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Abstract. The hydroxyl radical (OH) plays a central role in tropospheric chemistry as well as influencing the lifetimes 

of some greenhouse gases. Because of limitations in our ability to observe OH, we have historically relied on indirect 

methods to constrain its concentrations, trends, and variations, but only as annual global or semi-hemispheric averages. 

Recent methods demonstrated the feasibility of indirectly constraining tropospheric OH on finer spatio-temporal 

scales, using satellite observations as proxies of the photochemical drivers of OH (e.g., nitrogen dioxide, 20 
formaldehyde, isoprene, water vapor, ozone). We found that there are currently reasonable satellite proxies to constrain 

up to about 75% of the global source of tropospheric OH and up to about 50% of the global sink. With additional 

research and investment in observing various volatile organic compounds, there is the potential to constrain an 

additional 10% of the global source and 30% of the global sink. We propose steps forward for the development of a 

comprehensive space-based observing strategy, which will improve our ability to indirectly constrain OH on much 25 
finer spatio-temporal scales than previously achieved. We discuss the strengths and limitations of such an observing 

strategy and potential improvements to current satellite instrument observing capabilities that would enable better 

constraint of OH. Suborbital observations (i.e., data collected from non-satellite platforms, such as aircraft, balloons, 

and buildings) are required for information difficult to obtain from space and for validation of satellite-based OH 

estimates; therefore, they should be an integral part of a comprehensive observing strategy. 30 
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1 Introduction 

The hydroxyl radical (OH) has a pivotal role in atmospheric chemistry and controls the lifetimes of methane (CH4), 

hydrochlorofluorocarbons/hydrofluorocarbons (HCFCs/HFCs), carbon monoxide (CO), volatile organic compounds 

(VOCs), and numerous other gases relevant to climate and air quality. The relationship of OH to other atmospheric 

constituents is often complex and non-linear. For instance, the concentrations and lifetimes of ozone (O3) and OH are 35 
convolved as the primary source of OH involves the destruction of O3, OH is integral in many tropospheric chemical 

reactions (e.g., initiating the oxidation of VOCs) that lead to O3 production, and the reaction of HO2 with NO is a 

secondary source of OH that can also lead to O3 production. The reader is referred to, for instance, Lelieveld et al. 

(2016) and Fiore et al. (2024) for comprehensive overviews of the importance of OH in tropospheric chemistry as 

well as discussions of key uncertainties in its global chemical budgets and estimates of past global trends and variations 40 
of its atmospheric abundance. 

In situ measurements provide information about tropospheric OH at a particular point in time and space. However, 

these observations are sparse, and OH is highly variable in space and time as its lifetime is < 1 second. Therefore, in 

situ observational networks are not a viable way to map the variability and trends of OH across the globe. In addition, 

there are few in situ instruments that can quantify OH at typical ambient concentrations of 105 - 107 molecules cm-3 45 
(e.g., Stone, Whalley, and Heard, 2012). Generally, in situ measurement uncertainties are ~30% for integration times 

of 30 - 60 seconds (Brune et al., 2018). Comparing OH observations from multiple airborne missions to steady-state 

box model simulations, Miller and Brune (2022) concluded that “oxidation chemistry in most of the free troposphere 

is understood to as well as current measurements can determine.” This implies that, for some parts of the atmosphere, 

further refinements in our understanding of tropospheric oxidation are limited by inherent measurement uncertainties 50 
for both OH and related species. Nevertheless, the suite of other trace gases and aerosols observed during campaigns, 

both with and without the sparse in situ data of OH, have provided a detailed, albeit geospatially-limited, view of 

tropospheric composition (e.g., Nicely et al., 2016). 

A tropospheric OH data product derived from a space-borne instrument is not currently feasible, though it may become 

feasible with technological development. The total column of OH has been measured for decades during daytime with 55 
passive instruments at a few ground-based facilities (e.g., Cageao et al., 2001; Minschwaner, Canty, and Burnett, 

2003) and new technology development could lead to an OH lidar (Pan et al., 2022). Studies would need to be 

performed to assess the suitability of these passive and active instruments for deployment on satellites. If it is feasible 

to deploy such instruments in space, a tropospheric column of OH could be inferred by subtracting stratospheric 

column observations from total column observations; space-based instruments that measure stratospheric-mesospheric 60 
OH, albeit not down to the tropopause, have already been demonstrated (e.g., the Microwave Limb Sounder, MLS; 

Wang et al., 2008). 

There are a number of methods to indirectly constrain tropospheric OH on global scales, such as with suborbital 

observations (e.g., Lelieveld et al., 2006). Methods that use in situ data of methylchloroform or a combination of 

HCFCs observations constrain only global or, possibly, hemispheric OH (e.g., Liang et al., 2017; Thompson et al., 65 
2024). For methylchloroform, recent declines in tropospheric abundance limit its utility (Lelieveld et al., 2004; Liang 
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et al., 2017). Nevertheless, the multi-decadal methylchloroform observations have provided an important constraint 

on the long-term trends and variations of tropospheric OH (e.g., Patra et al., 2021 and references therein). Shortwave 

infrared (SWIR) observations of CH4 from the Japan Aerospace Exploration Agency’s (JAXA) Greenhouse Gases 

Observing Satellite (GOSAT) have been proposed as a way to indirectly constrain global OH (Zhang et al., 2018), 70 
though additional surface and thermal infrared (TIR) observations may be required (Zhang et al., 2021). 

In addition to the lack of data for spatio-temporal constraint, uncertainties in the atmospheric processes (e.g., trace gas 

and heterogenous chemistry, emissions) that influence tropospheric OH (e.g., as summarized in Table 2 of Fiore et 

al., 2024; Prather and Zhu, 2024) have resulted in a large range in simulated OH among chemical transport models 

(CTMs; e.g., Nicely et al., 2017; Nicely et al. 2020; Zhao et al., 2019; Murray et al., 2021). Consequently, there is 75 
considerable uncertainty in the sink of CH4, which contributes significantly to the overall uncertainty in the budget of 

CH4 (Saunois et al., 2020).  

Recent efforts have demonstrated satellite-based methods to indirectly constrain its spatio-temporal concentrations, 

trends, and variations on local and regional scales (e.g., 1º latitude x 1º longitude; e.g., Valin et al., 2013; Valin et al., 

2016; Wolfe et al., 2019; Wells et al., 2020; Pimlott et al., 2022; Zhu et al., 2022b; Anderson et al., 2023; Zhao et al., 80 
2023; Anderson et al., 2024; Souri et al., 2024; Shutter et al., 2024; Zhu et al., 2024). These methods use various 

satellite datasets as proxies for OH drivers (e.g., CH4, water vapor (H2O(v)), nitrogen dioxide (NO2), CO, formaldehyde 

(HCHO), isoprene, tropospheric O3). Thanks to contemporary, multi-decadal data records, these approaches open new 

avenues for characterizing OH over long periods of time, which is important for understanding the impact of both 

anthropogenic activities and natural phenomena on tropospheric OH.  85 

The purpose of this manuscript is to make recommendations for developing a strategic and comprehensive observing 

strategy, which will improve our ability to indirectly constrain OH on much finer spatio-temporal scales than 

previously achieved. Our recommendations are intended to inform international efforts to prioritize observational 

needs. In Section 2, we describe the current space-based approaches to constrain tropospheric OH. In Section 3, we 

summarize suborbital observations (i.e., data collected from non-satellite platforms, such as aircraft, balloons, and 90 
buildings) that are required for information currently unobtainable from space (e.g., fine vertical resolution of satellite 

proxies) and for validation of satellite-based OH estimates. In Section 4, we discuss potential refinements to retrieval 

algorithms as well as to instrument capabilities that would improve satellite data products. Finally, in Section 5, we 

discuss potential improvements to current satellite observing capabilities that would better enable constraint of OH. 

These improvements include ones that are obtainable with current technologies (e.g., more observations, co-located 95 
observations) as well as ones requiring additional technology development (e.g., to obtain finer vertically-resolved 

observations). 
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2 Current Approaches to Indirectly Constrain Local and Regional Concentrations, Trends, and Variations of 

Tropospheric OH with Satellite Observations 

Here we provide a brief overview of the various space-based approaches that have been used to constrain tropospheric 100 
OH as partial and/or total vertical column densities (VCDs) or surface concentrations on monthly to seasonal 

timescales. Each of these approaches has its strengths and limitations that need to be considered when applying it to 

constrain tropospheric OH. 

2.1 Process-based Approaches 

These approaches exploit photochemical relationships between satellite-observable species and tropospheric OH, 105 
which aid understanding of the causes of trends and variations in inferred OH (e.g., Valin et al., 2016; Nicely et al., 

2018; Baublitz et al., 2023).  

● Wolfe et al. (2019) found a linear relationship between OH and HCHO using in situ observations from 

NASA’s Atmospheric Tomography (ATom) field campaign, which is consistent with the modeling work of 

Valin et al. (2016) who found that HCHO VCDs primarily depend on OH production rates at low OH 110 
concentrations. This indicates that HCHO VCDs, such as from the Ozone Monitoring Instrument (OMI) on 

NASA’s Aura satellite, could be used to infer tropospheric OH VCDs on local scales. This approach is valid 

over remote oceanic environments, where CH4 oxidation is the primary HCHO source; there are broad 

regions of the troposphere that are characterized by this photochemical environment. 

