
1 

 

Meteorological drought projections for Australia from downscaled 

high-resolution CMIP6 climate simulations 

Rohan Eccles1, Ralph Trancoso1,2, Jozef Syktus2, Sarah Chapman1, Nathan Toombs1, Hong Zhang1, 

Shaoxiu Ma1, Ryan McGloin1 

1Climate Projections and Services, Department of Energy and Climate, Queensland Government, Brisbane, Australia 5 
2School of The Environment, The University of Queensland, Brisbane, Australia 

Correspondence to: Rohan Eccles (rohan.eccles@gmail.com) 

Abstract. Climate change is projected to lead to changes in rainfall patterns, which, when coupled with increasing 

evapotranspiration, has the potential to exacerbate future droughts. This study investigates the impacts of climate change on 

meteorological droughts in Australia using downscaled high-resolution CMIP6 climate models under three Shared 10 

Socioeconomic Pathway (SSP) scenarios. The Standardised Precipitation Index (SPI) and the Standardised Precipitation 

Evapotranspiration Index (SPEI) were used to assess changes to the frequency, duration, percent time, and spatial extent of 

droughts. There were consistent increases in droughts projected for south-west Western Australia, southern Victoria, southern 

South Australia, and western Tasmania using SPI and SPEI. There were significantly larger increases for SPEI derived 

droughts, with consistent increases projected for most of the country. The largest increases occurred at the end of the century 15 

and under the high emissions scenario (SSP370), demonstrating the influence of emissions on extreme droughts. For instance, 

if emissions reached high levels by the end of the century, the area subject to extreme drought in drought prone Southern 

Australia would be 2.8 greater than if they were kept to low levels using SPI, and 4 times greater if assessed using SPEI. The 

insights generated from these results and supplementary tailored datasets for Australian Local Government Areas and River 

Basins are essential to better inform decision making and future adaptation strategies at national, regional, and local scales.  20 
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1 Introduction 

Droughts are among the costliest climate hazards in the world, with significant ramifications for agriculture, society, and the 

environment (Cook et al., 2018). Between 1998 and 2017, droughts were estimated to have cost $2.3 trillion dollars (USD), 25 

affecting 1.5 billion people globally (United Nations, 2018). Notable recent major drought events have occurred in California 

(He et al., 2017), the Mediterranean (Kelley et al., 2015), and in Australia (Van Dijk et al., 2013). The recent Australian 

Millenium drought which lasted from 2001 to 2009 (Van Dijk et al., 2013) was estimated to have cost as much as 1.6 % of the 

nation’s gross domestic product (Horridge et al., 2005). Compared to other countries of similar population, Australia is 

disproportionately impacted by drought; ranked 5th for economic impacts of droughts and 15th for the number of people affected 30 

between 1990 and 2014 (González Tánago et al., 2016). A number of studies have highlighted the importance of droughts in 

Australia, with consequences for a range of other factors including bushfires (Devanand et al., 2024), agriculture (Xiang et al., 

2023), water supply (Maier et al., 2013), dust storms (Leys et al., 2023), and public health (Johnston et al., 2011). 

In comparison to other natural hazards, determining the onset and severity of a drought event is complex since they are 

characterised by a gradual build-up, where the largest impacts typically only emerge after many months or years (Kiem et al., 35 

2016). The definition of drought varies according to its application, but can generally be split into meteorological, hydrological, 

and agricultural droughts (Zargar et al., 2011). Meteorological droughts relate to prolonged deficits in rainfall but may be 

exacerbated through high temperatures and evaporation, hydrological droughts describe impacts on streamflow and other water 

systems (e.g., reservoirs or lakes) (Van Dijk et al., 2013), while agricultural drought primarily focus on soil moisture content 

(Zargar et al., 2011). 40 

Droughts are usually monitored and assessed through indicators and indices (Svoboda and Fuchs, 2016). Two of the most 

commonly applied indices for meteorological droughts are the Standardised Precipitation Index (SPI; McKee et al., 1993) and 

the Standardised Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010). SPI is a rainfall-based index 

derived from accumulated monthly rainfall values and can be used to describe droughts at a range of timescales and across 

different locations. When assessed at shorter timescales (~3 months), SPI has been shown to relate closely to soil moisture and 45 

agricultural droughts, while at longer timescales SPI (>12 months) it is more closely related to hydrological droughts (e.g., 

reservoirs and streams) (Zargar et al., 2011). SPEI is an extension of SPI, calculated as the difference between precipitation 

and potential evapotranspiration (P – PET), and as such better reflects changes to the overall water deficit by considering the 

impacts of both the atmospheric supply and evaporative demand on the water budget. SPEI has also been shown to be more 

closely related to agricultural impacts than SPI (Labudová et al., 2017; Xiang et al., 2023). The main advantage of the SPI and 50 

SPEI over other drought indices is that they provide multi-scalar results that are directly comparable across different regions 

and climate zones (e.g., arid vs humid regions). 

Under climate change, there is potential for more frequent and severe drought events as a result of temperature increases and 

changed precipitation patterns, particularly in already drought prone regions (Huang et al., 2016; Zhao and Dai, 2015). Several 

studies have evaluated the impacts of climate change on droughts using Global Climate Models (GCMs), which have pointed 55 
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towards increased drought risk over the 21st century for many regions, including Australia (Cook et al., 2018, 2020; IPCC, 

2023; Spinoni et al., 2020). These studies are, however, based on GCMs with coarse resolutions (~200 km), which have 

difficulty representing precipitation patterns over complex terrain (Reder et al., 2020) and as such, are not always suitable to 

provide reliable information to support adaptation and mitigation policy as well as decision-making at regional scales. 

Additionally, some studies have been reliant on a limited number of climate models, which can have large inter-model and 60 

metric-dependent discrepancies leading to uncertain results (Ukkola et al., 2018). There is therefore a need to consider multiple 

climate simulations as well as high-resolution models to account for inter-model uncertainties while simulating regional 

climate granularity. 

