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Abstract. Channel belts form by the mobilization and deposition of sediments during the lateral migration of 9 

rivers. Channel-belt width and its temporal evolution is important for the hydraulics, hydrology, and ecology of 10 

landscapes, and for human activities such as farming, protecting infrastructure, and natural hazard mitigation. Yet, 11 

we currently lack a comprehensive theoretical description of the width evolution of channel belts. Here, we 12 

explore the predictions of a physics-based model of channel-belt width for the transient evolution of channel belts. 13 

The model applies to laterally unconfined channel belts in foreland areas as well as to laterally confined channel 14 

belts in mountain settings (here, channel-belt width equals valley-floor width). The model builds on the 15 

assumption that the switching of direction of a laterally migrating channel can be described by a Poisson process, 16 

with a constant rate parameter related to channel hydraulics. As such, the lateral migration of the channel can be 17 

viewed as a non-standard one-dimensional random walk. In other words, at each river cross section the river 18 

randomly moves either to the left or right at a given time. The model predicts three phases in the growth of channel 19 

belts. First, before the channel switches direction for the first time, the channel belt grows linearly. Second, as 20 

long as the current width is smaller than the steady state width, growth follows an exponential curve on average. 21 

Finally, there is a drift phase, in which the channel-belt width grows with the square root of time. We exploit the 22 

properties of random walks to obtain equations for the distance from a channel that is unlikely to be inundated in 23 

a given time interval (law of the iterated logarithm), distributions of times the channel requires to return to its 24 

origin and to first arrive at a given position away from the origin, and the mean lateral drift speed of steady state 25 

channel belts. All of the equations can be directly framed in terms of the channel’s hydraulic properties, in 26 

particular its lateral transport capacity that quantifies the amount of material that the river can move in lateral 27 

migration per unit time and channel length. The distribution of sediment age within the channel belt is equivalent 28 

to the distribution of times to return to the origin, which has a right-hand tail that follows a power-law scaling 29 

with an exponent of -3/2. As such, the mean and variance of ages of sediment deposits in the channel belt do not 30 

converge to stable values over time, but depend on the time since the formation of the channel belt. This result 31 

has implications for storage times and chemical alteration of floodplain sediments, and the interpretation of 32 

measured sediment ages. Model predictions compare well to data of sediment-age distributions measured at field 33 

sites and the temporal evolution of channel belts observed in flume experiments. Both comparisons indicate that 34 

a random walk approach adequately describes the lateral migration of channels and the formation of channel belts. 35 

The theoretical description of the temporal evolution of channel-belt width developed herein can be used for 36 

predictions for example in hazard mitigation and stream restoration, and to invert fluvial strata for ambient 37 

hydraulics conditions. Further, it may serve to connect models designed either for geological or process 38 

timescales.  39 
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1 Introduction 40 

Rivers migrate laterally. Lateral river migration establishes the channel belt, which is defined as the corridor of 41 

channel migration formed during one river-avulsion cycle (Bridge and Leeder, 1979; Nyberg et al., 2023). 42 

Channel belts include the river channel and active bars, levees and abandoned channels, and other areas affected 43 

by the river during floods or migration (Fig. 1a) (Nyberg et al., 2023). They can be represented by the planform 44 

area that the river has interacted with since its last avulsion, and they can be either unconfined, for example in 45 

foreland areas, or confined, for example by valley walls in mountain regions (Fig. 1a&b) (e.g., Howard, 1996; 46 

Limaye, 2020; Turowski et al., 2024). Channel belts affect catchment hydrology, host aquifers and hydrocarbon 47 

deposits (e.g., Andersen et al., 1999; Blum et al., 2013; Bridge, 2001), and present a key location for organic 48 

carbon storage and alteration (e.g., Repasch et al., 2021). During lateral migration, rivers deposit sediment or 49 

erode previously deposited sediment, thereby affecting chemical weathering, nutrient transport, and ecology (e.g., 50 

Fotherby, 2009; Jonell et al., 2018; May et al., 2013; Miller, 1995; Naiman et al., 2010; Schumm & Lichty, 1963; 51 

Torres et al., 2017). Further, the exchange of sediment during lateral channel migration determines the distribution 52 

of ages of the sediment stored at and near the surface along rivers, with implications for landscape dynamics, the 53 

interpretation of fluvial stratigraphy, and nutrient cycles (e.g., Bradley & Tucker, 2013; Galeazzi et al., 2021; 54 

Marr et al., 2000; Pizzuto et al., 2017; Scheingross et al., 2021). Landforms such as backswamps or oxbow lakes, 55 

which are specific to channel belts, often host unique ecological communities that depend on regular floods (e.g., 56 

Bayley, 1991; Junk et al., 1989; Meitzen et al., 2018). Finally, lateral bank erosion is an important natural hazard 57 

that can destroy agricultural areas and infrastructure (e.g., Badoux et al., 2014; Best, 2019). All of the mentioned 58 

effects make channel belts an important component of fluvial response to environmental change (e.g., Hajek and 59 

Straub, 2017). As such, channel belts record a river’s past activity, and can be used as archives for Earth’s history 60 

on the timescale of hundreds to thousands of years (e.g., Allen, 1978; Bridge and Leeder, 1979; Galeazzi et al., 61 

2021).  62 

 63 

The long-term dynamics of channel belts have been studied separately for meandering (e.g., Camporeale et al., 64 

2005; Greenberg & Ganti, 2024; van de Lageweg et al., 2013) and braided rivers (e.g., Bertoldi et al., 2009; 65 

Limaye, 2020). Researchers have largely focused on channel characteristics and statistics, their temporal evolution 66 

and approach to a steady state. For meandering rivers, these have typically included the linear and curvilinear 67 

wavelength, the curvature of the channel, and the role of meander cuts-offs in reaching and maintaining a steady 68 

state (e.g., Camporeale et al., 2005; Howard, 1996). For braided rivers, they have typically included braiding 69 

indices and planform patterns (e.g., Bertoldi et al., 2009; Egozi and Ashmore, 2009). In comparison to these 70 

statistics describing the channels within the channel belt, the belt width has received little attention. Dong and 71 

Goudge (2022) suggested that channel belt width systematically decreases with the number of channels in the 72 

river system. As such, the belt width of braided channels is lower than that of meandering channels. Greenberg et 73 

al. (2024) found that channel-belt area scales with floodplain reworking timescales. Reworking timescales 74 

monotonically increase as water partitions into fewer active channel threads, and as channels become more 75 

sinuous, and thus vary between river systems with different planform types. Studying models of meandering 76 

rivers, Camporeale et al. (2005) concluded that one time and one length scale are sufficient to explain steady state 77 

characteristics of channel belts regardless of the hydrodynamic complexity of the underlying model. They 78 

suggested that channel-belt width scales with the meandering wavelength, which in turn scales with flow depth. 79 
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A qualitative comparison to natural channels was favourable. Limaye (2020) postulated that channel-belt width 80 

of braided rivers scales with channel width. Using flume experiments, he showed that both channel and belt width 81 

follow a similar scaling relationship with discharge. Turowski et al. (2024) developed a steady state model for 82 

confined and unconfined channel-belt width under the assumption that switches in the direction of lateral channel 83 

migration are based on a random process with a uniform mean rate of switching in time. In their model, the 84 

unconfined steady state channel-belt width linearly depends on flow depth. The steady state width of confined 85 

channel-belt (i.e., the valley-floor width) is reduced relative to unconfined channel belts due to lateral input of 86 

sediments from adjacent valley walls.  87 

 88 

The temporal evolution of channel-belt width has so far hardly been explored. Limaye (2020) identified three 89 

phases of channel-belt growth in his experiments, co-occurring with distinct phases of meandering or braiding. In 90 

a first phase, the channel established a graded geometry from the initial imposed boundary condition. In the second 91 

phase, the channel belt grew rapidly, while in the third phase, it reduced its growth rate. When compared in a 92 

dimensionless framework, the switches between phases occurred at the same dimensionless time for different 93 

experimental conditions. Wickert et al. (2013) and Bufe et al. (2019) observed an exponential approach to the 94 

steady state width in experiments, when tracking the increase of the area visited by the channel over time. Howard 95 

(1996) found that the width of the channel belts in a model of meandering channels growth logarithmically over 96 

time. Hancock & Anderson (2000) suggested that the initial rapid widening rate of a channel belt and its 97 

subsequent decrease is due to the declining probability of the channel to be located at the belt boundary as the belt 98 

widens. This notion was regularly picked up in later work (e.g., Malatesta et al., 2017; Martin et al., 2011), and 99 

has led to steady state descriptions of valley width (Tofelde et al., 2022; Turowski et al., 2024). Equations relating 100 

the growth evolution of confined and unconfined channel belts to the hydraulic conditions in the channel are 101 

currently not available. Yet, they could be useful in diverse topics. For example, they could be used as forward 102 

models for making predictions related to flood hazard assessment and stream restoration or as inverse models to 103 

obtain paleo-hydraulic conditions from fluvial stratigraphy and depositional sequences. Further, they could 104 

provide a framework to interpret data from natural rivers with regard to nutrient cycling, channel-floodplain 105 

interactions, and ecology.  106 

 107 

Turowski et al. (2024) described lateral channel migration as a Poisson process, in which the switches in direction 108 

occur randomly in time at a constant mean rate. They subsequently focused on the mean behaviour of the model, 109 

and proceeded to derive equations for the steady state width of unconfined and confined channel belts. Here, we 110 

explore the predictions of their model concept for the transient approach of channel belts to their steady state 111 

width, and the consequences of a stochastic formulation for channel-belt dynamics. Specifically, we derive 112 

analytical equations describing the temporal evolution and the bounds of channel belts, their average lateral drift 113 

once they have reached a steady state, and the sediment residence-time distribution, which is equivalent to the 114 

distribution of sediment ages. Analytical results are benchmarked with stochastic numerical simulations. We 115 

compare the model results to data from two flume experiments (Bufe et al., 2016, 2019), and sediment age 116 

distributions from three field sites (Everitt, 1968; Huffman et al., 2022; Skalak & Pizzuto, 2010). 117 
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Fig. 1: Schematic illustration of the model concept. a) Unconfined channel belt of the Juruá River, Brazil (6.75° S, 119 
70.30° W; Map data: Google, ©2024 Maxar Technologies). b) Confined channel belt of the San Jose River, Chile (18.58° 120 
S, 69.97° W; Map data: Google, ©2024 Maxar Technologies, Airbus). (c, d) the channel switches the direction of motion 121 
after a certain timescale. It thus evolves to a steady-state width that does not change over time. In the Stochastic Poisson 122 
Model (e, f), the switching timescale is a random number. As such, the channel may migrate beyond the channel-belt 123 
limits (e) or erode the valley walls even after reaching the steady-state width. The resulting migration can lead to a 124 
lateral drift of the unconfined or confined channel belt. 125 