● Pimlott et al. (2022) developed an approach that employs a simplified steady-state approximation with 115 
multiple trace gas observations (i.e., O3, CO, CH4, and H2O(v)) from the Infrared Atmospheric Sounding 

Interferometer (IASI) on the European Space Agency’s (ESA) MetOp-A satellite. This approach is most 

representative of OH from 600-700 hPa, though the authors argue that their approach could be reasonably 

applied from 400-800 hPa.  

● Shutter et al. (2024) developed an approach to constrain tropospheric OH trends and variability that uses the 120 
ratio of VCDs of isoprene from the NOAA Suomi NPP Cross-track Infrared Sounder (CrIS) and HCHO from 

the Ozone Mapping Profiler Suite (OMPS) over isoprene-emitting forest ecosystems. They take advantage 

of the fact that the ratio of the VCDs of isoprene and HCHO scales with 1/[OH] in such environments (Wells 

et al., 2020).    

2.2 Machine Learning (ML) Approaches 125 

These approaches use a combination of an ML model, output from a CTM, and satellite observations. The utility of 

these approaches for constraining tropospheric OH depends on the accuracy of the training dataset. For example, there 

are known knowledge gaps in our understanding of the processes that influence OH (Fiore et al., 2024). In addition, 

these approaches reproduce OH only for photochemical environments that are represented in the training dataset. For 
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example, the following two approaches were designed for polluted urban environments and cleaner 130 
tropical/subtropical ones, respectively.     

● Zhu et al. (2022b) developed an approach that takes advantage of the known response of surface OH to NOx 

(= NO2 + NO) concentrations to infer trends and variations in summertime, surface OH over selected cities. 

Their six input parameters, on which their ML model was trained, explain 76% of the variance in simulated 

surface OH. Two of the input parameters are satellite data (i.e., OMI NO2 and HCHO), though the other 135 
parameters are simulated by a CTM. 

● Anderson et al. (2023) developed a multi-satellite approach, testing the utility of datasets of numerous trace 

gases (i.e., Table 1 of Anderson et al., 2023) that influence OH through chemical, radiative and 

meteorological effects. They demonstrated the potential of their approach for inferring trends of tropospheric 

OH VCDs over tropical and subtropical oceans (Figure 1), and their approach is being expanded over land 140 
and the extra-tropics. Preliminary results indicate that this approach, which uses tropospheric and total VCDs, 

may be used to infer OH for various layers of the troposphere; information of the vertical distribution of OH 

is important for estimating, for instance, CH4 lifetime given that CH4 loss is weighted toward the lower 

troposphere.  

 145 
Figure 1: There is significant seasonal and spatial variability in the trend of the tropospheric VCD of OH over tropical 

oceans from 2005 to 2019. We calculated the trend using the OH product described in Anderson et al. (2023) and a 

multiple linear regression, described in Anderson et al. (2024). Colored areas indicate those grid boxes where the trend 

is statistically significant and with at least 10 years of data. This figure is an adaptation of Figure 2 from Anderson et 

al. (2024). 150 

2.3 Chemical Data Assimilation Approaches 

Historically, these approaches incorporate satellite observations of OH drivers into CTMs to constrain tropospheric 

OH. They use inverse modeling and/or chemical data assimilation methods (Bocquet et al., 2015) to reconcile modeled 

estimates with observations while relying on the underlying chemical mechanisms of the model to infer OH 

concentrations consistent with the assimilated observations. A notable benefit of data assimilation is that it not only 155 
provides an improved estimate of concentrations, but the resulting increments indicate where model parameterizations 
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are deficient and/or require improvement. Overall, the benefit of data assimilation depends on the magnitude of the 

difference between the observed and simulated variable.   

● Miyazaki et al. (2012, 2020) and several other papers from the same group developed multi-species (notably 

NO2, O3, and CO) assimilation systems for estimating tropospheric composition and emissions. In particular, 160 
assimilation reduced the multi-model spread and annual biases of key OH drivers in four CTM frameworks. 

The multi-model spread for tropospheric mean OH was reduced by 24 – 58 % over polluted areas. 

● Gaubert et al. (2016, 2017) assimilated Measurements of Pollution in the Troposphere (MOPITT) CO 

observations into the Community Atmosphere Model with Chemistry (CAM-Chem) of the Community Earth 

System Model (CESM). They showed, for example, that increases in CO because of assimilation can lead to 165 
decreases in OH and finally longer lifetimes of CH4. In contrast, decreases in CO can lead to increased OH 

and shorter CH4 lifetimes. Highlighting nonlinear effects, the study also demonstrated that assimilation led 

to changes in O3 and photochemical activity due to HOx recycling. 

2.4 Simplified Hybrid Approaches 

Several recent, simplified approaches allow for the quantification of the impacts of constraining various OH drivers 170 
with satellite observations, which could inform decision-making (e.g., prioritization of observables) in inverse model 

and data assimilation efforts (Section 2.3).  

● Zhao et al. (2023) developed a method to post-process a CTM simulation to improve simulated tropospheric 

OH. Their method adjusts the monthly-averaged, simulated concentrations of OH drivers (CO, CH4, O3, 

HCHO, NO2, total column O3, and H2O(v)) with satellite observations for each model column and then uses 175 
a photochemical box model to recalculate the corresponding concentration of tropospheric OH.  

● Zhu et al. (2024) used an ML technique to develop an emulator of simulated tropospheric OH VCDs in the 

CESM Whole Atmosphere Community Climate Model (WACCM), which facilitated their assessment of the 

roles of satellite VCDs of NO2, HCHO, and CO on tropospheric OH concentrations, trends, and variations. 

● Souri et al. (2024) developed a Bayesian data fusion method that adjusts monthly-averaged distributions of 180 
OH drivers from a CTM simulation using satellite observations. This method considers the quality of the 

datasets and the a priori used in the retrieval. The adjusted model fields are then used in a parameterization 

of OH (Anderson et al., 2022) in a CH4-CO-OH cycle model (ECCOH; Elshorbany et al., 2016), allowing 

for easy evaluation of the impact of adjustments on OH, CH4, and CO. 

 185 
The robustness of constraining OH with these satellite-based approaches is not limited by, for instance, the ML or 

data assimilation methods at the present time, but instead by the quality of the data used as input to these methods and 

limitations in our current understanding of the chemistry and emissions that influence tropospheric OH (e.g., Table 2 

of Fiore et al., 2024). Therefore, the recommendations in the sections that follow focus on further development of the 

satellite-based approaches as well as improvement to the quality of satellite data and independent validation products. 190 
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3 Recommendations for Suborbital Needs  

The utility of any space-based OH estimate (Section 2) hinges on an adequate understanding of how OH responds to 

its drivers. Therefore, long-term measurements of key atmospheric properties, supplemented with occasional air and 

ground-based intensive campaigns, would build confidence far beyond what has been achieved with previous 

intermittent efforts, such as the NASA Atmospheric Tomography Mission (AToM) that provided a comprehensive 195 
suite of observations, primarily in remote oceanic environments. In addition, a comprehensive suite of co-located 

observations, both in situ and remote-sensed, is desired for validating CTMs, developing process-based diagnostics 

(Section 5.3), interpreting trends and variations in inferred OH, and improving satellite retrievals (Section 4). 

We recommend the development of a long-term, robust suborbital observing network, composed of instruments at 

stationary sites as well as ones deployed in field campaigns. The establishment of OH “supersite” observatories would 200 
allow for the collection of a comprehensive suite of co-located measurements of key atmospheric constituents 

(discussed below) to constrain tropospheric OH production and loss (Section 5.2.1). Focusing first on augmenting 

existing efforts (e.g., NOAA; In-service Aircraft for a Global Observing System, IAGOS; Network for the Detection 

of Atmospheric Composition Change, NDACC; Advanced Global Atmospheric Gases Experiment, AGAGE) would 

keep early development efforts feasible by leveraging existing facility infrastructure. In addition, some existing efforts 205 
(e.g., four NOAA baseline observatories, IAGOS program) already observe many of the variables that reasonably 

constrain OH, as discussed below. Periodic field campaigns would supplement the data collected at OH supersites, 

especially vertical composition profiles and in photochemical environments not represented by the ground and routine 

aircraft networks. Continuous and co-located surface and VCD observations would be ideal, especially over a range 

of photochemical environments (e.g., remote to urban) and seasons. Planetary boundary layer height data would be 210 
useful for interpreting these observations. The placement and density of OH supersites and locations/timing of field 

campaigns would benefit from Observing System Simulation Experiments (OSSEs) in order to maximize the value of 

the suborbital data for constraining OH. For instance, a simpler strategy would likely be satisfactory over the 

relatively homogeneous remote oceans (e.g., fewer stations and observations of individual VOCs) as compared to 

more complex land environments. Therefore, the OSSE studies would also need to consider the required suite of 215 
observations at individual sites. 

We recommend a focus on the collection of suborbital observations of OH drivers, given the lower uncertainties 

typically associated with these measurements as compared to those for OH (Section 1). Such observations would allow 

for the constraint of OH within photochemical box models, though OH budget closure remains an active area of 

research (Stone, Whalley, and Heard, 2012), and it is unclear whether existing in situ observations can adequately 220 
explain OH in all cases (e.g., Fuchs et al., 2017; Lew et al., 2020; Hansen et al., 2021; Yang et al., 2022; Bottorff et 

al., 2023; Yang et al., 2023).  

