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Point by Point Response for Reviewer 1 

 

General Comment: 

The paper describes a set of drought projections for Australia developed by dynamically 

downscaling CMIP6 global climate models. A possible range of future drought conditions is 

considered that span multiple emissions pathways and model configurations. Future drought 

conditions are described through event frequency, duration, spatial extent and time spent in 

drought, in terms of changes in two commonly used drought metrics. The paper is well-

structured, the information is clearly presented and the key results appropriately discussed. I 

recommend publication after minor revisions, which I describe below. 

Response: 

We thank the reviewer for the time spent on our manuscript and for the positive and 

constructive comments provided. Our comments below indicate where we have made changes 

to the manuscript to address these concerns. 

 

Comment: 

One key issue is the use of SPEI. This metric, being the difference between precipitation and 

potential evapotranspiration, is intended to reflect the atmospheric water balance and thereby 

give a complementary view to SPI-based drought. However, the use of potential 

evapotranspiration in the calculation of SPEI makes SPEI unrealistic in many water-limited parts 

of Australia, where actual evapotranspiration does not approach the potential upper limit. So, 

any projected worsening of PET-related conditions is merely an indication of an increase in 

atmospheric demand for moisture, rather than a conclusive reduction in water stores. I suggest 

this issue is more adequately discussed in the paper, including the implications in the 

interpretation of SPEI-based projections of drought. 

Response: 

In accordance with the reviewer’s suggestion, we have strengthened the discussion of the SPEI-

based drought projections. Specifically, we have added the following in our discussion of the 

differences between SPI and SPEI (refer to page 22 of our revised manuscript for 

implementation): 

“However, further PET increases which drive SPEI in water-limited regions (Rangelands and 

Southern Australia) are unlikely to have as much consequence as in humid regions where the 

potential upper limit of actual evaporation has not already been met.”  

 

We further highlight the potential limitation of SPEI in water limited regions (refer to page 23 

of our revised manuscript for implementation): 

“On the other hand, there is potential that the SPEI could overestimates future drought 

magnitudes, especially in water-limited regions and may better represent a conservative upper 

limit of potential future drought risk.”  

 

Additionally, as suggested by the reviewer we have expanded on our discussion of the 

implications (refer to page 23 of our revised manuscript for implementation): 

“It should be noted that increases to SPEI may not necessarily translate into on the ground 

changes, especially in water-limited environments where PET is already far greater than 
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precipitation. In these regions, which includes most of Australia the timing and magnitude of 

precipitation may be a more important consideration, and as such care must be taken when 

interpreting the SPEI-based drought projections.”  

 

Comment: 

The second key issue is the lack of attention given to the uncertainty of the projections. While 

using a multi-model ensemble and multiple emissions pathways goes some way to addressing 

uncertainty, the drought projections should be presented along with quantified uncertainty 

estimates. Moreover, the issue of uncertainty propagation from GCM through to downscaling 

technique to RCM was not addressed. 

Response: 

We thank the reviewer for their comment. We had attempted to show the uncertainty from 

the multi-model ensemble and multiple emissions pathways using timeseries plots of all 

ensemble members (Fig. 3 and Fig. 4), probability density function plots (Fig. 5 and Fig. 6 and 

Fig. 8 and Fig. 9), and boxplots (Fig. 11). In accordance with the reviewer’s comment, we have 

updated our spatial maps (Fig. 10 and Fig. S15) to include hatching based on the quantitative 

signal-to-noise ratio to determine where the climate change signal emerges from uncertainty 

of the projections. We have updated the caption for this figure and the following text has been 

added to the methodology to introduce the approach (refer to page 8 of our revised manuscript 

for implementation): 

“To determine where there is confidence in the changes to the drought metrics, we adopt the 

signal-to-noise ratio to see where the climate change signal emerges over the ‘noise’ of the 

model ensemble (Hawkins et al., 2014). Here, the model uncertainty is considered as noise using 

the standard deviation of the projections (Hawkins and Sutton, 2011). We calculate the signal 

from the 11-model average, while the noise is derived from the standard deviation of all 15 

projections (Chapman et al., 2024). Stippling is shown on the ensemble mean and median 

change maps where the signal-to-noise ratio is greater than 1.0 (Chapman et al., 2024; Hawkins 

et al., 2014; Hawkins & Sutton, 2011).”  