2 Theoretical developments 126 

In this chapter, we will briefly summarize the valley width model by Turowski et al. (2024) (Section 2.1). 127 

Afterwards, we outline the basis of the stochastic model approach used herein (Section 2.2). Then, we derive 128 

equations for the temporal evolution of channel belts while approaching a steady state, and their lateral drift speed 129 

once they have reached steady state (Section 2.3), the limits of the channel-belt bounds (Section 2.4), the first 130 

passage distribution (Section 2.5), and the age distribution of sediment (Section 2.6). 131 

2.1 Summary of the steady state model 132 

Building on earlier work (e.g., Bufe et al., 2019; Martin et al., 2011; Tofelde et al., 2022), Turowski et al. (2024) 133 

developed a model for the steady state width of fluvial valleys (Fig. 1), which includes predictions for confined 134 

and unconfined channel belts. In the model, each cross-section contains a single channel, which is treated as if it 135 

moves independently from those upstream and downstream. River channels are assumed to move laterally by 136 

bank erosion and deposition. The channel belt widens when the river crosses beyond the previous channel belt 137 

boundaries (Fig. 1). The lateral channel-migration speed V [L T-1] is equal to the ratio of the lateral transport 138 
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capacity qL [L2T-1] and the bank height in the direction of motion H+ [L], where qL quantifies the amount of 139 

material that the river can move in lateral direction per unit time and channel length (Bufe et al., 2019): 140 

𝑉 =
𝑞𝐿
𝐻+
. 141 

(1) 142 

The lateral transport capacity can be treated as a constant for a given set of boundary conditions including water 143 

discharge, upstream sediment supply, and granulometry (Bufe et al., 2019). It does not seem to depend on whether 144 

the channel is in a graded state. Turowski et al. (2024) viewed switches in the direction of lateral motion of the 145 

channel as stochastic events. These are assumed to be independent and identically distributed, with a constant 146 

mean event rate per unit time, λ [T-1], and can therefore be described by a Poisson process. The mean rate of 147 

switching λ is proportional to the ratio of the lateral transport capacity qL and the square of the flow depth h [L] 148 

(Turowski et al., 2024) 149 

𝜆 = 𝑘
𝑞𝐿
ℎ2
, 150 

(2) 151 

where k [-] is a dimensionless constant. We can define an effective switching time scale as a constant time scale 152 

that leads to the same steady state width as is obtained from a fully stochastic model. The effective switching time 153 

scale ∆𝑇 [T] is inversely proportional to λ 154 

∆𝑇 =
𝑐

𝜆
, 155 

(3) 156 

where c [-] is a dimensionless constant of order one. Integrating over the distance travelled laterally by the channel 157 

within ∆𝑇 yields an equation for the unconfined channel-belt width W0 [L] (see Turowski et al., 2024, for details):  158 

𝑊0 = ∫ 𝑉𝑑𝑡 +𝑊𝐶

∆𝑇

0

= 𝑘0ℎ +𝑊𝐶 . 159 

(4) 160 

Here, k0 = c/k [-] is a dimensionless constant, WC [L] is the channel width, and t [T] is time. To arrive at the final 161 

equality in eq. (4), we assumed that in an unconfined channel belt that is neither incising nor aggrading, the bank 162 

height in the direction of motion, H+, is equal to the flow depth, h (cf. Turowski et al., 2024). In river valleys, the 163 

channel belt or valley floor is narrower than W0 due to uplift or lateral supply of sediment from hillslopes, and the 164 

steady-state valley-floor width WV [L] can be described by the equation (Turowski et al., 2024): 165 

𝑊𝑉 = (
𝑞𝐿 − 𝑞𝐻
𝑈

) ln {1 +
𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} +𝑊𝐶 . 166 

(5) 167 

Here, qH [L2T-1] is the lateral supply rate of hillslope sediment per unit channel length, and U [L T-1] is the uplift 168 

rate. The valley-floor width WV is distinguished from the confined channel belt width by explicitly accounting for 169 

the effects of uplift and lateral sediment supply. Equation (5) predicts that river valleys reach a steady state width 170 

that depends on five input parameters (flow depth h, channel width WC, uplift rate U, lateral transport capacity qL, 171 

and lateral hillslope sediment supply qH) and one constant (k0) that needs to be determined from observations. 172 

Steady state valley width is reached when the system achieves a balance between local sediment input from 173 

hillslopes and by uplift, on the one hand, and the removal of sediment by the river, on the other hand. 174 

 175 
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In summary, in their model, Turowski et al. (2024) assume that the switches in river direction follow a Poisson 176 

process and unconfined channel belts evolve to a steady-state width determined by flow depth and channel width 177 

(eq. 4). Fluvial valleys can attain a maximum steady state width that corresponds to the unconfined channel-belt 178 

width W0. They are narrower than this unconfined width if they are affected by uplift or lateral hillslope sediment 179 

supply (eq. 5). We call this model the Deterministic Poisson Model hereafter. 180 

2.2 The Stochastic Poisson Model 181 

In order to investigate the temporal evolution of channel-belt width, we further develop the previous model of 182 

Turowski et al. (2024). Instead of assuming the channel switches with a constant characteristic timescale, the 183 

effective switching timescale ∆𝑇 (eq. 3), we now explore the consequences of a random switching timescale. This 184 

consideration allows us to observe the temporal behaviour of the random-walk model for lateral river migration. 185 

We call this model the ‘Stochastic Poisson Model’ hereafter. In a Poisson process, the probability mass function 186 

(PMF) that n [-] events (in this case, channel switches) occur within a time of length Δt [T] is given by  187 

PMF𝑃𝑜𝑖𝑠𝑠𝑜𝑛 =
(𝜆∆𝑡)𝑛𝑒−𝜆∆𝑡

𝑛!
. 188 

(6) 189 

Both the expected number of events and their variance are given by λΔt [-]. For the derivations within this paper, 190 

we use the idea that the lateral motion of the river channel across the floodplain, in the model concept of a Poisson 191 

process, can be viewed as a non-standard one-dimensional random walk. The channel alternates between steps to 192 

the left and to the right within the cross section, thus switching direction after every step. The step length is not a 193 

constant, but a stochastic parameter equal to the waiting times between individual switching events multiplied by 194 

lateral migration speed. In a Poisson process, the waiting times TW [T] between events are exponentially 195 

distributed with a mean waiting time of 1/λ, a variance of 1/λ2, and a probability density function (PDF) given by 196 

PDF𝑇𝑊 = 𝜆𝑒−𝜆𝑇𝑊 . 197 

(7) 198 

Similarly, for constant migration speed V [L T-1], the PDF of the length of steps Δx = VΔt [L] is given by 199 

PDF∆𝑥 =
𝜆

𝑉
𝑒
−𝜆
𝑉
∆𝑥 . 200 

(8) 201 

In the following, we will first derive an equation for the approach to the steady state width using the Deterministic 202 

Poisson Model (Turowski et al., 2024), and then use the mathematics of random walks to explore the effects of 203 

stochasticity on the channel belt’s temporal evolution. Finally, we investigate the distribution of floodplain ages.  204 

2.3 Temporal evolution of the channel-belt width 205 

2.3.1 Approach to steady state in the Deterministic Poisson Model 206 

We first consider the evolution of the channel belt in an unconfined setting. Consider the river channel moving 207 

laterally with speed V. The channel belt widens when the river is located at and moves into the channel-belt 208 

boundary. In contrast, if the river is not located at the boundary, or moves away from it, the channel-belt width 209 

remains unchanged. At any given time, widening can be observed with a probability P [-], which is equal to the 210 

fraction of the time the river spends widening the valley (e.g., Hancock and Anderson, 2002; Tofelde et al., 2022). 211 
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The temporal evolution of channel-belt width W [L] is then governed by the differential equation (Tofelde et al., 212 

2022) 213 

𝑑𝑊

𝑑𝑡
= 𝑃𝑉. 214 

(9) 215 

Motion in either direction is equally likely, and, for a given set of hydraulic, tectonic, and sedimentological 216 

boundary conditions, V can be considered as a constant (Bufe et al., 2019; Turowski et al., 2024). In a transient 217 

phase, before the steady state width is reached, the probability of the river not widening, i.e., 1-P, the channel belt 218 

is equal to the ratio of the current W [L] and the maximum W0 [L] channel-belt width (Tofelde et al., 2022). 219 

Channel width WC provides a starting point and needs to be subtracted. Thus, P is given by (Turowski et al., 2024)  220 

𝑃 = 1 −
𝑊 −𝑊𝐶

𝑊0 −𝑊𝐶
=
𝑊0 −𝑊

𝑊0 −𝑊𝐶
. 221 

(10) 222 

The speed of lateral motion is equal to the ratio of the lateral transport capacity and the height of the bank in the 223 

direction of motion H+ (eq. 1). Combining eqs. (1), (9) and (10), we obtain a differential equation for channel-belt 224 

evolution 225 

𝑑𝑊

𝑑𝑡
=
𝑊0 −𝑊

𝑊0 −𝑊𝐶

𝑞𝐿
𝐻+
. 226 

(11) 227 

Solving equation (11) and applying the boundary condition that channel-belt width W is equal to WC at time t = 0, 228 

we obtain 229 

𝑊(𝑡) = 𝑊0 − (𝑊0 −𝑊𝐶)exp {−
𝑡

𝜏
} +𝑊𝐶 . 230 

(12) 231 

Here, τ is the governing timescale, which can be interpreted as a response time scale to an external perturbation 232 