The following variables reasonably constrain tropospheric OH in photochemical box models and should be priority 

measurements: H2O(v), NO, NO2, CO, O3, actinic flux (or filter radiometers for wavelength ranges relevant for NO2 

and O(1D)), HCHO, and temperature. In regions closer to strong emissions sources (over and near land), chemical 225 
controls on OH are more complex and variable and a more comprehensive measurement suite (e.g., total OH reactivity, 
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VOC composition, nitrous acid (HONO), and peroxy radicals (HOx, ROx); e.g., Lelieveld et al., 2016; Yang et al., 

2016; Murray et al., 2021) may be needed to constrain all drivers. In remote marine environments, information on 

VOC speciation and reactivity is less critical, but not unimportant (Travis et al., 2020; Baublitz et al., 2023), as the 

background atmosphere is (relatively) uniform, and large-scale OH variability primarily reflects variability in OH 230 
production from photolysis and HOx cycling (Wolfe et al., 2019; Brune et al., 2020).  

Occasional deployment of in situ instruments that observe tropospheric OH at OH supersite observatories and in 

field campaigns would allow for an assessment of the consistency between observed OH and OH inferred from the 

satellite-based approaches (Section 2). As mentioned above, there are few in situ instruments and technology 

development is necessary before such observations could become routine.   235 

4 Recommendations for Retrieval Algorithm Refinement 

Here, we discuss potential refinements to retrieval algorithms as well as to instrument capabilities that would improve 

data products for the satellite-based approaches (Section 2). 

4.1 Ultraviolet/Visible (UV/Vis) 

The quality of UV/Vis satellite-based data products is determined by a number of issues, including signal-to-noise 240 
(SNR), spectral fitting uncertainties, systematic and random measurement errors, and uncertainties associated with 

creating VCDs (e.g., Duncan et al., 2014; Lorente et al., 2017). For example, to extract the spectral signature of HCHO 

used in retrievals, several interfering geophysical processes need to be accounted for, including absorption by O3, 

NO2, bromine monoxide (BrO), and oxygen dimer (O2-O2), as well as rotational Raman scattering (Ring effect; e.g., 

González Abad et al., 2016). Coupled with its small atmospheric loading, especially over remote oceanic areas, the 245 
HCHO VCDs are “noisy,” requiring temporal and/or spatial averaging to reduce random errors so that the geophysical 

signal becomes clear (e.g., Liao et al., 2024). As another example, NO2 VCDs are dominated by the stratospheric 

component over remote areas, leading to relatively large uncertainties in the corresponding tropospheric portion of 

VCDs (e.g., Lamsal et al., 2021). Improvements in data quality, whether through data product refinement (below), 

oversampling techniques, or enhancements in instrument capabilities (Section 5), will be required to use the satellite-250 
based approaches (Section 2) at finer spatial and temporal resolutions than achievable with current instruments. 

Work is ongoing to improve the accuracy and precision of satellite data products through retrieval algorithm 

refinement and also using, for example, data-driven ML data analysis methods that show promise for reducing noise 

in data products of low abundance, weak absorbers (e.g., Li et al., 2022; Joiner et al., 2023). For instance, Joiner et al. 

(2024) have tested their technique on NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO) HCHO 255 
retrievals. Preliminary results (Figure 2) show visibly less noise while keeping overall consistency with the original 

noisy data and there is a reduction in the number of pixels with negative slant column densities (SCD) values in the 

noise-reduced data. 
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Figure 2. Preliminary results of noise reduction applied to HCHO retrieved SCD from version 3 TEMPO data on 5 260 
May 2024 scan 5: a) original data before noise reduction used as training; b) after noise reduction applied; c) 

effective cloud fraction supplied in the L2 data; and d) scatter diagram showing overall agreement between noise-

reduced and original SCDs relative to the 1:1 line with fit statistics. R is correlation, RMSE is root mean squared 

error, and N is the number of pixels used in the comparison. 

Additionally, different retrieval methods applied to the same instrument often produce large differences in data 265 
products, which impact inferred OH (e.g., Anderson et al., 2023). Discrepancies created by retrieval algorithm 

assumptions could be resolved with more robust suborbital data than currently available for validation (Section 3), 

especially for a priori profiles used in retrievals.  

Additional potential areas of retrieval algorithm refinement include aerosol correction and stratosphere-troposphere 

separation that will benefit from improvements in radiative transfer forward model simulations as implemented in L2 270 
retrieval algorithms. For example, to reduce computation time, many retrieval algorithms use pre-computed lookup 

tables and do not explicitly represent important geophysical processes, such as aerosol scattering/absorption. With 

sufficient acceleration, radiative transfer models or ML proxies can be used directly in Level 2 (L2) algorithms, 

reducing interpolation errors and providing greater flexibility to use input data that are more representative of the 

atmospheric state (e.g., aerosol profiles from MERRA-2 reanalysis used in OMI NO2 retrievals; Vasilkov et al., 2021); 275 
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satellite data processing levels indicate the degree of data processing of satellite data, where L2 indicates that a 

geophysical parameter has been derived. 

4.2 Thermal Infrared (TIR) 

Trace gas measurements in the TIR often target species with relatively weak absorption, and low instrument noise is 

thus a key requirement for useful retrievals (Fu et al., 2019). High spectral resolution is also pivotal for resolving 280 
relevant spectral features and distinguishing them from atmospheric or surface interferences (Clarisse et al., 2011). In 

addition to providing spectral coverage encompassing the chemical species of interest, future TIR sounders aiming to 

constrain atmospheric composition therefore need to prioritize these instrumental characteristics. 

New retrieval developments employing ML and species detection based on a hyperspectral range index (Walker, 

Dudhia, and Carboni, 2011) have led to increased sensitivity and expanded the suite of species that can be measured 285 
in the TIR (e.g., acetic acid, acetone, ethane, ethene, ethyne, formic acid, glycoaldehyde, hydrogen cyanide, isoprene, 

methanol, peroxyacetyl nitrate (PAN); e.g., Wells et al., 2020; Franco et al., 2022; Franco et al., 2024; Brewer et al., 

2024). Since TIR observations are based on the thermal contrast between the Earth surface and the absorber, 

uncertainties increase when that temperature difference is small. For the same reason, profile shape uncertainties can 

be an important error source in TIR retrievals. Validation data are often limited for species targeted in this spectral 290 
range, and future space-based measurements would benefit from an expanded portfolio of surface and airborne data 

to validate retrievals and refine profile shape assumptions. Observational errors can also arise from uncertainties in 

the absorption cross section and surface emissivity datasets employed in retrievals; advancing the fidelity of these 

resources would therefore benefit the reliability of TIR trace gas products. 

4.3 Short-wave Infrared (SWIR) 295 

Measurements of trace gases in the SWIR rely on reflected solar radiance and can provide a true total column 

observation through the atmosphere under cloud-free conditions and when the atmospheric pathlength is characterized. 

Here we assume the SWIR range includes wavelengths from approximately 0.7-3 μm. This range is especially useful 

for measuring total columns (surface to top-of-atmosphere) of CO2 (Greenhouse gases Observing SATellite, GOSAT, 

and, Orbiting Carbon Observatory-2, OCO-2), CH4 (GOSAT and TROPOspheric Monitoring Instrument, TROPOMI) 300 
and CO (MOPITT, GOSAT-2 and TROPOMI). In many cases, the O2-A band around 0.76 mm is used for a reference 

observation of atmospheric path and cloud detection due to the constant and well-known concentration of molecular 

oxygen. SWIR observations of total column CO and CH4 are especially important for quantifying surface source 

emissions that have a significant contribution to OH sinks (Section 5.2) 

4.4 Enhancing Vertical Resolution 305 

As is the case for suborbital observation needs (Section 3), vertically-resolved data of OH drivers are a priority for 

future satellite instruments to improve retrieval algorithms, especially for a priori profiles. In addition, they will 

advance the ability of the satellite-based approaches (Section 2) to constrain tropospheric OH at finer vertical 
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resolution than a tropospheric VCD measurement can provide. Such data are also useful for validating CTMs, 

developing process-based diagnostics (Section 5.3), and interpreting the causes of trends and variations in inferred 310 
OH throughout the tropospheric column (e.g., Baublitz et al., 2023). For example, the efficiency and quality of the 

ML approaches (Section 2.2) would benefit from vertically-resolved input variables.  

We recommend that studies be done to maximize the vertical information of the observations of OH drivers, which 

may be achieved through a number of approaches, including developing satellite instrument technology (e.g., multi-

angle and/or multispectral instruments) and investing in the development of multispectral data products that use 315 
radiances from one or more instruments (e.g., CH4, Zhang et al., 2018). Multispectral data products were developed 

for O3 (TES/OMI, Fu et al., 2013, Colombi et al., 2021; Atmospheric Infrared Sounder (AIRS)/OMI, Fu et al., 2018; 

TROPOMI/Cross-track Infrared Sounder (CrIS), Mettig et al., 2022) and CO (MOPITT NIR/TIR, Worden et al., 2010, 

Gaubert et al., 2017; CrIS/TROPOMI, Fu et al., 2016); development of these and other products is occurring through 

the NASA TRopospheric Ozone and Precursors from Earth System Sounding (TROPESS) project.   320 

In addition to gaining vertical information through the development of satellite instrument technology and 

multispectral algorithms, one may combine multiple data products of an OH driver from instruments that observe 

different tropospheric vertical layers. As an example, Oman et al. (2013) constrained the response of O3 to ENSO 

using vertically-resolved data from the NASA Tropospheric Emission Spectrometer (TES) and Microwave Limb 

Sounder (MLS), both on the NASA Aura satellite. In this analysis, MLS and TES data were treated separately and not 325 
merged. (TES operations ended in 2018 and MLS operations are predicted to end in mid-2026 with no follow-on 

instruments being currently planned.) 

