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Abstract. Channel belts , floodplains and fluvial valley floors form by the mobilization and deposition of 9 

sediments during the lateral migration of rivers. Channel-belt width and its temporal evolution is important for 10 

the hydraulics, hydrology, and ecology of floodplainslandscapes, and for human activities such as farming, 11 

protecting infrastructure, and natural hazard mitigation. Yet, we currently lack a comprehensive theoretical 12 

description of the width evolution of channel belts. Here, we explore the predictions of a physics-based model of 13 

channel-belt width for the transient evolution of channel belts. The model applies to laterally unconfined channel 14 

belts in foreland areas as well as to laterally confined channel belts in mountain settings (here, channel-belt width 15 

equals valley-floor width) The model builds on the assumption that the switching of direction of a laterally 16 

migrating channel can be described by a Poisson process, with a constant rate parameter related to channel 17 

hydraulics. As such, the lateral migration of the channel can be viewed as a non-standard one-dimensional random 18 

walk. In other words, at each river cross section the river randomly moves either to the left or right at a given time. 19 

The model predicts three phases in the growth of channel belts. First, before the channel switches direction for 20 

the first time, the channel belt grows linearly. Second, as long as the current width is smaller than the steady state 21 

width, growth follows an exponential curve on average. Finally, there is a drift phase, in which the channel-belt 22 

width grows with the square root of time. We exploit the properties of random walks to obtain equations for the 23 

distance from a channel that is unlikely to be inundated in a given time interval (law of the iterated logarithm), 24 

distributions of first passage times the channel requires to return to theits origin and of theto first arriveal andat a 25 

definedgiven position away from the origin return to the origin, and the mean lateral drift speed of steady state 26 

channel belts. All of the equations can be directly framed in terms of the channel’s hydraulic properties, in 27 

particular its lateral transport capacity that quantifies the amount of material that the river can move in lateral 28 

migration per unit time and channel length. FinallyThe , we derive the distribution of sediment residence timesage 29 

within the channel belt is equivalent to the distribution of times to return to the origin, and show that itswhich has 30 

a right-hand tail that follows a power-law scaling with an exponent of -1.53/2. As such, the mean and variance of 31 

ages of sediment deposits in the channel belt do not converge to stable values over time, but depend on the time 32 

since the formation of the channel belt. This result has implications for storage times and chemical alteration of 33 

floodplain sediments, and the interpretation of measured sediment ages. Our mModel predictions compare well 34 

to data of sediment-age distributions from various selectedmeasured at field sites and the temporal evolution of 35 

channel belts observed in flume experiments. Both comparisons indicate that a random walk approach adequately 36 

describes the lateral migration of channels and the formation of channel belts. The theoretical description of the 37 

temporal evolution of channel-belt width developed herein provides a framework in which observational data can 38 

be interpreted,can be used for predictions for example in hazard mitigation and stream restoration, and to invertse 39 
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fluvial strata for ambient hydraulics conditions. Further, it and may serve to connect models designed either for 40 

long geological and shortor process timescales. 41 

  42 
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1 Introduction 43 

Rivers migrate laterally. Lateral river migration establishes the channel belt, which is defined as the corridor of 44 

channel migration formed during one river-avulsion cycle (Bridge and Leeder, 1979; Nyberg et al., 2023). 45 

Channel belts include the river channel and active bars, levees and abandoned channels, and other areas affected 46 

by the river during floods or migration (Fig. 1A1a) (Nyberg et al., 2023). They can be represented by the planform 47 

area that the river has interacted with since its last avulsion, and they can be Channel belts can be either 48 

unconfined, for example in foreland areas, or confined, for example by valley walls in mountain regions (Fig. 1 49 

a&b) (e.g., Howard, 1996; Limaye, 2020; Turowski et al., 2024). . During lateral migration, rivers deposit 50 

sediment or erode previously deposited sediment, thereby affecting chemical weathering, nutrient transport, and 51 

ecology (e.g., Fotherby, 2009; Jonell et al., 2018; May et al., 2013; Miller, 1995; Naiman et al., 2010; Schumm 52 

& Lichty, 1963; Torres et al., 2017). Channel belts affect catchment hydrology, host aquifers and hydrocarbon 53 

deposits (e.g., Andersen et al., 1999; Blum et al., 2013; Bridge, 2001), and present a key location for organic 54 

carbon storage and alteration (e.g., Repasch et al., 2021). During lateral migration, rivers deposit sediment or 55 

erode previously deposited sediment, thereby affecting chemical weathering, nutrient transport, and ecology (e.g., 56 

Fotherby, 2009; Jonell et al., 2018; May et al., 2013; Miller, 1995; Naiman et al., 2010; Schumm & Lichty, 1963; 57 

Torres et al., 2017). Landforms such as backswamps or oxbow lakes, which are specific to channel belts, often 58 

host unique ecological communities that depend on regular floods (e.g., Bayley, 1991; Junk et al., 1989; Meitzen 59 

et al., 2018). Further, the exchange of sediment during lateral channel migration determines the distribution of 60 

ages of the sediment stored at and near the surface along rivers, with implications for landscape dynamics, the 61 

interpretation of fluvial stratigraphy, and nutrient cycles (e.g., Bradley & Tucker, 2013; Marr et al., 2000; Pizzuto 62 

et al., 2017; Scheingross et al., 2021). Landforms such as backswamps or oxbow lakes, which are specific to 63 

channel belts, often host unique ecological communities that depend on regular floods (e.g., Bayley, 1991; Junk 64 

et al., 1989; Meitzen et al., 2018). Finally, lateral bank erosion is an important natural hazard that can destroy 65 

agricultural areas and infrastructure (e.g., Badoux et al., 2014; Best, 2019). All of the mentioned effects make 66 

channel belts an important component of river fluvial response to environmental change (e.g., Hajek and Straub, 67 

2017). As such, they channel belts record a river’s past activity, and can be used as archives for Earth’s history 68 

on the timescale of hundreds to thousands of years (e.g., Allen, 1978; Bridge and Leeder, 1979). Channel belts 69 

can be either unconfined, for example in foreland areas, or confined, for example by valley walls in mountain 70 

regions (Fig. 1 a&b) (e.g., Howard, 1996; Limaye, 2020; Turowski et al., 2024).  71 

 72 

The long-term dynamics of channel belts have been studied separately for meandering (e.g., Camporeale et al., 73 

2005; Greenberg & Ganti, 2024; van de Lageweg et al., 2013) and braided rivers (e.g., Bertoldi et al., 2009; 74 

Limaye, 2020). Researchers have largely focused on channel characteristics and statistics, their temporal evolution 75 

and approach to a steady state. For meandering rivers, these have typically included the linear and curvilinear 76 

wavelength, the curvature of the channel, and the role of meander cuts-offs in reaching and maintaining a steady 77 

state (e.g., Camporeale et al., 2005; Howard, 1996). For braiding braided rivers, they have typically included 78 

braiding indices and planform patterns (e.g., Bertoldi et al., 2009; Egozi and Ashmore, 2009). In comparison to 79 

these statistics describing the channels within the channel belt, the belt width has received little attention. 80 

Greenberg et al. (2024) found that channel-belt area scales with floodplain reworking timescales. Reworking 81 

timescales monotonically increase as water partitions into fewer active channel threads, and as channels become 82 
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more sinuous, and thus vary between river systems with different planform types. Studying models of meandering 83 

rivers, Camporeale et al. (2005) concluded that one time and one length scale are sufficient to explain steady state 84 

characteristics of channel belts regardless of the hydrodynamic complexity of the underlying model. They 85 

suggested that channel-belt width scales with the meandering wavelength, which in turn scales with flow depth. 86 

A qualitative comparison to natural channels was favourable. Limaye (2020) postulated that channel-belt width 87 

of braided rivers scales with channel width. Using flume experiments, they he showed that both channel and belt 88 

width follow a similar scaling relationship with discharge. Turowski et al. (2024) developed a steady state model 89 

for confined and unconfined channel-belt and valley width under the assumption that switches in the direction of 90 

lateral channel migration are based on a random process with a uniform mean rate of switching in time. In their 91 

model, the unconfined steady state channel-belt width linearly depends on flow depth. The steady state width of 92 

confined channel-belt (i.e., the valley-floor width) is reduced relative to unconfined channel belts due to lateral 93 

input of sediments from adjacent valley walls.They also suggested that the steady state width of fluvial valleys is 94 

controlled by the channel-belt width.  95 

 96 

The transient temporal evolution of channel-belt width has so far hardly been explored. Limaye (2020) identified 97 

three phases of channel-belt growth in his experiments, co-occurring with distinct phases of meandering or 98 

braiding. In a first phase, the channel established a graded geometry from the initial imposed boundary condition. 99 

In the second phase, the channel belt grew rapidly, while in the third phase, it reduced its growth rate. When 100 

compared in a dimensionless framework, the switches between phases occurred at the same dimensionless time 101 

for different experimental conditions. Wickert et al. (2013) and Bufe et al. (2019) observed an exponential 102 

approach to the steady state width in experiments, when tracking the increase of the area visited by the channel 103 

over time. Hancock & Anderson (2000) suggested that the initial rapid widening rate of a channel belt and the 104 

subsequent decrease of the widening rate is due to the declining probability of the channel to be located at the belt 105 

boundary as the belt widens. This notion was regularly picked up in subsequent work (e.g., Malatesta et al., 2017; 106 

Martin et al., 2011), and has led to steady state descriptions of valley width (Tofelde et al., 2022; Turowski et al., 107 

2024). Yet, eEquations relating the growth evolution of confined and unconfined channel belts and valleys to the 108 

hydraulic conditions in the channel are currently not available. Yet, they could be useful in diverse topics. For 109 

example, they could be used as forward models for making predictions related to flood hazard assessment and 110 

stream restoration, or as inverse models to obtain paleo-hydraulic conditions from fluvial stratigraphy and 111 

depositional sequences. Further, they could provide a framework to interpret data from natural rivers with regard 112 

to nutrient cycling, channel-floodplain interactions, and ecology.  113 

 114 

Turowski et al. (2024) described lateral channel migration as a Poisson process, in which the switches in direction 115 

occur randomly in time at a constant mean rate. They subsequently focused on the mean behaviour of the model, 116 

and proceeded to derive equations for the steady state width of unconfined and confined channel belts , and of 117 

fluvial valleys. Here, we explore the predictions of their model concept for the transient approach of channel belts 118 

to their steady state width, and the consequences of a stochastic formulation for channel-belt dynamics. 119 

Specifically, we derive analytical equations describing the temporal evolution and the bounds of channel belts, 120 

their average lateral drift once they have reached a steady state, and the sediment residence-time distribution, 121 

which is equivalent to the distribution of sediment ages. Analytical results are benchmarked with stochastic 122 
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numerical simulations. We compare the model results to data from flume two experiments (Bufe et al., 2016, 123 

2019), and sediment age distributions from three field sites (Everitt, 1968; Huffman et al., 2022; Skalak & Pizzuto, 124 