In order to better represent small-scale features and processes, Regional Climate Models (RCMs) have been employed for 

drought projection studies across different regions (Gao et al., 2017; Secci et al., 2021; Spinoni et al., 2018), including for 65 

regions within Australia (Herold et al., 2021; Syktus et al., 2020). RCMs have been shown to have improved skill in 

representing patterns of local precipitation and the impacts of topography, coasts, and land-use changes compared to GCMs 

(Boé and Terray, 2014; Chapman et al., 2023; Grose et al., 2019; Tian et al., 2013). These models (GCMs and RCMs) are the 

best physically-based approaches currently available to understand future drought processes, characteristics and impacts.  

Several studies have considered the impacts of climate change on droughts across Australia (Kirono et al., 2011, 2020; Kirono 70 

and Kent, 2011; Mpelasoka et al., 2008) or within a sub-section of the continent (Feng et al., 2019; Herold et al., 2021; Shi et 

al., 2020). Mpelasoka et al. (2008) estimated that soil-moisture based drought frequency would increase by 20-40% over most 

of Australia by the 2030s compared to 1975-2004. Similar increases in drought extent were projected for most regions by 

(Kirono et al., 2011; Kirono and Kent, 2011). More recently, Kirono et al. (2020) applied SPI and Standardised Soil Moisture 

Index (SSMI) to calculate projected future droughts using an ensemble of 37 raw Coupled Model Intercomparison Project 75 

(CMIP5) GCMs. They projected significant increases to drought hazard metrics, except for frequency, with greater increases 

for the SSMI compared to SPI. Herold et al. (2021) used SPI derived from 3 months of accumulated rainfall to investigate 

changes to 1-in-20-year drought events across southeast Australia with an ensemble of four RCMs. They projected these events 

would occur approximately 1-in-5 years by the end of the century for large parts of southeast Australia. These studies have, 

however, relied on projections derived from CMIP5 or earlier. A number of studies have evaluated how future droughts are 80 

projected to change based on the latest CMIP6 GCMs (Cook et al., 2020; Wang et al., 2021; Zeng et al., 2022; Zhao and Dai, 

2022), which point to increased meteorological droughts for much of Australia (Ukkola et al., 2020; Vicente-Serrano et al., 

2022) despite the uncertainties in precipitation (Trancoso et al., 2024). However, research to date has largely focussed on 

applying coarse GCM outputs to assess future droughts, which are not appropriate to infer drought-related processes at regional 

scales, especially in a drought prone country such as Australia. 85 

This study expands on the available body of knowledge for future meteorological droughts in Australia, employing an 

ensemble of 60 CMIP6 high-resolution simulations (15 historical and 45 future simulations) dynamically downscaled as part 

of the Queensland Future Climate Science Program (QFCSP) to a 10 km resolution over the whole of Australia (Chapman et 

https://doi.org/10.5194/egusphere-2024-2341
Preprint. Discussion started: 29 July 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

 

al., 2023). These projections form part of a national strategy for climate projections and underpin Queensland’s climate services 

and adaptation planning. The objectives of this contribution are: 90 

i) to assess changes in future projected meteorological droughts, including the frequency of occurrence, duration, 

spatial extent, and percent time in drought estimated using SPI and SPEI; 

ii) to compare changes in droughts between three different emissions pathways, two categories of drought 

severity, and two drought indices; 

iii) to evaluate how different climatic regions of the Australian continent are projected to experience future 95 

droughts under three different emissions pathways and estimate the time of emergence for significant shifts to 

occur. 

2 Methodology 

2.1 Study Area 

This study evaluated changes to drought indices for the entire Australian continent, which encompasses a range of climate 100 

regions, including equatorial, tropical, sub-tropical, temperate, Mediterranean, and arid regions. We assess drought changes to 

four Natural Resource Management (NRM) super-clusters for Australia, namely; Eastern Australia, Northern Australia, 

Rangeland, and Southern Australia, which are grouped based on a combination of climate and biophysical factors and have 

been widely adopted within Australia (Grose et al., 2020; Kirono et al., 2020) for assessing the impacts of climate change (Fig. 

1). 105 

 

 

Figure 1: Extent of study area and sub regions adopted in this study showing NRM super-clusters for the whole of Australia with 

elevation derived from SRTM (Shuttle Radar Topography Mission) in metres above sea level (mASL). 
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 110 

2.2 Data 

We used an ensemble of 60 downscaled climate model simulations derived from 11 different CMIP6 GCMs (Table 1), some 

model variants were downscaled multiple times. The ensemble consists of 15 runs for historical simulations and three sets of 

15 runs for future simulations under three Shared Socioeconomic Pathways (SSP126, SSP245 and SSP370), representing low, 

moderate, and high-emissions pathways, respectively. The ensemble of GCMs used in this study was selected in order to best 115 

represent the future spread in the climate change signal from the ensemble of global CMIP6 models, while prioritising models 

which were better able to represent the Australian climate (Trancoso et al., 2023). Dynamic downscaling was performed for 

the full ensemble of GCMs using the Conformal Cubic Atmospheric Model (CCAM; Scientific description - CCAM.) 

developed by CSIRO (McGregor and Dix, 2008). CCAM was run using a stretched C288 grid, which consists of a model 

resolution of approximately 10 km for Australia. A downscaling approach outlined by Hoffman et al. (2016) was applied for 120 

this purpose, which involved correcting for modelled biases in sea surface temperatures and sea ice. This approach has been 

found to improve the simulations of climate from CCAM and other regional climate models (Hoffmann et al., 2016; Kim et 

al., 2020; Lim et al., 2019). Five of the CCAM simulations were run using dynamic atmosphere-ocean coupling as presented 

in Table 1. The downscaling approach adopted was shown to significantly improve the performance over the host GCMs for 

precipitation and temperature in all seasons, with the largest improvements noted for climate extremes (Chapman et al., 2023).  125 

We used observational data to evaluate the SPI and SPEI indices during the historical period (1980 – 2010). Daily gridded 

precipitation data with a spatial resolution of 0.05° (approximately 5 km) were obtained from the Australian Gridded Climate 

Data Project (AGCD; Evans et al., 2020). While daily gridded (resolution of 0.05°) PET data derived from the Penmen 

Monteith reference crop equation was obtained from the Australian Water Outlook. All observational data was re-gridded to 

the same grid resolution as the downscaled climate projections using distance weighting interpolation for precipitation and 130 

bilinear interpolation for PET.  
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Table 1. Details of the 15 climate model simulations downscaled from 11 CMIP6 GCMs considered in this study.  

