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Abstract. Channel belts, floodplains and fluvial valley floors form by the mobilization and deposition of sediments during the 

lateral migration of rivers. Channel-belt width and its temporal evolution is important for the hydraulics, hydrology, and 10 

ecology of floodplains, and for human activities such as farming, protecting infrastructure, and natural hazard mitigation. Yet, 

we currently lack a comprehensive theoretical description of the width evolution of channel belts. Here, we explore the 

predictions of a physics-based model of channel-belt width for the transient evolution of channel belts. The model builds on 

the assumption that the switch of direction of a laterally migrating channel can be described by a Poisson process, with a 

constant rate parameter related to channel hydraulics. As such, the lateral migration of the channel can be viewed as a non-15 

standard one-dimensional random walk. The model predicts three phases in the growth of channel belts. First, before the 

channel switches direction for the first time, the channel belt grows linearly. Second, as long as the current width is smaller 

than the steady state width, growth follows an exponential curve on average. Finally, there is a drift phase, in which the 

channel-belt width grows with the square root of time. We exploit the properties of random walks to obtain equations for the 

distance from a channel that is unlikely to be inundated in a given time interval (law of the iterated logarithm), distributions of 20 

first passage time and return to the origin, and the mean lateral drift speed of steady state channel belts. All of the equations 

can be directly framed in terms of the channel’s hydraulic properties, in particular its lateral transport capacity that quantifies 

the amount of material that the river can move in lateral migration per unit time and channel length. Finally, we derive the 

distribution of sediment residence times, and show that its right-hand tail follows a power-law scaling with an exponent of -

1.5. As such, the mean and variance of ages of sediment deposits in the channel belt do not converge to stable values, but 25 

depend on the time since the formation of the channel belt. This result has implications for storage times and chemical alteration 

of floodplain sediments, and the interpretation of measured sediment ages. Our model predictions compare well to data of 

sediment-age distributions from various field sites and the temporal evolution channel belts observed in flume experiments. 

The theoretical description of the temporal evolution of channel-belt width developed herein provides a framework in which 

observational data can be interpreted, and may serve to connect models designed for long and short timescales. 30 
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1 Introduction 

Rivers migrate laterally. Lateral river migration establishes the channel belt, which is defined as the corridor of channel 

migration formed during one river-avulsion cycle (Bridge and Leeder, 1979; Nyberg et al., 2023). Channel belts include the 

river channel and active bars, levees and abandoned channels, and other areas affected by the river during floods or migration 35 

(Fig. 1A) (Nyberg et al., 2023). They can be represented by the planform area that the river has interacted with since its last 

avulsion. During lateral migration, rivers deposit sediment or erode previously deposited sediment, thereby affecting chemical 

weathering, nutrient transport, and ecology (e.g., Fotherby, 2009; Jonell et al., 2018; May et al., 2013; Miller, 1995; Naiman 

et al., 2010; Schumm & Lichty, 1963; Torres et al., 2017). Channel belts affect catchment hydrology, host aquifers and 

hydrocarbon deposits (e.g., Andersen et al., 1999; Blum et al., 2013; Bridge, 2001), and present a key location for organic 40 

carbon storage and alteration (e.g., Repasch et al., 2021). Landforms such as backswamps or oxbow lakes, which are specific 

to channel belts, often host unique ecological communities that depend on regular floods (e.g., Bayley, 1991; Junk et al., 1989; 

Meitzen et al., 2018). Further, the exchange of sediment during lateral channel migration determines the distribution of ages 

of the sediment stored at and near the surface along rivers (e.g., Bradley & Tucker, 2013; Pizzuto et al., 2017). Finally, lateral 

bank erosion is an important natural hazard that can destroy agricultural areas and infrastructure (e.g., Badoux et al., 2014). 45 

All of the mentioned effects make channel belts an important component of river response to environmental change (e.g., 

Hajek and Straub, 2017). As such, they record a river’s past activity, and can be used as archives for Earth’s history on the 

timescale of hundreds to thousands of years (e.g., Allen, 1978; Bridge and Leeder, 1979). Channel belts can be either 

unconfined, for example in foreland areas, or confined, for example by valley walls in mountain regions (Fig. 1 a&b) (e.g., 

Howard, 1996; Limaye, 2020; Turowski et al., 2024).  50 

 

The long-term dynamics of channel belts have been studied separately for meandering (e.g., Camporeale et al., 2005; 

Greenberg & Ganti, 2024; van de Lageweg et al., 2013) and braided rivers (e.g., Bertoldi et al., 2009; Limaye, 2020). 

Researchers have largely focused on channel characteristics and statistics, their temporal evolution and approach to a steady 

state. For meandering rivers, these have typically included the linear and curvilinear wavelength, the curvature of the channel, 55 

and the role of meander cuts-offs in reaching and maintaining a steady state (e.g., Camporeale et al., 2005; Howard, 1996). 

For braiding rivers, they have typically included braiding indices and planform patterns (e.g., Bertoldi et al., 2009; Egozi and 

Ashmore, 2009). In comparison to these statistics describing the channels within the channel belt, the belt width has received 

little attention. Greenberg et al. (2024) found that channel-belt area scales with floodplain reworking timescales. Reworking 

timescales monotonically increase as water partitions into fewer active channel threads, and as channels become more sinuous, 60 

and thus vary between river systems with different planform types. Studying models of meandering rivers, Camporeale et al. 

(2005) concluded that one time and one length scale are sufficient to explain steady state characteristics of channel belts 

regardless of the hydrodynamic complexity of the underlying model. They suggested that channel-belt width scales with the 

meandering wavelength, which in turn scales with flow depth. A qualitative comparison to natural channels was favourable. 
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Limaye (2020) postulated that channel-belt width of braided rivers scales with channel width. Using flume experiments, they 65 

showed that both channel and belt width follow a similar scaling relationship with discharge. Turowski et al. (2024) developed 

a steady state model for channel-belt and valley width under the assumption that switches in the direction of lateral channel 

migration are based on a random process with a uniform mean rate of switching in time. In their model, the unconfined steady 

state channel-belt width linearly depends on flow depth. They also suggested that the width of fluvial valleys is controlled by 

the channel-belt width.  70 

 

The transient evolution of channel-belt width has so far hardly been explored. Limaye (2020) identified three phases of 

channel-belt growth in his experiments, co-occurring with distinct phases of meandering or braiding. In a first phase, the 

channel established a graded geometry from the initial imposed boundary condition. In the second phase, the channel belt grew 

rapidly, while in the third phase, it reduced its growth rate. When compared in a dimensionless framework, the switches 75 

between phases occurred at the same dimensionless time for different experimental conditions. Wickert et al. (2013) and Bufe 

et al. (2019) observed an exponential approach to the steady state width in experiments, when tracking the increase of the area 

visited by the channel over time. Hancock & Anderson (2000) suggested that the initial rapid widening rate of a channel belt 

and the subsequent decrease of the widening rate is due to the declining probability of the channel to be located at the belt 

boundary as the belt widens. This notion was regularly picked up in subsequent work (e.g., Malatesta et al., 2017; Martin et 80 

al., 2011), and has led to steady state descriptions of valley width (Tofelde et al., 2022; Turowski et al., 2024). Yet, equations 

relating the growth evolution of channel belts and valleys to the hydraulic conditions in the channel are currently not available. 

