importances determined in Balasus et al. likely 305 

due to extent. This work’s much smaller area focused on the Denver-Julesburg basin, which has a very limited range of surface 

albedo SWIR values, whereas the Balasus et al. global extent sees a range of 0.01-0.6 in some regions. The much smaller range 

of SWIR surface albedo here likely contributes to the lower overall importance. The extent likely also affects the importance 

of aerosol-related variables, which Balasus et al. also found to be significantly more important – our extent focused on the oil 

and gas basin with significant agricultural influence, which are two important sources of aerosols, but our proximity to sources 310 

may limit the range of aerosol-related values, making this term less important here than on a global extent as well.  

This study utilized an implicit stripe correction instead of an explicit one. The UoL target data are not subjected to a 

striping effect, so the use of the target data and using the ground pixel index as a variable in the model allowed for a stripe 

corrected dataset to be output from the input of non-stripe corrected data. This process relies heavily on the ‘ground pixel’ 

variable which finds middling importance in Fig 4. indicating that while the stripe correction is important, other factors affect 315 

the overall output more. Other information describing the training and validation process is available in the supplemental 

information. 

3.3 Model corrections in practice 

The trained models were then used to predict corrected XCH4 values on a monthly basis on data from April 2018 to 

December 2022, the correction values for which are depicted in Fig. S1. The months of January and July, representing winter 320 

and summer data respectively, are presented in Fig. 5. The model- predicted positive and negative correction values for this 
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data appears to be seasonally dependent, with more positive corrections being made in colder months and negative corrections 

being made in warmer months, appearing as blue colors in the summer (Fig. 5a) and red brown colors in the winter (Fig. 5b). 

The correction values also show a specific geographic distribution; two curved lines, one curving upwards from Denver, the 

other curving down through Nebraska appear to follow the South and North Platte Rivers, respectively (white dashed lines in 325 

Fig. 5a). As Colorado has been described in the past as part of the “Great American Desert,” water sources like these two 

eventual tributaries to the Missouri River dictate where larger water-intensive agricultural operations exist. As such, larger 

densities of water-intensive crop farms are co-located with these rivers, bringing their albedo-influencing crops and plant-life, 

and thus requiring an albedo correction which is not necessarily reflected in magnitude by the surrounding scrubland. It has 

been shown that water intensive crops, like corn, sugarbeets, and alfalfa; and drought resistant crops, like winter wheat, millet, 330 

and dry beans; reflect SWIR light differently, allowing for identification of crops from space with the SWIR reflectance 

variable along with other variables (Chen et al., 2005). This effect is possibly due to water content or leaf size of the vegetable 

matter. The spatial extent of the water intensive crops is much wider than the riverbed; the North and South Platte rivers are 

extremely small (average discharges 1,355 and 175 cu ft/s respectively, Mississippi river is 593,000 cu ft/s) and are far less in 

extent than one satellite pixel, making the flagging or removing of this data due to water content, unnecessary.. In his book 335 

Roughing It, Mark Twain describes the South Platte in 1870 as “shallow, yellow, muddy… and only saved from being 

impossible to find with the naked eye by its sentinel rank of scattering trees standing on either bank.” (Twain, 1891) Figure 5 

shows how the XCH4 correction factor changes in different ways across the seasons for water intensive and drought resistant 
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crops. Comparing these changes with the unfarmed grassland in the same region, the effects are small but substantial. In the 

coldest of winter months the river structures appear less prominently, if at all. 340 

Figure 5. Average XCH4 correction values for water intensive vs. drought resistant crops. XCH4 correction value maps with white 

dashed lines representing the North and South Platte Rivers for July (a), and January (b) representing data for the summer and 

winter respectively. Locations of crop types (c) around the DJ basin. Water intensive crops include corn, alfalfa, and sugarbeets, 

drought-resistant crops include winter wheat, millet, and dry beans. Crops with both traits, fallow land, and other agricultural types 

are described as Other Agriculture. Grassland and other non-agricultural types, except urban areas, are described as Non-345 
Agricultural. Developed Land includes parts of the cities of Denver, Greeley (marked with the white square and triangle 

respectively), Cheyenne, and other smaller communities. Average CH4 Correction values for the crop types (d), and  dDrought 

resistant crops require larger corrections throughout the summer months while water intensive crops are more similar, though not 

the same, as the surrounding grasslands. No error bars are shown due to the large amounts of points making both standard error 

and 95% confidence interval values too small to see. Crop data is from 2021 only and calculated using the April 2018 – December 350 
2022 correction data. 