 

Additionally, we have added figures to the supplementary materials, showing spatial maps of 

the 10th and 90th percentile of changes along with the multi-model average (Fig. S16 to Fig. S20). 

We have also included an additional figure of the changes to precipitation and PET from CCAM 

in the supplementary materials (Fig. S2). The results section of our manuscript has been 

updated to reflect these changes (refer to pages 18-19 of our revised manuscript for 

implementation): 

“For the percent time in drought, frequency, and duration of extreme droughts, there were few 

regions where the signal-to-noise ratio was greater than one for SPI (Fig. 10). Significant 

increases can be noted in south-west Western Australia, in southern Victoria, southern South 

Australia and in western Tasmania under the high emissions scenario (SSP370), which are seen 

to reflect the spatial changes of mean precipitation (Fig. S2). In southwest Western Australia, 

SPI related extreme droughts were projected to occur both more frequently and last longer, 

leading to considerable increases in the percent time in drought. By contrast, the increases to 

the percent time in drought in southern Victoria, southern South Australia and in western 

Tasmania appears to be principally the result of increased drought frequency, with less clear 
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changes noted for drought duration. In addition to these regions, there were also significant 

increases to the percent time in moderate to extreme drought for the Gulf of Carpentaria and 

Northeastern Queensland for SSP370 by the 2090s (Fig. S15), which was not evident in the 

extreme droughts. For the remainder of the country, the results of SPI tended to be more 

uncertain. Interestingly, there were no regions of Australia where there was a significant 

reduction to the time spent in extreme drought. 

For SPEI, there was wide model agreement for more frequent and longer drought events for the 

majority of the continent, particularly under SSP370 and for the end of the century (Fig. 10). This 

was especially true for the percentage time in drought, which is the result of both increasing 

drought frequency and duration. For parts of Northern Australia and Eastern Australia, there 

was generally less model agreement from the signal-to-noise ratio (as shown by the hatching) 

and the magnitude of the changes were typically smaller when compared to southern regions 

and the interior of the continent. Significant differences were noted between the 10th and 90th 

percentiles of projected changes to both SPI and SPEI, highlighting the uncertainty in these 

projections (Fig. S16 to Fig. S21).”  

 

We have added the following text to the methodology to highlight how GCMs compare to the 

RCM used in this study (refer to page 5 of our revised manuscript for implementation): 

“In the future, the climate change signal of the host GCMs from downscaling was shown to 

generally be preserved for precipitation, though with some differences in magnitudes in some 

regions, particularly in summer. For temperature changes, the downscaled models were shown 

to have good agreement with the host models across Australia (Chapman et al., 2024).” (p. 5) 

 

We note that PET was derived offline from CCAM using Penman-Monteith reference crop 

approach using CCAM outputs of solar radiation, vapour pressure, maximum and minimum 

temperature, mean sea level pressure, and wind speed. As such, we are unable to compare PET 

projections from CCAM to the GCMs and unable to compare drought metrics derived from the 

GCMs to CCAM.  

 

Comment: 

The final key issue is that one of the most crucial findings of the study needs to be made more 

prominent. The results show that more time is projected to be spent under extreme conditions, 

both wet and dry, and less time under ‘normal’ conditions, for some parts of Australia (Table 

3). This result should be made more prominent, for example by featuring in the abstract. This 

result is important because it suggests that the combination of projected changes in the climate 

system is shifting the dial towards more extreme climatic conditions and motivates future 

research in understanding the physical processes responsible for the shift. 