 

Turowski et al. (2024) described lateral channel migration as a Poisson process, in which the switches in direction occur 

randomly in time at a constant mean rate. They subsequently focused on the mean behaviour of the model, and proceeded to 85 

derive equations for the steady state width of unconfined and confined channel belts, and of fluvial valleys. Here, we explore 

the predictions of their model concept for the transient approach of channel belts to their steady state width, and the 

consequences of a stochastic formulation for channel-belt dynamics. Specifically, we derive analytical equations describing 

the temporal evolution and the bounds of channel belts, their average lateral drift once they have reached a steady state, and 

the sediment residence-time distribution, which is equivalent to the distribution of sediment ages. Analytical results are 90 

benchmarked with stochastic numerical simulations. We compare the model results to data from flume experiments (Bufe et 

al., 2016, 2019), and sediment age distributions from three field sites (Everitt, 1968; Huffman et al., 2022; Skalak & Pizzuto, 

2010). 
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Fig. 1: Schematic illustration of the model concept. a) Unconfined channel belt of the Juruá River, Brazil (6.75° S, 70.30° W; Map 95 
data: Google,©2024  Maxar Technologies). b) Confined channel belt of the San Jose River, Chile (18.58° S, 69.97° W; Map data: 

Google,©2024  Maxar Technologies, Airbus). (c, d) the channel switches the direction of motion after a certain timescale. It thus 

evolves to a steady-state width that does not change over time. In the stochastic Poisson model (e, f), the switching timescale is a 

random number. As such, the channel may migrate beyond the channel-belt limits (e) or erode the valley walls even after reaching 

the steady-state width. This migration can lead to a lateral drift of the channel belt or valley. 100 

2 Theoretical developments 

In this chapter, we will briefly summarize the valley width model by Turowski et al. (2024) (Section 2.1). Afterwards, we 

outline the basis of the stochastic model approach used herein (Secton 2.2). Then, we derive equations for the temporal 

evolution of channel belts while approaching a steady state, and their lateral drift speed once they have reached steady state 

(Section 2.3), the limits of the channel-belt bounds (Section 2.4), the first passage distribution (Section 2.5), and the age 105 

distribution of sediment (Section 2.6). 
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2.1 Summary of the steady state model 

Building on earlier work (e.g., Bufe et al., 2019; Martin et al., 2011; Tofelde et al., 2022), Turowski et al. (2024) developed a 

model for the steady state width of fluvial valleys (Fig 1), which includes predictions for confined and unconfined channel 

belts as a special case. In the model, each cross-section is treated as if it moves independently from those upstream and 110 

downstream. River channels are assumed to move laterally by bank erosion and deposition. The channel belt widens when the 

river crosses beyond the previous channel belt boundaries (Fig. 1). The lateral channel-migration speed V [L T-1] is equal to 

the ratio of the lateral transport capacity qL [L
2T-1] and the bank height in the direction of motion H+ [L], where qL quantifies 

the amount of material that the river can move in lateral direction per unit time and channel length (Bufe et al., 2019): 

𝑉 =
𝑞𝐿
𝐻+
. 115 

(1) 

Turowski et al. (2024) viewed switches in the direction of lateral motion of the river as stochastic events. These are independent 

and identically distributed, with a constant mean event rate per unit time, λ [T-1], and can therefore be described by a Poisson 

process. The mean rate of switching λ is equal to the ratio of the lateral transport capacity qL and the square of the flow depth 

h [L] (Turowski et al., 2024) 120 

𝜆 = 𝑘
𝑞𝐿
ℎ2
, 

(2) 

where k [-] is a dimensionless constant. We can define an effective switching time scale. This is a constant time scale that leads 

to the same steady state width as is obtained from a fully stochastic model. The effective switching time scale ∆𝑇 [T] is 

inversely proportional to λ 125 

∆𝑇 =
𝑐

𝜆
, 

(3) 

where c [-] is a dimensionless constant of order one. Integrating over the distance travelled laterally by the channel within ∆𝑇 

yields an equation for the unconfined channel-belt width W0 [L] (see Turowski et al., 2024, for details)  

𝑊0 = ∫ 𝑉𝑑𝑡 +𝑊𝐶

∆𝑇

0

= 𝑘0ℎ +𝑊𝐶 . 130 

(4) 

Here, k0 = c/k [-] is a dimensionless constant, WC [L] is the channel width, and t [T] is time. To arrive at the final equality in 

eq. (4), we assumed that in an unconfined channel belt that is neither incising nor aggrading, the bank height in the direction 

of motion, H+, is equal to the flow depth, h (cf. Turowski et al., 2024). In river valleys, the channel belt or valley floor is 

narrower than W0 due to uplift or lateral supply of sediment from hillslopes, and the steady-state valley-floor width WV [L] can 135 

be described by the equation (Turowski et al., 2024): 
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𝑊𝑉 = (
𝑞𝐿 − 𝑞𝐻
𝑈

) ln {1 +
𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} +𝑊𝐶 . 

(5) 

Here, qH [L2T-1] is the lateral supply rate of hillslope sediment per unit channel length, and U [L T-1] is the uplift rate. Equation 

(5) predicts that river valleys reach a steady state width that depends on five input parameters (flow depth h, channel width 140 

WC, uplift rate U, lateral transport capacity qL, and lateral hillslope sediment supply qH) and one constant (k0) that needs to be 

determined from observations. Steady state valley width is reached when the system achieves a balance between local sediment 

input from hillslopes and by uplift, on one hand, and the removal of sediment by the river, on the other hand. 

In summary, in their model, Turowski et al. (2024) assume that the switches in river direction follow a Poisson process and 

unconfined channel belts evolve to a steady-state width determined by flow depth and channel width (eq. 4). Fluvial valleys 145 

can attain a maximum steady state width that corresponds to the unconfined channel-belt width W0. They are narrower than 

this unconfined width if they are affected by uplift or lateral hillslope sediment supply (eq. 5). We call this model the 

‘Deterministic Poisson model’ hereafter. 

2.2 The Stochastic Poisson model 

In order to investigate the transient evolution of channel-belt width, we further develop the previous model of Turowski et al. 150 

(2024). Instead of summarizing the channel switches with a constant characteristic timescale, the effective switching timescale 

∆𝑇 (eq. 3), we now explore the consequences of a random switching timescale. This consideration allows us to observe the 

transient behaviour of the random-walk model for lateral river migration. We call this model the ‘Stochastic Poisson model’ 

hereafter. In a Poisson process, the probability mass function (PMF) that n [-] events (in this case, channel switches) occur 

within the average switching timescale Δt [T] is given by  155 

PMF𝑃𝑜𝑖𝑠𝑠𝑜𝑛 =
(𝜆∆𝑡)𝑛𝑒−𝜆∆𝑡

𝑛!
. 

(6) 

The expected number of events is given by 1/(λΔt) [-] and the variance by λΔt [-]. For the derivations within this paper, we use 

the idea that the lateral motion of the river channel across the floodplain, in the model concept of a Poisson process, can be 

viewed as a non-standard one-dimensional random walk. The channel alternates between steps to the left and to the right within 160 

the cross section, thus switching direction after every step. The step length is not a constant, but a stochastic parameter equal 

to the waiting times between individual switching events multiplied by lateral migration speed. In a Poisson process, the 

waiting times TW [T] between events are exponentially distributed with a mean waiting time of 1/λ, a variance of 1/λ2, and a 

probability density function (PDF) given by 

PDF𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 = 𝜆𝑒−𝜆𝑇𝑊 . 165 

(7) 

Similarly, for constant migration speed V [L T-1], the PDF of the length of steps Δx = VΔt [L] is given by 
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PDF𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 =
𝜆

𝑉
𝑒
−𝜆
𝑉
∆𝑥 . 

(8) 

In the following, we will first derive an equation for the approach to the steady state width using the ‘Deterministic Poisson 170 

model’ (Turowski et al., 2024), and then use the mathematics of random walks to explore the effects of stochasticity on the 

channel belt’s temporal evolution. Finally, we investigate the distribution of floodplain ages.  

2.3 Temporal evolution of the channel-belt width 

2.3.1 Approach to steady state in the ‘Deterministic Poisson model’ 

We first consider the evolution of the channel belt in an unconfined setting. Consider the river channel moving laterally with 175 

speed V. The channel belt widens when the river is located at and moves into the channel-belt boundary. In contrast, if the 

river is not located at the boundary, or moves away from it, the channel-belt width remains unchanged. At any given time, 

widening can be observed with a probability P [-], which is equal to the fraction of the time the river spends widening the 

valley (e.g., Hancock and Anderson, 2002; Tofelde et al., 2022). The temporal evolution of channel-belt width W [L] is then 

governed by the differential equation (Tofelde et al., 2022) 180 

𝑑𝑊

𝑑𝑡
= 𝑃𝑉. 