5 Recommendations for Satellite Needs 

In this section, we discuss considerations and make recommendations for an observing strategy that would advance 

our ability to quantify the concentrations, trends, and variations of tropospheric OH using atmospheric remote-sensing 330 
observations of its drivers.  

5.1 Optimizing an Observing Strategy through Tradespace Analyses 

As discussed in Section 2, there are a number of approaches in the literature to indirectly constrain OH with satellite 

proxies of OH drivers. Each of the approaches applies to specific regions and/or photochemical environments or were 

devised for specific applications, and each of them has its strengths and limitations that should be considered. 335 
Therefore, some combination of these approaches, as well as the development of new approaches for specific 

photochemical environments, may be required to maximize spatio-temporal coverage of tropospheric OH around the 

globe for individual applications (as discussed below).  

The design process of a comprehensive, multi-satellite observing strategy would benefit from tradespace analyses 

(i.e., assessing the impact of changing one or more variables while simultaneously changing one or more other 340 
variables in the opposite direction). For example, such analyses of spatial, temporal, and spectral resolutions for 
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specific instruments would inform design decision making. The design process would also benefit from cost-benefit 

analyses. For instance, what observations are achievable using more cost-effective suborbital instruments (Section 3) 

than satellite instruments? 

A few considerations for optimizing an observing strategy include: 345 

5.1.1 Continuity 

The fidelity of a sustained, long-term record of inferred tropospheric OH from satellite-based approaches (Section 2) 

depends on continuity of satellite proxies of OH drivers. Therefore, a priority for a robust observing strategy is for 

continuity of satellite instruments with similar or enhanced capabilities as well as inter-agency coordination to 

maintain self-consistent and trend-quality Level 1B (L1B) radiances for the generation of multi-instrument data 350 
records; L1B data, which are used in scientific algorithms to derive geophysical parameters, have been calibrated and 

geo-located. The transition from one instrument to its successor instrument ideally would include a period of 

observational overlap (e.g., 2-5 y) so that self-consistent, multi-instrument data records may be achieved. As an 

example, near daily, global coverage of the NO2 VCD is currently observed by OMI (since 2004) and its successor, 

TROPOMI (since 2017) as well as OMPS on Suomi NPP (since 2011), NOAA-20 (since 2017), and NOAA-21 (since 355 
2022). All five instruments have overpass times near 13:30 local time. However, the OMPS instruments are missing 

visible wavelengths (e.g., < 380 nm for Suomi NPP) as compared to OMI or TROPOMI and have lower spectral 

resolutions (~1 nm), which result in lower quality NO2 data products than those from either OMI or TROPOMI. The 

planned successor to TROPOMI, Sentinel-5, will have similar capabilities as TROPOMI, but will have an equator 

overpass time near 9:30 local time. Therefore, there will be discontinuities in the long-term record given that NOx 360 
emissions, NOx partitioning between NO and NO2, and the vertical distribution of NO2 within the VCD vary 

throughout the day. Depending on TROPOMI’s lifespan, potential successor instruments, with overpass times near 

13:30 local time, are the NOAA series of OMPS instruments being planned for the Joint Polar Satellite System (JPSS)-

3 and JPSS-4 satellites. JPSS-3 and JPSS-4 OMPS will observe additional visible wavelengths relative to those 

observed by earlier OMPS instruments, but they will not have comparable instrument capabilities (e.g., SNR, spectral 365 
coverage) as OMI or TROPOMI. Therefore, the data quality of a self-consistent, multi-instrument data record for NO2 

at an overpass time near 13:30 local time from OMI, TROPOMI and OMPS will be determined by the instrument 

parameters (e.g., spectral resolution, wavelength range) of the least capable OMPS instrument. 

5.1.2 Accuracy/Precision and Signal-to-Noise (SNR) 

As discussed in the scientific papers describing the satellite-based approaches (Section 2), additional improvements 370 
to accuracy/precision and SNR of current observing capabilities are required to advance our ability to constrain OH 

drivers. For instance, the design of new instruments should emphasize capabilities for in-flight instrument calibration 

and monitoring, such as solar diffusers and internal light sources. During the manufacturing and integration phase, 

adequate time and resources should be allocated to allow for thorough pre-flight calibration and characterization. As 
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another example, technology improvements, such as better thermal design and detector cooling, can lead to reduced 375 
noise and enhancements in SNR.  

5.1.3 Spatio-Temporal Coverage 

In addition to enhanced instrument capabilities, improvements to current spatio-temporal coverage of satellite proxies 

of OH drivers could be achieved with additional satellites. For instance, the datasets used in the satellite-based 

approaches (Section 2) are from satellites in low Earth orbit (LEO), so most global locations, where OH levels are 380 
highest (i.e., tropics and subtropics), are observed daily or every few days. Therefore, a suite of instruments could be 

placed on multiple satellites, providing observations at various times throughout daylight hours. This strategy would 

also have the benefit of providing more opportunities to observe non-cloudy conditions (Section 5.4), especially if the 

instruments have finer spatial resolutions than current satellite instruments to allow more observations between clouds.  

Instruments on geostationary (GEO) satellites provide an opportunity to assess the value of hourly data to constrain 385 
OH. For instance, several new UV/Vis instruments, Korea’s Geostationary Environment Monitoring Spectrometer 

(GEMS; Kim et al., 2020) and NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO; Zoogman et al., 

2017), observe VCDs of NO2, HCHO and ozone over East Asia and North America, respectively. ESA’s Sentinel-4 

GEO satellite with the Ultraviolet-Visible-Near Infrared (UVN) instrument will make similar observations over 

Europe and northern Africa (Courrèges-Lacoste et al., 2017). The spatial coverages of these instruments are primarily 390 
limited to the mid-latitudes and subtropics of the northern hemisphere. For hyperspectral TIR instruments on GEO 

satellites, there already exists the Chinese Fengyun Geostationary Interferometric Infrared Sounder (GIIRS; Yang et 

al., 2017); similar instruments are tentatively planned by space agencies in Japan (Okamoto et al. 2020), Europe 

(Holmlund et al., 2020) and the US (Lindsey et al., 2024). The spatial coverages of these instruments are more 

comprehensive, covering most latitudes (i.e., below ~60०) of both hemispheres, as compared to the coverages of the 395 
UV/Vis instruments. We recommend coordinated deployment of UV, Vis, NIR, and TIR instruments on GEO satellites 

to provide co-located observations of satellite proxies of key OH drivers (Section 5.2). 

5.1.4 Case Studies 

Ultimately, the design of a space-based observing strategy to constrain tropospheric OH depends on the specific 

science need or needs to be addressed. For instance, is the need to constrain OH concentrations, trends, and/or 400 
variations, which could require different designs? For what regions and seasons? For illustrative purposes, we provide 

design considerations for two different potential applications. 

In Case 1, we wish to constrain the spatio-temporal variations of methane’s loss by reaction with OH, which occurs 

primarily in the lower troposphere of the tropics and subtropics. Given methane’s long lifetime, one might think that 

the spatial and temporal resolutions of inferred tropospheric OH could be low (e.g., several degrees latitude by 405 
longitude, seasonal in photochemically homogeneous environments). However, one issue that requires consideration 

is that the number of pixels with sufficiently low cloud contamination would decrease as the horizontal resolution of 
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observations degrades in cloud-prone areas (e.g., in much of the tropics and subtropics; Section 5.4). Therefore, an 

observational strategy for this case would require finer spatial resolutions for measurements of OH drivers than 

required for the spatial resolution of inferred OH. In addition, much of the loss of CH4 occurs over relatively remote 410 
ocean environments so that improving the SNR of OH drivers is particularly important, especially since the signals 

for some important species (e.g., NO2, HCHO) are on par with noise for current instruments (e.g., Zhu et al., 2020). 

Potentially, new satellite missions can be designed to take advantage of sun glint, where specular reflection over water 

bodies can enhance the SNR. Over land in the tropics and subtropics, observations of additional VOC constituents, 

especially isoprene (e.g., Fu et al., 2019; Shutter et al., 2024), are desired to constrain tropospheric OH (Section 5.2). 415 
Given the strong spatial gradients of OH drivers, spatial resolution should also be prioritized over land as well as over 

ocean affected by offshore flow. Satellite observations of dynamical variables (e.g., meteorological, climate indices) 

may also be useful for this case as they can influence OH (Section 5.3). For this case, design objectives may be met 

by multiple instruments with different design objectives (e.g., fine spatial resolution for over land vs. improved SNR 

for over ocean) or instruments with multiple sampling modes. 420 

In Case 2, we wish to constrain tropospheric OH in polluted urban areas. This environment is typically heterogeneous 

and complicated, requiring fine spatio-temporal resolutions (e.g., kilometers, hourly-daily) to capture spatial gradients 

in OH drivers. Additional VOC constituents are highly desired as the urban environment has thousands of VOCs; 

therefore, observations of VOCs that represent classes of VOCs (e.g., isoprene, fast-reacting alkenes, alkanes, 

aromatics) are desired and will require multispectral satellite observations (i.e., TIR, NIR, UV/Vis) for the 425 
development of these data products (Section 5.2). Depending on the timescale of interest, photochemical variables 

may be sufficient to constrain OH, which can be assumed to be in photostationary state given its short lifetime (< 1 

s). Nevertheless, meteorological variables that influence OH (e.g., temperature, convection) may be desired for 

studying the photochemical evolution of the urban plume by hour, for instance. For this case, design objectives may 

be met by observations of UV/Vis (e.g., NO2, HCHO) and TIR (VOCs) wavelengths. Instruments on GEO satellites 430 
would provide fine temporal resolution as opposed to ones on LEO satellites. 