Response: 

We thank the reviewer for pointing this out. In accordance with their suggestion, we have 

added these key findings into the abstract (refer to page 1 of our revised manuscript for 

implementation): 

“Increases to drought appear to have mostly come at the expense of ‘normal’ climatic conditions, 

with similar or increased time spent under extreme wet conditions, indicating an overall shift 

towards more extreme climatic conditions.”  
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And the conclusion (refer to page 25 of our revised manuscript for implementation): 

“These increases appear to have largely come at the expense of ‘normal’ climatic conditions, 

with little changes or small increases to time spent under extreme wet conditions, pointing 

towards an overall shift towards more extreme climatic conditions across Australia.”  

 

Furthermore, we have expanded on our discussion of future drought by adding the following 

section in bold (refer to page 22 of our revised manuscript for implementation): 

“Interestingly, the increase in extreme droughts did not lead to a decrease in extreme wetness, 

but rather mostly reduced time in near normal climate conditions (Table 3). Indeed, in some 

regions there was an increase to the time spent in extreme wet conditions in the future, 

indicating an overall shift towards more extreme climatic conditions. This was due to a shift in 

the mean and an overall flattening of the PDFs of SPI and SPEI as seen in Fig. 5 and Fig. 6, leading 

to more time in drought conditions. Similar PDFs changes have been noted in global 

assessments of soil moisture, runoff, and the Palmer drought index under CMIP5 and CMIP6 

(Zhao and Dai, 2015, 2022).” 

 

Minor Comment: 

L84: this is a bit of a throw away line. I suggest turning this around by stating that since RCMs 

have been shown to estimate regional rainfall features with higher precision than GCMs, RCMs 

are more appropriate to study drought on the regional scale. 

Response: 

In accordance with the reviewer’s suggestion, we have changed this line to (refer to page 3 of 

our revised manuscript for implementation): 

“However, while research to date has largely focussed on applying coarse GCM outputs to 

assess future droughts, RCMs have been shown to have more skill in representing key rainfall 

features and may therefore be better suited to study droughts at regional scales.”  

 

Minor Comment: 

Inter-model variability (Figure 11) is shown to be higher for SPEI and some drought 

characteristics. Can an explanation be offered for why this is? What are the implications of this 

variability on the interpretation of future drought changes? 

Response: 

We believe the variability of the projected changes is related to the mean projected change (i.e. 

the range of changes approximately scales with the mean change). We have therefore added 

the following into the discussion (refer to pages 20-21 of our revised manuscript for 

implementation): 

 “The inter-model variability appears to approximately scale with the mean change in the 

projections, indicating greater uncertainty for larger changes.”  

“While the sign of the change is clear in these regions, especially for SPEI, there is considerable 

inter-model variability in the magnitude of the projected changes (Fig. 11), which may 

necessitate decision makers to adopt an adaptive approach to planning for these future 

eventualities.”  
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Point by Point Response for Reviewer 2 

 

General Comment: 

The manuscript ‘Meteorological Drought Projections for Australia from Downscaled high-

resolution CMIP6 climate simulations’ presents the future drought features (SPI and SPEI) 

based on the downscaled precipitation and potential evapotranspiration data. The work is well-

presented. However, there are some issues that need to be clarified further before the 

publication.  

Response: 

We thank the reviewer for their time and constructive comments on our manuscript. Our 

comments below show where we have made changes to the manuscript to address these 

concerns.  

 

Comment: 

1. This study utilizes various drought characteristics, including duration, frequency, percent 

time (Figure 2), and shifts in the moving average, to predict future droughts. However, since 

the downscaling is applied only spatially, all temporal analyses could be conducted using GCM 

data. Yet, only Figure 10 presents a spatial map. What is the rationale for using downscaled 

data in this context?  