(9) 

Motion in either direction is equally likely, and, for a given set of hydraulic, tectonic, and sedimentological boundary 

conditions, V can be considered as a constant (Bufe et al., 2019; Turowski et al., 2024). In a transient phase, before the steady 

state width is reached, the probability of the river not widening (i.e. 1-P) the channel belt is equal to the ratio of the current W 185 

[L] and the maximum W0 [L] channel-belt width (Tofelde et al., 2022). Channel width WC provides a starting point and needs 

to be subtracted. Thus, P is given by (Turowski et al., 2024)  

𝑃 = 1 −
𝑊 −𝑊𝐶

𝑊0 −𝑊𝐶
=
𝑊0 −𝑊

𝑊0 −𝑊𝐶
. 

(10) 

The speed of lateral motion is equal to the ratio of the lateral transport capacity and the height of the bank in the direction of 190 

motion H+ (eq. 1). Combining eqs. (1), (9) and (10), we obtain a differential equation for channel-belt evolution 

𝑑𝑊

𝑑𝑡
=
𝑊0 −𝑊

𝑊0 −𝑊𝐶

𝑞𝐿
𝐻+.

 

(11) 

Solving equation (11) and applying the boundary condition that channel-belt width W is equal to WC at time t = 0, we obtain 

𝑊(𝑡) = 𝑊0 − (𝑊0 −𝑊𝐶)exp {−
𝑡

𝜏
} +𝑊𝐶 . 195 

(12) 
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Here, τ is the governing timescale, which can be interpreted as a response time scale to an external perturbation (c.f. Tofelde 

et al., 2021). It is given by  

𝜏 = (𝑊0 −𝑊𝐶)
𝐻+
𝑞𝐿
. 

(13) 200 

Assuming that H+ is equal to flow depth h and substituting eqs. (1) and (2) into eq. (11), we find that τ is equal to the effective 

switching time scale ∆𝑇 (see eqs. 3 and 4): 

𝜏 =
𝑐

𝜆
= ∆𝑇. 

(14) 

We can use a similar approach to describe the evolution of a channel belt that is confined by valley walls when considering 205 

that at the valley walls, the lateral migration of the river slows down (cf. eq. 1). If the valley walls are made of alluvium, the 

bank height H+ in eq. (9) is equal to the height of the valley wall HW [L] and eq. (1) can be used as before. However, we need 

to adjust eq. (10), defining an equivalent probability Pconfined for a confined channel belt. The distance d [L] is the length that a 

channel moves on average across the valley floor in the effective time ΔT [T] between two events of switching the direction 

of motion. This distance d is the sum of the distance covered at higher speed V when moving in the floodplain, and the distance 210 

covered when moving at lower speed v [L/T] when cutting into the valley walls (cf. Tofelde et al., 2022)  

𝑑 = 𝑉(1 − 𝑃𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑)∆𝑇 + 𝑣𝑃𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑∆𝑇. 

(15) 

For the unconfined channel belt, we know that  

𝑉∆𝑇 = 𝑊0 −𝑊𝐶 . 215 

(16) 

Using eq. (16) to eliminate ΔT in eq. (15), and noting that d corresponds to the current width W–WC, we obtain  

𝑃𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 =
𝑊0 −𝑊

(𝑊0 −𝑊𝐶) (1 −
𝑣
𝑉
)
=

𝑊0 −𝑊

(𝑊0 −𝑊𝐶) (1 −
𝐻𝑊
ℎ
)
. 

(17) 

Here, we used eq. (1) to substitute for V and v, using H+ = h and H+ = HW, respectively. Note that in the assumption behind 220 

eqs. (15) to (17), Pconfined for a confined valley (eq. 17) reduces to P for an unconfined floodplain (eq. 8) for v = 0 or HW = 0 

(rather than v = V or HW = h). This arises from eq. (15), which yields d = VΔT for v = V, rendering Pconfined meaningless. 

Substituting eq. (17) into eq. (9) and integrating again yields eq. (12) with a different governing timescale τ given by  

𝜏 =
(𝑊0 −𝑊𝐶)(𝐻𝑊 − ℎ)

𝑞𝐿
= (

𝐻𝑊
ℎ
− 1)

𝑐

𝜆
 

(18) 225 
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2.3.2 Channel belt evolution in the ‘Stochastic Poisson model’ 

As we did in Section 2.3.1, we first consider the evolution of the channel belt in an unconfined plane. In the ‘Deterministic 

Poisson model’, we obtained an exponential approach to the steady state width (eq. 12) (Section 2.3.1). In the ‘Stochastic 

Poisson model’, we can distinguish three different phases in the growth of the channel-belt width over time. In the first phase, 

before the first switch in direction occurs, width increases linearly in time. In this phase, the growth rate is determined by the 230 

speed of lateral channel migration, V in the unconfined case and v in the confined case (see eq. 1 and Section 2.3.1). In the 

second phase, before reaching the steady state width, the channel-belt width grows exponentially on average. This average 

exponential growth can be described by the same equation (eq. 12) that has been derived for the ‘Deterministic Poisson model’ 

(see Section 2.3.1). In the third phase, which starts approximately when the width for the first time reaches the steady state 

width, stochastic drift dominates. Stochastic drift arises, because, due to the random motion of the channel, there is always a 235 

finite probability to widen the belt even after the steady state width has been reached. We already have equations for the linear 

(eq. 1) and the exponential (eq. 12) phase. In the following, we will fully exploit the stochastic properties of the model concept. 

In several of our considerations in this and the following sections, we use the central limit theorem, which states that the sum 

X of n stochastic variables with mean µ and variance σ2 is normally distributed with mean nµ and variance nσ2 if n is sufficiently 

large. In addition, we use the result that the sum or difference of two normally distributed parameters with means µ1 and µ2 240 

and equal variance σ2 follow a normal distribution with mean µ1 ± µ2 and variance 2σ2. 

First, we will derive an equation for widening during the drift phase using the evolution of random walks in the limit of a large 

number of steps. In this case, we can apply the central limit theorem. Thus, the PDF of the location of the channel can then be 

described by a normal distribution. In a random walk, the width of this normal distribution increases with the square root of 

its variance VARUCB [L2], where the subscript stands for ‘unconfined channel belt’ (e.g., Lawler & Limic, 2010):  245 

𝑊𝐷𝑟𝑖𝑓𝑡 = √VAR𝑈𝐶𝐵 +𝑊𝐶 . 

(19) 

To find an equation for the variance, we will use the concept of a random walk making steps in alternating directions with 

exponentially distributed step length. We consider m pairs of a total of n steps, where each of the n steps covers an average 

distance of V/λ. The difference of two consecutive identically exponentially distributed steps in opposite directions is described 250 

by the Laplace distribution with zero mean and variance 2V2/λ2, with the PDF 

PDF𝐿 =
𝜆

2𝑉
𝑒
−𝜆
𝑉
|𝑥|. 

(20) 

After each pair of two steps, the river is always in a position where it switches direction in the same way, for example from 

left to right. The switch in the other direction, from negative to positive, also follows eq. (20). In the limit of large m, the 255 

position of the river is given by the sum of the positions of many step pairs. The central limit theorem applies, and the normal 

approximation gives the distribution of locations where the river switches either from positive to negative or vice versa, with 

zero mean and a variance of 2𝑚𝑉2 𝜆2⁄ = 𝑛 𝑉2 𝜆2⁄ . Finally, the channel-belt width is the difference of the switching position 
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on either side, so the final variance needs to be multiplied by a factor of two. Applying the law of large numbers, the distance 

covered in the sum of all steps is equal to the number of steps times the average step length V/λ. The average time of each step 260 

is the mean waiting time 1/λ, and so we can write n = λt:  

VAR𝑈𝐶𝐵 = 2𝑛
𝑉2

𝜆2
= 2

𝑡

𝜆
𝑉2 =

2

𝑘
𝑞𝐿𝑡.  