2010). 125 

 126 

Fig. 1: Schematic illustration of the model concept. a) Unconfined channel belt of the Juruá River, Brazil (6.75° S, 127 
70.30° W; Map data: Google, ©2024 Maxar Technologies). b) Confined channel belt of the San Jose River, Chile (18.58° 128 
S, 69.97° W; Map data: Google, ©2024 Maxar Technologies, Airbus). (c, d) the channel switches the direction of motion 129 
after a certain timescale. It thus evolves to a steady-state width that does not change over time. In the Sstochastic 130 
Poisson Mmodel (e, f), the switching timescale is a random number. As such, the channel may migrate beyond the 131 
channel-belt limits (e) or erode the valley walls even after reaching the steady-state width. This migration can lead to a 132 
lateral drift of the unconfined or confined channel belt or the confined channel beltvalley. 133 

2 Theoretical developments 134 

In this chapter, we will briefly summarize the valleyvalley  width model by Turowski et al. (2024) (Section 2.1). 135 

Afterwards, we outline the basis of the stochastic model approach used herein (Section 2.2). Then, we derive 136 

equations for the temporal evolution of channel belts while approaching a steady state, and their lateral drift speed 137 

once they have reached steady state (Section 2.3), the limits of the channel-belt bounds (Section 2.4), the first 138 

passage distribution (Section 2.5), and the age distribution of sediment (Section 2.6). 139 

2.1 Summary of the steady state model 140 

Building on earlier work (e.g., Bufe et al., 2019; Martin et al., 2011; Tofelde et al., 2022), Turowski et al. (2024) 141 

developed a model for the steady state width of fluvial valleys (Fig. 1), which includes predictions for confined 142 

and unconfined channel belts as a special case. In the model, each cross-section contains a single channel, which 143 
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is treated as if it moves independently from those upstream and downstream. River channels are assumed to move 144 

laterally by bank erosion and deposition. The channel belt widens when the river crosses beyond the previous 145 

channel belt boundaries (Fig. 1). The lateral channel-migration speed V [L T-1] is equal to the ratio of the lateral 146 

transport capacity qL [L
2T-1] and the bank height in the direction of motion H+ [L], where qL quantifies the amount 147 

of material that the river can move in lateral direction per unit time and channel length (Bufe et al., 2019): 148 

𝑉 =
𝑞𝐿
𝐻+
. 149 

(1) 150 

Turowski et al. (2024) viewed switches in the direction of lateral motion of the river as stochastic events. These 151 

are assumed to be independent and identically distributed, with a constant mean event rate per unit time, λ [T-1], 152 

and can therefore be described by a Poisson process. The mean rate of switching λ is equal proportional to the 153 

ratio of the lateral transport capacity qL and the square of the flow depth h [L] (Turowski et al., 2024) 154 

𝜆 = 𝑘
𝑞𝐿
ℎ2
, 155 

(2) 156 

where k [-] is a dimensionless constant. We can define an effective switching time scale. This is as a constant time 157 

scale that leads to the same steady state width as is obtained from a fully stochastic model. The effective switching 158 

time scale ∆𝑇 [T] is inversely proportional to λ 159 

∆𝑇 =
𝑐

𝜆
, 160 

(3) 161 

where c [-] is a dimensionless constant of order one. Integrating over the distance travelled laterally by the channel 162 

within ∆𝑇 yields an equation for the unconfined channel-belt width W0 [L] (see Turowski et al., 2024, for details):  163 

𝑊0 = ∫ 𝑉𝑑𝑡 +𝑊𝐶

∆𝑇

0

= 𝑘0ℎ+𝑊𝐶 . 164 

(4) 165 

Here, k0 = c/k [-] is a dimensionless constant, WC [L] is the channel width, and t [T] is time. To arrive at the final 166 

equality in eq. (4), we assumed that in an unconfined channel belt that is neither incising nor aggrading, the bank 167 

height in the direction of motion, H+, is equal to the flow depth, h (cf. Turowski et al., 2024). In river valleys, the 168 

channel belt or valley floor is narrower than W0 due to uplift or lateral supply of sediment from hillslopes, and the 169 

steady-state valley-floor width WV [L] can be described by the equation (Turowski et al., 2024): 170 

𝑊𝑉 = (
𝑞𝐿 − 𝑞𝐻
𝑈

) ln{1 +
𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} +𝑊𝐶 . 171 

(5) 172 

Here, qH [L2T-1] is the lateral supply rate of hillslope sediment per unit channel length, and U [L T-1] is the uplift 173 

rate. Equation (5) predicts that river valleys reach a steady state width that depends on five input parameters (flow 174 

depth h, channel width WC, uplift rate U, lateral transport capacity qL, and lateral hillslope sediment supply qH) 175 

and one constant (k0) that needs to be determined from observations. Steady state valley width is reached when 176 

the system achieves a balance between local sediment input from hillslopes and by uplift, on the one hand, and 177 

the removal of sediment by the river, on the other hand. 178 

 179 
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In summary, in their model, Turowski et al. (2024) assume that the switches in river direction follow a Poisson 180 

process and unconfined channel belts evolve to a steady-state width determined by flow depth and channel width 181 

(eq. 4). Fluvial valleys can attain a maximum steady state width that corresponds to the unconfined channel-belt 182 

width W0. They are narrower than this unconfined width if they are affected by uplift or lateral hillslope sediment 183 

supply (eq. 5). We call this model the ‘Deterministic Poisson Mmodel’ hereafter. 184 

2.2 The Stochastic Poisson Mmodel 185 

In order to investigate the transient temporal evolution of channel-belt width, we further develop the previous 186 

model of Turowski et al. (2024). Instead of summarizing assuming the channel switches with a constant 187 

characteristic timescale, the effective switching timescale ∆𝑇 (eq. 3), we now explore the consequences of a 188 

random switching timescale. This consideration allows us to observe the transient temporal behaviour of the 189 

random-walk model for lateral river migration. We call this model the ‘Stochastic Poisson model’ Model’ 190 

hereafter. In a Poisson process, the probability mass function (PMF) that n [-] events (in this case, channel 191 

switches) occur within the average switching timescalea time of length Δt [T] is given by  192 

PMF𝑃𝑜𝑖𝑠𝑠𝑜𝑛 =
(𝜆∆𝑡)𝑛𝑒−𝜆∆𝑡

𝑛!
. 193 

(6) 194 

Both tThe expected number of events and their variance areis given by 1/(λΔt) [-] and the variance by λΔt [-]. For 195 

the derivations within this paper, we use the idea that the lateral motion of the river channel across the floodplain, 196 

in the model concept of a Poisson process, can be viewed as a non-standard one-dimensional random walk. The 197 

channel alternates between steps to the left and to the right within the cross section, thus switching direction after 198 

every step. The step length is not a constant, but a stochastic parameter equal to the waiting times between 199 

individual switching events multiplied by lateral migration speed. In a Poisson process, the waiting times TW [T] 200 

between events are exponentially distributed with a mean waiting time of 1/λ, a variance of 1/λ2, and a probability 201 

density function (PDF) given by 202 

PDF𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝑇𝑊 = 𝜆𝑒−𝜆𝑇𝑊. 203 

(7) 204 

Similarly, for constant migration speed V [L T-1], the PDF of the length of steps Δx = VΔt [L] is given by 205 

PDF∆𝑥𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 =
𝜆

𝑉
𝑒
−𝜆
𝑉
∆𝑥 . 206 

(8) 207 

In the following, we will first derive an equation for the approach to the steady state width using the ‘Deterministic 208 

Poisson Mmodel’ (Turowski et al., 2024), and then use the mathematics of random walks to explore the effects 209 

of stochasticity on the channel belt’s temporal evolution. Finally, we investigate the distribution of floodplain 210 

ages.  211 

2.3 Temporal evolution of the channel-belt width 212 

2.3.1 Approach to steady state in the ‘Deterministic Poisson Mmodel’ 213 

We first consider the evolution of the channel belt in an unconfined setting. Consider the river channel moving 214 

laterally with speed V. The channel belt widens when the river is located at and moves into the channel-belt 215 
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boundary. In contrast, if the river is not located at the boundary, or moves away from it, the channel-belt width 216 

remains unchanged. At any given time, widening can be observed with a probability P [-], which is equal to the 217 

fraction of the time the river spends widening the valley (e.g., Hancock and Anderson, 2002; Tofelde et al., 2022). 218 

The temporal evolution of channel-belt width W [L] is then governed by the differential equation (Tofelde et al., 219 

2022) 220 

𝑑𝑊

𝑑𝑡
= 𝑃𝑉. 221 

(9) 222 

Motion in either direction is equally likely, and, for a given set of hydraulic, tectonic, and sedimentological 223 

boundary conditions, V can be considered as a constant (Bufe et al., 2019; Turowski et al., 2024). In a transient 224 

phase, before the steady state width is reached, the probability of the river not widening, (i.e., 1-P,) the channel 225 

belt is equal to the ratio of the current W [L] and the maximum W0 [L] channel-belt width (Tofelde et al., 2022). 226 

Channel width WC provides a starting point and needs to be subtracted. Thus, P is given by (Turowski et al., 2024)  227 

𝑃 = 1 −
𝑊 −𝑊𝐶

𝑊0 −𝑊𝐶

=
𝑊0 −𝑊

𝑊0 −𝑊𝐶

. 228 

(10) 229 

The speed of lateral motion is equal to the ratio of the lateral transport capacity and the height of the bank in the 230 

direction of motion H+ (eq. 1). Combining eqs. (1), (9) and (10), we obtain a differential equation for channel-belt 231 

evolution 232 

𝑑𝑊

𝑑𝑡
=
𝑊0 −𝑊

𝑊0 −𝑊𝐶

𝑞𝐿
𝐻+.

 233 

(11) 234 

Solving equation (11) and applying the boundary condition that channel-belt width W is equal to WC at time t = 0, 235 

we obtain 236 

𝑊(𝑡) = 𝑊0 − (𝑊0 −𝑊𝐶)exp {−
𝑡

𝜏
} +𝑊𝐶 . 237 

(12) 238 

Here, τ is the governing timescale, which can be interpreted as a response time scale to an external perturbation 239 

(c.f. Tofelde et al., 2021). It is given by  240 

𝜏 = (𝑊0 −𝑊𝐶 )
𝐻+
𝑞𝐿
. 241 

(13) 242 

In the unconfined case, Assuming that H+ is equal to flow depth h and substituting eqs. (1) and (2) into eq. (11), 243 

we find that τ is equal to the effective switching time scale ∆𝑇 (see eqs. 3 and 4): 244 

𝜏 =
𝑐

𝜆
= ∆𝑇. 245 

(14) 246 

We can use a similar approach to describe the evolution of a channel belt that is confined by valley walls when 247 

considering that at the valley walls, the lateral migration of the river slows down (cf. eq. 1). If the valley walls are 248 

made of alluvium, the bank height H+ in eq. (9) is equal to the height of the valley wall HW [L] and eq. (1) can be 249 

used as before. However, we need to adjust eq. (10), defining an equivalent probability Pconfined for a confined 250 

channel belt. The distance d [L] is the length that a channel moves on average across the valley floor in the 251 



9 

 

effective time ΔT [T] between two events of switching the direction of motion. This distance d is the sum of the 252 

distance covered at higher speed V when moving in the floodplain, and the distance covered when moving at 253 

lower speed v [L/T] when cutting into the valley walls (cf. Tofelde et al., 2022)  254 

𝑑 = 𝑉(1 − 𝑃𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑)∆𝑇+ 𝑣𝑃𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑∆𝑇. 255 

