
1 

 

High-resolution downscaled CMIP6 drought projections for Australia  

Rohan Eccles1, Ralph Trancoso1,2, Jozef Syktus2, Sarah Chapman1, Nathan Toombs1, Hong Zhang1, 

Shaoxiu Ma1, Ryan McGloin1 

1Climate Projections and Services, Department of Energy and Climate, Queensland Government, Brisbane, Australia 
2School of The Environment, The University of Queensland, Brisbane, Australia 5 

Correspondence to: Rohan Eccles (rohan.eccles@gmail.com) 

Abstract. Climate change is projected to lead to changes in rainfall patterns, which, when coupled with increasing 

evapotranspiration, has the potential to exacerbate future droughts. This study investigates the impacts of climate change on 

meteorological droughts in Australia using downscaled high-resolution CMIP6 climate models under three Shared 

Socioeconomic Pathway (SSP) scenarios. The Standardised Precipitation Index (SPI) and the Standardised Precipitation 10 

Evapotranspiration Index (SPEI) were used to assess changes to the frequency, duration, percent time, and spatial extent of 

droughts. There were consistent increases in droughts projected for south-west Western Australia, southern Victoria, southern 

South Australia, and western Tasmania using SPI and SPEI. There were significantly larger increases for SPEI derived 

droughts, with consistent increases projected for most of the country. Increases to drought appear to have mostly come at the 

expense of ‘normal’ climatic conditions, with similar or increased time spent under extreme wet conditions, indicating an 15 

overall shift towards more extreme climatic conditions. The largest increases occurred at the end of the century and under the 

high emissions scenario (SSP370), demonstrating the influence of emissions on extreme droughts. For instance, if emissions 

reached high levels by the end of the century, the area subject to extreme drought in drought prone Southern Australia would 

be 2.8 greater than if they were kept to low levels using SPI, and 4 times greater if assessed using SPEI. The insights generated 

from these results and supplementary tailored datasets for Australian Local Government Areas and River Basins are essential 20 

to better inform decision making and future adaptation strategies at national, regional, and local scales.  
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1 Introduction 

Droughts are among the costliest climate hazards in the world, with significant ramifications for agriculture, society, and the 25 

environment (Cook et al., 2018). Between 1998 and 2017, droughts were estimated to have cost $2.3 trillion dollars (USD), 

affecting 1.5 billion people globally (United Nations, 2018). Notable recent major drought events have occurred in California 

(He et al., 2017), the Mediterranean (Kelley et al., 2015), and in Australia (Van Dijk et al., 2013). The recent Australian 

Millenium drought which lasted from 2001 to 2009 (Van Dijk et al., 2013) was estimated to have cost as much as 1.6 % of the 

nation’s gross domestic product (Horridge et al., 2005). Compared to other countries of similar population, Australia is 30 

disproportionately impacted by drought; ranked 5th for economic impacts of droughts and 15th for the number of people affected 

between 1990 and 2014 (González Tánago et al., 2016). A number of studies have highlighted the importance of droughts in 

Australia, with consequences for a range of other factors including bushfires (Devanand et al., 2024), agriculture (Xiang et al., 

2023), water supply (Maier et al., 2013), dust storms (Leys et al., 2023), and public health (Johnston et al., 2011). 

In comparison to other natural hazards, determining the onset and severity of a drought event is complex since they are 35 

characterised by a gradual build-up, where the largest impacts typically only emerge after many months or years (Kiem et al., 

2016). The definition of drought varies according to its application, but can generally be split into meteorological, hydrological, 

and agricultural droughts (Zargar et al., 2011). Meteorological droughts relate to prolonged deficits in rainfall but may be 

exacerbated through high temperatures and evaporation, hydrological droughts describe impacts on streamflow and other water 

systems (e.g., reservoirs or lakes) (Van Dijk et al., 2013), while agricultural drought primarily focus on soil moisture content 40 

(Zargar et al., 2011). 

Droughts are usually monitored and assessed through indicators and indices (Svoboda and Fuchs, 2016). Two of the most 

commonly applied indices for meteorological droughts are the Standardised Precipitation Index (SPI; McKee et al., 1993) and 

the Standardised Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010). SPI is a rainfall-based index 

derived from accumulated monthly rainfall values and can be used to describe droughts at a range of timescales and across 45 

different locations. When assessed at shorter timescales (~3 months), SPI has been shown to relate closely to soil moisture and 

agricultural droughts, while at longer timescales SPI (>12 months) it is more closely related to hydrological droughts (e.g., 

reservoirs and streams) (Zargar et al., 2011). SPEI is an extension of SPI, calculated as the difference between precipitation 

and potential evapotranspiration (P – PET), and as such better reflects changes to the overall water deficit by considering the 

impacts of both the atmospheric supply and evaporative demand on the water budget. SPEI has also been shown to be more 50 

closely related to agricultural impacts than SPI (Labudová et al., 2017; Xiang et al., 2023). The main advantage of the SPI and 

SPEI over other drought indices is that they provide multi-scalar results that are directly comparable across different regions 

and climate zones (e.g., arid vs humid regions). 

Under climate change, there is potential for more frequent and severe drought events as a result of temperature increases and 

changed precipitation patterns, particularly in already drought prone regions (Huang et al., 2016; Zhao and Dai, 2015). Several 55 

studies have evaluated the impacts of climate change on droughts using Global Climate Models (GCMs), which have pointed 
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towards increased drought risk over the 21st century for many regions, including Australia (Cook et al., 2018, 2020; IPCC, 

2021; Spinoni et al., 2020). Increased meteorological droughts have been projected for much of Australia (Ukkola et al., 2020; 

Vicente-Serrano et al., 2022) despite the uncertainties in precipitation (Trancoso et al., 2024). These studies are, however, 

based on GCMs with coarse resolutions (~200 km), which have difficulty representing precipitation patterns over complex 60 

terrain (Reder et al., 2020) and as such, are not always suitable to provide reliable information to support adaptation and 

mitigation policy as well as decision-making at regional scales. Additionally, some studies have been reliant on a limited 

number of climate models, which can have large inter-model and metric-dependent discrepancies leading to uncertain results 

(Ukkola et al., 2018). There is therefore a need to consider multiple climate simulations as well as high-resolution models to 

account for inter-model uncertainties while simulating regional climate granularity. 65 

In order to better represent small-scale features and processes, Regional Climate Models (RCMs) have been employed for 

drought projection studies across different regions (Gao et al., 2017; Secci et al., 2021; Spinoni et al., 2018), including for 

regions within Australia (Herold et al., 2021; Syktus et al., 2020). RCMs have been shown to have improved skill in 

representing patterns of local precipitation and the impacts of topography, coasts, and land-use changes compared to GCMs 

(Boé and Terray, 2014; Chapman et al., 2023; Grose et al., 2019; Tian et al., 2013) and may therefore be better suited to study 70 

droughts at regional scales. These models (GCMs and RCMs) are the best physically-based approaches currently available to 

understand future drought processes, characteristics and impacts.  