(21) 

Thus, we obtain the drifted distance or the width increase due to drift from eqs. (19) and (21) as 

𝑊𝐷𝑟𝑖𝑓𝑡(𝑡) = √
2

𝑘
𝑞𝐿𝑡 +𝑊𝐶 . 265 

(22) 

For a confined channel belt, during the time the river incises into the confining walls, the speed of widening drops to qL/HW, 

where HW is the height of the confining wall, while it remains at qL/h, as before, when the river moves laterally within the 

channel belt. The average speed of motion is given by the geometric average of the two speeds, 𝑉 

𝑉 = √𝑣𝑉 = √
ℎ

𝐻𝑊
𝑉.  270 

(23) 

We obtain the variance by replacing V by 𝑉 in equation (22), giving the variance VARCCB for a confined channel belt 

VAR𝐶𝐶𝐵 = 2𝑡𝑉
2
𝜆⁄ = 2𝑞𝐿𝑡ℎ 𝑘𝐻𝑊⁄   

(24) 

 As before, the width during the drift phase evolves as the square root of the variance, giving 275 

𝑊𝐷𝑟𝑖𝑓𝑡(𝑡) = √2
𝑡

𝜆
𝑉 +𝑊𝐶 = √

2

𝑘

ℎ

𝐻𝑊
𝑞𝐿𝑡 +𝑊𝐶 .  

(25) 

2.3.3 Drift speed of channel belts and dimensionless scaling factor of the mean switching time scale 

During the drift phase, the channel belt widens laterally, increasing the area that has been reworked by the channel with the 

square root of time (eq. 25). Yet, growth on one side of the channel belt makes it less likely that the channel moves close to 280 

the other side. As such, parts of the channel belt may be abandoned and, for example, reclaimed by vegetation (Fig. 1E). 

Similarly, in the case of a vertically incising river, the channel-belt width can stay at the steady state value WV (eq. 5), while 

the entire belt is moving laterally, and uplift converts old parts of the channel belt to fluvial terraces. Here, we consider the 

case that the channel belt keeps its width constant at the steady state width, because any acquisition of area of the belt due to 

lateral motion on one side leads to the abandonment of an equivalent area on the other side. In this case, instead of widening, 285 

during the drift phase, the entire belt drifts laterally. We will now derive an equation for the average drift speed in this case. 
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The average drifted distance in one direction, XDrift, is equal to the square root of the variance, as before (cf. eq. 19). Because 

we consider a distance, rather than the width, it is smaller by a factor of two in comparison to eq. (25), giving 

𝑋𝐷𝑟𝑖𝑓𝑡(𝑡) = √
1

𝑘

ℎ

𝐻𝑊
𝑞𝐿𝑡.  

(26) 290 

The derivative of eq. (26) with respect to time, evaluated at the time when the valley reaches its steady state width, TSS [T], 

gives the drift speed VDrift [LT-1]  

𝑉𝐷𝑟𝑖𝑓𝑡 =
1

2
√
1

𝑘

ℎ

𝐻𝑊

𝑞𝐿

𝑇𝑆𝑆
.  

(27) 

At time TSS, XDrift is equal to the steady state width W0, and we can use eq. (26) to obtain 295 

𝑇𝑆𝑆 = 𝑘
𝐻𝑊

ℎ

(𝑊−𝑊𝐶)
2

2𝑞𝐿
.  

(28) 

Substituting eq. (28) into eq. (27) yields  

𝑉𝐷𝑟𝑖𝑓𝑡 =
1

√2𝑘

ℎ

𝐻𝑊

𝑞𝐿

(𝑊−𝑊𝐶)
.  

(29) 300 

We can use eq. (29) to calculate the constant of proportionality c between the switching time scale ΔT and the rate constant λ 

(eq. 3). The ratio of the drift speed VDrift and the lateral migration speed of the channel V is the same as the fraction of time that 

the river spends widening the channel belt. This is equal to the area under a normal distribution outside one standard deviation 

from the mean, 𝑉𝐷𝑟𝑖𝑓𝑡 𝑉⁄ = 0.3173. Setting ℎ 𝐻𝑊⁄ = 1 and substituting 𝑞𝐿 = 𝑉ℎ, we find 

𝑉𝐷𝑟𝑖𝑓𝑡

𝑉
= 0.3173 =

1

√2𝑘

ℎ

(𝑊−𝑊𝐶)
=

1

√2𝑐
.  305 

(30) 

Equation (30) therefore yields c = 2.2285. 

 

2.4 Channel-belt limits 

We can use the properties of random walks to make a statement about the distance beyond which the river will rarely migrate 310 

over a given timescale. Knowledge of this distance may be useful to delineate zones for building, or to assess in which areas 

the river is likely (or not) to interact with its surrounding, for example, by reworking sediment or evacuating erosion and 

weathering products. In random walks, this distance is described by the law of the iterated logarithm (e.g., Kolmogoroff, 1929), 

which is a limit theorem that sits somewhere in between the central limit theorem and the law of large numbers. In the limit of 

a large number of steps, this law provides an envelope to the area that the river almost surely will not leave in its stochastic 315 
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motion. Consider the sum S over the distance travelled in n steps over dimensionless time t*, which is a dimensionless stochastic 

variable with zero mean. The law of the iterated logarithm gives an upper and lower bound for this sum with the equation 

𝑆 = ±√2𝑡∗ln{ln{𝑡∗}}. 

(31) 

Here, ln denotes the natural logarithm, and the plus and minus give the upper and lower bound, respectively. We define the 320 

dimensionless step length 𝑠 = 𝜆∆𝑥 𝑉⁄ . This step length is a stochastic variable that is exponentially distributed with a mean of 

zero and variance equal to one (compare to eq. 7). Because the random walk has to be symmetric for eq. (31) to apply, we 

consider the sum S of m = n/2 pairs of steps, distributed according to the Laplace distribution (eq. 15). Normalizing with the 

square root of the variance of the Laplace distribution, the dimensional distance is then given by 𝑋 = √2𝑆𝑉 𝜆⁄ . This is the 

distance from the origin that the channel will almost surely not cross within timescale t. The dimensionless time is given as 325 

𝑡∗ = 2𝑉𝑡 ℎ⁄ , where the factor of two accounts for the pairs of steps. Putting everything together and adding half of the channel 

width, we obtain  

𝑋(𝑡) = √2
𝑆𝑉

𝜆
+
𝑊𝐶

2
= ±2

ℎ

𝑘
√2

𝜆𝑡

𝑘
ln {ln {2

𝜆𝑡

𝑘
}} +

𝑊𝐶

2
. 

(32) 

2.5 First passage time distribution 330 

We can derive another result that may be useful for planning and hazard mitigation purposes over long time scales, when 

considering regular, effective floods. The first passage time distribution (e.g., Redner, 2001) is the distribution of times until 

the channel reaches a point that is located a distance b [L] from the channel’s original location for the first time. This time 

distribution can be used, for example, to calculate lifetime distribution of structures a distance b from the river. In random 

walks, the first passage time distribution is given by a Lévy distribution. The distribution PDFFP,R of times 𝑇𝐹𝑃 [T] is given by: 335 

PDF𝐹𝑃,𝑅(𝑇𝐹𝑃) =
|𝑏|

√2𝜋
ℎ
𝐻𝑊

𝑞𝐿
𝑘 𝑇𝐹𝑃

3

exp{
−𝑏2

2
ℎ
𝐻𝑊

𝑞𝐿
𝑘 𝑇𝐹𝑃

}. 

(33) 

2.6 Sediment residence-time distribution 

The probability distribution of residence times may be useful to calculate the age distribution of sediments. This is relevant, 

for example, for understanding weathering rates in river deposits or transfer times of carbon to the ocean (e.g., Repasch et al., 340 

2021; Tofelde et al., 2021). The residence time distribution differs from the first passage distribution (Section 2.5), but can be 

derived from it. We start with a single step outward. The migrated distance Δx until the channel switches direction is then 
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given by the exponential distribution (eq. 8). We can then use the first passage distribution (eq. 33) for the time to return to the 

origin by migrating again a distance b = Δx. Finally, we need to account for all possible Δx in the initial step. Assuming that 

the first step has to erode into the valley walls, the distribution PDFRT for the time needed to return to the origin 𝑇𝑅 [T] is then 345 

given by  

PDF𝑅𝑇(𝑇𝑅) = ∫
𝜆
ℎ

𝐻𝑊
𝑉
exp {

−𝜆

𝑉
∆𝑥}

|∆𝑥|

√2𝜋
ℎ

𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅−

∆𝑥
ℎ
𝐻𝑊

𝑉
)

3
exp

{
 
 

 
 

−∆𝑥2

2
ℎ

𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅−

∆𝑥
ℎ
𝐻𝑊

𝑉
)

}
 
 

 
 

𝑑∆𝑥

ℎ

𝐻𝑊
𝑉𝑡

0
.  