(15) 256 

For the unconfined channel belt, we know that  257 

𝑉∆𝑇 = 𝑊0 −𝑊𝐶 . 258 

(16) 259 

Using eq. (16) to eliminate ΔT in eq. (15), and noting that d corresponds to the current width W–WC, we obtain  260 

𝑃𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 =
𝑊0 −𝑊

(𝑊0 −𝑊𝐶) (1−
𝑣
𝑉
)
=

𝑊0 −𝑊

(𝑊0 −𝑊𝐶) (1 −
𝐻𝑊
ℎ
)
. 261 

(17) 262 

Here, we used eq. (1) to substitute for V and v, using H+ = h and H+ = HW, respectively. Note that in the assumption 263 

behind eqs. (15) to (17), Pconfined for a confined valley (eq. 17) reduces to P for an unconfined floodplain (eq. 8) 264 

for v = 0 or HW = 0 (rather than v = V or HW = h). This arises from eq. (15), which yields d = VΔT for v = V, 265 

rendering Pconfined meaningless. Substituting eq. (17) into eq. (9) and integrating again yields eq. (12) with a 266 

different governing timescale τ given by  267 

𝜏 =
(𝑊0 −𝑊𝐶 )(𝐻𝑊 − ℎ)

𝑞𝐿
= (

𝐻𝑊
ℎ
− 1)

𝑐

𝜆
. 268 

(18) 269 

2.3.2 Channel belt evolution in the ‘Stochastic Poisson model’ 270 

As we did in Section 2.3.1, we first consider the evolution of the an unconfined channel belt in an unconfined 271 

plane. In the ‘Deterministic Poisson Mmodel’, we obtained an exponential approach to the steady state width (eq. 272 

12) (Section 2.3.1). In the ‘Stochastic Poisson Mmodel’, we can distinguish three different phases in the growth 273 

of the channel-belt width over time. In the first phase, before the first switch in direction occurs, width increases 274 

linearly in time. In this phase, the growth rate is determined by the speed of lateral channel migration, V in the 275 

unconfined case and v in the confined case (see eq. 1 and Section 2.3.1). In the second phase, before reaching the 276 

steady state width, the channel-belt width grows exponentially on average. This average exponential growth can 277 

be described by the same equation (eq. 12) that has been derived for the ‘Deterministic Poisson Mmodel’ (see 278 

Section 2.3.1). In the third phase, which starts approximately when the width for the first time reaches the steady 279 

state width, stochastic drift dominates. Stochastic drift arises, because, due to the random motion of the channel, 280 

there is always a finite probability to widenof widening the belt even after the steady state width has been reached. 281 

We already have equations for the linear (eq. 1) and the exponential (eq. 12) phase. In the following, we will fully 282 

exploit the stochastic properties of the model concept. In several of our considerations in this and the following 283 

sections, we use the central limit theorem, which states that the sum X of n stochastic variables with mean µ and 284 

variance σ2 is normally distributed with mean nµ and variance nσ2, if n is sufficiently large. In addition, we use 285 

the result that the sum or difference of two normally distributed parameters with means µ1 and µ2 and equal 286 

variance σ2 follow a normal distribution with mean µ1 ± µ2 and variance 2σ2. 287 

 288 
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First, we will derive an equation for widening during the drift phase using the evolution of random walks in the 289 

limit of a large number of steps. In this case, we can apply the central limit theorem. Thus, the PDF of the location 290 

of the channel can then be described by a normal distribution. In a random walk, the width of this normal 291 

distribution increases with the square root of its variance VARUCB [L2], where the subscript stands for ‘unconfined 292 

channel belt’ (e.g., Lawler & Limic, 2010):  293 

𝑊𝐷𝑟𝑖𝑓𝑡 = √VAR𝑈𝐶𝐵 +𝑊𝐶 . 294 

(19) 295 

To find an equation for the variance, we will use the concept of a random walk making steps in alternating 296 

directions with exponentially distributed step length. We consider m pairs of a total of n steps, where each of the 297 

n steps covers an average distance of V/λ. The difference of two consecutive identically exponentially distributed 298 

steps in opposite directions is described by the Laplace distribution with zero mean and variance 2V2/λ2, with the 299 

PDF 300 

PDF𝐿 =
𝜆

2𝑉
𝑒
−𝜆
𝑉
|𝑥|. 301 

(20) 302 

After each pair of two steps, the river is always in a position where it switches direction in the same way, for 303 

example from left to right. The switch in the other direction, from negative to positive, also follows eq. (20). In 304 

the limit of large m, the position of the river is given by the sum of the positions of many step pairs. The central 305 

limit theorem applies, and the normal approximation gives the distribution of locations where the river switches 306 

either from positive to negative or vice versa, with zero mean and a variance of 2𝑚 𝑉2 𝜆2⁄ = 𝑛 𝑉2 𝜆2⁄ . Finally, 307 

the channel-belt width is the difference of the switching position on either side, so the final variance needs to be 308 

multiplied by a factor of two. Applying the law of large numbers, the distance covered in the sum of all steps is 309 

equal to the number of steps times the average step length V/λ. The average time of each step is the mean waiting 310 

time 1/λ, and so we can write n = λt:  311 

VAR𝑈𝐶𝐵 = 2𝑛
𝑉2

𝜆2
= 2

𝑡

𝜆
𝑉2 =

2

𝑘
𝑞𝐿𝑡.  312 

(21) 313 

Thus, we obtain the drifted distance or the width increase due to drift from eqs. (19) and (21) as 314 

𝑊𝐷𝑟𝑖𝑓𝑡(𝑡) = √
2

𝑘
𝑞𝐿𝑡 +𝑊𝐶 . 315 

(22) 316 

For a confined channel belt, during the time the river incises into the confining walls, the speed of widening drops 317 

to qL/HW, where HW is the height of the confining wall, while it remains at qL/h, as before, when the river moves 318 

laterally within the channel belt. The average speed of motion is given by the geometric average of the two speeds, 319 

𝑉 320 

𝑉 = √𝑣𝑉 = √
ℎ

𝐻𝑊
𝑉.  321 

(23) 322 

We obtain the variance by replacing V by 𝑉 in equation (22), giving the variance VARCCB for a confined channel 323 

belt 324 
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VAR𝐶𝐶𝐵 = 2𝑡𝑉
2
𝜆⁄ = 2𝑞𝐿𝑡ℎ 𝑘𝐻𝑊⁄   325 

(24) 326 

 As before, the width during the drift phase evolves as the square root of the variance, giving 327 

𝑊𝐷𝑟𝑖𝑓𝑡(𝑡) = √2
𝑡

𝜆
𝑉 +𝑊𝐶 = √

2

𝑘

ℎ

𝐻𝑊
𝑞𝐿𝑡 +𝑊𝐶 .  328 

(25) 329 

2.3.3 Drift speed of channel belts and dimensionless scaling factor of the mean switching time scale 330 

During the drift phase, the channel belt widens laterally, increasing the area that has been reworked by the channel 331 

with the square root of time (eq. 25). Yet, growth on one side of the channel belt makes it less likely that the 332 

channel moves close to the other side. As such, parts of the channel belt may be abandoned and, for example, 333 

reclaimed by vegetation (Fig. 1E). Similarly, in the case of a vertically incising river, the channel-belt width can 334 

stay at the steady state value WV (eq. 5), while the entire belt is moving laterally, and uplift converts old parts of 335 

the channel belt to fluvial terraces. Here, we consider the case that the channel belt keeps its width constant at the 336 

steady state width, because any acquisition of area of the belt due to lateral motion on one side leads to the 337 

abandonment of an equivalent area on the other side. In this case, instead of widening, during the drift phase, the 338 

entire belt drifts laterally. We will now derive an equation for the average drift speed in this case. The average 339 

drifted distance in one direction, XDrift, is equal to the square root of the variance, as before (cf. eq. 19). Because 340 

we consider a distance, rather than the width, it is smaller by a factor of two in comparison to eq. (25), giving 341 

𝑋𝐷𝑟𝑖𝑓𝑡(𝑡) = √
1

𝑘

ℎ

𝐻𝑊
𝑞𝐿𝑡.  342 

(26) 343 

The derivative of eq. (26) with respect to time, evaluated at the time when the valley reaches its steady state width, 344 

TSS [T], gives the drift speed VDrift [LT-1]  345 

𝑉𝐷𝑟𝑖𝑓𝑡 =
1

2
√
1

𝑘

ℎ

𝐻𝑊

𝑞𝐿

𝑇𝑆𝑆
.  346 

(27) 347 

At time TSS, XDrift is equal to the steady state width W0, and we can use eq. (26) to obtain 348 

𝑇𝑆𝑆 = 𝑘
𝐻𝑊

ℎ

(𝑊0𝑊−𝑊𝐶)
2

2𝑞𝐿
.  349 

(28) 350 

Substituting eq. (28) into eq. (27) yields  351 

𝑉𝐷𝑟𝑖𝑓𝑡 =
1

√2𝑘

ℎ

𝐻𝑊

𝑞𝐿

(𝑊0𝑊−𝑊𝐶)
.  352 

(29) 353 

We can use eq. (29) to arrive at a further result, and  calculate the constant of proportionality c between the 354 

switching time scale ΔT and the rate constant λ (eq. 3). The ratio of the drift speed VDrift and the lateral migration 355 

speed of the channel V is the same as the fraction of time that the river spends widening the channel belt. This is 356 

equal to the area under a normal distribution outside one standard deviation from the mean, 𝑉𝐷𝑟𝑖𝑓𝑡 𝑉⁄ = 0.3173. 357 

Setting ℎ 𝐻𝑊⁄ = 1 and substituting 𝑞𝐿 = 𝑉ℎ, we find 358 

𝑉𝐷𝑟𝑖𝑓𝑡

𝑉
= 0.3173 =

1

√2𝑘

ℎ

(𝑊0𝑊−𝑊𝐶)
=

1

√2𝑐
.  359 
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(30) 360 

Equation (30) therefore yields c = 2.2285. 361 

 362 

2.4 Channel-belt limits 363 

We can use the properties of random walks to make a statement about the distance beyond which the river will 364 

rarely migrate over a given timescale. Knowledge of this distance may be useful to delineate zones for building, 365 

or to assess in which areas the river is likely (or not) to interact with its surrounding, for example, by reworking 366 

sediment or evacuating erosion and weathering products. In random walks, this distance is described by the law 367 

of the iterated logarithm (e.g., Kolmogoroff, 1929), which is a limit theorem that sits somewhere in between the 368 

central limit theorem and the law of large numbers. In the limit of a large number of steps, this law provides an 369 

envelope to the area that the river almost surely will not leave in its stochastic motion. Consider the sum S over 370 

the distance travelled in n steps over dimensionless time t*, which is a dimensionless stochastic variable with zero 371 

mean. The law of the iterated logarithm gives an upper and lower bound for this sum with the equation 372 

𝑆 = ±√2𝑡∗ln{ln{𝑡∗}}. 373 

(31) 374 

Here, ln denotes the natural logarithm, and the plus and minus give the upper and lower bound, respectively. We 375 

define the dimensionless step length 𝑠 = 𝜆∆𝑥 𝑉⁄ . This step length is a stochastic variable that is exponentially 376 

distributed with a mean of zero and variance equal to one (compare to eq. 7). Because the random walk has to be 377 

symmetric for eq. (31) to apply, we consider the sum S of m = n/2 pairs of steps, distributed according to the 378 