Response: 

We thank the reviewer for their comment. It is important to note that downscaling does 

improve the temporal and the spatial resolution of the projections (for instance CCAM has sub-

daily data available). However, as this analysis was conducted using accumulated monthly 

precipitation and PET, outputs from GCMs could also be applied as suggested by the reviewer, 

though at a much coarser spatial resolution. We have found in previous work that downscaling 

improves the representation of precipitation and temperature, even when assessed at coarse 

spatial scales (Chapman et al., 2023), which we better highlight in our revised methodology 

(refer to page 5 of our revised manuscript for implementation): 

“The downscaling approach adopted has been shown to significantly improve the performance 

over the host GCMs for precipitation and temperature in all seasons, with the largest 

improvements noted for climate extremes, even when assessed across the four Australian IPCC 

regions (Chapman et al., 2023), which are similar to the NRM super-clusters adopted in this 

study. Across Australia as a whole, seasonal precipitation was shown to improve in all models, 

with an ensemble average improvement of 43% using the Kling-Gupta Efficiency, while the 

annual cycle of precipitation improved in most models with an ensemble average improvement 

of 13% (Chapman et al., 2023). Downscaling also improved the fraction of dry days, reducing 

the bias for too many low-rain days. These improvements have clear beneficial effects for the 

simulation of future droughts.”  

 

The data visualization of such a complex analysis involving multiple sources of variation (i.e., 

emissions scenarios, time horizons, drought characteristics, drought severities and regions) is 

challenging and maps may not be the best type of graphic to convey the findings and 

communicate nuances under space constraints. For instance, we made a conscious choice in 
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the manuscript to combine the spatial maps into subplots where possible to allow for an easy 

comparison of changes to drought characteristics from both SPI and SPEI. For instance, Fig. 10 

highlighted by the reviewer contains subplots of 36 maps for extreme droughts. Additional 

maps of changes to moderate droughts can be seen in the supplementary materials (Fig. S14). 

We have added additional spatial maps of the 10th and 90th percentile changes to drought 

metrics to better understand the spatial uncertainty of the projections (Fig. S16 to Fig. S20), as 

well as maps of changes to precipitation and PET (Fig. S2).  

 

We also wanted to highlight that one of the outputs of this contribution is the dataset of 

regionalised drought characteristics for Australian Local Government Areas and River Basin 

(https://doi.org/10.6084/m9.figshare.26343823), which is only possible due to the finer 

granularity of the downscaled projections. We better highlight this advantage in the 

methodology (changes in bold; refer to pages 8-9 of our revised manuscript for 

implementation): 

“Additional supplementary datasets tailoring projected drought impacts to Australian Local 

Government Areas (566 sub-regions included) and River Basins (219 sub-regions included) are 

also made available (Eccles, 2024), thanks to the high-resolution projections used in this study.”  

 

Comment: 

2. Why did the author choose to use downscaled data from the Conformal Cubic Atmospheric 

Model (CCAM)? What advantages does CCAM offer compared to other downscaled datasets? 

Additionally, how can you demonstrate that drought characteristics derived from the 

downscaled data are more reliable or accurate than those based on raw GCM data?  

Response: 

The reviewer is correct that there are other downscaled datasets available as part of the 

CORDEX CMIP6 experiment. However, at the time that this work was undertaken, only the 

CCAM dataset was available for analysis. This downscaled dataset is also advantageous over 

other datasets, as it is the largest ensemble available (15 model runs per emission scenario) 

and run at the highest resolution (10 km). We have added the following text to better highlight 

this advantage (refer to page 5 of our revised manuscript for implementation): 

“This represents the largest downscaled ensemble of projections in Australia ran at the highest 

resolution.”  