(34) 

Unfortunately, eq. (34) does not yield an analytical solution. However, we can find an analytical limit for the right-hand tail, 

when 𝑇𝑅 is large. Then, the integral reduces to  350 

PDF𝑅𝑇(𝑇𝑅 ≫ 0) = ∫
𝜆
ℎ

𝐻𝑊
𝑉

|∆𝑥|

√2𝜋
ℎ

𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅)

3
exp {

−𝜆

𝑉
∆𝑥}𝑑∆𝑥

∞

0
=

𝜆

√2𝜋
(
ℎ

𝐻𝑊
𝜆𝑇𝑅)

−3 2⁄

.  

(35) 

We suggest an analytical approximation for the entire distribution (eq. 34) by assuming that, for small 𝑇𝑅, the PDF approaches 

a constant. Using this condition together with eq. (35) and fixing the integral to one, as required for any distribution, we obtain 

the function 355 

PDF𝑅𝑇(𝑇𝑅) ≈
1

√2𝜋

𝑎𝜆

1 + 𝑎(𝜆𝑇𝑅)3 2⁄
 

(36a) 

with 

𝑎 = (
3

2
)
3

(
3

2𝜋
)
3 2⁄

. 

(36b) 360 

3. Comparison to numerical model, experiments and field data 

We use a stochastic random walk model to benchmark and check the analytical equations (Section 3.1). Results are compared 

to two separate types of data: (i) published distributions of floodplain sediment ages (Section 3.2) (Everitt, 1968; Huffman, 

2022; Skalak & Pizzuto, 2010), and (ii) the temporal evolution of channel belts in the experiments of Bufe et al. (2016a,b, 

2019) (Section 3.3). 365 
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3.1 Numerical model 

We used a stochastic numerical random walk model, specifically a non-standard random walk with non-uniform, exponentially 

distributed step length in alternating directions. Except where otherwise stated, we fixed channel width to zero, and all other 

free model parameters to one. For each time step, the step length was randomly picked from an exponential distribution (eq. 

7), and the lateral position of the channel was tracked by alternately adding or subtracting the obtained step length from the 370 

channel’s previous position. Channel-belt width was calculated as the difference of the maximum distance that the channel 

had migrated into in the positive and negative directions from the origin up to the time step of interest. In this way, we generated 

a total of 1,000 trajectories of position and channel-belt width, each with a total length of 3,000 time steps. We repeated this 

exercise for ratios of valley depth to channel depth of HW/h = 1, 10 and 100. We obtained the average position of the channel 

for bins spaced logarithmically in time. We used the unconfined width in further simulations to check the drift equation (eq. 375 

25). For this check, we ran the random walk, limiting the channel-belt width to the steady-state width by adjusting the other 

side of the valley in an equal manner when one side of it was eroded. This procedure results in a valley of fixed width that 

moves laterally. We measured drift velocity for different steady state widths by varying the channel depth, for different values 

of the lateral transport capacity, and, as above, for ratios of valley depth to channel depth of HW/h = 1, 10 and 100. These 

simulations were run for a total of 3,000 time steps to ensure statistical convergence. To verify the dimensionless scaling factor 380 

c that relates the mean switching time to the rate constant λ by c/λ, we compared the unconfined steady state width for various 

conditions to flow depth (eq. 2) for simulations with k = 1. To obtain an independent estimate of W0 from the data, we fitted 

the exponential evolution equation (eq. 12) to the initial phase of channel-belt widening. To obtain the distribution of channel 

belt ages, we ran the same random walk simulations until the channel returned to the origin for the first time. We repeated the 

simulation 10,000 times, for a maximum of 100,000 steps. The times needed to return to the origin in each run was used to 385 

construct the distribution of sediment residence times. Similarly, to test the first passage distribution, we ran 10,000 

simulations, each until the walk reached a distance of 10 from the starting point. All scripts are available in the publication by 

McNab (2024). 

3.2 Floodplain ages 

We digitised floodplain ages published by Everitt (1968), Skalak & Pizzuto (2010), and Huffman et al. (2022) to compare 390 

against the predicted power-law scaling (eq. 35). In the original study of Skalak & Pizzuto (2010), the cumulative distribution 

function (CDF) of floodplain ages is shown (their Figure 8). We estimated the PDF by numerically differentiating the CDF 

using a centred finite-difference scheme. 

3.3 Experiments 

Bufe et al. (2016a) and Bufe et al. (2019) conducted and analysed experiments on braided alluvial channels in a basin with 395 

dimensions of 4.8×3.0×0.6 m and filled with well-sorted silica sand (D50 = 0.52 mm). Water and sediment were supplied into 
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the basin at a constant rate from the centre of one of the short edges, and flowed out of the opposite side of the basin across a 

weir into a drain. After the start of the experiments, the system evolved into an aggrading braided channel network. Once the 

average aggradation rate dropped to below 20% of the input flux, a flexing metal sheet underneath the basin was used to 

simulate an uplifting fold. Here, we focus on 25 hours of data that was collected before the onset of uplift from Run 5, and on 400 

55 hours of data from Run 7, an experiment without uplift (see Bufe et al., 2019, for more detail). Water discharge was set to 

790 ml/s in both experiments and sediment supply was 15.8 ml/s in Run 7 and 2.4 ml/s in Run 5. Positions of the channels 

were tracked at one-minute intervals in overhead images by using blue-dyed water (Bufe et al., 2016a) and were used to 

measure the rate at which the area reworked by the channel expanded over time.  

4. Results 405 

In general, our analytical solutions (section 2) agree well with the Monte-Carlo simulations of the random walks (section 3.1) 

(Figs. 2-6). The law of the iterated logarithm (eq. 32) gives an upper bound on the locations of the channel through time (Fig. 

2a,b, Fig. 5a, Fig. 6a), and we can identify all three phases – linear, exponential and square root drift – in the temporal evolution 

of width (Fig. 2c). The lateral drift velocity of valleys at steady state is inversely proportional to valley width and proportional 

to the lateral transport capacity (Fig. 3), as expected from eq. (29). The theoretical value of the constant c = 2.2285 (eq. 30) 410 

could be verified by the simulations (Fig. 4). The first passage distribution (eq. 33) provides a good description for the 

simulation results (Fig. 5). The analytical approximation of the age distribution (eq. 36, Fig. 6) underpredicts the modelled 

ages for small ages, but provides an exact description of the right-hand power-law tail (Fig. 6b). The age data from Everitt 

(1968), Skalak & Pizzuto (2010), and Huffman et al. (2022) are consistent with the -3/2 power-law scaling (eq. 35) (Fig. 6c). 

 415 

In the evolution of the experimental channel belts, we can clearly identify a drift phase (Fig. 6). This phase is apparent as a 

square root scaling of channel-belt width as a function of time (eq. 25). We find qL/k = 2.15×10-5 m2/s for Run 5 and 

qL/k = 2.62×10-5 m2/s for Run 7. 
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 420 

Fig. 2: Temporal evolution of channel-belt width in the numerical experiments. a) Modelled migration paths through time, bounded 

by the law of the iterated logarithm (eq. 32), with the location density at t = 3000 shown in b). The dotted line on b) gives the 

theoretically expected normal distribution for the unconfined case (blue). c) Average width evolution, showing the analytical 

expressions for the linear (eq. 1), exponential (eq. 12) and drift phases (eq. 25). Black circles show mean widths in bins spaced 

logarithmically in time. Standard errors of the means are smaller than the symbols.  425 

 

 

Fig. 3: Lateral drift of channel belts in a steady state. For the calculation, channel-belt width was fixed to the steady state width, i.e., 

whenever the channel widened the channel belt on one side, the width was reduced by the same amount on the other side. a) Channel 

location as a function of time for cases of Hw/h. Average drift velocity as a function of b) steady width and c) lateral transport capacity 430 
confirm the analytical predictions of eq. (29). Larger circles show simulations plotted in a). Note that a) does not show the entire 

calculated trajectories. Average drift velocities in b) and c) were measured after 10,000 steps. 
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Fig. 4: Verifying the value of the constant c (see eq. 30) by comparing unconfined steady state channel-belt width to channel depth 

for varying simulations. We set channel width WC = 0 and k = 1 for these simulations. Then, the steady state channel-belt width and 435 
flow depth should be proportional with a constant of proportionality equal to 1/c (eq. 4). The blue dashed line gives the theoretically 

expected relationship with c = 2.2285 (eq. 30). The results also show that the value of c is the same for unconfined and confined 

channel belts. 