Laplace distribution (eq. 1520). Normalizing with the square root of the variance of the Laplace distribution, the 379 

dimensional distance is then given by 𝑋 = √2𝑆𝑉 𝜆⁄ . This is the distance from the origin that the channel will 380 

almost surely not cross within timescale t. The dimensionless time is given as 𝑡∗ = 2𝑉𝑡 ℎ⁄ , where the factor of 381 

two accounts for the pairs of steps. Putting everything together and adding half of the channel width, we obtain  382 

𝑋(𝑡) = √2
𝑆𝑉

𝜆
+
𝑊𝐶

2
= ±2

ℎ

𝑘
√2

𝜆𝑡

𝑘
ln {ln {2

𝜆𝑡

𝑘
}} +

𝑊𝐶

2
. 383 

(32) 384 

2.5 First passage time distribution 385 

We can derive another result that may be useful for planning and hazard mitigation purposes over long time scales, 386 

when considering regular, effective floods. The first passage time distribution (e.g., Redner, 2001) is the 387 

distribution of times until the channel reaches a point that is located a distance b [L] from the channel’s original 388 

location for the first time. This time distribution can be used, for example, to calculate a lifetime distribution of 389 

structures located a distance b from the river. In random walks, the first passage time distribution is given by a 390 

Lévy distribution. The distribution PDFFP,R of times 𝑇𝐹𝑃 [T] is given by: 391 

PDF𝐹𝑃,𝑅(𝑇𝐹𝑃) =
|𝑏|

√2𝜋
ℎ
𝐻𝑊

𝑞𝐿
𝑘
𝑇𝐹𝑃

3

exp{
−𝑏2

2
ℎ
𝐻𝑊

𝑞𝐿
𝑘
𝑇𝐹𝑃

}. 392 

(33) 393 
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2.6 Sediment residence-time distribution 394 

The probability distribution of residence times may be useful to calculate the age distribution of sediments. This 395 

is relevant, for example, for understanding weathering rates in river deposits or transfer times of sediment and 396 

carbon to the ocean (e.g., Repasch et al., 2021; Scheingross et al., 2019; Tofelde et al., 2021). The residence time 397 

distribution differs from the first passage distribution (Section 2.5), but can be derived from it. We start with a 398 

single step outward. The migrated distance Δx until the channel switches direction is then given by the exponential 399 

distribution (eq. 8). We can then use the first passage distribution (eq. 33) for the time to return to the origin by 400 

migrating again a distance b = Δx. Finally, we need to account for all possible Δx in the initial step. Assuming that 401 

the first step has to erode into the valley walls, the distribution PDFRT for the time needed to return to the origin 402 

𝑇𝑅  [T] is then given by  403 

PDF𝑅𝑇(𝑇𝑅) = ∫
𝜆
ℎ

𝐻𝑊
𝑉
exp {

−𝜆

𝑉
∆𝑥}

|∆𝑥|

√2𝜋
ℎ

𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅−

∆𝑥
ℎ
𝐻𝑊

𝑉
)

3
exp

{
 
 

 
 

−∆𝑥2

2
ℎ

𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅−

∆𝑥
ℎ
𝐻𝑊

𝑉
)

}
 
 

 
 

𝑑∆𝑥

ℎ

𝐻𝑊
𝑉𝑡

0
.  404 

(34) 405 

Unfortunately, eq. (34) does not yield an analytical solution, but can be solved numerically. However, we can find 406 

an analytical limit for the right-hand tail, when 𝑇𝑅  is large. Then, the integral reduces to  407 

PDF𝑅𝑇(𝑇𝑅 ≫ 0) = ∫
𝜆
ℎ

𝐻𝑊
𝑉

|∆𝑥|

√2𝜋
ℎ

𝐻𝑊

𝑞𝐿
𝑘
(𝑇𝑅)

3
exp {

−𝜆

𝑉
∆𝑥} 𝑑∆𝑥

∞

0
=

𝜆

√2𝜋
(
ℎ

𝐻𝑊
𝜆𝑇𝑅)

−3 2⁄

.  408 

(35) 409 

We suggest an analytical approximation for the entire distribution (eq. 34) by assuming that, for small 𝑇𝑅 , the 410 

PDF approaches a constant. Using this condition together with eq. (35) and fixing the integral to one, as required 411 

for any distribution, we obtain the function 412 

PDF𝑅𝑇(𝑇𝑅) ≈
1

√2𝜋

𝑎
ℎ
𝐻𝑊

𝜆

1 + 𝑎 (
ℎ
𝐻𝑊

𝜆𝑇𝑅)
3 2⁄ , 413 

(36a) 414 

with 415 

𝑎 = (
3

2
)
3

(
3

2𝜋
)
3 2⁄

. 416 

(36b) 417 

3. Comparison ofTesting the Stochastic Poisson Model predictions to numerical model, experiments and 418 

field data 419 

We test the model predictions in two separate ways. First, wWe use a stochastic random walk model to benchmark 420 

and check the analytical equations (Section 3.1), by explicitly using the random properties to calculate the 421 

distributions and the mean behaviour. Next to the analytical equations derived so far, this is an independent way 422 

of evaluating the Stochastic Poisson Model. We refer to this approach as the Stochastic Benchmark, and use it to 423 

check that the derivations of the analytical equations are correct. Second, we want to test the results with published 424 

experimental or field data. A full comparison of all of the results derived herein is beyond the scope of the paper. 425 
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Instead, we focus on scaling relationships that are indicative of random walks. Thus, we test whether channel belts 426 

can be described as a random walk, and validate the fundamental modelling assumptions and the approach that 427 

we used to derive the analytical equations. Two results are particularly suitable for this test. First, published 428 

distributions of floodplain sediment ages (Everitt, 1968; Huffman, 2022; Skalak & Pizzuto, 2010) (Section 3.2) 429 

allow us to measure the sediment residence time distribution and test the prediction of a -3/2 power-law scaling. 430 

Second, the temporal evolution of channel belts in braided channel experiments (Bufe et al. 2016a,b, 2019) 431 

(Section 3.3) allow us to extract the average channel-belt-width evolution during the drift phase and validate the 432 

predicted square-root scaling of average width with time during this phase. Results are then compared to two 433 

separate types of data: (i) published distributions of floodplain sediment ages (Section 3.2) (Everitt, 1968; 434 

Huffman, 2022; Skalak & Pizzuto, 2010), and (ii) the temporal evolution of channel belts in the experiments of 435 

Bufe et al. (2016a,b, 2019) (Section 3.3).y show  that are expected from a random walk, which is se data can be 436 

described by our model 437 

3.1 Numerical modelStochastic Benchmark calculations 438 

To benchmark the analytical equations, we We used a stochastic numerical random walk model, the Stochastic 439 

Benchmark, as an independent evaluation of the Stochastic Poisson Model to check the analytical equations. , The 440 

Stochastic Benchmark builds on the same assumptions used to derive the analytical results, but explicitly generates 441 

random step lengths of the channel in alternating directions, thereby generating random paths of channel 442 

migrationspecifically a non-standard random walk with non-uniform, exponentially distributed step length in 443 

alternating directions.  We ran the SSstochastic Poisson MBenchmark in many iterations, calculated the average 444 

behaviour and the corresponding distributions of the properties, and compared them to the analytical results. The 445 

analytical equations and the results from the sSPoisson MStochastic Benchmark are both fully determined and 446 

mutually independent, and there is no need to fit any free parameters. AllThe  scripts to run and evaluate the 447 

Stochastic Benchmark and to generate the figures are available in the publication by McNab (2024). Except where 448 

otherwise stated, we fixed channel width to zero, and all other free model parameters to one. For each time step, 449 

the step length was randomly picked from an exponential distribution (eq. 7), and the lateral position of the channel 450 

was tracked by alternately adding or subtracting the obtained step length from the channel’s previous position. 451 

Channel-belt width was calculated as the difference of the maximum distance that the channel had migrated into 452 

in the positive and negative directions from the origin up to the time step of interest. In this way, we generated a 453 

total of 1,000 trajectories of position and channel-belt width, each with a total length of 3,000 time steps. We 454 

repeated this exercise for ratios of valley depth to channel depth of HW/h = 1, 10 and 100, for unconfined, 455 

moderately and highly confined scenarios, respectively. We obtained the average position of the channel for bins 456 

spaced logarithmically in time. We used the unconfined width in further simulations to check the drift equation 457 

(eq. 25). For this check, we ran the random walkStochastic Benchmark, limiting the channel-belt width to the 458 

steady-state width by adjusting the other one side of the valley in an equal manner when the channel ventured 459 

beyond the channel-belt limit on one the other side of it was eroded. This procedure results in a valley of fixed 460 

width that moves laterally. We measured drift velocity for different steady state widths by varying the channel 461 

depth, for different values of the lateral transport capacity, and, as above, for ratios of valley depth to channel 462 

depth of HW/h = 1, 10 and 100, as before. These simulations were run for a total of 3,000 time steps to ensure 463 

statistical convergence. To verify the dimensionless scaling factor c that relates the mean switching time to the 464 
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rate constant λ by c/λ, we compared the unconfined steady state width for various conditions to flow depth (eq. 2) 465 

for simulations with k = 1. To obtain an independent estimate of W0 from the data, we fitted the exponential 466 

evolution equation (eq. 12) to the initial phase of channel-belt widening. To obtain the first passage distribution, 467 

we ran 10,000 simulations, each until the walk reached a dimensionless distance of 10 from the starting point., 468 

andWe used the results to construct the first passage distribution. the distribution of channel belt ages, we ran the 469 

same random walk simulations until the channel returned to the origin for the first time. We repeated the 470 

simulation 10,000 times, for a maximum of 100,000 steps. The times needed to return to the origin in each run 471 

was used to construct the distribution of sediment residence times. Similarly, to test the distribution of channel 472 

belt ages, we ran the same random walk simulations until the channel returned to the origin for the first time. We 473 

repeated the simulation 10,000 times, for a maximum of 100,000 steps. The times needed to return to the origin 474 

in each run was used to construct the distribution of sediment residence times. the first passage distribution, we 475 

ran 10,000 simulations, each until the walk reached a distance of 10 from the starting point. All scripts are 476 

available in the publication by McNab (2024). 477 

3.2 Floodplain ages from the field 478 

The -3/2 scaling in the distribution for the time needed to return to the origin (eqs. 34-36) is indicative of random 479 

walks, and thus its presence in natural data iswould be a strong indication that this modelling approach is suitable 480 

for describing the dynamics of channel belts. Yet, the controls on sediment ages in natural rivers can be 481 

complicated. Depending on the location, sediments may not only be only deposited by laterally migrating 482 

channels, but also by overbank deposition, tributaries, or other processes such as soil erosion or debris flows. We 483 

thus do not expect the sediment age distribution in every river to follow the prediction of our model (eqs. 34-36). 484 

sTo compare to predictions, we picked three channels with published age distribution that feature conditions close 485 

to the assumptions of the model: single threadt channels undisturbed by processes other than fluvial deposition 486 

and erosion (e.g., debris flows), without major tributaries in the study area. We digitised floodplain ages published 487 

by Everitt (1968) for the Little Missouri River at Watford, North Dakota, USA, by Skalak & Pizzuto (2010) for 488 

the South River near Waynesboro, Virginia, USA, and by Huffman et al. (2022) for the Powder River between 489 