(cf. Tofelde et al., 2021). It is given by  233 

𝜏 = (𝑊0 −𝑊𝐶)
𝐻+
𝑞𝐿
. 234 

(13) 235 

In the unconfined case, H+ is equal to flow depth h and substituting eqs. (1) and (2) into eq. (11), we find that τ is 236 

equal to the effective switching time scale ∆𝑇 (see eqs. 3 and 4): 237 

𝜏 =
𝑐

𝜆
= ∆𝑇. 238 

(14) 239 

We can use a similar approach to describe the evolution of a channel belt that is confined by valley walls when 240 

considering that at the valley walls, the lateral migration of the river slows down (cf. eq. 1). If the valley walls are 241 

made of alluvium, the bank height H+ in eq. (9) is equal to the height of the valley wall HW [L] and eq. (1) can be 242 

used as before. However, we need to adjust eq. (10), defining an equivalent probability Pconfined for a confined 243 

channel belt. The distance d [L] is the length that a channel moves on average across the valley floor in the 244 

effective time ΔT [T] between two events of switching the direction of motion. This distance d is the sum of the 245 

distance covered at higher speed V when moving in the floodplain, and the distance covered when moving at 246 

lower speed v [L/T] when cutting into the valley walls (cf. Tofelde et al., 2022)  247 
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𝑑 = 𝑉(1 − 𝑃𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑)∆𝑇 + 𝑣𝑃𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑∆𝑇. 248 

(15) 249 

For the unconfined channel belt, we know that  250 

𝑉∆𝑇 = 𝑊0 −𝑊𝐶 . 251 

(16) 252 

Using eq. (16) to eliminate ΔT in eq. (15), and noting that d corresponds to the current width W–WC, we obtain  253 

𝑃𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 =
𝑊0 −𝑊

(𝑊0 −𝑊𝐶) (1 −
𝑣
𝑉)

=
𝑊0 −𝑊

(𝑊0 −𝑊𝐶) (1 −
𝐻𝑊
ℎ )

. 254 

(17) 255 

Here, we used eq. (1) to substitute for V and v, using H+ = h and H+ = HW, respectively. Note that in the assumption 256 

behind eqs. (15) to (17), Pconfined for a confined valley (eq. 17) reduces to P for an unconfined floodplain (eq. 8) 257 

for v = 0 or HW = 0 (rather than v = V or HW = h). This arises from eq. (15), which yields d = VΔT for v = V, 258 

rendering Pconfined meaningless. Substituting eq. (17) into eq. (9) and integrating again yields eq. (12) with a 259 

different governing timescale τ given by  260 

𝜏 =
(𝑊0 −𝑊𝐶)(𝐻𝑊 − ℎ)

𝑞𝐿
= (

𝐻𝑊
ℎ
− 1)

𝑐

𝜆
. 261 

(18) 262 

2.3.2 Channel belt evolution in the Stochastic Poisson model 263 

As we did in Section 2.3.1, we first consider the evolution of an unconfined channel belt. In the Deterministic 264 

Poisson Model, we obtained an exponential approach to the steady state width (eq. 12) (Section 2.3.1). In the 265 

Stochastic Poisson Model, we can distinguish three different phases in the growth of the channel-belt width over 266 

time. In the first phase, before the first switch in direction occurs, width increases linearly in time. In this phase, 267 

the growth rate is determined by the speed of lateral channel migration, V in the unconfined case and v in the 268 

confined case (see eq. 1 and Section 2.3.1). In the second phase, before reaching the steady state width, the 269 

channel-belt width grows exponentially on average. This average exponential growth can be described by the 270 

same equation (eq. 12) that has been derived for the Deterministic Poisson Model (see Section 2.3.1). In the third 271 

phase, which starts approximately when the width for the first time reaches the steady state width, stochastic drift 272 

dominates. Stochastic drift arises because, due to the random motion of the channel, there is always a finite 273 

probability of widening the belt even after the steady state width has been reached. We already have equations for 274 

the linear (eq. 1) and the exponential (eq. 12) phase. In the following, we will fully exploit the stochastic properties 275 

of the model concept. In several of our considerations in this and the following sections, we use the central limit 276 

theorem, which states that the sum X of n stochastic variables with mean µ and variance σ2 is normally distributed 277 

with mean nµ and variance nσ2, if n is sufficiently large. In addition, we use the result that the sum or difference 278 

of two normally distributed parameters with means µ1 and µ2 and equal variance σ2 follow a normal distribution 279 

with mean µ1 ± µ2 and variance 2σ2. 280 

 281 

First, we will derive an equation for widening during the drift phase using the evolution of random walks in the 282 

limit of a large number of steps. In this case, we can apply the central limit theorem. Thus, the PDF of the location 283 

of the channel can then be described by a normal distribution. In a random walk, the width of this normal 284 
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distribution increases with the square root of its variance VARUCB [L2], where the subscript stands for ‘unconfined 285 

channel belt’ (e.g., Lawler & Limic, 2010):  286 

𝑊𝐷𝑟𝑖𝑓𝑡 = √VAR𝑈𝐶𝐵 +𝑊𝐶 . 287 

(19) 288 

To find an equation for the variance, we will use the concept of a random walk making steps in alternating 289 

directions with exponentially distributed step length. We consider m pairs of a total of n steps, where each of the 290 

n steps covers an average distance of V/λ. The difference of two consecutive identically exponentially distributed 291 

steps in opposite directions is described by the Laplace distribution with zero mean and variance 2V2/λ2, with the 292 

PDF 293 

PDF𝐿 =
𝜆

2𝑉
𝑒
−𝜆
𝑉
|𝑥|. 294 

(20) 295 

After each pair of two steps, the river is always in a position where it switches direction in the same way, for 296 

example from left to right. The switch in the other direction, from negative to positive, also follows eq. (20). In 297 

the limit of large m, the position of the river is given by the sum of the positions of many step pairs. The central 298 

limit theorem applies, and the normal approximation gives the distribution of locations where the river switches 299 

either from positive to negative or vice versa, with zero mean and a variance of 2𝑚𝑉2 𝜆2⁄ = 𝑛 𝑉2 𝜆2⁄ . Finally, 300 

the channel-belt width is the difference of the switching position on either side, so the final variance needs to be 301 

multiplied by a factor of two. Applying the law of large numbers, the distance covered in the sum of all steps is 302 

equal to the number of steps times the average step length V/λ. The average time of each step is the mean waiting 303 

time 1/λ, and so we can write n = λt:  304 

VAR𝑈𝐶𝐵 = 2𝑛
𝑉2

𝜆2
= 2

𝑡

𝜆
𝑉2 =

2

𝑘
𝑞𝐿𝑡.  305 

(21) 306 

Thus, we obtain the width increase due to drift from eqs. (19) and (21) as 307 

𝑊𝐷𝑟𝑖𝑓𝑡(𝑡) = √
2

𝑘
𝑞𝐿𝑡 +𝑊𝐶 . 308 

(22) 309 

For a confined channel belt, during the time the river incises into the confining walls, the speed of widening drops 310 

to qL/HW, where HW is the height of the confining wall, while it remains at qL/h, as before, when the river moves 311 

laterally within the channel belt. The average speed of motion is given by the geometric average of the two speeds, 312 

𝑉 313 

𝑉 = √𝑣𝑉 = √
ℎ

𝐻𝑊
𝑉.  314 

(23) 315 

We obtain the variance by replacing V by 𝑉 in equation (22), giving the variance VARCCB for a confined channel 316 

belt 317 

VAR𝐶𝐶𝐵 = 2𝑡𝑉
2
𝜆⁄ = 2𝑞𝐿𝑡ℎ 𝑘𝐻𝑊⁄   318 

(24) 319 

 As before, the width during the drift phase evolves as the square root of the variance, giving 320 
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𝑊𝐷𝑟𝑖𝑓𝑡(𝑡) = √2
𝑡

𝜆
𝑉 +𝑊𝐶 = √

2

𝑘

ℎ

𝐻𝑊
𝑞𝐿𝑡 +𝑊𝐶 .  321 

(25) 322 

2.3.3 Drift speed of channel belts and dimensionless scaling factor of the mean switching time scale 323 

During the drift phase, the channel belt widens laterally, increasing the area that has been reworked by the channel 324 

with the square root of time (eq. 25). Yet, growth on one side of the channel belt makes it less likely that the 325 

channel moves close to the other side. As such, parts of the channel belt may be abandoned and, for example, 326 

reclaimed by vegetation (Fig. 1E). Similarly, in the case of a vertically incising river, the channel-belt width can 327 

stay at the steady state value WV (eq. 5), while the entire belt is moving laterally, and uplift converts old parts of 328 

the channel belt to fluvial terraces. Here, we consider the case that the channel belt keeps its width constant at the 329 

steady state width, because any acquisition of area of the belt due to lateral motion on one side leads to the 330 

abandonment of an equivalent area on the other side. In this case, instead of widening, during the drift phase, the 331 

entire belt drifts laterally. We will now derive an equation for the average drift speed in this case. The average 332 

drifted distance in one direction, XDrift, is equal to the square root of the variance, as before (cf. eq. 19). Because 333 

we consider a distance, rather than the width, it is smaller by a factor of two in comparison to eq. (25), giving 334 

𝑋𝐷𝑟𝑖𝑓𝑡(𝑡) = √
1

𝑘

ℎ

𝐻𝑊
𝑞𝐿𝑡.  335 

(26) 336 

The derivative of eq. (26) with respect to time, evaluated at the time when the valley reaches its steady state width, 337 

TSS [T], gives the drift speed VDrift [LT-1]  338 

𝑉𝐷𝑟𝑖𝑓𝑡 =
1

2
√
1

𝑘

ℎ

𝐻𝑊

𝑞𝐿

𝑇𝑆𝑆
.  339 

(27) 340 

At time TSS, XDrift is equal to the steady state width W0, and we can use eq. (26) to obtain 341 

𝑇𝑆𝑆 = 𝑘
𝐻𝑊

ℎ

(𝑊0−𝑊𝐶)
2

2𝑞𝐿
.  342 

(28) 343 

Substituting eq. (28) into eq. (27) yields  344 

𝑉𝐷𝑟𝑖𝑓𝑡 =
1

√2𝑘

ℎ

𝐻𝑊

𝑞𝐿

(𝑊0−𝑊𝐶)
.  345 

(29) 346 

We can use eq. (29) to arrive at a further result, and calculate the constant of proportionality c between the 347 

switching time scale ΔT and the rate constant λ (eq. 3). The ratio of the drift speed VDrift and the lateral migration 348 

speed of the channel V is the same as the fraction of time that the river spends widening the channel belt. This is 349 

equal to the area under a normal distribution outside one standard deviation from the mean, 𝑉𝐷𝑟𝑖𝑓𝑡 𝑉⁄ = 0.3173. 350 