 

Fig. 5: The analytical results for the first passage distribution. a) Paths of models to investigate time distribution to reach a point a 440 
distance b from the origin. The dashed line gives the law of the iterated logarithm (eq. 32). In comparison to Fig. 2a, substantially 

longer runs in time are shown here. b) Modelled time distribution in comparison to the exact solution (eq. 33). 
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Fig. 6: The analytical results for the return time distribution, equivalent to the age distribution of sediments stored in the channel 445 
belt. a) Paths of models to investigate time distribution for the return to the origin. The dashed line gives the law of the iterated 

logarithm (eq. 32). In comparison to Fig. 2a, substantially longer runs in time are shown here. b) Modelled time distribution in 

comparison to the exact solution (blue, eq. 34), the power law decay in the right-hand tail with an exponent of -3/2 (red, eq. 35). The 

analytical approximation (green, eq. 36) is also shown. c) Data from Everitt (1968), Skalak & Pizzuto (2010), and Huffman et al. 

(2022) are consistent with the -3/2 power law tail. 450 
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Fig. 7: Temporal evolution of the cumulative inundated area in the experiments, with data from a) Run 5 (blue) and b) Run 7 (red). 

Black dots give binned means, and error bars show the standard errors of the means (mostly smaller than the symbols). The dashed 

line is the fitted square root relationship with time that can be expected for the drift phase (eq. 25). 455 

5. Discussion 

5.1 Model predictions and overview 

Using the Poisson concept for the formation and evolution of channel belts, we derived a range of results that hold implications 

for fluvial geomorphology, quantitative landscape evolution studies, and river management (Table 1). The stochastic treatment 

allowed us to theoretically quantify one of the two unconstrained parameters in the model of Turowski et al. (2024). As such, 460 

apart from the factor of proportionality k in the definition of the switching timescale λ (eq. 2), all of the model parameters can 

https://doi.org/10.5194/egusphere-2024-2342
Preprint. Discussion started: 7 August 2024
c© Author(s) 2024. CC BY 4.0 License.



20 

 

be directly related to channel geometry and hydraulics. In particular, to parameterize the model, one needs measurements of 

flow depth h, channel width WC, and the lateral transport capacity qL. The former two have been routinely measured in the 

field. Yet, natural river discharge changes over time, and it is currently unclear which flood size is responsible for setting the 

channel belt in the long-term channel dynamics. The lateral transport capacity depends on discharge, sediment supply and 465 

granulometry of a particular river (Bufe et al., 2019). The precise dependence is debated (e.g., Bufe et al., 2019; Constantine 

et al., 2014; Ielpi and Lapôtre, 2019; Wickert et al., 2013), and likely depends on the characteristics of the particular river, for 

example its planform type (Greenberg et al., 2024; Nyberg et al., 2023). 

 

The investigated measured age distributions are consistent with the predicted -3/2 power law scaling. This will be discussed 470 

in detail in section 5.3. The evolution of average channel-belt width in experiments shows the square root scaling with time, 

as expected for the drift phase (Fig. 7). The exponential approach can be fitted independently (see Bufe et al., 2019). However, 

the data resolution is not good enough to fit both relationships with consistent parameter values. Essentially, the resulting 

unconfined channel-belt width W0 depends on the subjective choice of which data points to include into the fit. 

 475 

Table 1: Overview of the analytical equations 

Result Comment Equation # 

Channel lateral migration speed Suggested by Bufe et al. (2019) from experimental data. 1 

Average switching rate Derived by Turowski et al. (2024). 2 

Unconfined steady-state channel-belt width Derived by Turowski et al. (2024). 4 

Steady-state valley width Includes uplift and lateral sediment supply as additional 

input parameters in comparison to eq. (4). Derived by 

Turowski et al. (2024). 

5 

Exponential approach to steady state The governing time scale for the unconfined case is given 

by eqs. (13) and (14), and for the confined case by eq. (18). 

12 

Square root widening  Average increase of area affected by the channel in the drift 

phase, after the steady state width has been reached. 

25 

Average drift speed  Average drift speed in the drift phase, assuming the channel 

belt keeps a constant width. 

29 

Channel-belt limits Law of the iterated logarithm as an envelope to the area that 

the channel is unlikely to leave. Only valid for unconfined 

channel belts. 

32 

First-passage time distribution Distribution of times needed to reach a point a distance b 

from the origin. 

33 
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Distribution of times needed to return to the 

origin 

This is equivalent to the sediment residence-time 

distribution, or the age distribution of sediments, assuming 

a single deposition and remobilisation. The integral 

equation does not have an analytical solution. An analytical 

solution for the right-hand tail is given in eq. (35), and an 

analytical approximation for the entire distribution in eq. 

(36). 

34 

 

5.2 The effect of uplift 

In our model derivations, we have not explicitly considered the role of uplift or net incision on the channel-belt width. Uplift 

increases the bank height encountered by the channel in lateral motion (eq. 1) and thereby slows it down. Turowski et al. 480 

(2024) included uplift in their steady state valley-width model and demonstrated that a competition between uplift and lateral 

mobility of the channel, described by the lateral transport capacity, determines the final width of the valley. Yet, the inclusion 

of uplift in the stochastic treatment developed herein would introduce considerable complexities into the equations. It seems 

unlikely that analytical solutions are possible. Here, we suggest a simple approach to circumvent this problem. We equate eqs. 

(5) and (40) to define an effective lateral migration speed 𝑉𝑈 [LT-1] in an uplifted area  485 

𝑊 =
𝑐𝑉𝑈
𝜆
+𝑊𝐶 =

𝑞𝐿
𝑈
ln {1 +

𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} +𝑊𝐶 . 

(37) 

Solving for 𝑉𝑈, this yields 

𝑉𝑈 =
𝑘

𝑐

𝑉2

𝑈
ln {1 +

𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} 

(38) 490 

We thus obtain an effective variance  

𝑉𝐴𝑅 =
2

𝑘

ℎ

𝐻𝑊

𝑉𝑈
2

𝜆
𝑡 =

2

𝑘
(
𝑘

𝑐
)
2 ℎ

𝐻𝑊

𝑉4

𝑈2
𝑡

𝜆
ln2 {1 +

𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} 

2 (
𝑘

𝑐
)
2 ℎ

𝐻𝑊

𝑞𝐿
2

(𝑊0 −𝑊𝐶)𝑈
2
𝑞𝐿𝑡ln

2 {1 +
𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} 

(39) 

Equation (39) can be used in equation (19) for the drift to account for uplift. Other results also have to be updated accordingly. 495 

The approach outlined above needs to be benchmarked with numerical simulations. 
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5.3 First-passage and floodplain age distributions 

The Lévy distribution (eq. 33) describes the time needed until the channel moves a particular distance away from its starting 

location. When integrated to infinity, the distribution has an infinite mean and variance. Nevertheless, under the assumption 

of constant or effective flow conditions, it could be used, for example, for assessing the risk of the destruction of a building 500 

near a river channel within a given timespan.  