Moorhead and Broadus, Montana, USA, to compare against the predicted power-law scaling (eq. 35). In the 490 

original study of Skalak & Pizzuto (2010), the cumulative distribution function (CDF) of floodplain ages is shown 491 

(their Figure 8). We estimated the PDF by numerically differentiating the CDF using a centred finite-difference 492 

scheme. Note that Skalak & Pizzuto (2010) already reported a power law scaling with an exponent close to -3/2 493 

in their study, while both Everitt (1968) and Huffman et al. (2022) interpreted their data using an exponential 494 

function. 495 

3.3 Analog Experiments 496 

We further validate the model usingagainst experimental data of Bufe et al. (2016a) and Bufe et al. (2019). 497 

Primarily, we seek evidence for the drift phase, i.e., the increase of the average channel- belt width with the square 498 

root of time with time in the later parts of the experiments. This would be a strong indication that channel belt 499 

development can be described as a random walk. Bufe et al. (2016a) and Bufe et al. (2019) conducted and analysed 500 

experiments on braided alluvial channels in a basin with dimensions of 4.8×3.0×0.6 m and filled with well-sorted 501 

silica sand (D50 = 0.52 mm). Water and sediment were supplied into the basin at a constant rate from the centre 502 
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of one of the short edges, and flowed out of the opposite side of the basin across a weir into a drain. After the start 503 

of the experiments, the system evolved into an aggrading braided channel network. Once the average aggradation 504 

rate dropped to below 20% of the input flux, a flexing metal sheet underneath the basin was used to simulate an 505 

uplifting fold. Here, we focus on 25 hours of data that was collected before the onset of uplift from Run 5, and on 506 

55 hours of data from Run 7, an experiment without uplift (see Bufe et al., 2019, for more detail). Water discharge 507 

was set to 790 ml/s in both experiments and sediment supply was 15.8 ml/s in Run 7 and 2.4 ml/s in Run 5. 508 

Positions of the channels were tracked at one-minute intervals in overhead images by using blue-dyed water (Bufe 509 

et al., 2016a) and were used to measure the rate at which the area reworked by the channel expanded over time 510 

(Bufe et al., 2016a).  511 

4. Results 512 

In general, our analytical solutions (section 2) agree well with the Monte-Carlo simulations of the random 513 

walksStochastic Benchmark (section Section 3.1) (Figs. 2-6), mostly yielding R2 > XXX0.99 (Table 1). First, we 514 

compare can compare the channel location of the channel in the Stochastic Benchmark numerical random walk 515 

model with the The law of the iterated logarithm (eq. 32) that gives an upper bound on the locations of the channel 516 

through time (Fig. 2a,b), and the expected gaussian distribution of locations (Fig. 2b). ; aAfter 3,000 steps, no 517 

simulated random walk lies outside the predicted bounds (Fig. 2a,b, Fig. 5a, Fig. 6a), and the gaussian provides a 518 

good description of the locations (R2 = 0.9962),. Further,  and wWwee can derive the total width of the channel 519 

belt in the simulations as the difference between the two outermost points visited by each random walk (Fig. 2c). 520 

The temporal evolution of these widths identify allshows all three phases – linear increase, exponential increase 521 

and square root drift – in the average temporal evolution of width, andthat are expected by the random walk model, 522 

and the analytical solutions predict the average behaviour well (Fig. 2c), with R2 values exceeding 0.99 (Table 1).  523 

Passed the exponential growth, the widening rate of the channel belt slows. Here, we definingKeeping the channel- 524 

belt width constant at the steady-state channel-belt width as the width reached beyond the exponential growth 525 

phase (see Fig. 2c). Then, we can measure a displacement of the channel belt with respect to the origin in the 526 

Stochastic Benchmark numerical experiments (Fig. 3a.), and calculate an average lateral The lateral drift velocity 527 

for each experiment. We find that the average drift velocity  of valleys at steady state is inversely proportional to 528 

valley the steady-state channel-belt width and proportional to the lateral transport capacity (Fig. 3b&c). The 529 

relationships agree with the prediction of . This proportionality is also predicted by the analytical solution , as 530 

expected from eq. (29) (dotted lines in Fig. 3b&c) with R2 values of 0.9999 (Table 1dotted lines in Fig. 3b,c). 531 

Further, we find that tThe theoretical value of the constant c = 2.2285 (eq. 30) could be verified by the 532 

simulationsThe steady state widths of the simulated unconfined random walks increases as a function of the  533 

increase linearly with channel depth following a power-law with an exponent of  c = 2.2285 as predicted by eq. 534 

30 (Fig. 4), with R2 = 0.9997 (Table 1).  535 

, with a gradient corresponding to c = 2.2285, as predicted (eq. 30) (Fig. 4). The first passage distribution (eq. 536 

33)describes the time for the random walk to reach a given distance from the origin and is plotted in Fig. 5a for 537 

the Stochastic Benchmarknumerical results. Again, the numerical resultschannel does not cross the theoretical 538 

bound given by the law of the iterated logarithm (dashed line in Fig. 5a). Moreover, Tthe mean first passage time 539 

in the Stochastic Benchmark numerical results is well fit by the analytical prediction of eq. (33) provides a good 540 

description for the simulation results (Fig. 5b), with R2 = 0.9991 (Table 1).  541 
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We found aA similar correspondence between the Stochastic Benchmarknumerical results, the bounds from the 542 

law of the iterated logarithm, and the theoretical analytical solutions exists for the The distribution of times to 543 

return to the origin (Fig. 6a-&b), with R2 = 0.9953 (Table 1). The analytical exact and approximate solutions of 544 

the Stochastic Poisson Model (eq. 34-35) (eq. 34) predicts a monotonically declining probability density with 545 

increasing return times (Fig. 6b). The analytical approximation of the age distribution (eq. 36, Fig. 6b) 546 

underpredicts the modelled ages  modelled by the Stochastic Benchmark for small ages in comparison to the exact 547 

solution, but provides an exact description of the right-hand power-law tail (Fig. 6b).  548 

 549 

OurThe scaling predicted in the analytical equations model predictions also agree well with the selecteda field 550 

and experimental datasets. First, the -3/2 power-law scaling (eq. 35) for the distribution of times to return to the 551 

origin are consistent with the data The age data from the Little Missouri River at Watford, North Dakota, USA 552 

(Everitt, (1968), the South River near Waynesboro, Virginia, USA (Skalak & Pizzuto, (2010), and the Powder 553 

River between Moorhead and Broadus, Montana, USA (Huffman et al., (2022) are consistent with the -3/2 power-554 

law scaling (eq. 35) (Fig. 6c7; R2 = 0.8434, 0.5576 and 0.8168 and 0.5576, respectively). Second,  555 

 556 

Iin the evolution of the experimental channel belts in analog experiments, we can clearly identify a drift phase 557 

(Fig. 68). This phase is apparent as a square root scaling of channel-belt width as a function of time (eq. 25). We 558 

find qL/k = 2.15×10-5 m2/s for Run 5 (R2 = XXX0.9995) and qL/k = 2.62×10-5 m2/s for Run 7 (R2 = XXX0.9960). 559 

The investigated measured age distributions are consistent with the predicted -3/2 power law scaling. This will be 560 

discussed in detail in section 5.3. The evolution of average channel-belt width in experiments shows the square 561 

root scaling with time, as expected for the drift phase (Fig. 7). The exponential phase approach(eq. 12) can also 562 

be fitted independently (see Bufe et al., 2019). However, the data resolution is not good enough to fit both 563 

relationships with consistent parameter values. Essentially, the resulting unconfined channel-belt width W0 564 

depends on the subjective choice of which data points to include into the fit. 565 

 566 

 567 

 568 

Fig. 2: Temporal evolution of channel-belt width in the Stochastic Benchmark numerical experiments and comparison 569 
between the Stochastic Benchmark numerical experiments and the analytical solutions. a) Modelled migration paths 570 
through time (coloured solid lines), bounded by the law of the iterated logarithm (dashed line, eq. 32), i.e., the area that 571 
the river almost neversurely does not crosses. Similar plots with longer runtimes can be found in Fig. 5a and Fig. 6a. 572 
The blue lines show the evolution of an unconfined river (HW/h = 1), the green lines show a moderately confined case 573 
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(HW/h = 10), and the orange lines a highly confined case (HW/h = 100). b), with the lLocation density at t = 3000 shown 574 
in b).. The dotted line on b) gives the theoretically expected normal distribution for the unconfined case (blue), the 575 
dashed line marks the law of the iterated logarithm. Colours show the unconfined case (blue, HW/h = 1), a moderately 576 
confined case (green, HW/h = 10), and a highly confined case (orange, HW/h = 100). Flow depth h = 1 in all cases.  c) 577 
Average width evolution with time, showing the analytical expressions for the linear (dotted lines, eq. 1), exponential 578 
(dash-dotted lines eq. 12) and drift phases (dashed lines eq. 25). Fine solid lines show the outputs from the numerical 579 
simulation and Bblack circles show the mean widths of these simulations in bins spaced logarithmically in time. 580 
Standard errors of the means are smaller than the symbols.  581 

 582 

 583 

Fig. 3: Lateral drift velocityspeed of channel belts at constantin a steady state width for the drift-phase. For the 584 
calculation, channel-belt width beyond the exponential phase was fixed to the steady state width, i.e., whenever the 585 
channel widened the channel belt on one side, the width was reduced by the same amount on the other side. a) Channel 586 
location as a function of time for cases different degrees of confinement (same colour code as in Fig. 2)of Hw/h. Note 587 
that a) does not show the entire calculated trajectories; average drift velocities were measured after 10,000 steps. 588 
Average drift velocity as a function of b) Average drift velocityspeed as a function of steady width and c) lateral 589 
transport capacityfrom the Stochastic Benchmark numerical experiments are shown as circles. confirm the The 590 
analytical predictions (dotted lines) of eq. (29) fit the numerical results well. Larger circles show simulations plotted in 591 
a) and . Note that a) does not show the entire calculated trajectories. Aaverage drift velocities in b) and c) wwere 592 
measured after 10,000 steps. c) Average drift velocityspeed as a function of lateral transport capacity with the same 593 
symbology as in b). Larger circles in b) and c) show simulations plotted in a). 594 

 595 

Fig. 4: Verifying the value of the constant c (see eq. 30) by comparing unconfined steady state channel-belt width 596 
obtained from fits to the sStochastic Poisson Mmodel (Fig. 1) to channel depth for varying simulations. We set channel 597 
width WC = 0 and k = 1 for these simulations. Then, the steady state channel-belt width and flow depth should be 598 
proportional with a constant of proportionality equal to 1/c (eq. 4). The blue dashed line gives the theoretically expected 599 
relationship with c = 2.2285 (eq. 30). The results also show that the value of c is the same for unconfined and confined 600 
channel belts. 601 

 602 
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 603 

Fig. 5: The analytical results for the first passage distribution. a) Paths of models to investigate time distribution to 604 
reach a point a distance b from the origin (horizontal black line). The dashed line gives the expectation from the law of 605 
the iterated logarithm (eq. 32). In comparison to Fig. 2a, substantially longer runs in time are shown here. b) Modelled 606 
fFirst passage time distribution of the numerical experimentStochastic Benchmark (black dots show binned means) in 607 
comparison to the exact analytical solution (dotted blue line, eq. 33).  608 