Setting ℎ 𝐻𝑊⁄ = 1 and substituting 𝑞𝐿 = 𝑉ℎ, we find 351 

𝑉𝐷𝑟𝑖𝑓𝑡

𝑉
= 0.3173 =

1

√2𝑘

ℎ

(𝑊0−𝑊𝐶)
=

1

√2𝑐
.  352 

(30) 353 

Equation (30) therefore yields c = 2.2285. 354 

 355 
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2.4 Channel-belt limits 356 

We can use the properties of random walks to make a statement about the distance beyond which the river will 357 

rarely migrate over a given timescale. Knowledge of this distance may be useful to delineate zones for building, 358 

or to assess in which areas the river is likely (or not) to interact with its surrounding, for example, by reworking 359 

sediment or evacuating erosion and weathering products. In random walks, this distance is described by the law 360 

of the iterated logarithm (e.g., Kolmogoroff, 1929), which is a limit theorem that sits in between the central limit 361 

theorem and the law of large numbers. In the limit of a large number of steps, this law provides an envelope to 362 

the area that the river almost surely will not leave in its stochastic motion. Consider the sum S over the distance 363 

travelled in n steps over dimensionless time t*, which is a dimensionless stochastic variable with zero mean. The 364 

law of the iterated logarithm gives an upper and lower bound for this sum with the equation 365 

𝑆 = ±√2𝑡∗ln{ln{𝑡∗}}. 366 

(31) 367 

Here, ln denotes the natural logarithm, and the plus and minus give the upper and lower bound, respectively. We 368 

define the dimensionless step length 𝑠 = 𝜆∆𝑥 𝑉⁄ . This step length is a stochastic variable that is exponentially 369 

distributed with a mean of zero and variance equal to one (compare to eq. 7). Because the random walk has to be 370 

symmetric for eq. (31) to apply, we consider the sum S of m = n/2 pairs of steps, distributed according to the 371 

Laplace distribution (eq. 20). Normalizing with the square root of the variance of the Laplace distribution, the 372 

dimensional distance is then given by 𝑋 = √2𝑆𝑉 𝜆⁄ . This is the distance from the origin that the channel will 373 

almost surely not cross within timescale t. The dimensionless time is given as 𝑡∗ = 2𝑉𝑡 ℎ⁄ , where the factor of 374 

two accounts for the pairs of steps. Putting everything together and adding half of the channel width, we obtain  375 

𝑋(𝑡) = √2
𝑆𝑉

𝜆
+
𝑊𝐶

2
= ±2

ℎ

𝑘
√2

𝜆𝑡

𝑘
ln {ln {2

𝜆𝑡

𝑘
}} +

𝑊𝐶

2
. 376 

(32) 377 

2.5 First passage time distribution 378 

We can derive another result that may be useful for planning and hazard mitigation purposes over long time scales. 379 

The first passage time distribution (e.g., Redner, 2001) is the distribution of times until the channel reaches a point 380 

that is located a distance b [L] from the channel’s original location for the first time. This distribution can be used, 381 

for example, to calculate a lifetime distribution of structures located a distance b from the river. In random walks, 382 

the first passage time distribution is given by a Lévy distribution. The distribution PDFFP,R of times 𝑇𝐹𝑃 [T] is 383 

given by: 384 

PDF𝐹𝑃,𝑅(𝑇𝐹𝑃) =
|𝑏|

√2𝜋
ℎ
𝐻𝑊

𝑞𝐿
𝑘 𝑇𝐹𝑃

3

exp{
−𝑏2

2
ℎ
𝐻𝑊

𝑞𝐿
𝑘 𝑇𝐹𝑃

}. 385 

(33) 386 
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2.6 Sediment residence-time distribution 387 

The probability distribution of residence times may be useful to calculate the age distribution of sediments. This 388 

is relevant, for example, for understanding weathering rates in river deposits or transfer times of sediment and 389 

carbon to the ocean (e.g., Repasch et al., 2021; Scheingross et al., 2019; Tofelde et al., 2021). The residence time 390 

distribution differs from the first passage distribution (Section 2.5), but can be derived from it. We start with a 391 

single step outward. The migrated distance Δx until the channel switches direction is then given by the exponential 392 

distribution (eq. 8). We can then use the first passage distribution (eq. 33) for the time to return to the origin by 393 

migrating again a distance b = Δx. Finally, we need to account for all possible Δx in the initial step. Assuming that 394 

the first step has to erode into the valley walls, the distribution PDFRT for the time needed to return to the origin 395 

𝑇𝑅 [T] is then given by  396 

PDF𝑅𝑇(𝑇𝑅) = ∫
𝜆
ℎ

𝐻𝑊
𝑉
exp {

−𝜆

𝑉
∆𝑥}

|∆𝑥|

√2𝜋
ℎ

𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅−

∆𝑥
ℎ
𝐻𝑊

𝑉
)

3
exp

{
 
 

 
 

−∆𝑥2

2
ℎ

𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅−

∆𝑥
ℎ
𝐻𝑊

𝑉
)

}
 
 

 
 

𝑑∆𝑥

ℎ

𝐻𝑊
𝑉𝑡

0
.  397 

(34) 398 

Unfortunately, eq. (34) does not yield an analytical solution, but can be solved numerically. We can find an 399 

analytical limit for the right-hand tail, when 𝑇𝑅 is large. Then, the integral reduces to  400 

PDF𝑅𝑇(𝑇𝑅 ≫ 0) = ∫
𝜆
ℎ

𝐻𝑊
𝑉

|∆𝑥|

√2𝜋
ℎ

𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅)

3
exp {

−𝜆

𝑉
∆𝑥}𝑑∆𝑥

∞

0
=

𝜆

√2𝜋
(
ℎ

𝐻𝑊
𝜆𝑇𝑅)

−3 2⁄

.  401 

(35) 402 

We suggest an analytical approximation for the entire distribution (eq. 34) by assuming that, for small 𝑇𝑅, the 403 

PDF approaches a constant. Using this condition together with eq. (35) and fixing the integral to one, as required 404 

for any distribution, we obtain the function 405 

PDF𝑅𝑇(𝑇𝑅) ≈
1

√2𝜋

𝑎
ℎ
𝐻𝑊

𝜆

1 + 𝑎 (
ℎ
𝐻𝑊

𝜆𝑇𝑅)
3 2⁄
, 406 

(36a) 407 

with 408 

𝑎 = (
3

2
)
3

(
3

2𝜋
)
3 2⁄

. 409 

(36b) 410 

3. Testing the Stochastic Poisson Model 411 

We test the model predictions in two separate ways. First, we use a stochastic random walk model to benchmark 412 

the analytical equations (Section 3.1), by explicitly using the random properties to calculate the distributions and 413 

the mean behaviour. Next to the analytical equations derived so far, this is an independent way of evaluating the 414 

Stochastic Poisson Model. We refer to this approach as the Stochastic Benchmark, and use it to check that the 415 

derivations of the analytical equations are correct. Second, we want to test the results with published experimental 416 

or field data. A full comparison of all of the results derived herein is beyond the scope of the paper. Instead, we 417 
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focus on scaling relationships that are indicative of random walks. Thus, we test whether channel belts can be 418 

described as a random walk, and validate the fundamental modelling assumptions and the approach that we used 419 

to derive the analytical equations. Two results are particularly suitable for this test. First, published distributions 420 

of floodplain sediment ages (Everitt, 1968; Huffman, 2022; Skalak & Pizzuto, 2010) (Section 3.2) allow us to 421 

measure the sediment residence time distribution and test the prediction of a -3/2 power-law scaling. Second, the 422 

temporal evolution of channel belts in braided channel experiments (Bufe et al. 2016a,b, 2019) (Section 3.3) allow 423 

us to extract the average channel-belt-width evolution during the drift phase and validate the predicted square-424 

root scaling of average width with time during this phase. 425 

3.1 Stochastic Benchmark calculations 426 

To benchmark the analytical equations, we use a stochastic numerical random walk model, the Stochastic 427 

Benchmark, as an independent evaluation of the Stochastic Poisson Model to check the analytical equations. The 428 

Stochastic Benchmark builds on the same assumptions used to derive the analytical results, but explicitly generates 429 

random step lengths of the channel in alternating directions, thereby generating random paths of channel 430 

migration. We ran the Stochastic Benchmark in many iterations, calculated the average behaviour and the 431 

corresponding distributions of the properties, and compared them to the analytical results. The analytical equations 432 

and the results from the Stochastic Benchmark are both fully determined and mutually independent, and there is 433 

no need to fit any free parameters. The scripts to run and evaluate the Stochastic Benchmark and to generate the 434 

figures are available in the publication by McNab (2024). Except where otherwise stated, we fixed channel width 435 

to zero, and all other free model parameters to one. For each step, the step length was randomly picked from an 436 

exponential distribution (eq. 7), and the lateral position of the channel was tracked by alternately adding or 437 

subtracting the obtained step length from the channel’s previous position. Channel-belt width was calculated as 438 

the difference of the maximum distance that the channel had migrated in the positive and negative directions from 439 

the origin up to the time step of interest. In this way, we generated a total of 1,000 trajectories of position and 440 

channel-belt width, each with a total length of 3,000 time steps. We repeated this exercise for ratios of valley 441 

depth to channel depth of HW/h = 1, 10 and 100, for unconfined, moderately and highly confined scenarios, 442 

respectively. We obtained the average position of the channel for bins spaced logarithmically in time. We used 443 

the unconfined width in further simulations to check the drift equation (eq. 25). For this check, we limited the 444 

channel-belt width to the steady-state width by adjusting the one side of the valley in an equal manner when the 445 

channel ventured beyond the channel-belt limit on the other side. This procedure results in a valley of fixed width 446 

that moves laterally. We measured drift velocity for different steady state widths by varying the channel depth, 447 

for different values of the lateral transport capacity, and, as above, for ratios of valley depth to channel depth of 448 

HW/h = 1, 10 and 100, as before. These simulations were run for a total of 3,000 time steps to ensure statistical 449 

convergence. To verify the dimensionless scaling factor c that relates the mean switching time to the rate constant 450 