5.2 Assessment of Current Satellite Data to Constrain Chemical Processes that Influence OH 

We recommend studies to determine the optimal combination of input variables/satellite observables for the satellite-

based approaches (Section 2) to maximize the interpretability (in a process-based sense) of the causes of trends and 

variations in tropospheric OH. ML approaches (Section 2.2) are able to reproduce OH quite well from the training 435 
datasets using various satellite observations; however, the utility of the approaches for attribution studies is determined 

by the choice of input variables. That is, the suite of input variables must adequately represent the chemical processes 

of interest that determine OH. For instance, attribution of OH variations and trends to the influence of CH4 is not 

possible in an ML study if CH4 concentration is not included as an input variable (e.g., Anderson et al., 2024). In 

addition, ML techniques may not reproduce OH in a process-based sense if the input variables to the ML model are 440 
not independent of one another, which is an inherent characteristic of atmospheric chemistry problems (e.g., O3 and 

NO2; temperature-dependence of most species’ lifetimes; co-emitted species, such as CH4 and VOCs; and tropospheric 
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species impacted by the same meteorology). Therefore, the causes of trends and variations in tropospheric OH inferred 

from ML approaches should be carefully interpreted. This is also true for process-based approaches (Section 2.1). For 

example, Pimlott et al. (2022) concluded that their approach “suggests that O3 and CO were the key drivers of 445 
variability in the production and loss of OH” for their study period. However, their approach uses input variables 

observed from a single satellite instrument that does not collect data of NO2, which is responsible for a substantial 

portion of the variations of tropospheric OH (e.g., Zhu et al., 2022a; Anderson et al., 2023; Baublitz et al., 2023).  

5.2.1 A Thought Experiment 

A key question is as follows: What chemical processes are not adequately represented in the current suite of satellite 450 
observations used in the satellite-based approaches (Section 2) to indirectly constrain local and regional 

concentrations, trends, and variations of tropospheric OH? To answer this question, it is instructive to assess our 

current ability to constrain individual sources and sinks for tropospheric OH (Table 1). For this thought experiment, 

we use the annual tropospheric OH budget presented in Table 1 of Lelieveld et al. (2016), noting that the relative 

importance of the sources and sinks for various regions and seasons can vary substantially from the annual, global 455 
distribution. In addition, we acknowledge that OH budgets can vary significantly from one CTM to another (Section 

1). As we will show, the results of our thought experiment, as summarized in Table 1, reveal that the ideal observing 

strategy for the indirect constraint of the chemical processes that control OH requires co-located observations of 

UV/Vis, NIR, and TIR wavelengths.  

Sources: The first and second sources (i.e., O(1D)+H2O(v) and NO+HO2; Table 1) account for 63% of the total source 460 
in Lelieveld et al. (2016) and are represented relatively well with current satellite datasets. For the second source, 

satellite observations of NO2 can be used to estimate NO using a CTM; this conversion is a function of a number of 

variables, such as ozone concentrations and photolysis (e.g., de Foy et al., 2015). Lightning is an important source of 

NOx in the middle and upper troposphere (Allen et al., 2021), which modulates OH there (e.g., Fiore et al., 2006). 

Satellite observations of lightning flash counts (e.g., over the Americas from the Geostationary Lightning Mapper, 465 
GLM, aboard the NOAA Geostationary Operational Environmental Satellite-16, GOES-16; over Europe, Africa and 

Middle East from EUMETSAT Meteosat Third Generation – Imager 1 (MTG-I1) Lightning Imager) may be useful to 

constrain the vertical distribution of NO2 using ML or a CTM to relate flash counts to NO2 concentrations. While we 

do have estimates of tropospheric O3 VCDs, representation of the third source (i.e., O3+HO2) would benefit from an 

accurate separation of the stratospheric and tropospheric portions of the total O3 VCD (e.g., Ziemke et al., 2006; 470 
Orfanoz-Cheuquelaf et al., 2024) in addition to information on the vertical distribution of tropospheric O3 (Section 

4.4). We are unaware of satellite proxies for tropospheric HO2, which occurs in both the second and third sources and 

has a lifetime that is slightly longer than the lifetime of OH. Field campaign data from remote ocean regions indicate 

that HO2 variation does modulate the rates of the second and third OH source reactions (Figure 3a, b), but whether 

possible proxies for HO2 (Figure 3c) are robust in more complex photochemical regimes is a question that requires 475 
further research. A proxy for HO2 may not be necessary for the ML approaches (Section 2.2) given that OH and HO2 

(i.e., HOx family) share many of the same chemical drivers. There are satellite observations from Atmospheric 
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Chemistry Experiment (ACE) for H2O2, the fourth source (i.e., H2O2+hv), in the mid to upper troposphere, though this 

source primarily occurs in the lower troposphere (e.g., Spivakovsky et al., 2000); these observations are sparse so 

multi-year averages are required to obtain seasonal, zonally-averaged distributions (Allen et al., 2013). For satellite 480 
proxies that are not yet well supported by current satellite instruments, such as H2O2 and many VOCs (discussed 

below), simulated distributions may be used in the satellite-based approaches (Section 2), especially those distributions 

which have been well validated with suborbital datasets (Section 3). Similar to the argument for HO2, OH and H2O2 

share many of the same chemical drivers, so we may not need a satellite proxy for H2O2 in ML approaches (Section 

2.2). We will discuss the fifth source, which involves VOCs, below. We added the source of OH from the photolysis 485 
of nitrous acid (HONO; HONO + hv) to Table 1, though it is not included in Table 1 of Lelieveld et al. (2016); the 

overall importance of this source on a global scale is uncertain (e.g., Wu et al., 2022; Ha et al., 2023; Zhang et al., 

2023), but is thought to be an important source in urban and agricultural environments. Satellite observations of HONO 

(e.g., TROPOMI, IASI) are primarily limited to intense wildfire plumes (e.g., Theys et al., 2020; Fredrickson et al., 

2023; Franco et al., 2024).  490 

 

Figure 3. Data shown are for over-ocean, tropical samples from the ATom-1 field campaign. Box modeled rates are 

for the HO2+NO reaction plotted against NO concentration (panel a) and the HO2+O3 reaction versus O3 concentration 
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(b), both colored by concentration of HO2. Panel c shows HO2 concentration plotted against log10 of water vapor 

concentration and colored by solar zenith angle.  495 

Sinks: The sinks that have straightforward satellite proxies are the second and third sinks (i.e., OH+CH4; OH+CO; 

e.g., Gaubert et al., 2017; Nguyen et al., 2020; Jacob et al., 2022; Worden et al., 2022), which together represent 51% 

of the total tropospheric OH sink from Lelieveld et al. (2016). CH4 is relatively well mixed throughout the troposphere, 

therefore we could assume a tropospheric distribution informed by in situ observations.  For the first sink (i.e., 

OH+HOy, where HOy = H2, O3, H2O2, radical–radical reaction), there are satellite data for tropospheric O3 and limited 500 
data for H2O2 as discussed above. In addition, H2 is relatively well mixed throughout the troposphere, therefore we 

could assume a tropospheric distribution informed by in situ observations. We will discuss the fourth and fifth sinks, 

which involve VOCs, below.  

Overall, we currently have reasonable satellite proxies to constrain up to 77% of the global source and up to 51% of 

the sink (Table 1) in the annual tropospheric OH budget of Lelieveld et al. (2016). With development of new VOC 505 
data products (e.g., De Longueville et al., 2021; Franco et al., 2022; Brewer et al., 2024; Wells et al., 2024), which 

may require new technology development, we may well be able to represent a larger portion of the total sources (up 

to 90%) and sinks (up to 80%). To do this would require that we leverage numerous spectral regions (UV/Vis, NIR, 

TIR) to maximize our ability to represent key source and sink reactions for tropospheric OH with satellite proxy data.  

An important caveat is that the satellite data products in Table 1 are not of equal quality and require additional research 510 
and/or technological development to improve their utility for indirectly constraining OH. A quantitative assessment 

of each data product’s quality should be performed using independent suborbital observations when available (Section 

3). Such an assessment would benefit from intercomparable uncertainty characterization between the different data 

products; however, this is not currently done. Therefore, we recommend the use of a common set of reporting standards 

to be applied for uncertainty characterization of satellite data products (e.g., von Clarmann et al., 2020), which will 515 
allow for a more intercomparable assessment of the utility of each satellite data product for indirectly constraining 

tropospheric OH.   

VOCs: We recommend additional research to be a priority to explore the potential of these observable VOCs to 

constrain tropospheric OH. In Table 1, there is one source (i.e., OVOCs, ROOH+hv; 13% of total source) and two 

sinks (i.e., OH+other C1 VOC; OH+C2+ VOC; 29% of total sink) that would benefit from the development of space-520 
based observations of VOCs, including oxygenated VOCs (OVOCs). Several VOCs are currently observable from 

space, including in the UV/Vis (HCHO, glyoxal) and TIR (acetic acid, acetone, ethane, ethene, ethyne, formic acid, 

glycoaldehyde, hydrogen cyanide, isoprene, methanol, peroxyacetyl nitrate (PAN); e.g., Franco et al., 2018, 2019, 

2020, 2022; Wells et al., 2024). Given that it is not feasible to observe the hundreds of individual VOCs in the 

troposphere and potentially thousands in the polluted urban atmosphere, we recommend that observable VOCs be 525 
identified that could represent 1) important classes of compounds (e.g., alkanes, alkenes, aromatics) that contribute to 

total OH reactivity and 2) markers of various VOC emission sources (e.g., biogenic, anthropogenic, pyrogenic), which 

have characteristic VOC mixes. Additional constraints of these sources and sinks may benefit from other satellite 

proxies, such as CO (e.g., Baublitz et al., 2024), that covary with VOCs under certain conditions. 