 609 

 610 

Fig. 6: The analytical results for the return time distribution, equivalent to the age distribution of sediments stored in 611 
the channel belt and comparison to data. a) Paths of xxx10,000 models to investigate the time distribution for the return 612 
to the origin. Once a model path reached the origin, later timesteps areit is not plotted at later timesteps. The dashed 613 
line gives the prediction of the return time from the law of the iterated logarithm (eq. 32). In comparison to Fig. 2a, 614 
substantially longer runs in time are shown here. b) Modelled return time distribution in (circlesblack dots show binned 615 
means) comparison compared to the exact analytical solution (blue, eq. 34), the power law decay in the right-hand tail 616 
with an exponent of -3/2 (red, eq. 35). The analytical approximation (green, eq. 36) is also shown. c) Floodplain age 617 
Ddata from Everitt (1968), Skalak & Pizzuto (2010), and Huffman et al. (2022) are consistent with the -3/2 power law 618 
tail. 619 

Table 1: Statistics for the comparison of the analytical results with the Stochastic Benchmark and the datas m 620 

Test Equation # Figure # R2 

Comparison of analytical equations to the Stochastic BenchmarkSPoisson M 

Normal distribution of channel positions  2b 0.9962550 

Width increase in the exponential phase 12 2c 0.99945 
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Width increase in the drift phase 25 2c 0.99626 

Drift velocity as function of width 29 3b 0.9999 

Drift velocity as function of lateral transport capacity 29 3c 0.9999 

Verification of the value of c 30 4 0.9997 

First passage distribution 33 5b 0.9991 

Return time distribution, exact solution 34 6b 0.9953 

Return time distribution, right-hand tail 35 6b 0.9995 

Return time distribution, approximate solution 36 6b 0.9980 

Comparison of analytical equations to data 

Return time distribution, fit to Everitt (1966) 35 7 0.8434 

Return time distribution, fit to Skalak & Pizzuto (2010) 35 7 0.55760.8168 

Return time distribution, fit to Huffman et al. (2022) 35 7 0.55760.8168 

Drift in the experiment Run 5 25 8a 0.9995 

Drift in the experiment Run 7 25 8b 0.9960 

 621 

 622 

Fig. 7: Floodplain age data from Everitt (1968), Skalak & Pizzuto (2010), and Huffman et al. (2022) are consistent with 623 
the -3/2 power law tail (eq. 35). R2 values for the fits are given in Table 1. 624 

 625 
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 626 

Fig. 78: Temporal evolution of the cumulative inundated area in the experiments of Bufe et al. (2016a, 2019), with data 627 
from a) Run 5 (blue) and b) Run 7 (red). Black dots give binned means, and error bars show the standard errors of the 628 
means (mostly smaller than the symbols). The dashed line is the fitted square root widening relationship with time that 629 
can be expected for the drift phase (eq. 25). R2 values for the fits are given in Table 1. 630 

5. Discussion 631 

5.1 Model predictions and overview 632 

Using the Poisson concept for the formation and evolution of channel belts, we derived a range of results that hold 633 

implications for fluvial geomorphology, quantitative landscape evolution studies, and river management  (Table 634 

Table 12). The stochastic treatment allowed us to theoretically quantify one of the two unconstrained parameters 635 

in the model of Turowski et al. (2024). As such, apart from the factor of proportionality k in the definition of the 636 

switching timescale λ (eq. 2), all of the model parameters can be directly related to channel geometry and 637 

hydraulics. In particular, to parameterize the model, one needs measurements of flow depth h, channel width WC, 638 

and the lateral transport capacity qL. The former two have been routinely measured in the field. Yet, natural river 639 

discharge changes over time, and it is currently unclear which flood size is responsible for setting the channel belt 640 
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in the long-term channel dynamics. The lateral transport capacity depends on discharge, sediment supply and 641 

granulometry of a particular river (Bufe et al., 2019). The precise dependence is debated (e.g., Bufe et al., 2019; 642 

Constantine et al., 2014; Ielpi and Lapôtre, 2019; Wickert et al., 2013), and likely depends on the characteristics 643 

of the particular river, for example its planform type (Greenberg et al., 2024; Nyberg et al., 2023). 644 

 645 

Our model has been constructed assuming a single laterally migrating channel as it constructs a channel belt 646 

between two avulsion events (Bridge and Leeder, 1979; Nyberg et al., 2023). Yet, many rivers are braided or 647 

anastomosing, featuring multiple channels. It is not clear at the moment whether the model can also be applied to 648 

those rivers. There are a number of pointsA number of points can be made, though, based on generic arguments 649 

and observations (Turowski et al., 2024). First, multiple channels would add a complexity to the model that is 650 

beyond the first-order treatment developed here. Second, the channels in Bufe et al.’s (2016) experiments 651 

frequently split into multiple channels. Nevertheless, the square root scaling expected for the drift phase can be 652 

observed (Fig. 8), and observed narrowing of valleys in response to uplift closely follows the predicted 653 

relationship (eq. 5) (see Turowski et al., 2024). ThisThese results may indicate that multiple channels lead to an 654 

average rate and pattern of lateral migration similar to that of a single migrating channel. Third, Bufe et al. (2019) 655 

found that qL scales approximately linearly with water discharges in experiments featuring multiple channels. This 656 

indicates that the area affected by migrating channels is independent of the detailed distribution of water between 657 

single or multiple channels. How different channels interact by merging, splitting and, crossing, and how this 658 

affects their lateral migration speed and dynamics needs to be investigated in future work. 659 

 660 

The investigated measured age distributions are consistent with the predicted -3/2 power law scaling. This will be 661 

discussed in detail in section 5.3. The evolution of average channel-belt width in experiments shows the square 662 

root scaling with time, as expected for the drift phase (Fig. 7). The exponential approach can be fitted 663 

independently (see Bufe et al., 2019). However, the data resolution is not good enough to fit both relationships 664 

with consistent parameter values. Essentially, the resulting unconfined channel-belt width W0 depends on the 665 

subjective choice of which data points to include into the fit. 666 
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Table 12: Overview of the analytical equations 667 

Result Comment Equation # Equation 

Channel lateral migration speed Suggested by Bufe et al. (2019) from 

experimental data. 

1 𝑉 =
𝑞𝐿
𝐻+

 

Average switching rate Derived by Turowski et al. (2024). 2 𝜆 = 𝑘
𝑞𝐿
ℎ2

 

Unconfined steady-state 

channel-belt width 

Derived by Turowski et al. (2024). 4 𝑊0 =
𝑐

𝑘
ℎ +𝑊𝐶 

Steady-state valley width Includes uplift and lateral sediment supply as 

additional input parameters in comparison to 

eq. (4). Derived by Turowski et al. (2024). 

5 
𝑊𝑉 = (

𝑞𝐿 − 𝑞𝐻
𝑈

) ln {1 +
𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} + 𝑊𝐶 

Exponential approach to steady 

state 

The governing time scale for the unconfined 

case is given by eqs. (13) and (14), and for the 

confined case by eq. (18).Evolution equation 

in the exponential phase. 

12 
𝑊(𝑡) = 𝑊0 − (𝑊0 − 𝑊𝐶)exp{−

𝑡

𝜏
} + 𝑊𝐶 

Governing time scale, 

unconfined case 

To be used in eq. (12). 13 & 14 
𝜏 = (𝑊0 − 𝑊𝐶)

𝐻+
𝑞𝐿

=
𝑐

𝜆
 

Governing time scale, confined 

case 

To be used in eq. (12). 18 
𝜏 =

(𝑊0 −𝑊𝐶)(𝐻𝑊 − ℎ)

𝑞𝐿
= (

𝐻𝑊
ℎ
− 1)

𝑐

𝜆
 

Square root widening  Average increase of area affected by the 

channel in the drift phase, after the steady 

state width has been reached. 

25 

𝑊𝐷𝑟𝑖𝑓𝑡(𝑡) = √
2

𝑘

ℎ

𝐻𝑊
𝑞𝐿𝑡 +𝑊𝐶 

Average drift speed  Average drift speed in the drift phase, 

assuming the channel belt keeps a constant 

width. 

29 
𝑉𝐷𝑟𝑖𝑓𝑡 =

1

√2𝑘

ℎ

𝐻𝑊

𝑞𝐿
(𝑊0 −𝑊𝐶)

 

Channel-belt limits Law of the iterated logarithm as an envelope 

to the area that the channel is unlikely to 

32 

𝑋(𝑡) = ±2
ℎ

𝑘
√2

𝜆𝑡

𝑘
ln {ln{2

𝜆𝑡

𝑘
}} +

𝑊𝐶

2
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leave. Only valid for unconfined channel 

belts. 

First-passage time distribution Distribution of times needed to reach a point 

a distance b from the origin (Lévy 

distribution). 

33 

PDF𝐹𝑃,𝑅(𝑇𝐹𝑃) =
|𝑏|

√2𝜋
ℎ
𝐻𝑊

𝑞𝐿
𝑘 𝑇𝐹𝑃

3

exp{
−𝑏2

2
ℎ
𝐻𝑊

𝑞𝐿
𝑘 𝑇𝐹𝑃

} 

Distribution of times needed to 

return to the origin 

This is equivalent to the sediment residence-

time distribution, or the age distribution of 

sediments, assuming a single deposition and 

remobilisation. The integral equation does not 

have an analytical solution. An analytical 

solution for the right-hand tail is given in eq. 

(35), and an analytical approximation for the 

entire distribution in eq. (36). 

34 PDF𝑅𝑇(𝑇𝑅)

= ∫
𝜆

ℎ
𝐻𝑊

𝑉
exp {

−𝜆

𝑉
∆𝑥}

|∆𝑥|

√2𝜋
ℎ
𝐻𝑊

𝑞𝐿
𝑘 (𝑇𝑅 −

∆𝑥
ℎ
𝐻𝑊

𝑉
)

3

exp

{
 
 
 

 
 
 

−∆𝑥2

2
ℎ
𝐻𝑊

𝑞𝐿
𝑘 (𝑇𝑅 −

∆𝑥
ℎ
𝐻𝑊

𝑉
)

}
 
 
 

 
 
 

𝑑∆𝑥

ℎ
𝐻𝑊

𝑉𝑡

0

 

Analytical right-hand tail of the 

distribution of times needed to 

return to the origin 

An analytical solution for the right-hand tail 

of eq. (34). 

35 
PDF𝑅𝑇(𝑇𝑅 ≫ 0) =

𝜆

√2𝜋
(
ℎ

𝐻𝑊
𝜆𝑇𝑅)

−3 2⁄

 

Analytical approximation for the 

distribution of times needed to 

return to the origin 

Analytical approximation for eq. (34). 36 
PDF𝑅𝑇(𝑇𝑅) ≈

1

√2𝜋

ℎ

𝐻𝑊

𝑎𝜆

1 + 𝑎 (
ℎ
𝐻𝑊

𝜆𝑇𝑅)
3 2⁄
, 

𝑎 = (
3

2
)
3

(
3

2𝜋
)
3 2⁄

= 1.1135 

Value for time scaling constant c. The constant relates the average switching 

rate 𝜆 to the effective switching time ∆𝑇 (see 

eq. 3). 