λ by c/λ (eq. 3), we compared the unconfined steady state width for various conditions to flow depth for 451 

simulations with k = 1 (cf. eq. 2). To obtain an independent estimate of W0 from the data, we fitted the exponential 452 

evolution equation (eq. 12) to the initial phase of channel-belt widening. To obtain the first passage distribution, 453 

we ran 10,000 simulations, each until the walk reached a dimensionless distance of 10 from the starting point. We 454 

used the results to construct the first passage distribution. Similarly, to test the distribution of channel belt ages, 455 

we ran the random walk simulations until the channel returned to the origin for the first time. We repeated the 456 



14 

 

simulation 10,000 times, for a maximum of 100,000 steps. The times needed to return to the origin in each run 457 

was used to construct the distribution of sediment residence times.  458 

3.2 Floodplain ages from the field 459 

The -3/2 scaling in the distribution for the time needed to return to the origin (eqs. 34-36) is indicative of random 460 

walks, and thus its presence in natural data would be a strong indication that this modelling approach is suitable 461 

for describing the dynamics of channel belts. Yet, the controls on sediment ages in natural rivers can be 462 

complicated. Depending on the location, sediments may not only be deposited by laterally migrating channels, 463 

but also by overbank deposition, tributaries, or other processes such as soil erosion or debris flows. We thus do 464 

not expect the sediment age distribution in every river to follow the prediction of our model (eqs. 34-36). To 465 

compare to predictions, we picked three channels with published age distribution that feature conditions close to 466 

the assumptions of the model: single thread channels undisturbed by processes other than fluvial deposition and 467 

erosion (e.g., debris flows), without major tributaries in the study area. We digitised floodplain ages published by 468 

Everitt (1968) for the Little Missouri River at Watford, North Dakota, USA, by Skalak & Pizzuto (2010) for the 469 

South River near Waynesboro, Virginia, USA, and by Huffman et al. (2022) for the Powder River between 470 

Moorhead and Broadus, Montana, USA, to compare against the predicted power-law scaling (eq. 35). In the 471 

original study of Skalak & Pizzuto (2010), the cumulative distribution function (CDF) of floodplain ages is shown 472 

(their Figure 8). We estimated the PDF by numerically differentiating the CDF using a centred finite-difference 473 

scheme. Note that Skalak & Pizzuto (2010) already reported a power law scaling with an exponent close to -3/2 474 

in their study, while both Everitt (1968) and Huffman et al. (2022) interpreted their data using an exponential 475 

function. 476 

3.3 Analog Experiments 477 

We further validate the model against experimental data of Bufe et al. (2016a) and Bufe et al. (2019). Primarily, 478 

we seek evidence for the drift phase, i.e., the increase of the average channel-belt width with the square root of 479 

time in the later parts of the experiments. This would be a strong indication that channel belt development can be 480 

described as a random walk. Bufe et al. (2016a) and Bufe et al. (2019) conducted and analysed experiments on 481 

braided alluvial channels in a basin with dimensions of 4.8×3.0×0.6 m and filled with well-sorted silica sand (D50 482 

= 0.52 mm). Water and sediment were supplied into the basin at a constant rate from the centre of one of the short 483 

edges, and flowed out of the opposite side of the basin across a weir into a drain. After the start of the experiments, 484 

the system evolved into an aggrading braided channel network. Once the average aggradation rate dropped to 485 

below 20% of the input flux, a flexing metal sheet underneath the basin was used to simulate an uplifting fold. 486 

Here, we focus on 25 hours of data that was collected before the onset of uplift from Run 5, and on 55 hours of 487 

data from Run 7, an experiment without uplift (see Bufe et al., 2019, for more detail). Water discharge was set to 488 

790 ml/s in both experiments and sediment supply was 15.8 ml/s in Run 7 and 2.4 ml/s in Run 5. Positions of the 489 

channels were tracked at one-minute intervals in overhead images using blue-dyed water and were used to measure 490 

the rate at which the area reworked by the channel expanded over time (Bufe et al., 2016a).  491 
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4. Results 492 

In general, our analytical solutions (section 2) agree well with the Stochastic Benchmark (Section 3.1) (Figs. 2-493 

6), mostly yielding R2 > 0.99 (Table 1). First, we compare the channel location in the Stochastic Benchmark with 494 

the law of the iterated logarithm (eq. 32) that gives an upper bound on the locations of the channel through time 495 

(Fig. 2a), and the expected gaussian distribution of locations (Fig. 2b). After 3,000 steps, no simulated random 496 

walk lies outside the predicted bounds (Fig. 2a), and the gaussian provides a good description of the locations (R2 497 

= 0.9962). Further, we derive the total width of the channel belt in the simulations as the difference between the 498 

two outermost points visited by each random walk (Fig. 2c). The temporal evolution of these widths shows all 499 

three phases – linear increase, exponential increase and square root drift – that are expected by the random walk 500 

model, and the analytical solutions predict the average behaviour well (Fig. 2c), with R2 values exceeding 0.99 501 

(Table 1).  502 

Keeping the channel-belt width constant at the steady-state channel-belt width, we can measure a displacement of 503 

the channel belt with respect to the origin in the Stochastic Benchmark (Fig. 3a), and calculate an average lateral 504 

drift velocity. We find that the average drift velocity is inversely proportional to the steady-state channel-belt 505 

width and proportional to the lateral transport capacity (Fig. 3b&c). The relationships agree with the prediction of 506 

eq. (29) (dotted lines in Fig. 3b&c) with R2 values of 0.9999 (Table 1). Further, we find that the steady state widths 507 

of the simulated unconfined random walks increases as a function of the channel depth following a power-law 508 

with an exponent of c = 2.2285 as predicted by eq. 30 (Fig. 4), with R2 = 0.9997 (Table 1).  509 

The first passage distribution describes the time for the random walk to reach a given distance from the origin and 510 

is plotted in Fig. 5a for the Stochastic Benchmark. Again, the channel does not cross the theoretical bound given 511 

by the law of the iterated logarithm (dashed line in Fig. 5a). The mean first passage time in the Stochastic 512 

Benchmark is well fit by eq. (33) (Fig. 5b), with R2 = 0.9991 (Table 1).  513 

We found a similar correspondence between the Stochastic Benchmark, the bounds from the law of the iterated 514 

logarithm, and the analytical solutions for the distribution of times to return to the origin (Fig. 6a&b), with R2 = 515 

0.9953 (Table 1). The analytical exact and approximate solutions of the Stochastic Poisson Model (eq. 34-35) 516 

predict a monotonically declining probability density with increasing return times (Fig. 6b). The analytical 517 

approximation of the age distribution (eq. 36, Fig. 6b) underpredicts the ages modelled by the Stochastic 518 

Benchmark for small ages in comparison to the exact solution, but provides an exact description of the right-hand 519 

power-law tail (Fig. 6b).  520 

 521 

The scaling predicted in the analytical equations also agree well with the selected field and experimental datasets. 522 

First, the -3/2 power-law scaling (eq. 35) for the distribution of times to return to the origin are consistent with 523 

the data from the Little Missouri River at Watford, North Dakota, USA (Everitt, 1968), the South River near 524 

Waynesboro, Virginia, USA (Skalak & Pizzuto, 2010), and the Powder River between Moorhead and Broadus, 525 

Montana, USA (Huffman et al., 2022) (Fig. 7; R2 = 0.8434, 0.8168 and 0.5576, respectively). Second, in the 526 

evolution of the channel belts in analog experiments, we can clearly identify a drift phase (Fig. 8). This phase is 527 

apparent as a square root scaling of channel-belt width as a function of time (eq. 25). We find qL/k = 2.15×10-528 

5 m2/s for Run 5 (R2 = 0.9995) and qL/k = 2.62×10-5 m2/s for Run 7 (R2 = 0.9960). The exponential phase (eq. 12) 529 

can also be fitted independently (see Bufe et al., 2019). However, the data resolution is not good enough to fit 530 
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both relationships with consistent parameter values. Essentially, the resulting unconfined channel-belt width W0 531 

depends on the subjective choice of which data points to include into the fit. 532 

 533 

 534 

 535 

Fig. 2: Temporal evolution of channel-belt width in the Stochastic Benchmark and comparison between the Stochastic 536 
Benchmark and the analytical solutions. a) Modelled migration paths through time (coloured solid lines), bounded by 537 
the law of the iterated logarithm (dashed line, eq. 32), i.e., the area that the river almost surely does not crosses. Similar 538 
plots with longer runtimes can be found in Fig. 5a and Fig. 6a. The blue lines show the evolution of an unconfined river 539 
(HW/h = 1), the green lines show a moderately confined case (HW/h = 10), and the orange lines a highly confined case 540 
(HW/h = 100). b) Location density at t = 3000. The dotted line gives the theoretically expected normal distribution for 541 
the unconfined case (blue), the dashed line marks the law of the iterated logarithm. c) Average width evolution with 542 
time, showing the analytical expressions for the linear (dotted lines, eq. 1), exponential (dash-dotted lines eq. 12) and 543 
drift phases (dashed lines eq. 25). Fine solid lines show the outputs from the numerical simulation and black circles 544 
show the mean widths of these simulations in bins spaced logarithmically in time. Standard errors of the means are 545 
smaller than the symbols. R2 values for the comparisons are given in Table 1. 546 

 547 

 548 

Fig. 3: Lateral drift speed of channel belts at constant steady state width for the drift-phase. For the calculation, 549 
channel-belt width was fixed to the steady state width, i.e., whenever the channel widened the channel belt on one side, 550 
the width was reduced by the same amount on the other side. a) Channel location as a function of time for different 551 
degrees of confinement (same colour code as in Fig. 2). Note that a) does not show the entire calculated trajectories; 552 
average drift velocities were measured after 10,000 steps. b) Average drift speed as a function of steady width from the 553 
Stochastic Benchmark are shown as circles. The analytical predictions (dotted lines) of eq. (29) fit the numerical results 554 
well. c) Average drift speed as a function of lateral transport capacity with the same symbology as in b). Larger circles 555 
in b) and c) show simulations plotted in a). R2 values for the comparisons are given in Table 1. 556 
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 557 

Fig. 4: Verifying the value of the constant c (see eq. 30) by comparing unconfined steady state channel-belt width 558 
obtained from fits to the Stochastic Poisson Model (Fig. 1) to channel depth for varying simulations. We set channel 559 
width WC = 0 and k = 1 for these simulations. Then, the steady state channel-belt width and flow depth should be 560 
proportional with a constant of proportionality equal to 1/c (eq. 4). The dashed line gives the theoretically expected 561 
relationship with c = 2.2285 (eq. 30). The results show that the value of c is the same for unconfined and confined 562 
channel belts. R2 values for the comparisons are given in Table 1. 563 