CMIP6 Model Model full name Resolution Ensemble 

member 

CCAM setup 

ACCESS-ESM1.5 Australian Community Climate and Earth 

System Simulator, version 1.5 

1.875 x 1.25° r6i1p1f1 atmospheric 

r20i1p1f1 atm-ocean coupled 

r40i1p1f1 atm-ocean coupled 

ACCESS_CM2 Australian Community Climate and Earth 

System Simulator, version 2 

1.875 x 1.25° r2i1p1f1 atm-ocean coupled 

CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti 

Climatici 

0.9 x 1.25° r1i1p1f1 atmospheric 

CNRM-CM6-1-

HR 

Centre National de Recherches 

Météorologiques Coupled Global Climate 

Model, version 6.1, high-resolution 

0.5 x 0.5° r1i1p1f2 atmospheric 

r1i1p1f2 atm-ocean coupled 

EC-Earth3 European Community Earth-System Model, 

version 3 

0.8 x 0.8° r1i1p1f1 atmospheric 

FGOALS-g3 Flexible Global Ocean-Atmosphere-Land 

System Model, grid point version 3  

2.5 x 2.5 r4i1p1f1 atmospheric 

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory Earth 

System Model, version 4 

1 x 1° r1i1p1f1 atmospheric 

GISS-E2-2-G Goddard Institute for Space Studies Model 

E2.2G 

2. x 2.5° r2i1p1f2 atmospheric 

MPI-ESM1-2-LR Max Planck Institute Earth System Model, 

version 1.2, low resolution 

1.9 x 1.9  r9i1p1f1 atmospheric 

MRI-ESM2-0 Meteorological Research Institute Earth System 

Model, version 2.0 

1.125 x 

1.125° 

r1i1p1f1 atmospheric 

NorESM2-MM Norwegian Earth System Model, version 2, 1 

degree resolution 

1 x 1° r1i1p1f1 atmospheric 

r1i1p1f1 atm-ocean coupled 

 

2.3 Drought Indices 145 

We used the SPI and SPEI indices to assess changes to future meteorological droughts based on downscaled climate 

simulations. SPI reflects changes to precipitation only, while SPEI is calculated from the difference between precipitation and 
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PET and therefore reflects changes to the overall water deficit by considering the impacts of increased temperatures and 

evaporative demand in addition to atmospheric water supply. To calculate SPEI, we apply PET derived from the Penman-

Monteith reference crop method (Allen et al., 1998), which is a physically-based approach. This was calculated offline using 150 

daily CCAM outputs of solar radiation, vapour pressure, maximum and minimum temperature, mean sea level pressure, and 

wind speed. 

PET and precipitation data were aggregated to monthly totals for all grid cells and used to calculate SPI and SPEI with the 

SPEI R Package (Beguería et al., 2017). For SPI, we fitted precipitation data to the gamma distribution, while for SPEI we 

fitted the difference between precipitation and PET to the log-logistic distribution as recommended by Vicente-Serrano et al. 155 

(2010). Normality tests were performed using the Shapiro-Wilk test at the 95% confidence level on the derived SPI and SPEI 

to ensure the grid cells conformed to normality. Most grid cells (over 85%) conformed to normality for all months (Fig. S1 in 

the supplementary materials). As the outputs follow a normal distribution, different categories of drought and also wetness 

may be classified according to the calculated SPI/SPEI Z-value. Table 2 shows the adopted classification scheme used for both 

SPI and SPEI as suggested by McKee et al. (1993).  160 

 

Table 2. SPI and SPEI drought classification table following McKee et al. (1993) with associated probability of event from the chosen 

calibration period 

SPI/SPEI values Categories Probability of event 

SPI/SPEI ≤ -2 Extreme drought 2.3% 

-2.0 < SPI/SPEI ≤ -1.5 Severe drought 4.4% 

-1.5 < SPI/SPEI ≤ -1.0 Moderate drought 9.2% 

-1.0 < SPI/SPEI < 1.0 Near normal 68.2% 

1.0 ≤ SPI/SPEI < 1.5 Moderate wet 9.2% 

1.5 ≤ SPI/SPEI < 2.0 Severe wet 4.4% 

SPI/SPEI ≥ 2.0 Extreme wet 2.3% 

 

A variety of different accumulation periods may be applied when calculating the SPI/SPEI, ranging from 1 to 48 months. 165 

Smaller accumulation periods (1 to 3 months) can be used to assess impacts on systems that are quick to respond to droughts 

(e.g., soil moisture and small creek flows), while longer accumulation periods (12 to 48 months) better reflect the impacts to 

slower-responding systems to water deficits, such as groundwater and reservoir levels. We adopted a 12-month accumulation 

period for our assessments of SPI and SPEI as this was considered as a suitable timeframe for water deficits to impact various 

hydrological and agricultural systems (Zargar et al., 2011). 170 

When assessing droughts using historical data, the full period of historical data available is generally used to fit the distribution, 

with the World Meteorological Organisation recommending a minimum of 30 years (Svoboda et al., 2012). However, when 

assessing changes to these indices as a result of climate change, a historic calibration period is commonly adopted to fit the 

distribution. The derived transfer function from the calibration period is then applied to estimate the SPI and SPEI for the 
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future period, allowing for a comparison of projected future dryness and wetness compared to the recent past. For our 175 

assessment, we have adopted a calibration period from 1981-2010 to fit the distribution, which was used to calculate SPI and 

SPEI over the full timeseries, containing both historical and future simulations (1981-2100).  