 

Lateral river dynamics determine the reworking of sediment in the floodplain, and, therefore, determine storage times and 

sediment ages (e.g., Bradley & Tucker, 2013). This has, for example, implications for chemical alteration of floodplain 

sediments, such as chemical weathering and organic carbon oxidation (e.g., Repasch et al., 2020; Torres et al., 2017). It has 505 

frequently been found residence time distributions are highly skewed, and that the mean residence time of sediment is much 

larger than their median residence time (e.g., Carretier et al., 2020; Pizzuto et al., 2017). Measurements of the distribution of 

floodplain ages have yielded a variety of contrasting behaviour (Pizzuto et al., 2017). The right-hand tail of the distribution of 

field data has been characterized both, by an exponential (e.g., Huffman et al., 2022; Lancaster & Casebeer, 2007) and by a 

power law function (e.g., Bradley & Tucker, 2013; Pizzuto et al., 2017), in the latter case with exponents ranging from about 510 

-0.7 to -1.5 (e.g., Everitt, 1968; Lancaster et al., 2010; Pizzuto et al., 2017; Skalak & Pizzuto, 2010). Pizzuto et al. (2017) used 

a random walk to model the stochastic downstream motion of sediment to predict power-law travel-time distributions with 

exponents that decrease with increasing length of the river system. 

 

Bradley & Tucker (2013) suggested that the Lévy distribution is suitable to model the distribution of floodplain ages. 515 

Analogous to our result for the age distribution (eq. 34), the Lévy distribution features a power-law right-hand tail with a 

scaling exponent of -1.5 (eq. 33). However, it strongly underpredicted the likelihood of small ages as generated by Bradley & 

Tucker’s (2013) numerical model. The Lévy distribution has been derived for the time of the first passage of a point a pre-

selected distance from the origin (eq. 33), and this distance cannot be equal to zero in the assumptions of the derivation. It 

therefore is not the correct distribution for the times to return to the origin. We derived a probability distribution for the time 520 

to return to the origin (eq. 34). The right-hand tail of the residence time distribution (eq. 35) exhibits the same scaling of the 

right-hand tail of the Lévy distribution (eq. 33), a power law with an exponent of -1.5 (Fig. 6b). In fact, this scaling is valid for 

any symmetric random walk, and should be independent of the precise assumptions used to set up such a random walk. It 

implies that the return-time distribution has both an infinite mean and standard deviation when integrated to infinity, similar 

to the distribution of first passage. This result implies that the mean age measured for a sediment body within a channel belt 525 

does not converge to a fixed value, but depends on the time since the onset of fluvial activity, no matter how long ago this 

onset occurred. The result implies that statements on the age of sediment in floodplains, or their chemical alteration, always 

have to be made with respect to the total age of the floodplain. A long-term average at steady state is never achieved. Further, 

it implies that some fluvial deposits are likely to survive for long times, storing information about the floodplain evolution and 
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the history of river systems (cf. Carretier et al., 2020). The increase of the mean sediment residence time 𝑇𝑅̅̅ ̅ can be obtained 530 

by integrating the age distribution (eq. 34) multiplied with time, as in the integration for the mean. We can obtain the limit 

behaviour for old river systems by integrating over eq. (35) 

𝑇𝑅̅̅ ̅(𝑡) = ∫
𝜆

√2𝜋
(
ℎ

𝐻𝑊
𝑡)
−3 2⁄

𝑡𝑑𝑡
𝑇𝐴

0

= √
2

𝜋
(
𝐻𝑊
ℎ
)
3 𝑇𝐴
𝜆
. 

(40) 

Here, TA is the time since the formation of the channel belt. The mean residence time thus increases with the square root of 535 

time in this limit. In combination with eq. (35), eq. (40) can be used to estimate the age of a channel belt from sediment age 

data. 

 

Our prediction of the -1.5-scaling exponent in the age distribution (eqs. 34, 35) does align with some, but not all of the 

measurements reported in the literature (cf. Pizzuto et al., 2017). It is consistent with the data of Everitt (1966), Skalak & 540 

Pizzuto (2010), and Huffmann et al. (2022) that we digitised for the present study (Fig. 6c), but not with the datasets reported 

for example by Lancaster et al. (2010). Our model framework is strictly valid only for processes that can be modelled by a 

lateral random walk in an infinite domain. We expect that the -1.5-scaling applies to channels that are short enough such that 

sediment, once it is eroded, is not redeposited within the system, but evacuated downstream. Alternatively, it could apply for 

dating methods where the date is reset after remobilization of sediment, for example optically stimulated luminescence (e.g., 545 

Madsen & Murray, 2009). Multiple episodes of deposition and erosion within the same system yields a power-law tail with an 

exponent that is dependent on the system size (Pizzuto et al., 2017). This exponent should, generally, be smaller than -1.5, 

because re-deposition will increase the relative fraction of old sediment. Even in short systems, the derived age distribution 

(eq. 34) cannot be expected to be universally applicable. We expect that channels confined in a narrow valley, or those in 

which processes other than lateral channel migration can deposit, evacuate or mobilize sediment, show different scaling 550 

behaviour. For example, Cedar Creek and Golden Ridge Creek, both channels in confined valleys where debris flows regularly 

supply and mobilize sediment (Lancaster et al., 2010), exhibit age distributions with power-law scaling exponents of the order 

of -0.7. In narrowly confined settings, sediment deposition and erosion may not be adequately described by a random walk. 

Further, lateral sediment supply due to debris flows or hillslope processes may have a large effect on the age distribution. 

5.4 Parameter estimation and further tests 555 

Two of the parameters in the model need further scrutiny. First, the hydraulic and geometric controls on the lateral transport 

capacity qL are not fully resolved. This parameter can, in principle, be investigated in experiments (e.g., Bufe et al., 2019; 

Wickert et al., 2013) and nature (e.g., Constantine et al., 2014; Greenberg & Ganti, 2024; Ielpi & Lapôtre, 2019). Bufe et al. 

(2019) presented a discussion and synthesis of the available evidence from experimental and natural channels, as well as a 

dimensionless analysis of potential control parameters. We will not further discuss this parameter here. Second, the model 560 
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contains a single dimensionless scaling factor, k, which is the factor of proportionality of the rate of switches of direction of 

motion of the channel λ and the ratio of the lateral transport capacity qL and the square of the flow depth h (eq. 2). This 

parameter sets the unconfined channel-belt width (eq. 4). Two strategies for measuring this parameter appear from our results. 

First, exploiting eq. (2) relies on direct measurements of the switching rate, as well as flow depth and qL. The switching rate λ 

can also be measured from the age distribution of sediment (eq. 41). Second, the width of the channel belt can be related to 565 

flow depth and channel width using eq. (4). Both approaches seem more promising in an experimental setting than in nature, 

because the necessary parameters can be either controlled or measured directly. In the field, it may be possible to obtain suitable 

data, for example, from time series of orthophotos of river reaches (e.g., Nyberg et al., 2023; Greenberg & Ganti, 2024; 

Greenberg et al., 2024) in combination with gauging data. Testing for the consistency of both approaches would be a strong 

method to falsify or validate the model. 570 

 

Camporeale et al. (2005) studied models of meandering rivers at increasing levels of hydraulic detail. They concluded that the 

steady state statistics of the meander belt are determined by only two parameters, regardless of the complexity of the model. 

These are a length scale D0 [L] proportional to the ratio of flow depth and the friction coefficient of the open channel flow Cf 

𝐷0 =
ℎ

2𝐶𝑓
, 575 

(41) 

and a time scale T0 [T], given by  

𝑇0 =
𝐷0

2

𝑊𝐶𝑈𝑓𝐸
. 

(42) 

Here, Uf [LT-1] is the mean streamwise flow speed and E [-] a dimensionless ban k erodibility coefficient. Using their model 580 

considerations together with field observation, Camporeale et al. (2005) found that the meander belt width 𝑊𝑀𝐵  can be 

described by 

𝑊𝑀𝐵 = 𝛼𝐷0 =
𝛼ℎ

2𝐶𝑓
. 

(43) 

Here, α [-] is a dimensionless proportionality coefficient with a value of 40 to 50. We can use eqs. (41) to (43) to make a 585 

tentative connection between our landscape-scale random walk model, and the reach-scale meandering models. First, we 

note both models suggest that channel-belt width is proportional to flow depth (see eq. 4). Comparing eqs. (4) and (43), we 

suggest that k0 scales as  

𝑘0 =
𝑐

𝑘
=

𝛼

2𝐶𝑓
. 