18 
 

Rate constants: We have satellite proxies for the dependence of reactions on temperature and sunlight. The 530 
temperature dependence of chemical reactions is represented by satellite observations of temperature (TIR) and 

continuity is assured with CrIS, for example. The stratospheric O3 VCD (UV/Vis) may serve as a proxy for sunlight 

(hv) where photochemically important wavelengths are modulated by the thickness of the stratospheric O3 layer. 

Continuity is assured with several current and upcoming UV/Vis instruments (e.g., TROPOMI, OMPS). Aerosols also 

modulate the amount of sunlight in the troposphere, affecting tropospheric oxidants (e.g., Martin et al., 2002; Mok et 535 
al., 2016; Madronich et al., 2024). There are several potential proxies, such as total and absorption aerosol optical 

depth and single scattering albedo, that are observed by a number of satellite instruments (e.g., on ESA’s Earth Cloud 

Aerosol and Radiation Explorer (EarthCARE) satellite and NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem 

(PACE) satellite). Additional research is required to develop a combined satellite proxy for spectral solar planar and 

scalar (i.e., actinic flux) irradiances (e.g., Vasilkov et al., 2022). 540 

In summary, the results of our thought experiment, as summarized in Table 1, reveal that the ideal observing strategy 

for the indirect constraint of the chemical processes that control OH would require co-located observations of multiple 

wavelengths in the UV/Vis, NIR, and TIR, which could be integrated into a broader, comprehensive observation 

strategy for tropospheric chemistry and climate (Millet et al., 2024).  

5.2.2 Looking Backward 545 

This manuscript is primarily focused on looking forward - i.e., what is required/desired to improve our ability to 

constrain tropospheric OH with satellite observations? However, a natural question is “How far back in time can we 

adequately constrain tropospheric OH?” Addressing this question and comparing estimates of past OH abundance 

would increase confidence in our capability to project OH into the future. Answering this question depends on the 

level of explanatory power that is desired as discussed above. For instance, one of the first satellite proxies listed in 550 
Table 1 is the stratospheric O3 VCD. As shown by Rohrer and Berresheim (2006), tropospheric OH correlates linearly 

with solar UV irradiance, which is modulated by stratospheric O3. Therefore, one could partially constrain 

tropospheric OH back to 1979, when satellite measurements of stratospheric O3 became routine (e.g., Stolarski et al., 

1986; Weber et al., 2018). As another example, discussion surrounding continuity of the NO2 VCD (Section 5.1.1) 

started with OMI (launched in 2004), though such observations actually began in 1996 with ESA’s Global Ozone 555 
Monitoring Experiment (GOME; 1995-2011; Burrows et al., 1999), which was followed by SCanning Imaging 

Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY; 2002-2012), GOME-2 instruments on the 

Meteorological Operational (METOP) satellites (METOP-A, 2006-2021; -B, since 2012; and -C, since 2018). All 

these ESA instruments were/are in morning orbits. Therefore, depending on one’s tolerance for data that have 

relatively coarser resolution, poorer SNR, or a longer time period to obtain global coverage, partial constraint of 560 
tropospheric OH with satellite data of NO2 from a morning orbit could extend back to 1996 (e.g., Boersma et al., 

2018). Continuity of the morning orbit is planned with Sentinel-5 (anticipated launch in 2025). 

Continuity is assured for most satellite proxies (Table 1) and we currently have the ability to constrain adequately or 

partially most of the sources and sinks of tropospheric OH (Table 1) with the satellite-based approaches (Section 2) 
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from the late 1990s/early 2000s to the present. As discussed in Section 5.2.1, the primary exception is related to VOCs 565 
(e.g., isoprene, which became available only in 2012). 

 

Table 1. Satellite proxies for tropospheric source and sink fluxes of OH. 

 Sources a % of 

Total 

Sources a 

Satellite Proxies 

(wavelengths) 

Satellite Proxy Limitations & 

Potential Improvements 

Short-Term Data 

Continuity? h 

1 O(1D)+H2O(v) 33% Stratospheric O3 VCD 

(UV/Vis) for O(1D) or 

assume steady-state: 

[O(1D)] = j[O3] / 

(ka[H2O] + kb[O2] + 

kc[N2]) using 

tropospheric O3 VCD.  

Water vapor (IR). 

No major limitations. Tropospheric & 

stratospheric O3 

VCD (yes) - e.g., 

TROPOMI. 

 Water vapor (yes) 

- e.g., CrIS. 

2 NO+HO2 30% NO2 VCD (UV/Vis).  

Research is needed to 

identify a proxy for 

HO2.  

Needs improved SNR where 

NO2 VCDs are low (Buscela et 

al., 2013).  

Lightning flash counts may 

provide information on the 

vertical distribution (e.g., 

NOAA GeoXO Lightning 

Mapper (LMX); MTG-I1 

Lightning Imager), but data are 

typically limited to certain 

regions and time periods. 

NO2 VCD (yes) - 

e.g., TROPOMI. 

 

3 O3+HO2 14% Tropospheric O3 VCD 

(UV/Vis). 

Multispectral products 

(Section 4.4).  

Research is needed to 

identify a proxy for 

HO2.  

Needs accurate stratosphere- 

troposphere separation of total 

column O3 VCD (Ziemke et al., 

2006).  

Research is needed to determine 

the potential of multispectral 

products (e.g., TROPOMI/CrIS), 

which may provide information 

Tropospheric O3 

VCD (yes) - e.g., 

TROPOMI, 

OMPS.  
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on vertical distribution. 

4 H2O2+hv 10% H2O2 (IR). Instrument and/or retrieval 

algorithm development required, 

including to obtain observations 

in the lower troposphere.  

ACE data of H2O2 are sparse; 

zonal averages of multiple years 

are required to obtain near-

global coverage in the mid to 

upper troposphere (Allen et al., 

2013).  

H2O2 (no). 

5 OVOCsb, 

ROOHc+hv 

13% HCHO, glyoxal 

(UV/Vis).  

Numerous potential 

VOCs (TIR).  

Needs improved SNR where 

HCHO VCDs are low. 

VOC instrument (TIR) and 

retrieval algorithm development 

required.  

Research required to determine 

the suitability of these VOCs for 

constraining this source. 

HCHO, glyoxal 

VCD (yes) - e.g., 

TROPOMI.  

Numerous VOCs 

(yes for some, but 

not others) - e.g., 

CrIS. 

 HONOd + hv – HONO (UV/Vis; TIR). Observations primarily for 

intense wildfire plumes that 

reach altitude. Data are very 

noisy.  

Instrument and/or retrieval 

algorithm development required. 

HONO (yes) - e.g., 

TROPOMI. 

 Sinks a % of 

Total 

Sinks a 

   

1 OH+HOy
e  18% Tropospheric O3 VCD 

(UV/Vis). 

H2O2 (IR).  

Assume constant 

distribution of H2. 

See source #4 above. See source #3 

above. 
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2 OH+CH4 12% CH4 (IR). Needs (1) better SNR to detect 

variations in high background 

concentration and (2) improved 

sensitivity to near-surface. 

CH4 (partially, 

yes) - e.g., 

TROPOMI (over 

land, glint over 

ocean). 

 

3 OH+CO 39% CO (IR).  

Multispectral products 

(Section 4.4). 

Need improved near-surface 

sensitivity.  

Research is needed to determine 

the potential of multispectral 

products (e.g., TROPOMI/CrIS), 

which may provide information 

on vertical distribution. 

CO VCD (yes) - 

TROPOMI, CrIS. 

4 OH+other C1 

VOC f 
15% Methanol. VOC instrument (TIR) and 

retrieval algorithm development 

required.  

Research required to determine 

the suitability of these VOCs for 

constraining this sink. 

Numerous VOCs 

(yes for some, but 

not others) - e.g., 

CrIS. 

5 OH+C2+ VOC 

g 

14% Isoprene. PAN, etc. VOC instrument (TIR) and 

retrieval algorithm development 

required.  

Research required to determine 

the suitability of these VOCs for 

constraining this sink. 

Numerous VOCs 

(yes for some, but 

not others) - e.g., 

CrIS. 

aReproduced from Table 1 of Lelieveld et al. (2016), except neglecting two minor sinks. bOVOCs = oxygenated 

VOCs, such as acetone and acetaldehyde. cROOH = organic peroxides, such as CH3OOH. dHONO is not explicitly 570 
listed as a source of OH in Lelieveld et al. (2016), though it is an important source in some environments (Theys et 

al., 2020; Fredrickson et al., 2023). eHOy = H2, O3, H2O2, radical–radical reaction. fVOC with one C atom (excluding 

methane), including methanol, C1-reaction products. gVOC with ≥2 C atoms, C2+ reaction products. hDefined in 

Section 5.1.1. We focus on current satellite instruments that provide near complete spatial coverage of the 

troposphere, neglecting instruments that provide data of, for instance, the upper troposphere (e.g., MLS) and 575 
geostationary orbits. We do not list potential future instruments given that space agency priorities and budgets 

change and because of the history of satellites failing to reach orbit during launch. 
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5.3 Influence of Tropospheric Dynamics on OH 

We recommend additional research to determine the full potential of using satellite-observable meteorology (e.g., 

temperature) and climate variables in space-based approaches (Section 2) to better understand the dependence of 580 
tropospheric OH on dynamics. For instance, climate indices, such as the Multivariate El Niño–Southern Oscillation 

(ENSO) Index (MEI) and indicators of drought, correlate well with long-term (e.g., monthly, seasonal) variations in 

tropospheric constituents (e.g., CO, NO2, O3, isoprene, water vapor) that influence OH (e.g., Oman et al., 2011; Oman 

et al., 2013; Turner et al., 2018; Wells et al., 2020; Anderson et al., 2021; Anderson et al., 2023; Shutter et al., 2024) 

as well as OH itself. Anderson et al. (2021) estimated that ~30% of simulated variability in global OH in boreal winter 585 
is associated with ENSO alone. However, additional proxies may be required to fully capture the complex impact of 

meteorological variations on the tropospheric constituents that influence OH, including weather-dependent emissions 

(e.g., CH4, isoprene, lightning NOx) and anthropogenic activities (e.g., Shutter et al., 2024). For instance, Field et al. 