The SPI and SPEI timeseries results are calculated at the grid-cell scale for the observational data and for the ensemble of 

downscaled climate simulations and are used to detect the occurrence of droughts. For the sake of validation, projected 

droughts from historical simulations were compared against those estimated from observational data. A drought event is 180 

defined when the SPI or SPEI falls below a value of -1 and finishes once the value exceeds -1 again. The definitions for the 

categories of drought severity are presented in Table 2. In this study, we focus on the changes to all droughts (moderate, severe, 

and extreme) and to extreme droughts. Metrics relating to the frequency, duration, spatial extent, and percent time in drought 

were calculated for each of the drought categories. Here, the frequency is defined as the total number of events recorded over 

a given time period, the duration is the average duration of recorded drought events (in months), the percent time in drought 185 

is the fraction of time droughts occur, and the spatial extent is the percent of a region in drought. We evaluated the biases in 

the drought metrics from each of the climate models considered compared to the observational data over the period used to fit 

the distributions (1981-2010).  

2.4 Climate Change Assessment 

We assessed the impacts of climate change on droughts for the 2050s (2041-2060) and the 2090s (2081-2100) relative to the 190 

1995-2014 reference period, which is in line with the IPCC assessment. The historical simulations were used to benchmark 

the reference period while future simulations were used to quantify the climate change impacts. Results from each of the 45 

future simulations were evaluated individually and in a weighted model ensemble, which adopted a one model one vote rule. 

This weights the models according to the number of downscaled simulations per host model (i.e., the three ACCESS-ESM1-

5 models were averaged to a single model, while the two NorESM2-MM and CNRM-CM6-1-HR were also averaged), 195 

resulting in an 11-model average. Results in this paper are assessed across the four NRM super cluster regions (Fig. 1). 

Additional supplementary datasets tailoring projected drought impacts to Australian Local Government Areas and River Basins 

are also made available (Eccles, 2024). 

We evaluated timeseries results for the individual models and the ensemble average. For this purpose, a 20-year moving 

average was applied to determine long-term changes to SPI and SPEI values and to remove year-to-year variability. Outputs 200 

of both SPI and SPEI follow a normal distribution, with defined probabilities of occurrence for the different drought categories 

in the calibration period (Table 2). We therefore assessed when significant changes to the long-term average values occurred 

based on a 10% and 20% shift to the probability. A 10% shift towards dryness corresponded to the 40 th percentile of SPI and 

SPEI results from the calibration period, while a 20% shift corresponded to the 30 th percentile. The goal of this analysis was 

to determine the time of emergence for significant shifts in the long-term climate to take place and to compare the results 205 

across regions and emissions scenarios. We also evaluated changes to the probability density function (PDF) of the SPI and 
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SPEI to determine changes to the distribution of the different drought events. This was further applied to assess the changes to 

the percentage of area under drought for the four NRM super-clusters assessed.  

3 Results 

3.1 Validation of Projected Droughts 210 

We compared differences between CCAM derived metrics of droughts and those derived from observational products for the 

calibration period (1981-2010) to quantify the biases of the historical simulations. The metrics derived from historical 

simulations for individual model runs tended to over-estimate SPI-based metrics and underestimate SPEI-based metrics, when 

compared against observational data (Fig. 2). The variability of biases across individual model runs was expected as 

heterogeneous runs from host GCM models were selected to estimate future model uncertainty. However, biases to the 215 

ensemble average were substantially reduced, denoting a good match to the observational data, particularly for SPEI.  

 

 

Figure 2: Comparison of the differences in calculated metrics of drought and extreme droughts between climate model simulations 

and observations for the calibration period over all of Australia (1981 to 2010). Drought metrics from observation data are presented 220 
as solid black lines, while points show metrics from climate model simulations.  
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3.2 Climate Change Assessment 

3.2.1 Changes to SPI and SPEI 

The 20-year moving average SPI and SPEI time-series results under SSP370 are presented in Fig. 3. Decreases to SPEI were 

observed for all the models across all regions, indicating substantial agreement on future drying using SPEI. The largest 225 

decreases were observed by the end of the century. By contrast, the results for SPI were more heterogeneous, with many 

models predicting increases and decreases, as evident by the spread of models in the direction of trend (Fig. 3), though the 

ensemble averages tended towards a slight increase in wetness for the Rangelands and an increase in dryness for Southern 

Australia. These same patterns of change can be noted in the raw timeseries results of the ensemble averages presented in the 

supplementary materials for each emissions scenario (Fig. S2 to Fig. S4). 230 

The time taken for the ensemble average to reach a 10% and 20% shift of the probability towards dryer conditions (according 

to the Z-score) are shown by vertical dashed lines. These thresholds were not reached for SPI using the ensemble average 

(though they are for some individual models) and hence no vertical dashed lines are shown. For SPEI a 10% shift towards 

drier conditions was reached by 2040 for the Rangelands and Southern Australia, and a 20% shift by 2060. These shifts of 10 

and 20% were delayed in Northern Australia and Eastern Australia to approximately 2060 and 2090, respectively. Results for 235 

SSP126 and SSP245 are available in the supplementary materials (Fig. S5 and Fig. S6). 
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Figure 3: Timeseries results for SPI and SPEI calculated as a 20-year moving average for each climate model considered with the 

ensemble average shown in red for each of the regions under the SSP370 scenario. Dotted lines show the time taken for the ensemble 240 
average value to shift by 10% and 20% (according to the Z-score).  