Several studies have considered the impacts of climate change on droughts across Australia (Kirono et al., 2011, 2020; Kirono 

and Kent, 2011; Mpelasoka et al., 2008) or within a sub-section of the continent (Feng et al., 2019; Herold et al., 2021; Shi et 

al., 2020). Mpelasoka et al. (2008) estimated that soil-moisture based drought frequency would increase by 20-40% over most 75 

of Australia by the 2030s compared to 1975-2004. Similar increases in drought extent were projected for most regions by 

(Kirono et al., 2011; Kirono and Kent, 2011). More recently, Kirono et al. (2020) applied SPI and Standardised Soil Moisture 

Index (SSMI) to calculate projected future droughts using an ensemble of 37 raw Coupled Model Intercomparison Project 

(CMIP5) GCMs. They projected significant increases to drought hazard metrics, except for frequency, with greater increases 

for the SSMI compared to SPI. Herold et al. (2021) used SPI derived from 3 months of accumulated rainfall to investigate 80 

changes to 1-in-20-year drought events across southeast Australia with an ensemble of four RCMs. They projected these events 

would occur approximately 1-in-5 years by the end of the century for large parts of southeast Australia. These studies have, 

however, relied on projections derived from CMIP5 or earlier.  

This study expands on the available body of knowledge for future meteorological droughts in Australia, employing an 

ensemble of 60 high-resolution dynamically downscaled CMIP6 simulations (15 historical and 45 future simulations). The 85 

downscaling was performed using dynamically downscaled using the Conformal Cubic Atmospheric Model (CCAM), and 

followed the CORDEX experimental protocol.  These projections form part of the Queensland Future Climate Science Program 

(QFCSP) and are available at a 10 km resolution over the Australian continent as the QldFCP-2 data set (Queensland Future 

Climate Projections 2). The QldFCP-2 simulations were shown to lead to improvements in mean climate over the historical 

period, however, the largest improvements were noted for climate extremes, particularly over coastal and mountainous regions 90 
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(Chapman et al., 2023). These projections form part of a national strategy for climate projections, contributing to a wider set 

of downscaled CORDEX compliant projections for Australia as part of the National Partnership for Climate Projections (Grose 

et al., 2023), which will underpin climate services and adaptation planning nationally. The objectives of this contribution are: 

i) to assess changes in future projected meteorological droughts, including the frequency of occurrence, duration, 

spatial extent, and percent time in drought estimated using SPI and SPEI; 95 

ii) to compare changes in droughts between three different emissions pathways, two categories of drought 

severity, and two drought indices; 

iii) to evaluate how different climatic regions of the Australian continent are projected to experience future 

droughts under three different emissions pathways and estimate the time of emergence for significant shifts to 

occur. 100 

2 Methodology 

2.1 Study Area 

This study evaluated changes to drought indices for the entire Australian continent, which encompasses a range of climate 

regions, including equatorial, tropical, sub-tropical, temperate, Mediterranean, and arid regions. We assess drought changes to 

four Natural Resource Management (NRM) super-clusters for Australia, namely; Eastern Australia, Northern Australia, 105 

Rangeland, and Southern Australia, which are grouped based on a combination of climate and biophysical factors (CSIRO and 

Bureau of Meteorology, 2015) and have been widely adopted within Australia (Chapman et al., 2024; Grose et al., 2020; 

Kirono et al., 2020; Wasko et al., 2023) for assessing the impacts of climate change (Fig. 1). Details of the dominant climate 

zones and ecological characteristics within each of these super clusters are presented in Table S1.  

 110 
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Figure 1: Extent of study area and sub regions adopted in this study showing NRM super-clusters (CSIRO and Bureau of 

Meteorology, 2015) for the whole of Australia with major climate regions also shown.  

 

2.2 Data 

We used the CCAM model developed by CSIRO (McGregor and Dix, 2008) to dynamically downscale CMIP6 GCMs. 115 

Typically, dynamical downscaling involves running an RCM over a limited domain, with the host GCM forcing the lateral 

boundaries. CCAM differs as it is a global stretched grid model and so is run for the entire globe, with the domain of interest 

run at a higher resolution. Here, instead of providing lateral boundaries, the regional atmosphere in CCAM is influenced by 

large scale climate simulated from the host GCM, while at a small scale the atmosphere is allowed to evolve freely (Thatcher 

and McGregor, 2009). CCAM was run using a stretched C288 grid in both atmospheric and ocean-coupled versions, which 120 

consists of a model resolution of approximately 10 km. In total, 35 vertical layers in the atmosphere and 30 layers in the ocean 

for the ocean-coupled models were applied (Thatcher et al., 2015). A downscaling approach outlined by Hoffman et al. (2016) 

was used, which involved bias correcting the sea surface temperatures and sea ice from the host GCMs prior to downscaling. 

This approach has been found to improve the simulations of climate from CCAM and other regional climate models (Hoffmann 

et al., 2016; Kim et al., 2020; Lim et al., 2019).  125 

We used an ensemble of 60 downscaled climate model simulations derived from 11 different CMIP6 GCMs (Table 1). The 

ensemble consists of 15 runs for historical simulations and three sets of 15 runs for future simulations under three Shared 

Socioeconomic Pathways (SSP126, SSP245 and SSP370), representing low, moderate, and high-emissions pathways, 

respectively. The ensemble of GCMs used in this study was selected in order to best represent the future spread in the climate 

change signal from the ensemble of global CMIP6 models, while prioritising models which were better able to represent the 130 

Australian climate (Trancoso et al., 2023). For instance, we selected several GCMs spread across the distribution of projected 

temperature and precipitation changes, but also outlier models representing the driest (ACCESS-ESM1.5) and wettest (EC-

Earth3) GCMs (Chapman et al., 2023). All the GCMs were assessed based on their ability to represent Australia’s precipitation 

and temperature compared to Australian Gridded Climate Data Project (AGCD; Evans et al., 2020) observational data between 