 564 

 565 

Fig. 5: The results for the first passage distribution. a) Paths of models to investigate time distribution to reach a point 566 
a distance b from the origin (horizontal black line). The dashed line gives the expectation from the law of the iterated 567 
logarithm (eq. 32). In comparison to Fig. 2a, substantially longer runs in time are shown here. b) First passage time 568 
distribution of the Stochastic Benchmark (black dots show binned means) in comparison to the analytical solution 569 
(dotted blue line, eq. 33). R2 values for the comparisons are given in Table 1. 570 

 571 
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 572 

Fig. 6: The analytical results for the return time distribution, equivalent to the age distribution of sediments stored in 573 
the channel belt and comparison to data. a) Paths of 10,000 models to investigate the time distribution for the return 574 
to the origin. Once a model path reached the origin, later timesteps are not plotted. The dashed line gives the prediction 575 
of the return time from the law of the iterated logarithm (eq. 32). In comparison to Fig. 2a, substantially longer runs 576 
in time are shown here. b) Modelled return time distribution (black dots show binned means) compared to the exact 577 
analytical solution (blue, eq. 34), the power law decay in the right-hand side (RHS) tail with an exponent of -3/2 (red, 578 
eq. 35). The analytical approximation (green, eq. 36) is also shown. R2 values for the comparisons are given in Table 1. 579 

Table 1: Statistics for the comparison of the analytical results with the Stochastic Benchmark and the data 580 

Test Equation # Figure # R2 

Comparison of analytical equations to the Stochastic Benchmark 

Normal distribution of channel positions  2b 0.9550 

Width increase in the exponential phase 12 2c 0.9995 

Width increase in the drift phase 25 2c 0.9966 

Drift velocity as function of width 29 3b 0.9999 

Drift velocity as function of lateral transport capacity 29 3c 0.9999 

Verification of the value of c 30 4 0.9997 

First passage distribution 33 5b 0.9991 

Return time distribution, exact solution 34 6b 0.9953 

Return time distribution, right-hand tail 35 6b 0.9995 

Return time distribution, approximate solution 36 6b 0.9980 

Comparison of analytical equations to data 

Return time distribution, fit to Everitt (1966) 35 7 0.8434 

Return time distribution, fit to Skalak & Pizzuto (2010) 35 7 0.8168 

Return time distribution, fit to Huffman et al. (2022) 35 7 0.5576 

Drift in the experiment Run 5 25 8a 0.9995 

Drift in the experiment Run 7 25 8b 0.9960 

 581 
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 582 

Fig. 7: Floodplain age data from Everitt (1968), Skalak & Pizzuto (2010), and Huffman et al. (2022) are consistent with 583 
the -3/2 power law tail (eq. 35). R2 values for the fits are given in Table 1. 584 

 585 

 586 
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Fig. 8: Temporal evolution of the cumulative inundated area in the experiments of Bufe et al. (2016a, 2019), with data 587 
from a) Run 5 (blue) and b) Run 7 (red). Black dots give binned means, and error bars show the standard errors of the 588 
means (mostly smaller than the symbols). The dashed line is the fitted square root widening relationship with time that 589 
can be expected for the drift phase (eq. 25). R2 values for the fits are given in Table 1. 590 

5. Discussion 591 

5.1 Model predictions and overview 592 

Using the Poisson concept for the formation and evolution of channel belts, we derived a range of results that hold 593 

implications for fluvial geomorphology, quantitative landscape evolution studies, and river management 594 

(Table 2). The stochastic treatment allowed us to theoretically quantify one of the two unconstrained parameters 595 

in the model of Turowski et al. (2024). As such, apart from the factor of proportionality k in the definition of the 596 

switching timescale λ (eq. 2), all of the model parameters can be directly related to channel geometry and 597 

hydraulics. In particular, to parameterize the model, one needs measurements of flow depth h, channel width WC, 598 

and the lateral transport capacity qL. The former two have been routinely measured in the field. Yet, natural river 599 

discharge changes over time, and it is currently unclear which flood size is responsible for setting the channel belt 600 

in the long-term channel dynamics. The lateral transport capacity depends on water discharge, sediment supply 601 

and granulometry of a particular river (Bufe et al., 2019). The precise relationship is debated (e.g., Bufe et al., 602 

2019; Constantine et al., 2014; Ielpi and Lapôtre, 2019; Wickert et al., 2013), and likely depends on the 603 

characteristics of the particular river, for example its planform type (Greenberg et al., 2024; Nyberg et al., 2023). 604 

 605 

Our model has been constructed assuming a single laterally migrating channel as it constructs a channel belt 606 

between two avulsion events (Bridge and Leeder, 1979; Nyberg et al., 2023). Yet, many rivers are braided or 607 

anastomosing, featuring multiple channels. It is not clear at the moment whether our model can also be applied to 608 

those rivers. A number of points can be made, though, based on generic arguments and observations (Turowski 609 

et al., 2024). First, multiple channels would add a complexity to the model that is beyond the first-order treatment 610 

developed here. Second, Dong and Goudge (2022) argued that the belt width of both single-threat and braided 611 

channels follow a systematic trend. This may indicate that the generic model equations can be extended to 612 

encompass the belt width of braided rivers. Third, the channels in Bufe et al.’s (2016) experiments frequently split 613 

into multiple channels. Nevertheless, the square root scaling expected for the drift phase can be observed (Fig. 8), 614 

and observed narrowing of valleys in response to uplift closely follows the predicted relationship (eq. 5) (see 615 

Turowski et al., 2024). These results may indicate that multiple channels lead to an average rate and pattern of 616 

lateral migration similar to that of a single migrating channel. Fourth, Bufe et al. (2019) found that qL scales 617 

approximately linearly with water discharge in experiments featuring multiple channels. This indicates that the 618 

area affected by migrating channels is independent of the detailed distribution of water between single or multiple 619 

channels. How different channels interact by merging, splitting and crossing, and how this affects their lateral 620 

migration speed and dynamics needs to be investigated in future work. 621 

 622 
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Table 2: Overview of the analytical equations 623 

Result Comment Equation # Equation 

Channel lateral migration speed Suggested by Bufe et al. (2019) from 

experimental data. 

1 𝑉 =
𝑞𝐿
𝐻+

 

Average switching rate Derived by Turowski et al. (2024). 2 𝜆 = 𝑘
𝑞𝐿
ℎ2

 

Unconfined steady-state 

channel-belt width 

Derived by Turowski et al. (2024). 4 𝑊0 =
𝑐

𝑘
ℎ +𝑊𝐶 

Steady-state valley width Includes uplift and lateral sediment supply as 

additional input parameters in comparison to 

eq. (4). Derived by Turowski et al. (2024). 

5 
𝑊𝑉 = (

𝑞𝐿 − 𝑞𝐻
𝑈

) ln {1 +
𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} +𝑊𝐶 

Exponential approach to steady 

state 

Evolution equation in the exponential phase. 12 
𝑊(𝑡) = 𝑊0 − (𝑊0 −𝑊𝐶)exp {−

𝑡

𝜏
} +𝑊𝐶 

Governing time scale, 

unconfined case 

To be used in eq. (12). 13 & 14 
𝜏 = (𝑊0 −𝑊𝐶)

𝐻+
𝑞𝐿

=
𝑐

𝜆
 

Governing time scale, confined 

case 

To be used in eq. (12). 18 
𝜏 =

(𝑊0 −𝑊𝐶)(𝐻𝑊 − ℎ)

𝑞𝐿
= (

𝐻𝑊
ℎ
− 1)

𝑐

𝜆
 

Square root widening  Average increase of area affected by the 

channel in the drift phase, after the steady 

state width has been reached. 

25 

𝑊𝐷𝑟𝑖𝑓𝑡(𝑡) = √
2

𝑘

ℎ

𝐻𝑊
𝑞𝐿𝑡 + 𝑊𝐶 

Average drift speed  Average drift speed in the drift phase, 

assuming the channel belt keeps a constant 

width. 

29 
𝑉𝐷𝑟𝑖𝑓𝑡 =

1

√2𝑘

ℎ

𝐻𝑊

𝑞𝐿
(𝑊0 −𝑊𝐶)

 

Channel-belt limits Law of the iterated logarithm as an envelope 

to the area that the channel is unlikely to 

leave. Only valid for unconfined channel 

belts. 

32 

𝑋(𝑡) = ±2
ℎ

𝑘
√2

𝜆𝑡

𝑘
ln {ln {2

𝜆𝑡

𝑘
}} +

𝑊𝐶

2
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First-passage time distribution Distribution of times needed to reach a point 

a distance b from the origin (Lévy 

distribution). 

33 

PDF𝐹𝑃,𝑅(𝑇𝐹𝑃) =
|𝑏|

√2𝜋
ℎ
𝐻𝑊

𝑞𝐿
𝑘
𝑇𝐹𝑃

3

exp{
−𝑏2

2
ℎ
𝐻𝑊

𝑞𝐿
𝑘
𝑇𝐹𝑃

} 

Distribution of times needed to 

return to the origin 

This is equivalent to the sediment residence-

time distribution, or the age distribution of 

sediments, assuming a single deposition and 

remobilisation. The integral equation does not 

have an analytical solution.  

34 PDF𝑅𝑇(𝑇𝑅)

= ∫
𝜆

ℎ
𝐻𝑊

𝑉
exp {

−𝜆

𝑉
∆𝑥}

|∆𝑥|

√2𝜋
ℎ
𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅 −

∆𝑥
ℎ
𝐻𝑊

𝑉
)

3

exp

{
 
 
 

 
 
 

−∆𝑥2

2
ℎ
𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅 −

∆𝑥
ℎ
𝐻𝑊

𝑉
)

}
 
 
 

 
 
 

𝑑∆𝑥

ℎ
𝐻𝑊

𝑉𝑡

0

 

Analytical right-hand tail of the 

distribution of times needed to 

return to the origin 

An analytical solution for the right-hand tail 

of eq. (34). 