 

More wetting was evident under the high emissions scenario for the Rangelands compared to the low or moderate scenarios 

when considering only precipitation using SPI, but more drying when the additional impacts of increased PET were considered 

through SPEI (Fig. 4). For SPEI, all emissions scenarios consistently predict a 10% shift in the moving average value by 245 

approximately 2040, and a 20% shift by approximately 2060. Only at the end of the century, were there significant differences 

in SPEI between the different emissions scenarios, with the greatest decreases noted under SSP370. Similar patterns were also 

observed for the other NRM super-clusters assessed (Fig. S7 to Fig. S9). 
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 250 

Figure 4: Timeseries results for SPI and SPEI calculated as a 20-year moving average for each climate model considered with the 

ensemble average shown in red for each of the emissions scenarios for the Rangelands. Dotted lines show the time taken for the 

ensemble average value to shift by 10% and 20% (according to the Z-score).  

 

There was a notable shift towards more pronounced drought conditions in the 2050s and 2090s compared to the reference 255 

period (1995-2014) when assessing the probability density function (PDF) of both SPI (Fig. 5) and SPEI (Fig. 6). Relatively 

minor changes to the PDF were noted for SPI in Eastern Australia and Northern Australia, though there was a tendency towards 

lower SPI values (increased dryness) by the 2050s and 2090s compared to the reference period (1995-2014). Decreases were 

more pronounced for Southern Australia, while the changes to the Rangelands appeared minimal. In all regions, the largest 

changes were noted for the negative tails of the SPI distribution (< -1), indicating an increased likelihood of more pronounced 260 

periods of moderate to extreme droughts. Interestingly, in most regions, this appears to have come at the cost of the near normal 

and moderate wet categories (-1 to 1.5) but does not look to have changed the positive tail of the distribution (> 1.5) to the 

same extent. A quantification of the change to the probability of occurrence for the different categories of events under SSP370 

confirms that the increase in extreme and severe droughts primarily led to decreased near normal and moderately wet 

conditions (Table 3). The probability of extreme wetness is shown to have also increased in all regions using SPI. This suggests 265 

an overall shift towards more periods of drought, while maintaining similar levels or increased periods of pronounced wetness 

(Fig. 5). There was an overall shift away from typical climate conditions towards more periods of both extreme drought and 

wetness (Table 3). 
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When the additional impacts of increased evaporation are considered using SPEI, there were notable shifts towards dryer 

conditions in all regions, especially by the end of the century (Fig. 6). This was particularly true for the Rangelands and 270 

Southern Australia (Table 3), which are subject to low rainfalls and therefore more strongly influenced by relative increases 

to PET. The shifts towards lower SPEI values and dryer conditions were seen across the full distribution of data, including the 

tails suggesting a future decrease to periods of wetness which was not reflected in the SPI results. Though only minor changes 

were projected for extreme wetness under SSP370 (Table 3). changes are shown to be considerably smaller under the moderate 

and low emissions scenarios (Table S1 and S2). 275 

 

 

Figure 5: Probability density function plot of SPI values from the full ensemble of climate models for the reference period (1995-

2014), 2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four NRM super-clusters considered. 

Dotted lines show mean values. 280 
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Figure 6: Probability density function plot of SPEI values from the full ensemble of climate models for the reference period (1995-

2014), 2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four NRM super-clusters considered. 

Dotted lines show mean values. 285 
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Table 3. Projected absolute percent change to the percent of time spent in different drought and wetness categories by the 2050s and 

2090s compared to the reference period (1995-2014) using the ensemble average under SSP370. Red colours denote larger increases, 

while green colours denote decreases.  

Index Category 

Eastern Australia Northern Australia Rangelands Southern Australia 

2050s 2090s 2050s 2090s 2050s 2090s 2050s 2090s 

S
P

I 

Extreme drought 0.75 1.41 1.37 1.52 0.68 -0.26 2.93 5.74 

Severe drought 0.48 1.49 1.22 1.35 0.46 -0.78 2.07 2.98 

Moderate drought 0.08 1.22 0.59 1.71 -0.15 -1.82 1.42 1.84 

Near normal 0.01 -3.84 -4.36 -3.38 -3.76 -2.39 -7.33 -11.37 

Moderate wetness -1.13 -1.1 -0.61 -1.63 -0.13 1 -0.88 -1.46 

Severe wetness -0.49 -0.08 0.35 -0.46 0.7 1.41 -0.02 0.1 

Extreme wetness 0.3 0.9 1.43 0.89 2.2 2.84 1.81 2.17 

          

S
P

E
I 

Extreme drought 3.7 9.88 4.29 8.23 8.71 20.99 8.88 24.78 

Severe drought 3.05 7.81 4.06 8.8 6.4 10.73 6.6 9.67 

Moderate drought 2.66 5.29 1.91 6.26 2.9 3.57 3.66 2.55 

Near normal -4.08 -14.6 -7.39 -14.71 -12.97 -26.23 -13.71 -27.98 

Moderate wetness -3.13 -5.13 -2.43 -5.55 -3.88 -6.68 -4.02 -6.52 

Severe wetness -2.23 -3.27 -1.1 -2.96 -1.99 -3.49 -2.29 -3.75 

Extreme wetness -0.13 -0.43 0.56 -0.32 0.55 -0.43 0.56 -0.36 

 290 

3.2.2 Changes to Drought Extent 

A notable increase in the area affected by droughts was projected for all regions under SSP370 considering SPEI, with the 

largest increases noted by the end of the century and for Southern Australia and the Rangelands (Fig. 7). This same increase 

in drought extent, however, was not seen for SPI except in Southern Australia, where there was a trend towards more extreme 

droughts, though the magnitude of the change was significantly smaller than that seen for SPEI. Interestingly, the largest 295 

increases to drought extent occurred for extreme and severe events, while the extent of moderate droughts which are a more 

common occurrence under present conditions, did not increase significantly for either SPI or SPEI. These results suggest that 

the largest increases to droughts will occur for extreme events, rather than moderate events (Fig. 7 and Table 3). This is 

especially true when the impacts of increased PET are considered using SPEI. The results for SSP245 and SSP126 show more 

modest increases to drought extents for all the NRM super-clusters (Fig. S7 and Fig. S8), especially for the area in extreme 300 

drought, though the pattern of change remains the same.  