30 
𝑐 =

1

√2
𝑉𝐷𝑟𝑖𝑓𝑡
𝑉

= 2.2285 

668 
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Table 1: Overview of the analytical equations 670 

Result Comment Equation # 

Channel lateral migration speed Suggested by Bufe et al. (2019) from experimental data. 1 

Average switching rate Derived by Turowski et al. (2024). 2 

Unconfined steady-state channel-belt width Derived by Turowski et al. (2024). 4 

Steady-state valley width Includes uplift and lateral sediment supply as additional 

input parameters in comparison to eq. (4). Derived by 

Turowski et al. (2024). 

5 

Exponential approach to steady state The governing time scale for the unconfined case is given 

by eqs. (13) and (14), and for the confined case by eq. (18). 

12 

Square root widening  Average increase of area affected by the channel in the drift 

phase, after the steady state width has been reached. 

25 

Average drift speed  Average drift speed in the drift phase, assuming the channel 

belt keeps a constant width. 

29 

Channel-belt limits Law of the iterated logarithm as an envelope to the area that 

the channel is unlikely to leave. Only valid for unconfined 

channel belts. 

32 

First-passage time distribution Distribution of times needed to reach a point a distance b 

from the origin. 

33 

Distribution of times needed to return to the 

origin 

This is equivalent to the sediment residence-time 

distribution, or the age distribution of sediments, assuming 

a single deposition and remobilisation. The integral 

equation does not have an analytical solution. An analytical 

solution for the right-hand tail is given in eq. (35), and an 

analytical approximation for the entire distribution in eq. 

(36). 

34 

 

5.2 The effect of uplift 

In our model derivations, we have not explicitly considered the role of uplift or net incision on the channel-belt width. Uplift 

increases the bank height encountered by the channel in lateral motion (eq. 1) and thereby slows it down. Turowski et al. 

(2024) included uplift in their steady state valley-width model and demonstrated that a competition between uplift and lateral 675 
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mobility of the channel, described by the lateral transport capacity, determines the final width of the valley. Yet, the inclusion 

of uplift in the stochastic treatmentStochastic Poisson Model developed herein would introduce considerable complexities 

complexity into the equations. It seems unlikely that analytical solutions are possible. Here, we suggest a simple approach to 

circumvent this problem. We equate use equations (1) tos. (5) and (450) to define an effective lateral migration speed 𝑉𝑈 [LT-

1] in an uplifted area  680 

𝑊 =
𝑐𝑉𝑈
𝜆
+𝑊𝐶 =

𝑞𝐿
𝑈
ln {1 +

𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
}+𝑊𝐶 . 

(37) 

Solving for 𝑉𝑈, this yields 

𝑉𝑈 =
𝑘

𝑐

𝑉2

𝑈
ln {1 +

𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} 

(38) 685 

We thus obtain an effective variance  

𝑉𝐴𝑅 =
2

𝑘

ℎ

𝐻𝑊

𝑉𝑈
2

𝜆
𝑡 =

2

𝑘
(
𝑘

𝑐
)
2 ℎ

𝐻𝑊

𝑉4

𝑈2
𝑡

𝜆
ln2 {1 +

𝑈(𝑊0 −𝑊𝐶 )

𝑞𝐿
} 

2(
𝑘

𝑐
)
2 ℎ

𝐻𝑊

𝑞𝐿
2

(𝑊0 −𝑊𝐶)𝑈
2
𝑞𝐿𝑡ln

2 {1 +
𝑈(𝑊0 −𝑊𝐶)

𝑞𝐿
} 

(39) 

Equation (39) can be used in equation (19) for the drift to account for uplift. Other results also have to be updated accordingly. 690 

The approach outlined above needs to be benchmarked with numerical simulations, field or experimental data. 

5.3 First-passage and floodplain age distributions 

The Lévy distribution (eq. 33) describes the time needed until the channel moves a particular distance away from its starting 

location. When integrated to infinity, the distribution has an infinite mean and variance. Nevertheless, under the assumption 

of constant or effective flow conditions, it could be used, for example, for assessing the risk of the destruction of a building 695 

near a river channel within a given timespan.  

 

Lateral river dynamics determine the reworking of sediment in the floodplain, and, therefore, determine storage times and 

sediment ages (e.g., Bradley & Tucker, 2013). This has, for example, implications for chemical alteration of floodplain 

sediments, such as chemical weathering and organic carbon oxidation (e.g., Scheingross et al., 2021; Repasch et al., 2020; 700 

Torres et al., 2017). It has frequently been found that residence time distributions are highly skewed, and that the mean 

residence time of sediment is much larger than their median residence time (e.g., Carretier et al., 2020; Pizzuto et al., 2017). 

Measurements of the distribution of floodplain ages have yielded a variety of contrasting behaviour (Pizzuto et al., 2017). The 

right-hand tail of the distribution of field data has been characterized both, by an exponential (e.g., Huffman et al., 2022; 
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Lancaster & Casebeer, 2007) and by a power law function (e.g., Bradley & Tucker, 2013; Pizzuto et al., 2017), in the latter 705 

case with exponents ranging from about -0.7 to about -1.53/21.5 (e.g., Everitt, 1968; Lancaster et al., 2010; Pizzuto et al., 

2017; Skalak & Pizzuto, 2010). Pizzuto et al. (2017) used a random walk to model the stochastic downstream motion of 

sediment to predict power-law travel-time distributions with exponents that decrease with increasing length of the river system. 

 

Bradley & Tucker (2013) suggested that the Lévy distribution is suitable to model the distribution of floodplain ages . 710 

Analogous to our result for the age distribution (eq. 34), the Lévy distribution features a power-law right-hand tail with a 

scaling exponent of -1.53/2 (eq. 33). However, it strongly underpredicted the likelihood of small ages as generated by Bradley 

& Tucker’s (2013) numerical model. The Lévy distribution has been derived for the time of the first passage of a point a pre-

selected distance from the origin (eq. 33), and this distance cannot be equal to zero in the assumptions of the derivation.  It 

therefore is not the correct distribution for the times to return to the origin. We derived a probability distribution for the time 715 

to return to the origin (eq. 34). The right-hand tail of the residence time distribution (eq. 35) exhibits the same scaling of the 

right-hand tail of the Lévy distribution (eq. 33), a power law with an exponent of -1.53/2 (Fig. 6b). In fact, this scaling is valid 

for any symmetric random walk, and should be independent of the precise assumptions used to set up such a random walk. It 

implies that the return-time distribution has both an infinite mean and standard deviation when integrated to infinity, similar 

to the distribution of first passage. This result implies that the mean age measured for a sediment body within a channel belt 720 

does not converge to a fixed value, but depends on the time since the onset of fluvial activity, no matter how long ago this 

onset occurred. The result implies that statements on the age of sediment in floodplains, or their chemical alteration, always 

have to be made with respect to the total age of the floodplain. A long-term average at steady state is never achieved. Further, 

it implies that some fluvial deposits are likely to survive for long times, storing information about the floodplain evolution and 

the history of river systems (cf. Carretier et al., 2020). The increase of the mean sediment residence time 𝑇𝑅̅̅ ̅ can be obtained 725 

by integrating the age distribution (eq. 34) multiplied with time, as in the integration for the mean. We can obtain the limit 

behaviour for old river systems by integrating over eq. (35) 

𝑇𝑅̅̅ ̅(𝑡) = ∫
𝜆

√2𝜋
(
ℎ

𝐻𝑊
𝜆𝑡)

−3 2⁄

𝑡𝑑𝑡
𝑇𝐴

0

= √
2

𝜋
(
𝐻𝑊
ℎ
)
3 𝑇𝐴
𝜆
. 

(40) 

Here, TA is the time since the formation of the channel belt. The mean residence time thus increases with the square root of 730 

time in this limit. In combination with eq. (35), eq. (40) can be used to estimate the age of a channel belt from sediment age 

data. 

 

Our prediction of the -1.53/2-scaling exponent in the age distribution (eqs. 34, 35) does align with some, but not all of the 

measurements reported in the literature (cf. Pizzuto et al., 2017). It is consistent with the data of Everitt (1966), Skalak & 735 

Pizzuto (2010), and Huffmann et al. (2022) that we digitised for the present study (Fig. 6c7), but not with the datasets reported 
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for example by Lancaster et al. (2010). For our comparison, we selected data sets that, on first glance, comply with the 

assumptions underlying our modelStochastic Poisson Model. Our The model framework is strictly valid only for processes 

that can be modelled by a lateral random walk of a single channel in an infinite domain. As such, we expect it to apply to 

single-threadt channels without major tributaries that are undisturbed by processes other than fluvial erosion and deposition. 740 

We expect thatFurther, the -1.53/2-scaling applies to channels that are short enough such that sediment, once it is eroded, is 

not redeposited within the system, but evacuated downstream. Alternatively, it the scaling could apply to data measured with 

for dating methods where the date is reset after remobilization of sediment, for example optically stimulated luminescence 

(e.g., Madsen & Murray, 2009). Multiple episodes of deposition and erosion within the same system yields a power-law tail 

with an exponent that is dependent on the system size (Pizzuto et al., 2017). This exponent should, generally, be smaller than 745 

-3/21.5, because re-deposition will increase the relative fraction of old sediment. Even in short systems, the derived age 

distribution (eq. 34) cannot be expected to be universally applicable. We expect that channels confined in a narrow valley, or 

those in which processes other than lateral channel migration can deposit, evacuate or mobilize sediment, show different 

scaling behaviour. For example, Cedar Creek and Golden Ridge Creek, boththe channels studied by Lancaster and Casebeer 

(2007) and Lancaster et al. (2010) are located in confined valleys where debris flows regularly supply and mobilize sediment 750 

(Lancaster et al., 2010), and exhibit age distributions with power-law scaling exponents of the order of -0.7. In narrowly 

confined settings, sediment deposition and erosion may not be adequately described by a random walk. Further, the disturbance 

of fluvial deposits and lateral sediment supply bydue to debris flows or hillslope processes may have a large effect on the age 

distribution. 

5.4 Parameter estimation and further tests 755 

Two of the parameters in the model need further scrutiny. First, the hydraulic and geometric controls on the lateral transport  

capacity qL are not fully resolved. This parameter can, in principle, be investigated in experiments (e.g., Bufe et al., 2019; 

Wickert et al., 2013) and nature (e.g., Constantine et al., 2014; Greenberg & Ganti, 2024; Ielpi & Lapôtre, 2019). Bufe et al. 

(2019) presented a discussion and synthesis of the available evidence from experimental and natural channels, as well as a 

dimensionless analysis of potential control parameters. We will not further discuss this parameter here. Second, the model 760 

contains a single dimensionless scaling factor, k, which is the factor of proportionality of the rate of switches of direction of 

motion of the channel λ and the ratio of the lateral transport capacity qL and the square of the flow depth h (eq. 2). This 

parameter sets the unconfined channel-belt width (eq. 4). Two strategies for measuring this parameter appear from our results. 

First, exploiting eq. (2) relies on direct measurements of the switching rate, as well as flow depth and qL. The switching rate λ 

can also be measured from the age distribution of sediment (eq. 41). Second, the width of the channel belt can be related to 765 

flow depth and channel width using eq. (4). Both approaches seem more promising in an experimental setting than in nature, 

because the necessary parameters can be either controlled or measured directly. In the field, it may be possible to obtain suitable 

data, for example, from time series of orthophotos of river reaches (e.g., Nyberg et al., 2023; Greenberg & Ganti, 2024; 
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Greenberg et al., 2024) in combination with gauging data. Testing for the consistency of both approaches would be a strong 

method to falsify or validate the model. 770 

 

Our model is constructed at the reach scale of the channel and does not include detailed descriptions of fluvial processes. Yet, 

it should be possible to relate it to process-based models. Here, we make a tentative relation to models of meandering channels, 

which are available at different degrees of complexity (e.g., Edwards & Smith, 2002; Ikeda et al., 1981). Camporeale et al. 