 

We adopted reference crop evapotranspiration (PET) for calculating the SPEI, which was 

derived offline from CCAM requiring daily data for solar radiation, vapour pressure, maximum 

and minimum temperature, mean sea level pressure, and wind speed. This method for deriving 

PET is more data intensive and complex than alternatives but provides better estimations of 

PET compared to pan evaporation or simple temperature-based PET estimations. The approach 

is not available from other downscaled ensembles or from the raw GCM data. We have added 

the following to the introduction to better elucidate the advantages of this approach (refer to 

page 7 of our revised manuscript for implementation): 

“This method for deriving PET is more intensive than simpler temperature-based approaches 

but is recommended where data is available (Beguería et al., 2014; Hosseinzadehtalaei et al., 

2017; Sheffield et al., 2012).”  

https://doi.org/10.6084/m9.figshare.26343823
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As we have derived our PET offline to CCAM no direct comparison to the host GCMs is possible. 

We have however, previously compared how downscaling improves the simulation of other 

variables such as precipitation and temperature, which will have clear benefits for the 

simulation of droughts. In line with the reviewer’s comment, we have added the following to 

the introduction, which we also highlighted in response to comment 1 (refer to page 5 of our 

revised manuscript for implementation): 

“Across Australia as a whole, seasonal precipitation was shown to improve in all models, with 

an ensemble average improvement of 43% using the Kling-Gupta Efficiency, while the annual 

cycle of precipitation improved in most models with an ensemble average improvement of 13% 

(Chapman et al., 2023). Downscaling also improved the fraction of dry days, reducing the bias 

for too many low-rain days. These improvements have clear beneficial effects for the simulation 

of future droughts.” 

 

Comment: 

3. Is there any result about the comparison between the downscaled data and original data 

(such as precipitation and potential evapotranspiration) to evaluate the downscaling methods' 

performance?  

Response: 

As we note above, we have evaluated the added value of downscaling on precipitation and 

temperature, and undertaken comparisons with host models for historical  (Chapman et al., 

2023) and future (Chapman et al., 2024) projections, which we now highlight in the 

methodology (refer to page 5 of our revised manuscript for implementation):  

“The downscaling approach adopted was shown to significantly improve the performance over 

the host GCMs for precipitation and temperature in all seasons, with the largest improvements 

noted for climate extremes, even when assessed across the four Australian IPCC regions 

(Chapman et al., 2023), which are broadly similar to the NRM super-clusters adopted in this 

study. Across Australia as a whole, seasonal precipitation was shown to improve in all models, 

with an ensemble average improvement of 43% using the Kling-Gupta Efficiency, while the 

annual cycle of precipitation improved in most models with an ensemble average improvement 

of 13%. These improvements have clear beneficial effects for the simulation of future droughts. 

Downscaling also improved the fraction of dry days, reducing the bias for too many low-rain 

days. In the future, the climate change signal of the host GCMs from downscaling was shown 

to generally be preserved for precipitation, though with some differences in magnitudes in some 

regions, particularly in summer. For temperature changes, the downscaled models were shown 

to have good agreement with the host models across Australia (Chapman et al., 2024).”  

 

As also noted above, PET was derived offline from the model, and so we could not compare the 

performance from CCAM and the host GCMs.  

 

Comment: 

4. The study area was divided into four distinct regions—Eastern Australia, Northern Australia, 

the Rangelands, and Southern Australia—based on climatic and biophysical characteristics. 

However, the specific climatic and biophysical parameters used for this classification were not 
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explicitly defined. Including detailed information on climate patterns (e.g., precipitation 

regimes, seasonal variations), dominant vegetation types, and temperature ranges could 

enhance the clarity of the classification framework. Such specifications would facilitate a more 

comprehensive interpretation of the analytical results by providing critical contextual 

information about regional environmental variations.  