Particularly prominent in Fig. 5a is a darker swath south of the upward bend in the South Platte river. This area also 

has many farms, but these farms are more likely to grow drought-resistant crops. Additionally, many more of these fields lie 
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fallow in a given year than the ones irrigated by river water.  Another area of agricultural significance is around Greeley, 

Colorado (white triangle). ), named for, and partially funded by, Horace Greeley, a 19th century newspaper editor who urged 355 

the nation to seize the opportunity to convert the desert to cropland (Reisner, 1993). Greeley is also visible in the colder months 

maps, giving further indication that cropland is associated with albedo effects, but with magnitude or direction differing based 

on crop types and growing seasons. Greeley and the surrounding farms make up a large portion of the crop farming capacity 

within Weld county. 

 Figure 5c depicts the agricultural land use in the area of interest where visual comparison of the water intensive crops 360 

and the bright-line regions of the summer seasonal albedo correction plots can be made. Numerical comparison agrees with 

visual inspections, as Fig. 5d depicts average albedo correction values over each kind of land cover. Overarching seasonal 

trends appear, with corrections over all land covers appearing closer to 0 in the winter and fall and increasingly negative 

through the spring and summer. Additionally, seasonal effects over individual types of land cover are measurable. During the 

winter and fall, many of the land cover types appear very similar, while diverging from each other in the spring and summer, 365 

when vegetation in Colorado becomes increasingly stressed for water. That the urban points also follow the general seasonal 

trend is important and indicates that a driving factor in the seasonal albedo change is the relationship between surface albedo 

SWIR and other variables with the correction value and how that relationship changes seasonally. 

Figure 6. Significance tests demonstrating the statistical significance between paired datasets. All values that are not the darkest 

blue = 0.05 or greater are significantly different in a p critical = 0.05 environment. All values that are pink = 0.001 or less indicating 370 
very significant differences. More blue near in the early year and later in the year indicate that albedo corrections are more similar 

between different land cover types, and more pink in the summer months indicate that albedo corrections are more different between 

different land cover types in this time period. 

T-tests were performed between categories to determine the significance of the differences between the different land uses and 

presented in Fig. 6. T-tests for each month of data on a small subset of 500 points for each land use demonstrate, for example, 375 

that drought resistant crops and other agriculture types are not statistically significant. P values for the T -tests between other 

land uses tend to increase and indicate no statistical significance in the winter and late fall, while indicating statistical ly high 

significance throughout the spring and summer for most land use pairs for most months. This indicates that in general the 

different land uses require different correction values and this is related to the kinds of agriculture utilized. Water intensive 

agriculture is likely irrigated and soil moisture and vegetable water content can play a significant role in surface albedo SWIR, 380 
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such that measurements of the like have been used to measure extents of irrigated agricultural land uses (Chen et al., 2005). 

This demonstrates that a seasonally resolved albedo correction, one that takes into account the changing relationship between 

the surface albedo SWIR and the correction value over time, is important and may be different in different parts of the world 

over different land cover types. Similarities between water intensive and non-agricultural and drought resistant and non-

agricultural in the winter and fall indicate that non-agricultural land may not be as affected by the seasonal bias, thus confirming 385 

our suspicion that seasonally changing farming practices may be the root cause for the albedo effect issues. . 