PDFs of the area affected by extreme droughts are presented for SPI (Fig. 8) and SPEI (Fig. 9). For SPI, an increase to the area 

affected by extreme droughts can be seen in all regions and emissions scenarios, except for in the Rangelands under SSP370, 

where a minor decrease was projected by the end of the century (Fig. 8). These increases are typically in the order of 1 to 2% 

https://doi.org/10.5194/egusphere-2024-2341
Preprint. Discussion started: 29 July 2024
c© Author(s) 2024. CC BY 4.0 License.



16 

 

of the area, representing a near doubling of the total area affected by extreme droughts. The increase was especially significant 305 

in Southern Australia, where the average extent of extreme drought increases from 1.9% in the reference period to between 

4.3 and 5.0% by the 2050s and 4.0 and 7.8% by the 2090s, depending on the emission scenario adopted. Under the high 

emissions scenario, this represented a fourfold increase to the area under extreme droughts. The magnitude of the changes 

were even more pronounced for SPEI, changing from 1.6% in the reference period to between 8.8 and 10.6% by the 2050s and 

8.1 and 27.9% by the 2090s, depending on the emission scenario adopted (Fig. 9). 310 

 

 

Figure 7: Timeseries of the ensemble average percent of area in drought in the four NRM super-clusters for SPI and SPEI under 

ssp370. 

 315 
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Figure 8: Probability density function plot the percent area under extreme drought using SPI-12 values from the ensemble average 

for the reference period (1995-2014), 2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four 

NRM super-clusters considered. Dotted lines show mean values. 

 320 
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Figure 9: Probability density function plot the percent area under extreme drought using SPEI-12 values from the ensemble average 

for the reference period (1995-2014), 2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four 

NRM super-clusters considered. Dotted lines show mean values. 

 325 

3.2.3 Changes to Drought Occurrence 

There was wide model agreement on increased percent time in drought, frequency, and duration of droughts in south-west 

Western Australia, in southern Victoria, southern South Australia and in western Tasmania (Fig. 10) using both SPI and SPEI. 

In southwest Western Australia, SPI extreme droughts were projected to occur both more frequently and last longer, leading 

to considerable increases in the percent time in drought. By contrast, the increases to the percent time in drought in southern 330 

Victoria, southern South Australia and in western Tasmania appears to be principally the result of increased drought frequency, 

with less clear changes noted for drought duration. In addition to these regions, there was also wide model agreement on 

increased frequency and percent time in moderate to extreme drought for the Gulf of Carpentaria and Northeastern Queensland 
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(Fig. S16), which was not evident in the extreme droughts. For the remainder of the country, the results of SPI tended to be 

uncertain, though increases to the percent time in drought were seen for Eastern Australia under some emissions scenarios 335 

(SSP245). Interestingly, there were no regions of Australia where there was a consensus towards reduced time in extreme 

drought. 

For SPEI, there was wide model agreement for more frequent and longer drought events for the majority of the continent, 

particularly under SSP370 and for the end of the century (Fig. 10). This was especially true for the percentage time in drought, 

which is the result of both increasing drought frequency and duration. For parts of Northern Australia and Eastern Australia, 340 

there was generally less model agreement (as shown by the hatching) and the magnitude of the changes were typically smaller 

when compared to southern regions and the interior of the continent.  

 

 

Figure 10: Maps showing changes to the percent time (rows 1 to 2), frequency (rows 3 to 4), and duration (rows 5 to 6) of extreme 345 
droughts according to SPI (columns a, b, and c) and SPEI (column d, e, and f) for the 2050s and 2090s relative to the reference 

period. Hatching used where there was high inter-model agreement on the sign of change (>70%).  
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Considerable inter-model variability was evident in the projections as shown by boxplots from the model ensemble (Fig. 11), 

especially for SPEI. The variability was largest for the percent time in drought and frequency of droughts in the more arid 350 

regions of Southern Australia and Rangelands. While for drought duration, the model variability was greater in the more humid 

regions of Northern and Eastern Australia. When using SPEI there was very wide agreement towards more frequent and longer 

extreme droughts from the full ensemble of models in all regions. For SPI there was less certainty on the sign of change in 

most regions, except for Southern Australia where there was a clear tendency towards more frequent and longer extreme 

droughts. For Southern Australia, there was agreement between SPI and SPEI on the sign of the change but not the magnitude. 355 

For the other regions, the results were less certain, though generally most models appeared to point towards more frequent 

extreme droughts, with an overall increase to the time spent in extreme droughts for all regions and emissions scenarios.  