1995 and 2014 using the Kling-Gupta Efficiency (KGE). The climate change signal at the mid and end of the century was 135 

evaluated and combined with the KGE score from the historical simulations to select the best performing ensemble runs from 

the different GCMs through a Skill-Spread-Selection algorithm (Trancoso et al., 2023). Five of the CCAM simulations were 

run using dynamic atmosphere-ocean coupling as presented in Table 1, in order to better understand the influence of ocean 

coupling on model outputs. Additionally, three variants including the best performing, the wettest, and the driest ensemble 

member from the large ensemble (40 members) of ACCESS-ESM1.5 simulations were considered, to facilitate assessments 140 

of intra-model variability. This represents the largest downscaled ensemble of projections in Australia ran at the highest 

resolution. 
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Table 1. Details of the 15 climate model simulations downscaled from 11 CMIP6 GCMs considered in this study.  145 

CMIP6 Model Model full name Resolution Ensemble 

member 

CCAM setup 

ACCESS-ESM1.5 Australian Community Climate and Earth 

System Simulator, version 1.5 

1.875 x 1.25° r6i1p1f1 atmospheric 

r20i1p1f1 atm-ocean coupled 

r40i1p1f1 atm-ocean coupled 

ACCESS_CM2 Australian Community Climate and Earth 

System Simulator, version 2 

1.875 x 1.25° r2i1p1f1 atm-ocean coupled 

CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti 

Climatici 

0.9 x 1.25° r1i1p1f1 atmospheric 

CNRM-CM6-1-

HR 

Centre National de Recherches 

Météorologiques Coupled Global Climate 

Model, version 6.1, high-resolution 

0.5 x 0.5° r1i1p1f2 atmospheric 

r1i1p1f2 atm-ocean coupled 

EC-Earth3 European Community Earth-System Model, 

version 3 

0.8 x 0.8° r1i1p1f1 atmospheric 

FGOALS-g3 Flexible Global Ocean-Atmosphere-Land 

System Model, grid point version 3  

2.5 x 2.5 r4i1p1f1 atmospheric 

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory Earth 

System Model, version 4 

1 x 1° r1i1p1f1 atmospheric 

GISS-E2-2-G Goddard Institute for Space Studies Model 

E2.2G 

2. x 2.5° r2i1p1f2 atmospheric 

MPI-ESM1-2-LR Max Planck Institute Earth System Model, 

version 1.2, low resolution 

1.9 x 1.9  r9i1p1f1 atmospheric 

MRI-ESM2-0 Meteorological Research Institute Earth System 

Model, version 2.0 

1.125 x 

1.125° 

r1i1p1f1 atmospheric 

NorESM2-MM Norwegian Earth System Model, version 2, 1 

degree resolution 

1 x 1° r1i1p1f1 atmospheric 

r1i1p1f1 atm-ocean coupled 

 

The downscaling approach adopted has been shown to significantly improve the performance over the host GCMs for 

precipitation and temperature in all seasons when compared to gridded AGCD observational data, with the largest 

improvements noted for climate extremes, even when assessed across the four Australian IPCC regions (Chapman et al., 2023), 
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which are similar to the NRM super-clusters adopted in this study. Across Australia as a whole, seasonal precipitation was 150 

shown to improve in all models, with an ensemble average improvement of 43% using the Kling-Gupta Efficiency, while the 

annual cycle of precipitation improved in most models with an ensemble average improvement of 13% (Chapman et al., 2023). 

Downscaling also improved the fraction of dry days, reducing the bias for too many low-rain days. These improvements have 

clear beneficial effects for the simulation of future droughts. In the future, the climate change signal of the host GCMs from 

downscaling was shown to generally be preserved for precipitation, though with some differences in magnitudes in some 155 

regions, particularly in summer. For temperature changes, the downscaled models were shown to have good agreement with 

the host models across Australia (Chapman et al., 2024).  

We used observational data to evaluate the SPI and SPEI indices during the historical period (1980 – 2010). Daily gridded 

precipitation data with a spatial resolution of 0.05° (approximately 5 km) were obtained from the AGCD. While daily gridded 

(resolution of 0.05°) PET data derived from the Penmen Monteith reference crop equation was obtained from the Australian 160 

Water Outlook. All observational data was re-gridded to the same grid resolution as the downscaled climate projections using 

distance weighting interpolation for precipitation and bilinear interpolation for PET.  

 

2.3 Drought Indices 

We used the SPI and SPEI indices to assess changes to future meteorological droughts based on downscaled climate 165 

simulations. SPI reflects changes to precipitation only, while SPEI is calculated from the difference between precipitation and 

PET and therefore reflects changes to the overall water deficit by considering the impacts of increased temperatures and 

evaporative demand in addition to atmospheric water supply. To calculate SPEI, we apply PET derived from the Penman-

Monteith reference crop method (Allen et al., 1998), which is a physically-based approach. This was calculated offline using 

daily CCAM outputs of solar radiation, vapour pressure, maximum and minimum temperature, mean sea level pressure, and 170 

wind speed. This method for deriving PET is more intensive than simpler temperature-based approaches but is recommended 

where data is available (Beguería et al., 2014; Hosseinzadehtalaei et al., 2017; Sheffield et al., 2012). 

PET and precipitation data were aggregated to monthly totals for all grid cells and used to calculate SPI and SPEI with the 

SPEI R Package (Beguería et al., 2017). For SPI, we fitted precipitation data to the gamma distribution, while for SPEI we 

fitted the difference between precipitation and PET to the log-logistic distribution as recommended by Vicente-Serrano et al. 175 

(2010). Normality tests were performed using the Shapiro-Wilk test at the 95% confidence level on the derived SPI and SPEI 

to ensure the grid cells conformed to normality. Most grid cells (over 85%) conformed to normality for all months (Fig. S1 in 

the supplementary materials). As the outputs follow a normal distribution, different categories of drought and also wetness 

may be classified according to the calculated SPI/SPEI Z-value. Table 2 shows the adopted classification scheme used for both 

SPI and SPEI as suggested by McKee et al. (1993).  180 
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Table 2. SPI and SPEI drought classification table following McKee et al. (1993) with associated probability of event from the chosen 

historical period 

SPI or SPEI values Categories Probability of event 

SPI or SPEI ≤ -2 Extreme drought 2.3% 

-2.0 < SPI or SPEI ≤ -1.5 Severe drought 4.4% 

-1.5 < SPI or SPEI ≤ -1.0 Moderate drought 9.2% 

-1.0 < SPI or SPEI < 1.0 Near normal 68.2% 

1.0 ≤ SPI or SPEI < 1.5 Moderate wet 9.2% 

1.5 ≤ SPI or SPEI < 2.0 Severe wet 4.4% 

SPI or SPEI ≥ 2.0 Extreme wet 2.3% 

 

A variety of different accumulation periods may be applied when calculating the SPI/SPEI, ranging from 1 to 48 months. 185 

Smaller accumulation periods (1 to 3 months) can be used to assess impacts on systems that are quick to respond to droughts 

(e.g., soil moisture and small creek flows), while longer accumulation periods (12 to 48 months) better reflect the impacts to 

slower-responding systems to water deficits, such as groundwater and reservoir levels. We adopted a 12-month accumulation 

period for our assessments of SPI and SPEI as this was considered as a suitable timeframe for water deficits to impact various 

hydrological and agricultural systems (Zargar et al., 2011). 190 

When assessing droughts using historical data, the full period of historical data available is generally used to fit the distribution, 

with the World Meteorological Organisation recommending a minimum of 30 years (Svoboda et al., 2012). However, when 

assessing changes to these indices as a result of climate change, a historical period is commonly adopted to fit the distribution. 