(2016) reported a nonlinear sensitivity of CO abundance to emissions from fires in Indonesia during El Niño-induced 

drought, when many fires escape or are intentionally set to clear land on areas of degraded peat. Building on this 590 
research, the locations of peat deposits convolved with satellite observations of fire-counts could be used to estimate 

pollution emitted from these fires. Alternatively, a total sum of pollutant emission estimates (e.g., Global Fire 

Emissions Database, GFED, van Wees et al., 2022) from Indonesia or the preceding dry season total rainfall in 

conjunction with the locations of degraded peat could be used to capture the impact of ENSO variations on 

tropospheric OH.  595 

We recommend additional research to develop process-based diagnostics using satellite and suborbital observations 

to improve the representation of key atmospheric processes in CTMs that influence OH. Though many of the current 

knowledge gaps in CTMs (e.g., Table 2 of Fiore et al., 2024) require new laboratory studies, enhancements to current 

satellite capabilities as well as a more comprehensive suite of suborbital datasets (Section 3; e.g., Murray et al., 2021) 

could be used to develop process-based diagnostics to better constrain the factors that influence OH drivers, such as 600 
to constrain the response of O3 to ENSO (Oman et al., 2013). Such diagnostics would inform development priorities 

of CTMs with the goals of improving the simulation of tropospheric OH as well as aiding interpretation of inferred 

OH from satellite-based approaches (Section 2). 

5.4 Addressing “Clear-Sky” Bias of Inferred OH from Satellite-Based Approaches 

The presence of clouds limits a satellite's ability to observe tropospheric composition, especially in seasonally cloudy 605 
regions. King et al. (2013) used MODIS cloud fraction data to estimate that ~67% of Earth’s surface is covered by 

clouds at any given time. Consequently, temporal averaging (e.g., over a season) of the data is often employed to 

achieve statistical significance, though the averages are biased toward clear-sky/low-cloud conditions. We found that 

these biases in simulated OH (from one CTM) relative to all-sky conditions are substantial (e.g., +/-25% in the 

tropospheric OH VCDs in the tropics and higher elsewhere; Figure 4). One way to reduce these biases is to improve 610 
the spatial resolutions of satellite instruments, which would increase the chances of collecting observations between 

broken clouds and, thus, minimize the number of cloud-contaminated pixels (e.g., Frankenberg et al., 2024). There 
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may be viable ways to infer some of the OH drivers over clouds (e.g., NO2, Marais et al., 2018; Marais et al., 2021; 

CO, Landgraf et al., 2016), but further study is needed.  

We recommend additional research to identify ways to gap fill OH inferred from the satellite-based approaches 615 
(Section 2). Potential ways are to (1) use simulated OH, which would benefit from model development priorities as 

informed by satellite-constrained, process-based diagnostics (Section 5.3), (2) scale inferred OH by the ratio of 

observed OH in clear and cloudy conditions from tropospheric composition field campaigns (Section 3), and (3) use 

a photolysis model with satellite-observable cloud properties (e.g., cloud optical depth, cloud top pressure, and cloud 

fraction) to scale inferred OH. The problem with the second way is that cloudy regions are typically avoided during 620 
field campaigns. Therefore, a priority of future field campaigns is to collect observations of OH and its drivers in both 

clear and cloudy environments. Finally, there is the potential to develop an ML model using simulated tropospheric 

OH with meteorological variables and climate indices (Section 5.3), which are observable from space, to understand 

the relationship of OH concentrations, trends and variations in cloudy and mostly cloudy environments. All of these 

potential methods to gap fill inferred OH require further study. 625 

Figure 4: Simulated percent difference in tropospheric column OH between low-cloud (cloud fraction less than 

30%) and all-sky conditions. Red indicates higher OH abundance in near clear sky conditions; blue indicates lower 

OH abundance under such conditions. Simulated data are from the MERRA2 GMI simulation and averaged over 

2005 – 2019 for October. 630 

6 Summary of Recommendations 

The satellite-based approaches (Section 2) offer the promise that we may achieve a constraint of tropospheric OH on 

spatio-temporal scales that has been previously unobtainable. Given this promise, we make recommendations to 

facilitate the design of a robust observing strategy of satellite and suborbital observations of atmospheric constituents 
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and dynamical variables to indirectly constrain concentrations, trends, and variations of tropospheric OH. The 635 
increased spatio-temporal information of tropospheric OH that could be gained by following these recommendations 

would advance our ability to attribute the causes of trends and variations of the concentrations of atmospheric 

constituents that are influenced by OH. For instance, Turner et al. (2016) concluded that “the current surface observing 

system does not allow unambiguous attribution of the decadal trends in methane without robust constraints on OH 

variability, which currently rely purely on methyl chloroform data and its uncertain emissions estimate.”  640 

We recommend the development of a comprehensive satellite-based approach to maximize the indirect constraint of 

tropospheric OH that may be composed of a combination of existing satellite-based approaches (Section 2) and new 

satellite-based approaches developed for specific photochemical environments. Studies are needed to determine the 

optimal combination of input variables/satellite observables for some of the satellite-based approaches to maximize 

the interpretability (in a process-based sense) of the causes of trends and variations in tropospheric OH. The design 645 
process would benefit from tradespace and cost-benefit analyses, including consideration of incorporating more cost-

effective suborbital observations, where feasible. 

Priorities (in no particular order) for this observing strategy include:  

● continuity of satellite instruments with similar or enhanced capabilities, 

● improvements to accuracy/precision and SNR of current observing capabilities through instrument design,  650 
● additional LEO and GEO satellites to obtain greater spatio-temporal coverage,  

● development of a robust suborbital observing network, composed of instruments at stationary sites (OH 

“supersites”) as well as ones deployed in field campaigns, to collect suborbital observations of OH drivers, 

including in cloudy environments,  

● a common set of reporting standards to be applied for uncertainty characterization of satellite data products, 655 
which will allow for a more robust assessment of the utility of each satellite data product for indirectly 

constraining tropospheric OH, and 

● coordinated deployment of UV, Vis, NIR, and TIR instruments to provide co-located observations of satellite 

proxies of key OH drivers. 

We also recommend additional investment in research (in no particular order) to:  660 

● maximize the vertical information of the observations of OH drivers (e.g., with multispectral data products), 

● maintain self-consistent and trend-quality L1B radiances for the generation of multi-agency, multi-instrument 

data records, 

● determine the full potential of using satellite-observable meteorology (e.g., temperature, clouds, aerosols) 

and climate variables in space-based approaches to better understand the dependence of OH concentrations, 665 
trends, and variations on dynamics, 

● develop process-based diagnostics using satellite and suborbital observations to improve the representation 

of key atmospheric processes in CTMs that influence OH,  

● explore the potential of observable VOCs to aid constraint of tropospheric OH, and 
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● address the “clear-sky” bias of inferred OH from satellite-based approaches.  670 

Finally, we recommend additional investment in technology development that may lead to passive and/or active 

space-based instruments that directly observe OH. 

Data Availability 

Figure 1: Data are available upon request from D. Anderson (daniel.c.anderson@nasa.gov). 

Figure 2: Satellite retrievals for TEMPO HCHO V3 data can be found at https://doi.org/10.5067/IS-675 
40e/TEMPO/HCHO_L2.003, the radiance v3 data at https://doi.org/10.5067/IS-40e/TEMPO/HCHO_L2.003, and 

the irradiance v3 data at https://doi.org/10.5067/IS-40e/TEMPO/IRR_L1.003 (González Abad et al., 2024).  

Figure 3: Data from the ATom campaign are located at https://doi.org/10.3334/ORNLDAAC/1925 (Wofsy, 2021).   

Figure 4: Output from the MERRA-2 GMI simulation is publicly available at https://acd-

ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/ (NASA Goddard Space Flight Center, 2024).  680 

Author Contributions 

BND initiated the opinion piece and wrote the first draft. All co-authors contributed to the overall content and direction 

of the manuscript through many collaborative discussions. Many co-authors contributed some text and all figures. 

 

Competing Interests 685 

BND is a member of the editorial board of Atmospheric Chemistry and Physics. The authors also have no other 

competing interests to declare. 

Financial Support 

This opinion piece was primarily supported by a NASA Goddard Space Flight Center Earth Sciences Division internal 

science task group. 690 

References  

Allen, N.C.C., Abad, G. G., Bernath, P.F., and Boone, C. D.: Satellite observations of the global distribution of 

hydrogen dioxide (H2O2) from ACE, J. Quantitative Spectroscopy and Radiative Transfer, 115, January 2013, 66-77, 

https://doi.org/10.1016/j.jqsrt.2012.09.008, 2013. 