(44) 590 
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As such, we expect k to scale with the friction coefficient. Assuming Cf = 0.05 and α = 50 (see Camporeale et al., 2005), we 

obtain k = 0.0045 and k0 = 500. Second, we can assume that the governing time scale 𝜏 (eqs. 13, 14) is proportional to T0. 

Equating eqs. (14) and (42), and substituting eqs. (2), (41), and (43), we obtain 

 

𝑐

𝜆
=
𝑐ℎ2

𝑘𝑞𝐿
=

𝛼

2𝐶𝑓

ℎ2

𝑞𝐿
=

𝐷0
2

𝑊𝐶𝑈𝑓𝐸
= (

ℎ

2𝐶𝑓
)

2
1

𝑊𝐶𝑈𝑓𝐸
. 595 

(45) 

Equation (45) can be solved for qL to give 

𝑞𝐿 = 2𝛼𝐶𝑓𝑊𝐶𝑈𝑓𝐸. 

(46) 

 600 

We can obtain some of the parameter values from the data used in this study. From fits to the age distribution, we obtain 

λ = 0.12 yr-1 (Everitt, 1966), λ = 0.55 yr-1 (Skalak & Pizzuto, 2010), and λ = 0.00097 yr-1 (Huffmann et al., 2022). Note that 

we assumed an unconfined channel belt for determining λ, i.e., we set HW = h. In case of confinement, the estimates change 

with the ratio of the flow depth and the height of the confining walls (eq. 35). The numbers for the mean rate of switching 

seem plausible, varying from biannual switches (Skalak & Pizzuto, 2010) to once in a thousand years (Huffmann et al., 2022). 605 

The estimates should be further refined with detailed case studies. 

5.5 Beyond the evolution of single cross sections 

In the model developed herein, we concentrated on a single cross section, making the assumption that each cross section 

evolves independently of those upstream and downstream. This assumption is unlikely to apply in a real river system. In 

particular, we can expect that a channel that locally moves laterally far from the channel position upstream and downstream is 610 

pulled back towards the center. That is, a channel within a particular cross section of the valley is less likely to further migrate 

laterally into the same direction if within the cross sections upstream and downstream the channel has not migrated as far, or 

is moving in the opposite direction. This effect can be included into the model by modulating the probability of switching 

direction λ within the cross section of interest depending on the position of its channel with respect to the entire river system 

or to the cross sections immediately upstream and downstream. We suggest that the behaviour can be modelled by an Ornstein-615 

Uhlenbeck process (e.g., Uhlenbeck & Ornstein, 1930), similar to the Langevin equation (Langevin, 1908), which includes a 

term that increases the probability to move back towards the origin as a function of the distance from it. It is beyond the scope 

of the present contribution to develop such a model. We expect that the suggested approach will yield a Gaussian distribution 

of channel positions, with similar results to those derived herein, but additional dimensionless scaling factors in the variances. 
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6. Conclusion 620 

We have described the temporal evolution of channel-belt width in the framework of a random walk. Our work provides a 

theoretical framework to interpret observational data. The predicted scaling exponent for the age distribution of floodplain 

sediments is consistent with observations. In the experimental data (Bufe et al., 2016a,b, 2019), average widening proceeds 

with the squareroot of time, as expected for the drift phase. Recent global datasets on channel belts derived by automatic 

processing of remote sensing data (e.g., Greenberg & Ganti, 2024, Greenberg et al., 2024; Nyberg et al., 2023) provide 625 

opportunities for comprehensive testing of the model. We have provided a range of analytical results (Table 1) that allow easy 

comparison of theory and data. These can also be directly implemented into landscape evolution models without major 

numerical costs, allowing a more comprehensive and realistic depiction of landscape dynamics. Further, all model parameters 

have a direct physical interpretation, and there is a single free, dimensionless scaling parameter that needs to be informed by 

data. As such, our approach can bridge across spatio-temporal scales and connect landscape-scale models with those operating 630 

on the process scale.  
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Symbols & Notation 

Symbol Parameter First 

appears 

in eq.  

α Dimensionless proportionality coefficient with a value of 40 to 50 [-] 42 

λ Rate parameter of the Poisson process describing the switch in the direction of river motion 

[T-1] 

2 

τ Governing timescale for the transient approach to a steady state [T] 12 

a Dimensionless constant approximately equal to 1.1135 [-] 36 

b Distance of an point of interest from the river channel at t = 0 [L] 33 

c dimensionless constant approximately equal to 2.2285 [-] 3 

Cf Open channel flow friction coefficient [-] 40 

D0 Characteristic length scale of meander belts [L] 40 

E Dimensionless bank erodibility coefficient [-] 41 

h Flow depth [L] 2 

H+ Height of the river bank in the direction of river motion [L] 1 

HW Height of the walls confining the channel belt [L] 17 

k Dimensionless constant of order 10-2 to 10-3 [-] 2 

k0 Dimensionless constant of order 102, defined by c/k [-] 4 

n Number of stochastic events, generally used for the number of steps in the random walk [-] 6 

m Number of pairs of steps in the random walk, generally defined as n/2 [-]  

qH Rate of lateral sediment supply from hillslopes or valley walls per channel length [L2 T-1] 5 

qL Lateral-transport capacity, i.e. the amount of sediment that the channel can move by lateral 

erosion per unit channel length per unit time [L2 T-1] 

1 

P Fraction of time that a river spends at any of its channel belt margin [-] 9 

Pconfined Fraction of time that a river spends at any of its channel belt margins for a confined belt [-] 15 

S Dimensionless envelope distance for the channel belt in the law of the iterated logarithm [-

] 

31 

t Time [T] 4 

t* Dimensionless time [-] 31 

Δt Average switching timescale in the Poisson process [T] 6 

T0 Characteristic time scale of meander belts [T] 41 

ΔT The characteristic length of time the river moves on average in the same direction [T] 3 

TA Time since the formation of the channel belt; age of the channel belt [T] 40 

TFP First passage time, first point in time when the channel reaches at a point of interest located 33 
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a distance b from the channel at at t = 0 [T] 

TR Time needed to return to the origin for the first time [T] 34 

𝑇𝑅̅̅ ̅ Mean residence time of sediment [T]  

TSS Time at which the steady state width is reached [T] 27 

TW Waiting times between events in a Poisson process [T] 7 

U Uplift rate [L T-1] 5 

Uf Mean streamwise flow speed [L T-1] 41 

v Lateral speed of the river as it reaches valley-floor margins, i.e. wall toes [L T-1] 15 

V Lateral migration speed, i.e. the speed of river migrating back and forth across the valley 

floor [L T-1] 

1 

𝑉 Average lateral channel migration speed in a confined channel belt [L T-1] 23 

VDrift Average lateral speed of a channel belt with constant width during the drift phase [L T-1] 29 

VARCCB Variance of a confined channel-belt width [L2] 24 

VARUCB Variance of an unconfined channel-belt width [L2] 19 

W Channel-belt width [L] 5 

Wc River channel width [L] 4 

WDrift Width of channel belt in the drift phase [L] 19 

WMB Width of a meander belt [L] 42 

WV Valley floor width [L] 5 

W0 Unconfined channel-belt width [L] 4 

Δx Distance travelled by the channel before switching direction for the first time [L] 34 

X Envelope distance for the channel belt in the law of the iterated logarithm, dimensional 

version of S [L] 

32 

XDrift Average distance drifted in the drift phase [L] 26 

 

  

https://doi.org/10.5194/egusphere-2024-2342
Preprint. Discussion started: 7 August 2024
c© Author(s) 2024. CC BY 4.0 License.



29 

 

Data availability 635 

Raw data for the experimental datasets are stored on the SEAD repository of Bufe et al. (2016b) with the identifier 

http://dx.doi.org/10.5967/M0CF9N3H. Derived quantities have been compiled from Bufe et al. (2016a,b) and Bufe et al. 

(2019). Sediment age data were digitised from the respective publications. Scripts used to generate Figures 2-7 are available 

in the publication by McNab (2024) with identifier https://doi.org/10.5281/zenodo.12806574. 
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