The fitted distribution parameter values are then applied to estimate the SPI and SPEI for the future period, allowing for a 

comparison of projected future dryness and wetness compared to the recent past. For our assessment, we have adopted a 195 

historical period from 1981-2010 to fit the Gamma and Log-Logistic distributions for SPI and SPEI, respectively. Fitted 

distribution values were then used to calculate SPI and SPEI over the full timeseries, containing both historical and future 

simulations (1981-2100).  

The SPI and SPEI timeseries results are calculated at the grid-cell scale for the observational data and for the ensemble of 

downscaled climate simulations and are used to detect the occurrence of droughts. For the sake of validation, projected 200 

droughts from historical simulations were compared against those estimated from observational data. A drought event is 

defined when the SPI or SPEI falls below a value of -1 and finishes once the value exceeds -1 again. The definitions for the 

categories of drought severity are presented in Table 2. In this study, we focus on the changes to all droughts (moderate, severe, 

and extreme) and to extreme droughts. Metrics relating to the frequency, duration, spatial extent, and percent time in drought 

were calculated for each of the drought categories. Here, the frequency is defined as the total number of events recorded over 205 

a given time period, the duration is the average duration of recorded drought events (in months), the percent time in drought 

is the fraction of time droughts occur, and the spatial extent is the number of grid cells affected by each drought severity 

category divided by total number of grid cells within a given region for each timestep. We evaluated the biases in the drought 
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metrics from each of the climate models considered compared to the observational data over the period used to fit the 

distributions (1981-2010).  210 

2.4 Climate Change Assessment 

We assessed the impacts of climate change on droughts for the 2050s (2041-2060) and the 2090s (2081-2100) relative to the 

1995-2014 reference period, which is in line with the IPCC assessment. The historical simulations were used to benchmark 

the reference period while future simulations were used to quantify the climate change impacts. Results from each of the 45 

future simulations were evaluated individually and in a weighted model ensemble, which adopted a one model one vote rule. 215 

This weights the models according to the number of downscaled simulations per host model (i.e., the three ACCESS-ESM1-

5 models were averaged to a single model, while the two NorESM2-MM and CNRM-CM6-1-HR were also averaged), 

resulting in an 11-model average. To determine where there is confidence in the changes to the drought metrics, we adopt the 

signal-to-noise ratio to see where the climate change signal emerges over the ‘noise’ of the model ensemble (Hawkins et al., 

2014). Here, the model uncertainty is considered as noise using the standard deviation of the projections (Hawkins and Sutton, 220 

2011). We calculate the signal from the 11-model average, while the noise is derived from the standard deviation of all 15 

projections (Chapman et al., 2024). Stippling is shown on the ensemble mean and median change maps where the signal-to-

noise ratio is greater than 1.0 (Chapman et al., 2024; Hawkins et al., 2014; Hawkins and Sutton, 2011).  

Results in this paper are also assessed across the four NRM super cluster regions (Fig. 1). Additional supplementary datasets 

tailoring projected drought impacts to Australian Local Government Areas (566 sub-regions included) and River Basins (219 225 

sub-regions included) are also made available (Eccles, 2024) thanks to the high resolution projections used in this study. We 

evaluated timeseries results for the individual models and the ensemble average. For this purpose, a 20-year moving average 

was applied to determine long-term changes to SPI and SPEI values and to remove year-to-year variability. Outputs of both 

SPI and SPEI follow a normal distribution, with defined probabilities of occurrence for the different drought categories in the 

historical period (Table 2). We therefore assessed when significant changes to the long-term average values occurred based on 230 

a 10% and 20% shift towards dryness compared to the historical period. A 10% shift towards dryness corresponded to the 40th 

percentile of SPI and SPEI results from the historical period, while a 20% shift corresponded to the 30th percentile. The goal 

of this analysis was to determine the time of emergence for significant shifts in the long-term climate to take place and to 

compare the results across regions and emissions scenarios. We also evaluated changes to the probability density function 

(PDF) of the SPI and SPEI to determine changes to the distribution of the different drought events. This was further applied 235 

to assess the changes to the percentage of area under drought for the four NRM super-clusters assessed.  
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3 Results 

3.1 Validation of Projected Droughts 

We compared differences between CCAM derived metrics of droughts and those derived from observational products for the 

historical period (1981-2010) to quantify the biases of the historical simulations. The metrics derived from historical 240 

simulations for individual model runs tended to over-estimate SPI-based metrics and underestimate SPEI-based metrics, when 

compared against observational data (Fig. 2). The variability of biases across individual model runs was expected as 

heterogeneous runs from host GCM models were selected to estimate future model uncertainty. However, biases to the 

ensemble average were substantially reduced, denoting a good match to the observational data, particularly for SPEI.  

 245 

 

Figure 2: Comparison of the differences in calculated metrics of drought and extreme droughts between climate model simulations 

and observations for the historical period over all of Australia (1981 to 2010). Drought metrics from observation data are presented 

as solid black lines, while points show metrics from climate model simulations.  
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3.2 Climate Change Assessment 250 

3.2.1 Changes to SPI and SPEI 

The 20-year moving average SPI and SPEI time-series results under SSP370 are presented in Fig. 3. Decreases to SPEI were 

observed for all the models across all regions, indicating substantial agreement on future drying using SPEI. The largest 

decreases were observed by the end of the century. By contrast, the results for SPI were more heterogeneous, with many 

models predicting increases and decreases, as evident by the spread of models in the direction of trend (Fig. 3), though the 255 

ensemble averages tended towards a slight increase in wetness for the Rangelands and an increase in dryness for Southern 

Australia. These same patterns of change can be noted in the raw timeseries results of the ensemble averages presented in the 

supplementary materials for each emissions scenario (Fig. S3 to Fig. S5). Interannual variability from the different projections 

in each of the regions are presented in Fig. S25 to Fig. S48.  