 

Figure 7. Result of the methane albedo correction devised in this work. The uncorrected XCH4 data retrieved by TROPOMI (a) 

and tThe Lorente et. el. correction in the summer (ba) appears to have similar featuresare compared against the correction devised 

by this work (c) and the average surface albedo SWIR retrieval map for this time period (d) as the surface albedo SWIR retrieval 390 
over this same area (b), while the features have been removed in the correction devised by this work (c). This is repeated for the 

winter months on the right with the uncorrected retrieval (e) Lorente et al. correction (f), this work’s correction (g), and the winter 

average surface albedo SWIR (h)In the winter, the surface albedo SWIR product (e) appears quite different than in the summer, 

indicating the need for this seasonal albedo correction. The Lorente et al. correction (d) and the correction devised by this work (f) 

appear more similar in the winter. 395 
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The corrected XCH4 data were calculated and averaged across the summer and winter months to demonstrate the 

difference the models developed here make in their corrections. Visually apparent in the uncorrected data and the Lorente et. 

al. corrections in Fig 7 (a, b, ea&fd) are structural features that are similar to features shown in the surface albedo SWIR 

retrieval (Fig. 7 (db&he)). The corrected dataset devised here has an average mixing ratio 6.9 ppb smaller than the Lorente et 

al. corrected data in the summer and 0.4 ppb smaller in winter, appears to have slightly a reduced mixing ratio, appearing 400 

slightly darker in color than the Lorente corrected data. This reduction is likely due to the new correction algorithm’s 

dependence This is likely due to the correction’s dependence on the UoL GOSAT proxy retrieval target data, which on a global 

average measures 9.2 ppb less XCH4 than TROPOMI (Balasus et al., 2023). Notably, the Denver metropolitan area appears to 

havehas lower average methane concentrations in our model output data than in the original TROPOMI Lorente et al. corrected 

data (6.4 ppb less in summer and 4.9 ppb less in winter). The corrected data (Fig. 7 (c&f)) appear visually smoother, which is 405 

to be expected for a long-lived analyte like methane. Figure 7 cannot be evaluated as before with a Pearson correlation because 

the correlation requires GOSAT / TROPOMI data to be used to account for natural correlation between surface albedo SWIR 

and XCH4. There is not sufficient GOSAT data over this extent and time period to calculate such a Pearson correlation. Instead 

we assume that the tested model output correlations hold for this data, making the correlations between GOSAT/TROPOMI 

and the surface albedo SWIR: -0.03±0.04 and 0.01±0.08 for winter and summer respectively for the models developed in this 410 

work; and 0.25±0.03 and -0.1±0.1 for the Lorente et al. correction values; error values are 1σ. Overall it appears that the 

correction is effective in removing the albedo effect over seasonal time resolutions. This is important, as emissions calculation 

methods generally rely on local gradients. Fewer features in the methane distributions should coincide with lower emissions 

estimates. 

4 Conclusions 415 

A small but significant seasonal dependence on surface albedo biases was found in TROPOMI XCH4 retrievals over 

Colorado even after the application of the current state-of-the-art albedo corrections when focusing on a single region. A series 

of deep learning ensemble models specifically designed to reduce differences between TROPOMI and GOSAT while also 

reducing dependency on surface albedo in the SWIR have been developed to improve upon previous corrections. The output 

of the trained models removes the lasting seasonal dependence on surface albedo and demonstrates the fewest exceedances of 420 

a -0.1<R<0.1 Pearson correlation with surface albedo in the TROPOMI dataset. Application of the albedo correction to the 

Denver-Julesburg basin reveals albedo correction dependencies on land-cover, requiring larger in magnitude corrections in the 

summer months over drier, drought-resistant crops than irrigated water intensive crops, with differences that also fluctuate 

seasonally. The 12 monthly models seasonal albedo correction appears to resolve previously understudied issues surrounding 

long-term albedo corrections over seasonally changing areas, like cropland, making this a valuable tool for developing more 425 

accurate methane emissions inventories, models, and potentially deconvoluting relatively constant oil and gas emissions from 
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seasonally dependent agricultural emissions. Methane measurements corrected utilizing this albedo correction method will be 

quantified in a forthcoming publication. 
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