 

 

Figure 11: Changes to the percent time, frequency, and duration of extreme droughts using SPI and SPEI in the 2050s compared to 360 
the reference period. The box and whisker plot shows the interquartile range (box), and the median (bar), while the whiskers extend 

from the box to the furthest datapoint within 1.5x the interquartile range. Dots show projections for each of the climate models. 
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4 Discussion 

4.1 Future Drought 365 

Our study shows there is likely to be an increase in the frequency of droughts, particularly extreme droughts, across Australia, 

especially in Southern Australia and when assessing SPEI derived drought metrics. The results for SPI were more uncertain, 

reflecting uncertainty in rainfall projections. Both drought indices projected an increase to the time in, spatial extent, frequency, 

and duration of droughts in southwest Western Australia, southern South Australia, southern Victoria, and in western 

Tasmania, especially by the end of the century and under high emissions (Fig. 10). These results are consistent with recent 370 

observations which have pointed towards a trend of decreasing precipitation for these regions (Dey et al., 2019), and are also 

consistent with recent global and regional assessments of future droughts (Cook et al., 2020; Herold et al., 2021; Kirono et al., 

2020; Spinoni et al., 2020; Ukkola et al., 2020; Wang et al., 2021; Zeng et al., 2022). Using earlier CMIP5 projections, Kirono 

et al. (2020) showed a marked increase for future droughts in Southern Australia, which is in line with the findings from this 

study. However, they also showed wide model agreement towards increased droughts in Eastern Australia using SPI, which 375 

was not reflected in this study to the same degree. This may relate to the selection of the climate model ensemble adopted, 

which has been shown to be one of the principal sources of uncertainty (Ukkola et al., 2018). Similarly, Trancoso et al. (2024) 

have shown that the precipitation agreement of the host GCMs is particularly low for Australia for both CMIP5 and CMIP6 

models, except for the southwest Western Australia region.  

Our results show considerable increases to the area affected by future extreme droughts, especially in Southern Australia and 380 

under the high emissions pathway. In the absence of strong mitigation of emissions (i.e. SSP370), an additional 5.9% increase 

to the area affected by extreme drought was expected using SPI in Southern Australia by the end of the century, which 

corresponds to a fourfold increase in the area affected compared to current conditions. Under a low emissions scenario 

(SSP126), these increases are reduced to 2.1% or a near doubling compared to current conditions (Fig. 8). Differences between 

emission scenarios were greater when evaluating the results of SPEI. Here, we found cutting emissions from high to low levels 385 

by the end of the century would decrease the area affected by extreme droughts by a factor of 4 in Southern Australia, 3.2 in 

Rangelands, 1.9 in Northern Australia, and 2.8 in Eastern Australia (Fig. 9), highlighting the importance of meeting emission 

reduction targets. The increases to extreme droughts are larger than those projected for moderate droughts, particularly in 

Southern Australia and the Rangelands (Table 3). Extreme droughts have a disproportionate impact on agriculture, society, 

and the environment compared to more moderate droughts (Noel et al., 2020; Potop, 2011), and as such these changes would 390 

likely necessitate robust adaptation measures. We provide supplementary datasets tailoring these projections to Australian 

river basins and local government areas are available from Eccles (2024), which may be useful for informing decisions on 

adaptation and drought preparedness. 

Interestingly, the increase in extreme droughts did not lead to a decrease in extreme wetness, but rather mostly reduced time 

in near normal climate conditions (Table 3). This was due to a shift in the mean and an overall flattening of the PDFs of SPI 395 

and SPEI as seen in Fig. 5 and Fig. 6, leading to more time in drought conditions. Similar PDFs changes have been noted in 
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global assessments of soil moisture, runoff, and the Palmer drought index under CMIP5 and CMIP6 (Zhao and Dai, 2015, 

2022). 

While there was wide model agreement on increased droughts for Southern Australia, our results point to less agreement 

among the ensemble of climate models and between the two drought indices for the other regions assessed. The differences 400 

between the two drought indices were particularly notable, with SPEI tending towards increased droughts for the majority of 

the continent, while results from the precipitation-based SPI were more uncertain (Fig. 10). The differences between SPI and 

SPEI diverged further as the projections extended further into the future, with the largest differences noted by the end of the 

century and under the higher emissions scenario (Fig. 11), which corresponds to when atmospheric water demands from 

elevated PET were largest. Similar differences between these indices have been noted in studies using CMIP6 GCMs (Wang 405 

et al., 2021; Zeng et al., 2022). This was also found to be the principal factor contributing to increased future soil moisture 

drought over Australia (Zhao and Dai, 2022). Divergences between these indices have also been observed in studies of the 

recent past, with the majority of the earth’s landmass shown to have had a wetting trend using SPI between 1971 and 2022, 

and an opposing drying trend when evaluating SPEI (Nwayor and Robeson, 2023). For Australia, no trend was evident between 

1980 and 2020 using SPI, while a significant drying was noted using SPEI (Vicente-Serrano et al., 2022).  410 

4.2 Differences Between SPI and SPEI 

Differences between SPI and SPEI were also more evident in arid and semi-arid regions such as the Rangelands, which receive 

relatively low precipitation but have high potential for evaporative loss. In these regions, proportional increases to PET 

projected under climate change are substantially greater than the magnitude of possible changes to precipitation. As such, the 

relative impact of PET increases on the overall water budget (P – PET) is greater than in humid regions, where precipitation 415 

changes can be just as consequential. Precipitation variability has been shown to be the principal driver of SPEI in humid 

regions, while in arid regions PET is the principal driver (Vicente-Serrano et al., 2015). This is reflected in our projections of 

future drought for SPEI, with smaller projected increases and less model agreement evident in the more humid Northern and 

Eastern Australia compared to the Rangelands and Southern Australia (Fig. 10 and Fig. 11).  