The time taken for the ensemble average to reach a 10% and 20% shift of the probability towards dryer conditions (according 260 

to the Z-score) are shown by vertical dashed lines. These thresholds were not reached for SPI using the ensemble average 

(though they are for some individual models) and hence no vertical dashed lines are shown. For SPEI a 10% shift towards 

drier conditions was reached by 2040 for the Rangelands and Southern Australia, and a 20% shift by 2060. These shifts of 10 

and 20% were delayed in Northern Australia and Eastern Australia to approximately 2060 and 2090, respectively. Results for 

SSP126 and SSP245 are available in the supplementary materials (Fig. S6 and Fig. S7). 265 
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Figure 3: Timeseries results for SPI and SPEI calculated as a 20-year moving average for each climate model considered with the 

ensemble average shown in red for each of the regions under the SSP370 scenario. Dotted lines show the time taken for the ensemble 

average value to shift by 10% and 20% (according to the Z-score).  270 

 

More wetting was evident under the high emissions scenario for the Rangelands compared to the low or moderate scenarios 

when considering only precipitation using SPI, but more drying when the additional impacts of increased PET were considered 

through SPEI (Fig. 4). For SPEI, all emissions scenarios consistently predict a 10% shift in the moving average value by 

approximately 2040, and a 20% shift by approximately 2060. Only at the end of the century, were there significant differences 275 

in SPEI between the different emissions scenarios, with the greatest decreases noted under SSP370. Similar patterns were also 

observed for the other NRM super-clusters assessed (Fig. S8 to Fig. S10). 
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Figure 4: Timeseries results for SPI and SPEI calculated as a 20-year moving average for each climate model considered with the 280 
ensemble average shown in red for each of the emissions scenarios for the Rangelands. Dotted lines show the time taken for the 

ensemble average value to shift by 10% and 20% (according to the Z-score).  

 

There was a notable shift towards more pronounced drought conditions in the 2050s and 2090s compared to the reference 

period (1995-2014) when assessing the probability density function (PDF) of both SPI (Fig. 5) and SPEI (Fig. 6). Relatively 285 

minor changes to the PDF were noted for SPI in Eastern Australia and Northern Australia, though there was a tendency towards 

lower SPI values (increased dryness) by the 2050s and 2090s compared to the reference period (1995-2014). Decreases were 

more pronounced for Southern Australia, while the changes to the Rangelands appeared minimal. In all regions, the largest 

changes were noted for the negative tails of the SPI distribution (< -1), indicating an increased likelihood of more pronounced 

periods of moderate to extreme droughts. Interestingly, in most regions, this appears to have come at the cost of the near normal 290 

and moderate wet categories (-1 to 1.5) but does not look to have changed the positive tail of the distribution (> 1.5) to the 

same extent. A quantification of the change to the probability of occurrence for the different categories of events under SSP370 

confirms that the increase in extreme and severe droughts primarily led to decreased near normal and moderately wet 

conditions (Table 3). The probability of extreme wetness is shown to have also increased in all regions using SPI. This suggests 

an overall shift towards more periods of drought, while maintaining similar levels or increased periods of pronounced wetness 295 

(Fig. 5). There was an overall shift away from typical climate conditions towards more periods of both extreme drought and 

wetness (Table 3). 
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When the additional impacts of increased evaporation are considered using SPEI, there were notable shifts towards dryer 

conditions in all regions, especially by the end of the century (Fig. 6). This was particularly true for the Rangelands and 

Southern Australia (Table 3), which are subject to low rainfalls and therefore more strongly influenced by relative increases 300 

to PET. The shifts towards lower SPEI values and dryer conditions were seen across the full distribution of data, including the 

tails suggesting a future decrease to periods of wetness which was not reflected in the SPI results. Though only minor changes 

were projected for extreme wetness under SSP370 (Table 3). changes are shown to be considerably smaller under the moderate 

and low emissions scenarios (Table S2 and S3). 

 305 

 

Figure 5: Probability density function plot of SPI values from the full ensemble of climate models for the reference period (1995-

2014), 2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four NRM super-clusters considered. 

Dotted lines show mean values. 
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 310 

 

Figure 6: Probability density function plot of SPEI values from the full ensemble of climate models for the reference period (1995-

2014), 2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four NRM super-clusters considered. 

Dotted lines show mean values. 

  315 
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Table 3. Projected absolute percent change to the percent of time spent in different drought and wetness categories by the 2050s and 

2090s compared to the reference period (1995-2014) using the ensemble average under SSP370. Red colours denote larger increases, 

while green colours denote decreases.  

Index Category 

Eastern Australia Northern Australia Rangelands Southern Australia 

2050s 2090s 2050s 2090s 2050s 2090s 2050s 2090s 

S
P

I 

Extreme drought 0.75 1.41 1.37 1.52 0.68 -0.26 2.93 5.74 

Severe drought 0.48 1.49 1.22 1.35 0.46 -0.78 2.07 2.98 

Moderate drought 0.08 1.22 0.59 1.71 -0.15 -1.82 1.42 1.84 

Near normal 0.01 -3.84 -4.36 -3.38 -3.76 -2.39 -7.33 -11.37 

Moderate wetness -1.13 -1.1 -0.61 -1.63 -0.13 1 -0.88 -1.46 

Severe wetness -0.49 -0.08 0.35 -0.46 0.7 1.41 -0.02 0.1 

Extreme wetness 0.3 0.9 1.43 0.89 2.2 2.84 1.81 2.17 

          

S
P

E
I 

Extreme drought 3.7 9.88 4.29 8.23 8.71 20.99 8.88 24.78 

Severe drought 3.05 7.81 4.06 8.8 6.4 10.73 6.6 9.67 

Moderate drought 2.66 5.29 1.91 6.26 2.9 3.57 3.66 2.55 

Near normal -4.08 -14.6 -7.39 -14.71 -12.97 -26.23 -13.71 -27.98 

Moderate wetness -3.13 -5.13 -2.43 -5.55 -3.88 -6.68 -4.02 -6.52 

Severe wetness -2.23 -3.27 -1.1 -2.96 -1.99 -3.49 -2.29 -3.75 

Extreme wetness -0.13 -0.43 0.56 -0.32 0.55 -0.43 0.56 -0.36 

 