35 
PDF𝑅𝑇(𝑇𝑅 ≫ 0) =

𝜆

√2𝜋
(
ℎ

𝐻𝑊
𝜆𝑇𝑅)

−3 2⁄

 

Analytical approximation for the 

distribution of times needed to 

return to the origin 

Analytical approximation for eq. (34). 36 
PDF𝑅𝑇(𝑇𝑅) ≈

1

√2𝜋

ℎ

𝐻𝑊

𝑎𝜆

1 + 𝑎 (
ℎ
𝐻𝑊

𝜆𝑇𝑅)
3 2⁄
, 

𝑎 = (
3

2
)
3

(
3

2𝜋
)
3 2⁄

= 1.1135 

Value for time scaling constant c. The constant relates the average switching 

rate 𝜆 to the effective switching time ∆𝑇 (see 

eq. 3). 

30 
𝑐 =

1

√2
𝑉𝐷𝑟𝑖𝑓𝑡
𝑉

= 2.2285 

624 
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5.2 The effect of uplift 625 

In our model, we have not explicitly considered the role of uplift or net incision on the channel-belt width. Uplift increases the 

bank height encountered by the channel in lateral motion (eq. 1) and thereby slows it down. Turowski et al. (2024) included 

uplift in their steady state valley-width model and demonstrated that a competition between uplift and lateral mobility of the 

channel, described by the lateral transport capacity, determines the final width of the valley. Yet, the inclusion of uplift in the 

Stochastic Poisson Model developed herein would introduce considerable complexity into the equations. It seems unlikely that 630 

analytical solutions are possible. Here, we suggest a simple approach to circumvent this problem. We use equations (1) to (5) 

to define an effective lateral migration speed 𝑉𝑈 [LT-1] in an uplifted area  

𝑊 =
𝑐𝑉𝑈
𝜆
+𝑊𝐶 =

𝑞𝐿
𝑈
ln {1 +

𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} +𝑊𝐶 . 

(37) 

Solving for 𝑉𝑈, this yields 635 

𝑉𝑈 =
𝑘

𝑐

𝑉2

𝑈
ln {1 +

𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} 

(38) 

We thus obtain an effective variance  

𝑉𝐴𝑅 =
2

𝑘

ℎ

𝐻𝑊

𝑉𝑈
2

𝜆
𝑡 =

2

𝑘
(
𝑘

𝑐
)
2 ℎ

𝐻𝑊

𝑉4

𝑈2
𝑡

𝜆
ln2 {1 +

𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} 

2 (
𝑘

𝑐
)
2 ℎ

𝐻𝑊

𝑞𝐿
2

(𝑊0 −𝑊𝐶)𝑈2
𝑞𝐿𝑡ln

2 {1 +
𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} 640 

(39) 

Equation (39) can be used in equation (19) for the drift to account for uplift. Other results also have to be updated accordingly. 

The approach outlined above needs to be benchmarked with numerical simulations, field or experimental data. 

5.3 First-passage and floodplain age distributions 

The Lévy distribution (eq. 33) describes the time needed until the channel moves a particular distance away from its starting 645 

location. When integrated to infinity, the distribution has an infinite mean and variance. Nevertheless, it could be used, for 

example, for assessing the risk of the destruction of a building near a river channel within a given timespan.  

 

Lateral river dynamics determine the reworking of sediment in the floodplain, and, therefore, determine storage times and 

sediment ages (e.g., Bradley & Tucker, 2013). This has, for example, implications for chemical alteration of floodplain 650 

sediments, such as chemical weathering and organic carbon oxidation (e.g., Scheingross et al., 2021; Repasch et al., 2020; 

Torres et al., 2017). It has frequently been found that residence time distributions are highly skewed, and that the mean 
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residence time of sediment is much larger than their median residence time (e.g., Carretier et al., 2020; Pizzuto et al., 2017). 

Measurements of the distribution of floodplain ages have yielded a variety of contrasting behaviour (Pizzuto et al., 2017). The 

right-hand tail of the distribution of field data has been characterized both by an exponential (e.g., Huffman et al., 2022; 655 

Lancaster & Casebeer, 2007) and by a power law function (e.g., Bradley & Tucker, 2013; Pizzuto et al., 2017), in the latter 

case with exponents ranging from about -0.7 to about -1.5 (e.g., Lancaster et al., 2010; Pizzuto et al., 2017; Skalak & Pizzuto, 

2010). Pizzuto et al. (2017) used a random walk to model the stochastic downstream motion of sediment to predict power-law 

travel-time distributions with exponents that decrease with increasing length of the river system. 

 660 

Bradley & Tucker (2013) suggested that the Lévy distribution is suitable to model the distribution of floodplain ages. 

Analogous to our result for the age distribution (eq. 34), the Lévy distribution features a power-law right-hand tail with a 

scaling exponent of -3/2 (eq. 33). However, it strongly underpredicted the likelihood of small ages as generated by Bradley & 

Tucker’s (2013) numerical model. The Lévy distribution has been derived for the time of the first passage of a point a pre-

selected distance from the origin (eq. 33), and this distance cannot be equal to zero in the assumptions of the derivation. It 665 

therefore is not the correct distribution for the times to return to the origin. We derived a probability distribution for the time 

to return to the origin (eq. 34). The right-hand tail of the residence time distribution (eq. 35) exhibits the same scaling of the 

right-hand tail of the Lévy distribution (eq. 33), a power law with an exponent of -3/2 (Fig. 6b). In fact, this scaling is valid 

for any symmetric random walk, and should be independent of the precise assumptions used to set up such a random walk. It 

implies that the return-time distribution has both an infinite mean and standard deviation when integrated to infinity, similar 670 

to the distribution of first passage. This result implies that the mean age measured for a sediment body within a channel belt 

does not converge to a fixed value, but depends on the time since the onset of fluvial activity, no matter how long ago this 

onset occurred. The result implies that statements on the age of sediment in floodplains, or their chemical alteration, always 

have to be made with respect to the total age of the floodplain. A long-term average at steady state is never achieved. Further, 

it implies that some fluvial deposits are likely to survive for long times, storing information about the floodplain evolution and 675 

the history of river systems (cf. Carretier et al., 2020). The increase of the mean sediment residence time 𝑇𝑅̅̅ ̅ can be obtained 

by integrating the age distribution (eq. 34) multiplied with time, as in the integration for the mean. We can obtain the limit 

behaviour for old river systems by integrating over eq. (35) 

𝑇𝑅̅̅ ̅(𝑡) = ∫
𝜆

√2𝜋
(
ℎ

𝐻𝑊
𝜆𝑡)

−3 2⁄

𝑡𝑑𝑡
𝑇𝐴

0

= √
2

𝜋
(
𝐻𝑊
ℎ
)
3 𝑇𝐴
𝜆
. 

(40) 680 

Here, TA is the time since the formation of the channel belt. The mean residence time thus increases with the square root of 

time in this limit. In combination with eq. (35), eq. (40) can be used to estimate the age of a channel belt from sediment age 

data. 
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Our prediction of the -3/2-scaling exponent in the age distribution (eqs. 34, 35) does align with some, but not all of the 685 

measurements reported in the literature (cf. Pizzuto et al., 2017). It is consistent with the data of Everitt (1966), Skalak & 

Pizzuto (2010), and Huffman et al. (2022) that we digitised for the present study (Fig. 7), but not with the datasets reported for 

example by Lancaster et al. (2010). For our comparison, we selected data sets that, on first glance, comply with the assumptions 

underlying our Stochastic Poisson Model. The model framework is strictly valid only for processes that can be modelled by a 

lateral random walk of a single channel in an infinite domain. As such, we expect it to apply to single-thread channels without 690 

major tributaries that are undisturbed by processes other than fluvial erosion and deposition. Further, the -3/2-scaling applies 

to channels that are short enough such that sediment, once it is eroded, is not redeposited within the system, but evacuated 

downstream. Alternatively, the scaling could apply to data measured with dating methods where the date is reset after 

remobilization of sediment, for example optically stimulated luminescence (e.g., Madsen & Murray, 2009). Multiple episodes 

of deposition and erosion within the same system yields a power-law tail with an exponent that depends on the system size 695 

(Pizzuto et al., 2017). This exponent should, generally, be smaller than -3/2, because re-deposition will increase the relative 

fraction of old sediment. Even in short systems, the derived age distribution (eq. 34) cannot be expected to be universally 

applicable. We expect that channels confined in a narrow valley, or those in which processes other than lateral channel 

migration can deposit, evacuate or mobilize sediment, show different scaling behaviour. For example, the channels studied by 

Lancaster and Casebeer (2007) and Lancaster et al. (2010) are located in confined valleys where debris flows regularly supply 700 

and mobilize sediment, and exhibit age distributions with power-law scaling exponents of the order of -0.7. In narrow confined 

settings, sediment deposition and erosion may not be adequately described by a random walk. Further, the disturbance of 

fluvial deposits and lateral sediment supply by debris flows or hillslope processes may have a large effect on the age 

distribution. 

5.4 Parameter estimation and further tests 705 

The model contains a single dimensionless scaling factor, k, which is the factor of proportionality of the rate of switches of 

direction of motion of the channel λ and the ratio of the lateral transport capacity qL and the square of the flow depth h (eq. 2). 

This parameter sets the unconfined channel-belt width (eq. 4). Two strategies for measuring this parameter appear from our 

results. First, exploiting eq. (2) relies on direct measurements of the switching rate, as well as flow depth and qL. The switching 

rate λ can also be measured from the age distribution of sediment (eq. 41). Second, the width of the channel belt can be related 710 

to flow depth and channel width using eq. (4). Both approaches seem more promising in an experimental setting than in nature, 

because the necessary parameters can be either controlled or measured directly. In the field, it may be possible to obtain suitable 

data, for example, from time series of orthophotos of river reaches (e.g., Nyberg et al., 2023; Greenberg & Ganti, 2024; 

Greenberg et al., 2024) in combination with gauging data. Testing for the consistency of both approaches would be a strong 

method to falsify or validate the model. 715 
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Our model is constructed at the reach scale of the channel and does not include detailed descriptions of fluvial processes. Yet, 

it should be possible to relate it to process-based models. Here, we make a tentative relation to models of meandering channels, 

which are available at different degrees of complexity (e.g., Edwards & Smith, 2002; Ikeda et al., 1981). Camporeale et al. 