In this study, PET was derived using the Penman-Monteith method (Allen et al., 1998). This approach is more data intensive 420 

than simplified techniques that rely on temperature inputs only, but is considered more robust and has been recommended 

when data is available (Hosseinzadehtalaei et al., 2017; Sheffield et al., 2012). Purely temperature-based models such as 

Thornthwaite (Thornthwaite, 1948) and Hargreaves (Hargreaves and Samani, 1985) equations have been shown to 

overestimate future PET. A limitation of this approach is that the approach for deriving PET does not resolve interactions 

between elevated CO2 and vegetation (Trancoso et al., 2017). Specifically, studies have shown that elevated CO2 results in 425 

reduced stomatal conductance and elevated water use efficiency of vegetation (Leakey et al., 2009), leading to reduced 

transpiration (Novick et al., 2016). However, increased fertilisation from elevated CO2 would likely lead to increased leaf size 

(Pritchard et al., 1999) and increase transpiration. 
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While there is some disagreement on the magnitude of future PET increases, there is confidence in the sign of change, unlike 

for precipitation for which there is much uncertainty around the sign of future changes (Trancoso et al., 2024). Under climate 430 

change, increasing temperatures will lead to increased evaporative demand, impacting on the overall water budget. Studies 

which adopt SPI only to assess future changes to droughts miss this important component and may therefore underestimate 

future drought changes. On the other hand, there is potential that the SPEI could overestimates future drought magnitudes and 

may better represent a conservative upper limit of potential future drought risk. Changes to other drought types may therefore 

end up lying somewhere between these two indices, depending on the drought type and the region assessed (Reyniers et al., 435 

2023; Tomas-Burguera et al., 2020).  

4.3 Implications 

While this study focused only on meteorological droughts, these changes will have inevitable consequences for other drought 

types (e.g. agricultural and hydrological), though it should be noted that the propagation from meteorological droughts to other 

drought types is typically non-linear (Mukherjee et al., 2018). Significant decreasing trends for streamflow have been observed 440 

for most of Australia in the recent past, with only catchments in the northern tropics showing an increasing trend 

(Amirthanathan et al., 2023). This has led to increased hydrological droughts over much of southern Australia, which cannot 

be explained by changes to rainfall alone (Wasko et al., 2021). In Southeast Australia, the Millenium drought (2001-2009) was 

a major contributor to decreased streamflow (Fiddes and Timbal, 2016). However, despite the meteorological drought breaking 

in 2010, a hydrological drought has persisted in many catchments, with runoff volumes significantly lower than pre-drought 445 

conditions despite a return in precipitation (Fowler et al., 2022; Peterson et al., 2021). This suggests that hydrological droughts 

can persist indefinitely following prolonged meteorological droughts (Peterson et al., 2021). Future increases to the time spent, 

extent, and duration of meteorological droughts as suggested by this study may therefore have significant ramifications for 

hydrological droughts in Australia, by effectively altering the long-term rainfall-runoff response. In southwest Western 

Australia, observed streamflow declines have been attributed to a combination of decreased rainfall and increased vegetation 450 

(Liu et al., 2019). CO2 fertilisation may therefore work in tandem with meteorological droughts to further exacerbate future 

hydrological droughts (Mankin et al., 2019; Trancoso et al., 2017) in spite of CO2 induced changes to stomatal conductance 

reducing plant transpiration changes. 

Elevated PET during periods of precipitation deficit will likely increase the severity of plant stress due to differences between 

the atmospheric water demand and the water available for transpiration (Anderegg et al., 2015). This can lead to plant dieback 455 

and mortality, which may also be worsened from elevated heat stress due to a warming climate. Higher atmospheric water 

demand can also work to dry out vegetation and elevate fire risk (Clarke et al., 2022). The recent tinderbox drought in southeast 

Australia is an example of a drought characterised by below average rainfall, high atmospheric water demand, and reduced 

water availability (Devanand et al., 2024). The high atmospheric water demand and limited water availability led to elevated 

temperatures, amplified heatwaves, and likely contributed to the Black Summer bushfires (Devanand et al., 2024). An 460 

amplification of future meteorological droughts characterised by elevated PET and higher temperatures may therefore lead to 
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an increase in such events, which will have obvious ramifications for bushfire risk and heatwaves. Further research is, however, 

required to quantify the magnitude of these future changes as a result of the projected meteorological drought changes.  

5 Conclusion 

We evaluated the impacts of climate change on meteorological droughts using two commonly adopted indices (SPI and SPEI). 465 

For this purpose, high-resolution CMIP6 climate models under three SSP scenarios were applied. The results show consistent 

increases in future frequency, duration, percent time, and spatial extent of SPI droughts for south-west Western Australia, 

southern Victoria, southern South Australia, and in western Tasmania, while a majority of Australia was projected to see 

increases according to SPEI. The increases were largest by the end of the century and under the high emission (SSP370) 

scenario, especially for SPEI, as this is when increases to temperature and evaporative demand were greatest. There was greater 470 

certainty on the sign of change for droughts when assessing SPEI compared to SPI for all regions due to strong certainty of 

increasing PET, though there was still considerable uncertainty on the magnitude of the changes. Under a scenario of high 

emissions, a 4-fold increase in the area affected by extreme drought was expected for Southern Australia by the end of the 

century, considering just changes to rainfall (SPI). When the additional impacts of evaporative losses from PET were 

considered (SPEI), there was a 17-fold increase in the area impacted compared to current conditions. Under a low emissions 475 

scenario, these changes decreased to 2-fold for SPI and 5-fold for SPEI, highlighting the importance of mitigating emissions. 

The relative changes were less substantial for the other NRM region clusters assessed, except for the Rangelands for which 

significant increases were shown when evaluating SPEI by the end of the century but not for SPI. Overall, our findings show 

strong increases in meteorological droughts for the majority of Australia, particularly in the southern region, by the end of the 

century, and under high emissions scenarios. These results have multi-sectoral implications with strong impact on water supply 480 

and agriculture and we encourage stakeholders to explore the supplementary datasets with tailored drought calculations for 

Australian LGAs and basins to support decision-making. 

Data availability 

Datasets of regionalised drought changes are freely available from (Eccles, 2024, 

https://doi.org/10.6084/m9.figshare.26343823) 485 

The downscaled CCAM data used in this study is being published via the CORDEX Australasia domain archive. The 20km 

data for the Australasian CORDEX domain is available from NCI (National Computational Infrastructure): 

https://dx.doi.org/10.25914/8fve1910. Selected 10 km resolution data is available from NCI for registered users. 
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