3.2.2 Changes to Drought Extent 320 

A notable increase in the area affected by droughts was projected for all regions under SSP370 considering SPEI, with the 

largest increases noted by the end of the century and for Southern Australia and the Rangelands (Fig. 7). This same increase 

in drought extent, however, was not seen for SPI except in Southern Australia, where there was a trend towards more extreme 

droughts, though the magnitude of the change was significantly smaller than that seen for SPEI. Interestingly, the largest 

increases to drought extent occurred for extreme and severe events, while the extent of moderate droughts which are a more 325 

common occurrence under present conditions, did not increase significantly for either SPI or SPEI. These results suggest that 

the largest increases to droughts will occur for extreme events, rather than moderate events (Fig. 7 and Table 3). This is 

especially true when the impacts of increased PET are considered using SPEI. The results for SSP245 and SSP126 show more 

modest increases to drought extents for all the NRM super-clusters (Fig. S8 and Fig. S9), especially for the area in extreme 

drought, though the pattern of change remains the same.  330 

PDFs of the area affected by extreme droughts are presented for SPI (Fig. 8) and SPEI (Fig. 9). For SPI, an increase to the area 

affected by extreme droughts can be seen in all regions and emissions scenarios, except for in the Rangelands under SSP370, 

where a minor decrease was projected by the end of the century (Fig. 8). These increases are typically in the order of 1 to 2% 
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of the area, representing a near doubling of the total area affected by extreme droughts. The increase was especially significant 

in Southern Australia, where the average extent of extreme drought increases from 1.9% in the reference period to between 335 

4.3 and 5.0% by the 2050s and 4.0 and 7.8% by the 2090s, depending on the emission scenario adopted. Under the high 

emissions scenario, this represented a fourfold increase to the area under extreme droughts. The magnitude of the changes 

were even more pronounced for SPEI, changing from 1.6% in the reference period to between 8.8 and 10.6% by the 2050s and 

8.1 and 27.9% by the 2090s, depending on the emission scenario adopted (Fig. 9). 

 340 

 

Figure 7: Timeseries of the ensemble average percent of area in drought in the four NRM super-clusters for SPI and SPEI under 

ssp370. 
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 345 

Figure 8: Probability density function plot the percent area under extreme drought using SPI-12 values from the ensemble average 

for the reference period (1995-2014), 2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four 

NRM super-clusters considered. Dotted lines show mean values. 
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 350 

Figure 9: Probability density function plot the percent area under extreme drought using SPEI-12 values from the ensemble average 

for the reference period (1995-2014), 2050s (2041-2060), and 2090s (2081-2100). Results are shown for the three SSPs in the four 

NRM super-clusters considered. Dotted lines show mean values. 

 

3.2.3 Changes to Drought Occurrence 355 

For the percent time in drought, frequency, and duration of extreme droughts, there were few regions where the signal-to-noise 

ratio was greater than one for SPI (Fig. 10). Significant increases can be noted in south-west Western Australia, in southern 

Victoria, southern South Australia and in western Tasmania under the high emissions scenario (SSP370), which are seen to 

reflect the spatial changes of mean precipitation (Fig. S2). In southwest Western Australia, SPI related extreme droughts were 

projected to occur both more frequently and last longer, leading to considerable increases in the percent time in drought. By 360 

contrast, the increases to the percent time in drought in southern Victoria, southern South Australia and in western Tasmania 

appears to be principally the result of increased drought frequency, with less clear changes noted for drought duration. In 
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addition to these regions, there were also significant increases to the percent time in moderate to extreme drought for the Gulf 

of Carpentaria and Northeastern Queensland for SSP370 by the 2090s (Fig. S15), which was not evident in the extreme 

droughts. For the remainder of the country, the results of SPI tended to be more uncertain. Interestingly, there were no regions 365 

of Australia where there was a significant reduction to the time spent in extreme drought. 

For SPEI, there was wide model agreement for more frequent and longer drought events for the majority of the continent, 

particularly under SSP370 and for the end of the century (Fig. 10). This was especially true for the percentage time in drought, 

which is the result of both increasing drought frequency and duration. For parts of Northern Australia and Eastern Australia, 

there was generally less model agreement from the signal-to-noise ratio (as shown by the hatching) and the magnitude of the 370 

changes were typically smaller when compared to southern regions and the interior of the continent. There was a large range 

between the 10th and 90th percentile ensemble projections for both SPI and SPEI (Fig. S16 to Fig. S21), highlighting the 

uncertainty in these projections. 

 

  375 
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Figure 10: Maps showing changes to the percent time (rows 1 to 2), frequency (rows 3 to 4), and duration (rows 5 to 6) of extreme 

droughts according to SPI (columns a, b, and c) and SPEI (column d, e, and f) for the 2050s and 2090s relative to the reference 

period. Hatching shows where the signal-to-noise ratio > 1.0.  

 

Considerable inter-model variability was evident in the projections as shown by boxplots from the model ensemble (Fig. 11), 380 

especially for SPEI. The variability was largest for the percent time in drought and frequency of droughts in the more arid 

regions of Southern Australia and Rangelands. While for drought duration, the model variability was greater in the more humid 

regions of Northern and Eastern Australia. The inter-model variability appears to approximately scale with the mean change 

in the projections, indicating greater uncertainty for larger changes. When using SPEI there was very wide agreement towards 

more frequent and longer extreme droughts from the full ensemble of models in all regions. For SPI there was less certainty 385 

on the sign of change in most regions, except for Southern Australia where there was a clear tendency towards more frequent 

and longer extreme droughts. For Southern Australia, there was agreement between SPI and SPEI on the sign of the change 

but not the magnitude. For the other regions, the results were less certain, though generally most models appeared to point 

towards more frequent extreme droughts, with an overall increase to the time spent in extreme droughts for all regions and 

emissions scenarios.  390 

 

 

Figure 11: Changes to the percent time, frequency, and duration of extreme droughts using SPI and SPEI in the 2050s compared to 

the reference period. The box and whisker plot shows the interquartile range (box), and the median (bar), while the whiskers extend 

from the box to the furthest datapoint within 1.5x the interquartile range. Dots show projections for each of the climate models. 395 
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4 Discussion 

4.1 Future Drought 

Our study shows there is likely to be an increase in the frequency of droughts, particularly extreme droughts, across Australia, 

especially in Southern Australia and when assessing SPEI derived drought metrics. The results for SPI were more uncertain in 400 

terms of the sign of change, reflecting uncertainty in rainfall projections (Fig. S2). Both drought indices projected an increase 

to the percentage of time spent in drought as well as the spatial extent, frequency, and duration of droughts in southwest 

Western Australia, southern South Australia, southern Victoria, and in western Tasmania, especially by the end of the century 

and under high emissions (Fig. 10). While the sign of the change is clear in these regions, especially for SPEI, there is 

considerable inter-model variability in the magnitude of the projected changes (Fig. 11), which may necessitate decision 405 

makers to adopt an adaptive approach to planning for these future eventualities. These results are consistent with recent 

observations which have pointed towards a trend of decreasing precipitation for these regions (Dey et al., 2019), and are also 

consistent with recent global and regional assessments of future droughts (Cook et al., 2020; Herold et al., 2021; Kirono et al., 