(2005) studied models of meandering rivers at increasing levels of hydraulic detail. They concluded that the steady state 720 

statistics of the meander belt are determined by only two parameters, regardless of the complexity of the model. These are a 

length scale D0 [L] proportional to the ratio of flow depth and the friction coefficient for open channel flow Cf 

𝐷0 =
ℎ

2𝐶𝑓
, 

(41) 

and a time scale T0 [T], given by  725 

𝑇0 =
𝐷0

2

𝑊𝐶𝑈𝑓𝐸
. 

(42) 

Here, Uf [LT-1] is the mean streamwise flow speed and E [-] a dimensionless ban k erodibility coefficient. Using their model 

considerations together with field observation, Camporeale et al. (2005) found that the meander belt width 𝑊𝑀𝐵  can be 

described by 730 

𝑊𝑀𝐵 = 𝛼𝐷0 =
𝛼ℎ

2𝐶𝑓
. 

(43) 

Here, α [-] is a dimensionless proportionality coefficient with a value of 40 to 50. We can use eqs. (41) to (43) to make a 

tentative connection between our landscape-scale random walk model, and the reach-scale meandering models. First, we 

note both models suggest that channel-belt width is proportional to flow depth (see eq. 4). Comparing eqs. (4) and (43), we 735 

suggest that k0 scales as  

𝑘0 =
𝑐

𝑘
=

𝛼

2𝐶𝑓
. 

(44) 

As such, we expect k to scale with the friction coefficient. Assuming Cf = 0.05 and α = 50 (see Camporeale et al., 2005), we 

obtain k = 0.0045 and k0 = 500. Second, we can assume that the governing time scale 𝜏 (eqs. 13, 14) is proportional to T0. 740 

Equating equations (14) and (42), and substituting equations (2), (41), and (43), we obtain 

 

𝑐

𝜆
=
𝑐ℎ2

𝑘𝑞𝐿
=

𝛼

2𝐶𝑓

ℎ2

𝑞𝐿
=

𝐷0
2

𝑊𝐶𝑈𝑓𝐸
= (

ℎ

2𝐶𝑓
)

2
1

𝑊𝐶𝑈𝑓𝐸
. 

(45) 

Equation (45) can be solved for qL to give 745 
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𝑞𝐿 = 2𝛼𝐶𝑓𝑊𝐶𝑈𝑓𝐸. 

(46) 

We can obtain some of the parameter values from the data used in this study. From fits to the floodplain age distributions, we 

obtain λ = 0.12 yr-1 (Everitt, 1966), λ = 0.55 yr-1 (Skalak & Pizzuto, 2010), and λ = 0.00097 yr-1 (Huffmann et al., 2022). Note 

that we assumed an unconfined channel belt for determining λ, i.e., we set HW = h. In case of confinement, the estimates change 750 

with the ratio of the flow depth and the height of the confining walls (eq. 35). The numbers for the mean rate of switching 

seem plausible, varying from biannual switches (Skalak & Pizzuto, 2010) to once in a thousand years (Huffmann et al., 2022). 

The estimates should be further refined with detailed case studies. 

5.5 Beyond the evolution of single cross sections 

In the Stochastic Poisson Model developed herein, we concentrated on a single cross section, making the assumption that each 755 

cross section evolves independently of those upstream and downstream. This assumption is likely to be a simplification when 

applied to real river systems. In particular, we can expect that a channel that locally moves laterally far from the channel 

position upstream and downstream is pulled back towards the center. That is, a channel within a particular cross section of the 

valley is less likely to further migrate laterally into the same direction if within the cross sections upstream and downstream 

the channel has not migrated as far, or is moving in the opposite direction. This effect can be included into the model by 760 

modulating the probability of switching direction λ within the cross section of interest depending on the position of its channel 

with respect to the entire river system or to the cross sections immediately upstream and downstream. We suggest that the 

behaviour can be modelled by an Ornstein-Uhlenbeck process (e.g., Uhlenbeck & Ornstein, 1930), similar to the Langevin 

equation (Langevin, 1908), which includes a term that increases the probability to move back towards the origin as a function 

of the distance from it. It is beyond the scope of the present contribution to develop such a model. We expect that the suggested 765 

approach will yield a Gaussian distribution of channel positions, with similar results to those derived herein, but additional 

dimensionless scaling factors in the variances. 

6. Conclusion 

We have described the temporal evolution of unconfined and confined channel-belt width in the framework of a random walk. 

The temporal evolution can be described in three phases, which are associated with distinct timescales. First, channel belts 770 

grow linearly before the channel switches direction. Then, the channel-belt width increases exponentially until the steady state 

width is achieved. Finally, the channel belt enters the drift phase, where it grows on average with the square root of time. Using 

the mathematics of random walks, we derived a range of other results, including the limits of the channel belt (law of the 

iterated logarithm), the distribution of times to arrive at a particular distance from the origin (first passage distribution), and 

the distribution of times until the channel returns to its origin, which is equivalent to the distribution of sediment ages within 775 

the channel belt. All results directly connect to hydraulic parameters such as flow depth, channel width, and the lateral transport 
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capacity, and the model contains a single free parameter that needs to be calibrated on data. To validate the Stochastic Poisson 

Model, model predictions were compared to numerical simulations of channel-belt evolution, field data of floodplain ages, 

and analog experiments. The comparisons strongly support the basic assumption that channel belt development can be 

described by a random walk. The predicted scaling exponent for the age distribution of floodplain sediments is consistent with 780 

observations from streams that were selected to closely align with the assumption made in the model. In experimental data 

(Bufe et al., 2016a,b, 2019), average widening proceeds with the square root of time, as expected for the drift phase. Recent 

global datasets on channel belts derived by automatic processing of remote sensing data (e.g., Dong & Goudge, 2022; 

Greenberg & Ganti, 2024, Greenberg et al., 2024; Nyberg et al., 2023) provide opportunities for comprehensive testing of the 

model. We have provided a range of analytical results (Table 2) that allow easy comparison of theory and data. These can also 785 

be directly implemented into landscape evolution models without major numerical costs, allowing a more comprehensive and 

realistic depiction of landscape dynamics. The Stochastic Poisson Model can in principle be used for forward predictions in 

the context of river management, flood hazard mitigation, and stream restoration. In addition, our work provides a theoretical 

framework to interpret observational data related to fluvial landscapes evolution, nutrient cycling, and for inverting fluvial 

strata for paleo-hydraulic conditions. In summary, all parameters of the Stochastic Poisson Model have a direct physical 790 

interpretation, and there is a single free, dimensionless scaling parameter that needs to be informed by data. As such, our 

approach can bridge across spatio-temporal scales and connect landscape-scale models with those operating on the process 

scale. 
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Symbols & Notation 

Symbol Parameter First 

appears 

in eq.  

α Dimensionless proportionality coefficient with a value of 40 to 50 [-] 42 

λ Rate parameter of the Poisson process describing the switch in the direction of river motion 

[T-1] 

2 

τ Governing timescale for the transient approach to a steady state [T] 12 

a Dimensionless constant approximately equal to 1.1135 [-] 36 

b Distance of an point of interest from the river channel at t = 0 [L] 33 

c dimensionless constant approximately equal to 2.2285 [-] 3 

Cf Open channel flow friction coefficient [-] 40 

D0 Characteristic length scale of meander belts [L] 40 

E Dimensionless bank erodibility coefficient [-] 41 

h Flow depth [L] 2 

H+ Height of the river bank in the direction of river motion [L] 1 

HW Height of the walls confining the channel belt [L] 17 

k Dimensionless constant of order 10-2 to 10-3 [-] 2 

k0 Dimensionless constant of order 102, defined by c/k [-] 4 

n Number of stochastic events, generally used for the number of steps in the random walk [-] 6 

m Number of pairs of steps in the random walk, generally defined as n/2 [-]  

qH Rate of lateral sediment supply from hillslopes or valley walls per channel length [L2 T-1] 5 

qL Lateral-transport capacity, i.e. the amount of sediment that the channel can move by lateral 

erosion per unit channel length per unit time [L2 T-1] 

1 

P Fraction of time that a river spends at any of its channel belt margin [-] 9 

Pconfined Fraction of time that a river spends at any of its channel belt margins for a confined belt [-] 15 

S Dimensionless envelope distance for the channel belt in the law of the iterated logarithm [-

] 

31 

t Time [T] 4 

t* Dimensionless time [-] 31 

Δt Average switching timescale in the Poisson process [T] 6 

T0 Characteristic time scale of meander belts [T] 41 

ΔT The characteristic length of time the river moves on average in the same direction [T] 3 

TA Time since the formation of the channel belt; age of the channel belt [T] 40 
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TFP First passage time, first point in time when the channel reaches at a point of interest located 

a distance b from the channel at at t = 0 [T] 

33 

TR Time needed to return to the origin for the first time [T] 34 

𝑇𝑅̅̅ ̅ Mean residence time of sediment [T]  

TSS Time at which the steady state width is reached [T] 27 

TW Waiting times between events in a Poisson process [T] 7 

U Uplift rate [L T-1] 5 

Uf Mean streamwise flow speed [L T-1] 41 

v Lateral speed of the river as it reaches valley-floor margins, i.e. wall toes [L T-1] 15 

V Lateral migration speed, i.e. the speed of river migrating back and forth across the valley 

floor [L T-1] 

1 

𝑉 Average lateral channel migration speed in a confined channel belt [L T-1] 23 

VDrift Average lateral speed of a channel belt with constant width during the drift phase [L T-1] 29 

VARCCB Variance of a confined channel-belt width [L2] 24 

VARUCB Variance of an unconfined channel-belt width [L2] 19 

W Channel-belt width [L] 5 

Wc River channel width [L] 4 

WDrift Width of channel belt in the drift phase [L] 19 

WMB Width of a meander belt [L] 42 

WV Valley floor width [L] 5 

W0 Unconfined channel-belt width [L] 4 

Δx Distance travelled by the channel before switching direction for the first time [L] 34 

X Envelope distance for the channel belt in the law of the iterated logarithm, dimensional 

version of S [L] 

32 

XDrift Average distance drifted in the drift phase [L] 26 
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Data availability 

Raw data for the experimental datasets are stored on the SEAD repository of Bufe et al. (2016b) with the identifier 800 

http://dx.doi.org/10.5967/M0CF9N3H. Derived quantities have been compiled from Bufe et al. (2016a,b) and Bufe et al. 

(2019). Sediment age data were digitised from the respective publications. Scripts used to generate Figures 2-7 are available 

in the publication by McNab (2024) with identifier https://doi.org/10.5281/zenodo.12806574. 
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