Response: 

We thank the reviewer for pointing out the lack of information regarding how the NRM regions 

were defined. It is important to note that we did not classify these regions ourselves. Rather, 

we adopt pre-defined regions classified by Australian Federal agencies to specifically assess 

climate change in Australia (CSIRO and Bureau of Meteorology, 2015). In accordance with the 

reviewer’s recommendation, we have revised Fig. 1 in the revised manuscript to include the 

major climate regions as a background and have added a table in the supplementary materials 

which details the dominant climate and ecological characteristics within each of the super-

clusters using information from (CSIRO and Bureau of Meteorology, 2015). We have added the 

following sentence to the methodology to reflect this change (refer to page 4 of our revised 

manuscript for implementation): 

“Details of the dominant climate zones and ecological characteristics within each of these super 

clusters are presented in Table S1.”  

 

Comment: 

5. The discussion's comparative analysis of the SPI and SPEI offers valuable methodological 

insights. However, stronger integration with region-specific climatic and biophysical drivers 

would benefit the interpretation. Additionally, the spatial specificity of distinctions between SPI 

and SPEI across sub-regions remains insufficiently delineated, limiting the granularity of 

conclusions.  

 

The discussion should also explicitly articulate linkages between index disparities and potential 

localized environmental drivers, such as land cover status. 

Response: 

As the reviewer suggests we have expanded our discussion of how meteorological droughts 

interact with biophysical factors, including land cover in section 4.3 (refer to page 24 of our 

revised manuscript for implementation): 

“Both positive and negative changes in landcover can influence meteorological droughts 

through changes in precipitation, temperature, and windspeed (due to changing surface 

roughness), which influence both SPI and SPEI. For instance, in southwest Western Australia 

largescale anthropogenic landcover changes were shown to partially drive long-term declines 

in precipitation along coastal regions and increases in inland regions (Pitman et al., 2004; 

Timbal and Arblaster, 2006). Further landcover changes as a result of climate change or other 

anthropogenic activities may therefore work to further exacerbate or mitigate future droughts 

depending on the region and the changes. The projections included in this study include 

landcover changes which are prescribed according to the emissions scenario (Eyring et al., 2016). 

These changes are, however, not dynamic or responsive to changes in the climate and as such 

could respond differently in the future, potentially impacting on the magnitude of the drought 

changes presented.”  

 



9 

 

We assess NRM regions in the paper to enable the results to be interpretable (more regions 

require more subplots) and as NRM regions have commonly been used to assess climate 

change impacts in Australia. We have made available much more granular data as suggested 

by the reviewer which may be applied for these local-scale analyses. We have added the 

following text in our discussion to better highlight this fine scale dataset (refer to page 21 of 

our revised manuscript for implementation):  

“We provide supplementary datasets tailoring these projections to Australian River Basins and 

Local Government Areas (Eccles, 2024). These datasets provide derived drought metrics at a 

much more granular scale, which may be useful for informing local and regional scale decisions 

on adaptation and drought preparedness.”  

 

 

Comment: 

Can more spatiotemporal visualizations (e.g., seasonal or interannual variability in drought 

indices in different regions) be incorporated to elucidate sub-regional heterogeneity clearly?  

Response: 

In line with the reviewer’s comment, we have included plots in the supplementary materials 

showing the interannual variability of projected droughts in each of the regions (Fig. S25 to Fig. 

S48). As each model has a different sequence of wet and dry events, we show all models so 

that the interannual variability of the projections is evident. We have added the following to 

the results section to reflect these changes (refer to page 10 of our revised manuscript for 

implementation): 

“Interannual variability from the different projections in each of the regions are presented in Fig. 

S25 to Fig. S48.”  

 

The focus of our paper was on SPI-12 and SPEI-12 which includes the previous 12 months of 

accumulated of rainfall (and PET for SPEI), which is not suited to assessing seasonal variability. 

For this, a 3-month accumulation period would be better suited, which is broadly linked to 

agricultural droughts but outside the scope of this paper. We adopted a 12-month 

accumulation period for our assessments of SPI and SPEI as this was considered as a suitable 

timeframe for water deficits to impact various hydrological and agricultural systems (Zargar et 

al., 2011).  
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