2020; Spinoni et al., 2020; Ukkola et al., 2020; Wang et al., 2021; Zeng et al., 2022). Using earlier CMIP5 projections, Kirono 

et al. (2020) showed a marked increase for future droughts in Southern Australia, which is in line with the findings from this 410 

study. However, they also showed wide model agreement towards increased droughts in Eastern Australia using SPI, which 

was not reflected in this study to the same degree. This may relate to the selection of the climate model ensemble adopted, 

which has been shown to be one of the principal sources of uncertainty (Ukkola et al., 2018). Similarly, Trancoso et al. (2024) 

have shown that the precipitation agreement of the host GCMs is particularly low for Australia for both CMIP5 and CMIP6 

models, except for the southwest Western Australia region.  415 

Our results show considerable increases to the area affected by future extreme droughts, especially in Southern Australia and 

under the high emissions pathway. In the absence of strong mitigation of emissions (i.e. SSP370), an additional 5.9% increase 

to the area affected by extreme drought was expected using SPI in Southern Australia by the end of the century, which 

corresponds to a fourfold increase in the area affected compared to current conditions. Under a low emissions scenario 

(SSP126), these increases are reduced to 2.1% or a near doubling compared to current conditions (Fig. 8). Differences between 420 

emission scenarios were greater when evaluating the results of SPEI. Here, we found cutting emissions from high to low levels 

by the end of the century would decrease the area affected by extreme droughts by a factor of 4 in Southern Australia, 3.2 in 

Rangelands, 1.9 in Northern Australia, and 2.8 in Eastern Australia (Fig. 9), highlighting the importance of meeting emission 

reduction targets. The increases to extreme droughts are larger than those projected for moderate droughts, particularly in 

Southern Australia and the Rangelands (Table 3). Extreme droughts have a disproportionate impact on agriculture, society, 425 

and the environment compared to more moderate droughts (Noel et al., 2020; Potop, 2011), and as such these changes would 

likely necessitate robust adaptation measures. We provide supplementary datasets tailoring these projections to Australian 



23 

 

River Basins and Local Government Areas (Eccles, 2024). These datasets provide derived drought metrics at a much more 

granular scale, which may be useful for informing local and regional scale decisions on adaptation and drought preparedness. 

Interestingly, the increase in extreme droughts did not lead to a decrease in extreme wetness, but rather mostly reduced time 430 

in near normal climate conditions (Table 3). Indeed, in some regions there was an increase to the time spent in extreme wet 

conditions in the future, indicating an overall shift towards more extreme climatic conditions. This was due to a shift in the 

mean and an overall flattening of the PDFs of SPI and SPEI as seen in Fig. 5 and Fig. 6, leading to more time in drought 

conditions. Similar PDFs changes have been noted in global assessments of soil moisture, runoff, and the Palmer drought index 

under CMIP5 and CMIP6 (Zhao and Dai, 2015, 2022).  435 

While there was wide model agreement on increased droughts for Southern Australia, our results point to less agreement 

among the ensemble of climate models and between the two drought indices for the other regions assessed. The differences 

between the two drought indices were particularly notable, with SPEI tending towards increased droughts for the majority of 

the continent, while results from the precipitation-based SPI were more uncertain (Fig. 10). The differences between SPI and 

SPEI diverged further as the projections extended further into the future, with the largest differences noted by the end of the 440 

century and under the higher emissions scenario (Fig. 11), which corresponds to when atmospheric water demands from 

elevated PET were largest. Similar differences between these indices have been noted in studies using CMIP6 GCMs (Wang 

et al., 2021; Zeng et al., 2022). Atmospheric water demand was also found to be the principal factor contributing to increased 

future soil moisture drought over Australia (Zhao and Dai, 2022). Divergences between these indices have also been observed 

in studies of the recent past, with the majority of the earth’s landmass shown to have had a wetting trend using SPI between 445 

1971 and 2022, and an opposing drying trend when evaluating SPEI (Nwayor and Robeson, 2023). For Australia, no trend was 

evident between 1980 and 2020 using SPI, while a significant drying was noted using SPEI (Vicente-Serrano et al., 2022).  

4.2 Differences Between SPI and SPEI 

Differences between SPI and SPEI were also more evident in arid and semi-arid regions such as the Rangelands, which receive 

relatively low precipitation but have high potential for evaporative loss. In these regions, proportional increases to PET 450 

projected under climate change are substantially greater than the magnitude of possible changes to precipitation. As such, the 

relative impact of PET increases on the overall water budget (P – PET) is greater than in humid regions, where precipitation 

changes can be just as consequential. Precipitation variability has been shown to be the principal driver of SPEI in humid 

regions, while in arid regions PET is the principal driver (Vicente-Serrano et al., 2015). This is reflected in our projections of 

future drought for SPEI, with smaller projected increases and less model agreement evident in the more humid Northern and 455 

Eastern Australia compared to the Rangelands and Southern Australia (Fig. 10 and Fig. 11). However, further PET increases 

which drive SPEI in water-limited regions (Rangelands and Southern Australia) are unlikely to have as much consequence as 

in humid regions where the potential upper limit of actual evaporation has not already been met.   

In this study, PET was derived using the Penman-Monteith method (Allen et al., 1998). This approach is more data intensive 

than simplified techniques that rely on temperature inputs only, but is considered more robust and has been recommended 460 
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when data is available (Hosseinzadehtalaei et al., 2017; Sheffield et al., 2012). Purely temperature-based models such as 

Thornthwaite (Thornthwaite, 1948) and Hargreaves (Hargreaves and Samani, 1985) equations have been shown to 

overestimate future PET. A limitation of this approach is that the approach for deriving PET does not resolve interactions 

between elevated CO2 and vegetation (Trancoso et al., 2017). Specifically, studies have shown that elevated CO2 results in 

reduced stomatal conductance and elevated water use efficiency of vegetation (Leakey et al., 2009), leading to reduced 465 

transpiration (Novick et al., 2016). However, increased fertilisation from elevated CO2 would likely lead to increased leaf size 

(Pritchard et al., 1999) and increase transpiration.   

While there is some disagreement on the magnitude of future PET increases, there is confidence in the sign of change, unlike 

for precipitation for which there is much uncertainty around the sign of future changes (Trancoso et al., 2024). Under climate 

change, increasing temperatures will lead to increased evaporative demand, impacting on the overall water budget. Studies 470 

which adopt SPI only to assess future changes to droughts miss this important component and may therefore underestimate 

future drought changes. On the other hand, there is potential that the SPEI could overestimates future drought magnitudes, 

especially in water-limited regions and would rather represent a conservative upper limit of potential future drought risk. 