(2005) studied models of meandering rivers at increasing levels of hydraulic detail. They concluded that the steady state 775 

statistics of the meander belt are determined by only two parameters, regardless of the complexity of the model. These are a 

length scale D0 [L] proportional to the ratio of flow depth and the friction coefficient of thefor open channel flow Cf 

𝐷0 =
ℎ

2𝐶𝑓
, 

(41) 

and a time scale T0 [T], given by  780 

𝑇0 =
𝐷0

2

𝑊𝐶𝑈𝑓𝐸
. 

(42) 

Here, Uf [LT-1] is the mean streamwise flow speed and E [-] a dimensionless ban k erodibility coefficient. Using their model 

considerations together with field observation, Camporeale et al. (2005) found that the meander belt width 𝑊𝑀𝐵  can be 

described by 785 

𝑊𝑀𝐵 = 𝛼𝐷0 =
𝛼ℎ

2𝐶𝑓
. 

(43) 

Here, α [-] is a dimensionless proportionality coefficient with a value of 40 to 50. We can use eqs. (41) to (43) to make a 

tentative connection between our landscape-scale random walk model, and the reach-scale meandering models. First, we 

note both models suggest that channel-belt width is proportional to flow depth (see eq. 4). Comparing eqs. (4) and (43), we 790 

suggest that k0 scales as  

𝑘0 =
𝑐

𝑘
=

𝛼

2𝐶𝑓
. 

(44) 

As such, we expect k to scale with the friction coefficient. Assuming Cf = 0.05 and α = 50 (see Camporeale et al., 2005), we 

obtain k = 0.0045 and k0 = 500. Second, we can assume that the governing time scale 𝜏 (eqs. 13, 14) is proportional to T0. 795 

Equating equationss. (14) and (42), and substituting equationss. (2), (41), and (43), we obtain 
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𝑐

𝜆
=
𝑐ℎ2

𝑘𝑞𝐿
=

𝛼

2𝐶𝑓

ℎ2

𝑞𝐿
=

𝐷0
2

𝑊𝐶𝑈𝑓𝐸
= (

ℎ

2𝐶𝑓
)

2
1

𝑊𝐶𝑈𝑓𝐸
. 

(45) 

Equation (45) can be solved for qL to give 800 

𝑞𝐿 = 2𝛼𝐶𝑓𝑊𝐶𝑈𝑓𝐸. 

(46) 

 

We can obtain some of the parameter values from the data used in this study. From fits to the floodplain age distributions, we 

obtain λ = 0.12 yr-1 (Everitt, 1966), λ = 0.55 yr-1 (Skalak & Pizzuto, 2010), and λ = 0.00097 yr-1 (Huffmann et al., 2022). Note 805 

that we assumed an unconfined channel belt for determining λ, i.e., we set HW = h. In case of confinement, the estimates change 

with the ratio of the flow depth and the height of the confining walls (eq. 35). The numbers for the mean rate of switching 

seem plausible, varying from biannual switches (Skalak & Pizzuto, 2010) to once in a thousand years (Huffmann et al., 2022). 

The estimates should be further refined with detailed case studies. 

5.5 Beyond the evolution of single cross sections 810 

In the Stochastic Poisson Mmodel developed herein, we concentrated on a single cross section, making the assumption that 

each cross section evolves independently of those upstream and downstream. This assumption is unlikely to be a simplification 

when appliedy in ato real river systems. In particular, we can expect that a channel that locally moves laterally far from the 

channel position upstream and downstream is pulled back towards the center. That is, a channel within a particular cross section 

of the valley is less likely to further migrate laterally into the same direction if within the cross sections upstream and 815 

downstream the channel has not migrated as far, or is moving in the opposite direction. This effect can be included into the 

model by modulating the probability of switching direction λ within the cross section of interest depending on the position of 

its channel with respect to the entire river system or to the cross sections immediately upstream and downstream. We suggest 

that the behaviour can be modelled by an Ornstein-Uhlenbeck process (e.g., Uhlenbeck & Ornstein, 1930), similar to the 

Langevin equation (Langevin, 1908), which includes a term that increases the probability to move back towards the origin as 820 

a function of the distance from it. It is beyond the scope of the present contribution to develop such a model. We expect that 

the suggested approach will yield a Gaussian distribution of channel positions, with similar results to those derived herein, but 

additional dimensionless scaling factors in the variances. 

6. Conclusion 

We have described the temporal evolution of unconfined and confined channel-belt width in the framework of a random walk. 825 

The temporal evolution can be described in three phases, which are associated with distinct timescales. First, channel belts 

grow linearly before the channel switches direction. Then, the channel- belt width increases exponentially until the steady state 
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width is achieved. Finally, the channel belt enters the drift phase, where it grows on average with the square root of time. Using 

the mathematics of random walks, we derived a range of other results, including the limits of the channel belt (law of the 

iterated logarithm), the distribution of times to arrive at a particular distance from the origin (first passage distribution), and 830 

the distribution of times until the channel returns to its origin, which is equivalent to the distribution of sediment ages within 

the channel belt. All results directly connect to hydraulic parameters such as flow depth, channel width, and the lateral transport 

capacity, and the model contains a single free parameter that needs to be calibrated on data. To validate the Stochastic Poisson 

Model, model predictions were compared to numerical simulations of channel-belt evolution, field data of floodplain ages, 

and analog experiments. The comparisons strongly support the basic assumption that channel belt development can be 835 

described by a random walk.  The model can in principle be used for forward predictions in the context of river management, 

flood hazard mitigation, and stream restoration, or for inverting fluvial strata for paleo-hydraulic conditions. Further, Oour 

work provides a theoretical framework to interpret observational data related to fluvial landscapes evolution, nutrient cycling, 

and channel-floodplain interactions. The predicted scaling exponent for the age distribution of floodplain sediments is 

consistent with observations from streams that were selected to closely align with the assumption made in the model. In the 840 

experimental data (Bufe et al., 2016a,b, 2019), average widening proceeds with the squarerootsquare root of time, as expected 

for the drift phase. Recent global datasets on channel belts derived by automatic processing of remote sensing data (e.g., 

Greenberg & Ganti, 2024, Greenberg et al., 2024; Nyberg et al., 2023) provide opportunities for comprehensive testing of the 

model. We have provided a range of analytical results (Table 12) that allow easy comparison of theory and data. These can 

also be directly implemented into landscape evolution models without major numerical costs, allowing a more comprehensive 845 

and realistic depiction of landscape dynamics. The Stochastic Poisson Model can in principle be used for forward predictions 

in the context of river management, flood hazard mitigation, and stream restoration. In addition, our work provides a theoretical 

framework to interpret observational data related to fluvial landscapes evolution, nutrient cycling, and for inverting fluvial 

strata for paleo-hydraulic conditions. In summary,Further, all model parameters of the Stochastic Poisson Model have a direct 

physical interpretation, and there is a single free, dimensionless scaling parameter that needs to be informed by data. As such, 850 

our approach can bridge across spatio-temporal scales and connect landscape-scale models with those operating on the process 

scale. 
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Symbols & Notation 855 

Symbol Parameter First 
appears 

in eq.  

α Dimensionless proportionality coefficient with a value of 40 to 50 [-] 42 

λ Rate parameter of the Poisson process describing the switch in the direction of river motion 

[T-1] 

2 

τ Governing timescale for the transient approach to a steady state [T] 12 

a Dimensionless constant approximately equal to 1.1135 [-] 36 

b Distance of an point of interest from the river channel at t = 0 [L] 33 

c dimensionless constant approximately equal to 2.2285 [-] 3 

Cf Open channel flow friction coefficient [-] 40 

D0 Characteristic length scale of meander belts [L] 40 

E Dimensionless bank erodibility coefficient [-] 41 

h Flow depth [L] 2 

H+ Height of the river bank in the direction of river motion [L] 1 

HW Height of the walls confining the channel belt [L] 17 

k Dimensionless constant of order 10-2 to 10-3 [-] 2 

k0 Dimensionless constant of order 102, defined by c/k [-] 4 

n Number of stochastic events, generally used for the number of steps in the random walk [-] 6 

m Number of pairs of steps in the random walk, generally defined as n/2 [-]  

qH Rate of lateral sediment supply from hillslopes or valley walls per channel length [L2 T-1] 5 

qL Lateral-transport capacity, i.e. the amount of sediment that the channel can move by lateral 

erosion per unit channel length per unit time [L2 T-1] 

1 

P Fraction of time that a river spends at any of its channel belt margin [-] 9 

Pconfined Fraction of time that a river spends at any of its channel belt margins for a confined belt [-] 15 

S Dimensionless envelope distance for the channel belt in the law of the iterated logarithm [-

] 

31 

t Time [T] 4 

t* Dimensionless time [-] 31 

Δt Average switching timescale in the Poisson process [T] 6 

T0 Characteristic time scale of meander belts [T] 41 

ΔT The characteristic length of time the river moves on average in the same direction [T] 3 

TA Time since the formation of the channel belt; age of the channel belt [T] 40 
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TFP First passage time, first point in time when the channel reaches at a point of interest located 

a distance b from the channel at at t = 0 [T] 

33 

TR Time needed to return to the origin for the first time [T] 34 

𝑇𝑅̅̅ ̅ Mean residence time of sediment [T]  

TSS Time at which the steady state width is reached [T] 27 

TW Waiting times between events in a Poisson process [T] 7 

U Uplift rate [L T-1] 5 

Uf Mean streamwise flow speed [L T-1] 41 

v Lateral speed of the river as it reaches valley-floor margins, i.e. wall toes [L T-1] 15 

V Lateral migration speed, i.e. the speed of river migrating back and forth across the valley 

floor [L T-1] 

1 

𝑉 Average lateral channel migration speed in a confined channel belt [L T-1] 23 

VDrift Average lateral speed of a channel belt with constant width during the drift phase [L T-1] 29 

VARCCB Variance of a confined channel-belt width [L2] 24 

VARUCB Variance of an unconfined channel-belt width [L2] 19 

W Channel-belt width [L] 5 

Wc River channel width [L] 4 

WDrift Width of channel belt in the drift phase [L] 19 

WMB Width of a meander belt [L] 42 

WV Valley floor width [L] 5 

W0 Unconfined channel-belt width [L] 4 

Δx Distance travelled by the channel before switching direction for the first time [L] 34 

X Envelope distance for the channel belt in the law of the iterated logarithm, dimensional 

version of S [L] 

32 

XDrift Average distance drifted in the drift phase [L] 26 
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Data availability 

Raw data for the experimental datasets are stored on the SEAD repository of Bufe et al. (2016b) with the identifier 

http://dx.doi.org/10.5967/M0CF9N3H. Derived quantities have been compiled from Bufe et al. (2016a,b) and Bufe et al. 860 

(2019). Sediment age data were digitised from the respective publications. Scripts used to generate Figures 2-7 are available 

in the publication by McNab (2024) with identifier https://doi.org/10.5281/zenodo.12806574. 
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