Changes to other drought types may therefore end up lying somewhere between these two indices, depending on the drought 

type and the region assessed (Reyniers et al., 2023; Tomas-Burguera et al., 2020).  475 

The simulated changes to drought are likewise influenced by the projected land cover changes incorporated into CCAM as 

part of the emissions scenarios (Eyring et al., 2016). These landcover changes are not dynamic or responsive to changes in the 

climate but rather follow prescribed changes from one land cover type to another. The changes in land cover can influence 

temperatures and windspeed (due to changing surface roughness) in the projections, therefore influencing PET and SPEI in 

some regions. 480 

4.3 Implications 

While this study focused only on meteorological droughts, these changes will have inevitable consequences for other drought 

types (e.g. agricultural and hydrological), though it should be noted that the propagation from meteorological droughts to other 

drought types is typically non-linear (Mukherjee et al., 2018). It should be noted that increases to SPEI may not necessarily 

translate into on the ground changes, especially in water-limited environments where PET is already far greater than 485 

precipitation. In these regions, which includes most of Australia the timing and magnitude of precipitation may be a more 

important consideration, and as such care must be taken when interpreting the SPEI-based drought projections. Significant 

decreasing trends for streamflow have been observed for most of Australia in the recent past, with only catchments in the 

northern tropics showing an increasing trend (Amirthanathan et al., 2023). This has led to increased hydrological droughts 

over much of southern Australia, which cannot be explained by changes to rainfall alone (Wasko et al., 2021). In Southeast 490 

Australia, the Millenium drought (2001-2009) was a major contributor to decreased streamflow (Fiddes and Timbal, 2016). 

However, despite the meteorological drought breaking in 2010, a hydrological drought has persisted in many catchments, with 

runoff volumes significantly lower than pre-drought conditions despite a return in precipitation (Fowler et al., 2022; Peterson 
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et al., 2021). This suggests that hydrological droughts can persist indefinitely following prolonged meteorological droughts 

(Peterson et al., 2021). Future increases to the time spent, extent, and duration of meteorological droughts as suggested by this 495 

study may therefore have significant ramifications for hydrological droughts in Australia, by effectively altering the long-term 

rainfall-runoff response. In southwest Western Australia, observed streamflow declines have been attributed to a combination 

of decreased rainfall and increased vegetation (Liu et al., 2019). CO2 fertilisation may therefore work in tandem with 

meteorological droughts to further exacerbate future hydrological droughts (Mankin et al., 2019; Trancoso et al., 2017) in spite 

of CO2 induced changes to stomatal conductance reducing plant transpiration changes. 500 

Both positive and negative changes in landcover can influence meteorological droughts through changes in precipitation, 

temperature, and windspeed (due to changing surface roughness). For instance, in southwest Western Australia largescale 

anthropogenic landcover changes were shown to partially drive long-term declines in precipitation along coastal regions and 

increases in inland regions (Pitman et al., 2004; Timbal and Arblaster, 2006). The projections included in this study incorporate 

time varying landcover changes which are prescribed according to the emissions scenario (Eyring et al., 2016), though these 505 

are relatively minor for Australia. These changes are, however, not dynamic or responsive to changes in the climate and as 

such could respond differently in the future, potentially impacting on the magnitude of the drought changes presented. It is 

important to note that such changes to landcover and other associated environmental factors (e.g. groundwater and soil 

moisture) would have much more profound impacts for other drought types (e.g. agriculture and hydrological) compared to 

meteorological droughts as these are directly influenced by land surface characteristics. 510 

Elevated PET during periods of precipitation deficit will likely increase the severity of plant stress due to differences between 

the atmospheric water demand and the water available for transpiration (Anderegg et al., 2015). This can lead to plant dieback 

and mortality, which may also be worsened from elevated heat stress due to a warming climate. potentially influencing the 

propagation and response of future droughts. Higher atmospheric water demand can also work to dry out vegetation and elevate 

fire risk (Clarke et al., 2022). The recent tinderbox drought in southeast Australia is an example of a drought characterised by 515 

below average rainfall, high atmospheric water demand, and reduced water availability (Devanand et al., 2024). The high 

atmospheric water demand and limited water availability led to elevated temperatures, amplified heatwaves, and likely 

contributed to the Black Summer bushfires (Devanand et al., 2024). An amplification of future meteorological droughts 

characterised by elevated PET and higher temperatures may therefore lead to an increase in such events, which will have 

obvious ramifications for bushfire risk and heatwaves. Further research is, however, required to quantify the magnitude of 520 

these future changes as a result of the projected meteorological drought changes.  

5 Conclusion 

We evaluated the impacts of climate change on meteorological droughts using two commonly adopted indices (SPI and SPEI). 

For this purpose, high-resolution CMIP6 climate models under three SSP scenarios were applied. The results show consistent 

increases in future frequency, duration, percent time, and spatial extent of SPI droughts for south-west Western Australia, 525 
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southern Victoria, southern South Australia, and in western Tasmania, while a majority of Australia was projected to see 

increases according to SPEI. The increases were largest by the end of the century and under the high emission (SSP370) 

scenario, especially for SPEI, as this is when increases to temperature and evaporative demand were greatest. These increases 

appear to have largely come at the expense of ‘normal’ climatic conditions, with little changes or small increases to time spent 

under extreme wet conditions, pointing towards an overall shift towards more extreme climatic conditions across Australia.  530 

There was greater certainty on the sign of change for droughts when assessing SPEI compared to SPI for all regions due to 

strong certainty of increasing PET, though there was still considerable uncertainty on the magnitude of the changes. Under a 

scenario of high emissions, a 4-fold increase in the area affected by extreme drought was expected for Southern Australia by 

the end of the century, considering just changes to rainfall (SPI). When the additional impacts of evaporative losses from PET 

were considered (SPEI), there was a 17-fold increase in the area impacted compared to current conditions. Under a low 535 

emissions scenario, these changes decreased to 2-fold for SPI and 5-fold for SPEI, highlighting the importance of mitigating 

emissions. The relative changes were less substantial for the other NRM region clusters assessed, except for the Rangelands 

for which significant increases were shown when evaluating SPEI by the end of the century but not for SPI. Overall, our 

findings show strong increases in meteorological droughts for the majority of Australia, particularly in the southern region, by 

the end of the century, and under high emissions scenarios. These results have multi-sectoral implications with strong impact 540 

on water supply and agriculture and we encourage stakeholders to explore the supplementary datasets with tailored drought 

calculations for Australian Local Government Areas and River Basins to support decision-making. 
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