Allen, D., Pickering, K. E., Bucsela, E., Van Geffen, J., Lapierre, J., Koshak, W., and Eskes, H.: Observations of 695 
lightning NOx production from Tropospheric Monitoring Instrument case studies over the United States, J. Geophys. 

Res.: Atmospheres, 126, e2020JD034174, https://doi.org/10.1029/2020JD034174, 2021. 



26 
 

Anderson, D. C., Duncan, B. N., Fiore, A. M., Baublitz, C. B., Follette-Cook, M. B., Nicely, J. M., and Wolfe, G. M.: 

Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features 

and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481–6508, 700 
https://doi.org/10.5194/acp-21-6481-2021, 2021. 

Anderson, D. C., Follette-Cook, M. B., Strode, S. A., Nicely, J. M., Liu, J., Ivatt, P. D., and Duncan, B. N.: A machine 

learning methodology for the generation of a parameterization of the hydroxyl radical, Geosci. Model Dev., 15, 6341–

6358, https://doi.org/10.5194/gmd-15-6341-2022, 2022. 

Anderson, D. C., Duncan, B. N., Nicely, J. M., Liu, J., Strode, S. A., and Follette-Cook, M. B.: Technical note: 705 
Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward 

assessing the feasibility of a global observation strategy, Atmos. Chem. Phys., 23 (11): 6319-6338, 

https://doi.org/10.5194/acp-23-6319-2023, 2023.  

Anderson, D. C., Duncan, B. N., Liu, J., Nicely, J. M., Strode, S. A., Follette-Cook, M. B., Souri, A.H., Ziemke, J.R., 

Gonzalez-Abad, G., and Ayazpour, Z.: Trends and interannual variability of the hydroxyl radical in the remote tropics 710 
during boreal autumn inferred from satellite proxy data, Geophys. Res. Lett., 51, e2024GL108531, 

https://doi.org/10.1029/2024GL108531, 2024. 

Baublitz, C. B., Fiore, A. M., Ludwig, S. M., Nicely, J. M., Wolfe, G. M., Murray, L. T. Commane, R., Prather, M. 

J., Anderson, D. C. Correa, G. Duncan, B. N., Follette-Cook, M., Westervelt, D. M., Bourgeois, I., Brune, W. H., Bui, 

T. P. DiGangi, J.P., Diskin, G. S., Hall, S. R., McKain, K., Miller, D. O., Peischl, J., Thames, A. B., Thompson, C. 715 
R., Ullmann, K., and Wofsy, S. C.: An observation-based, reduced-form model for oxidation in the remote marine 

troposphere, Proceedings of the National Academy of Sciences, 120 (34), https://doi.org/10.1073/pnas.2209735120, 

2023.  

Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., 

Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, 720 
H., Pinardi, G., Lambert, J.-C., and Compernolle, S. C.: Improving algorithms and uncertainty estimates for satellite 

NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. 

Tech., 11, 6651–6678, https://doi.org/10.5194/amt-11-6651-2018, 2018. 

Bottorff, B., Lew, M. M., Woo, Y., Rickly, P., Rollings, M. D., Deming, B., Anderson, D. C., Wood, E., Alwe, H. D., 

Millet, D. B., Weinheimer, A., Tyndall, G., Ortega, J., Dusanter, S., Leonardis, T., Flynn, J., Erickson, M., Alvarez, 725 
S., Rivera-Rios, J. C., Shutter, J. D., Keutsch, F., Helmig, D., Wang, W., Allen, H. M., Slade, J. H., Shepson, P. B., 

Bertman, S., and Stevens, P. S.: OH, HO2, and RO2 radical chemistry in a rural forest environment: measurements, 

model comparisons, and evidence of a missing radical sink, Atmos. Chem. Phys., 23, 10287–10311, 

https://doi.org/10.5194/acp-23-10287-2023, 2023. 

Brewer, J.F., Millet, D.B., Wells, K.C., Payne, V.H., Kulawik, S., Vigouroux, C., Cady-Pereira, K.E., Pernak, R., and 730 
Zhou, M.: Space-based observations of tropospheric ethane map emissions from fossil fuel extraction, Nature 

Communications, 15, 7829. https://doi.org/10.1038/s41467-024-52247-z, 2024. 



27 
 

Brune, W. H., Ren, X., Zhang, L., Mao, J., Miller, D. O., Anderson, B. E., Blake, D. R., Cohen, R. C., Diskin, G. S., 

Hall, S. R., Hanisco, T. F., Huey, L. G., Nault, B. A., Peischl, J., Pollack, I., Ryerson, T. B., Shingler, T., Sorooshian, 

A., Ullmann, K., Wisthaler, A., and Wooldridge, P. J.: Atmospheric oxidation in the presence of clouds during the 735 
Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493–14510, 

https://doi.org/10.5194/acp-18-14493-2018, 2018. 

Brune, W. H., Miller, D. O., Thames, A. B., Allen, H. M., Apel, E. C., Blake, D. R., Bui, T. P., Commane, R., Crounse, 

J. D., Daube, B. C., Diskin, G. S., DiGangi, J. P., Elkins, J. W., Hall, S. R., Hanisco, T. F., Hannun, R. A., Hintsa, E. 

J., Hornbrook, R. S., Kim, M. J., McKain, K., Moore, F. L., Neuman, J. A., Nicely, J. M., Peischl, J., Ryerson, T. B., 740 
St. Claire, J. M., Sweeney, C., Teng, A. P., Thompson, C., Ullmann, K., Veres, P. R., Wennberg, P. O., and Wolfe, 

G. M.: Exploring oxidation in the remote free troposphere: Insights from Atmospheric Tomography (ATom), J. 

Geophys. Res.: Atmospheres, 125(1), 1–17, https://doi.org/10.1029/2019JD031685, 2020. 

Bucsela, E. J., Krotkov, N. A., Celarier, E. A., Lamsal, L. N., Swartz, W. H., Bhartia, P. K., Boersma, K. F., 

Veefkind, J. P., Gleason, J. F., and Pickering, K. E.: A new stratospheric and tropospheric NO2 retrieval algorithm 745 
for nadir-viewing satellite instruments: applications to OMI, Atmos. Meas. Tech., 6, 2607–2626,  

https://doi.org/10.5194/amt-6-2607-2013, 2013. 

Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek., R., 

Hoogen, R., Bramstedt, K., Eichmann, K.U., Eisinger, M., and Perner, D.: The Global Ozone Monitoring 

Experiment (GOME): Mission Concept and First Scientific Results, J. Atmos. Sci., 56, 151–175, 750 
https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2, 1999.  

Cageao, R.P., Blavier, J.-F., McGuire, J.P., Jiang, Y., Nemtchinov, V., Mills, F.P., and Sander, S.P.: High-resolution 

Fourier-transform ultraviolet-visible spectrometer for the measurement of atmospheric trace species: Application to 

OH, Appl. Opt., 40(12), 2024 – 2030, https://doi.org/10.1364/AO.40.002024, 2001. 

Clarisse, L., R'Honi, Y., Coheur, P.-F., Hurtmans, D., and Clerbaux, C.: Thermal infrared nadir observations of 24 755 
atmospheric gases, Geophys. Res. Lett., 38, L10802, https://doi.org/10.1029/2011GL047271, 2011. 

Colombi, N., Miyazaki, K., Bowman, K. W., Neu, J. L., and Jacob, D. J.: A new methodology for inferring surface 

ozone from multispectral satellite measurements, Environmental Research Letters, 16, 105005, https://doi.org/ 

10.1088/1748-9326/ac243d, 2021. 

Courrèges-Lacoste, G. B., Sallusti, M., Bulsa, G., Bagnasco, G., Veihelmann, B., Riedl, S., Smith, D., J., and Maurer, 760 
R.: The Copernicus Sentinel 4 mission: A geostationary imaging UVN spectrometer for air quality monitoring. Proc. 

SPIE, 10423, 1042307, https://doi.org/10.1117/12.2282158, 2017. 

De Longueville, H., Clarisse, L., Whitburn, S., Franco, B., Bauduin, S., Clerbaux, C., Camy-Peyret, C., and Coheur, 

P.-F.: Identification of short and long-lived atmospheric trace gases from IASI space observations. Geophys. Res. 

Lett., 48, e2020GL091742, https://doi.org/10.1029/2020GL091742, 2021. 765 



28 
 

Duncan, B. N., Prados, A. I., Lamsal, L., Liu, Y., Streets, D., Gupta, P., Hilsenrath, E., Kahn, R. A., Nielsen, J. E., 

Beyersdorf, A., Burton, S., Fiore, A., Fishman, J., Henze, D., Hostetler, C., Krotkov, N. A.,  Lee, P., Lin, M., Pawson, 

S., Pfister, G., Pickering, K. E., Pierce, R. B., Yoshida, Y., and Ziemba, L.: Satellite data of atmospheric pollution for 

U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and 

common mistakes to avoid, Atmos. Environ., 94 647-662, https://doi.org/10.1016/j.atmosenv.2014.05.061, 2014.     770 

Elshorbany, Y. F., Duncan, B. N., Strode, S. A., Wang, J. S., and Kouatchou, J.: The description and validation of 

the computationally Efficient CH4–CO–OH (ECCOHv1.01) chemistry module for 3-D model applications, Geosci. 

Model Dev., 9, 799–822, https://doi.org/10.5194/gmd-9-799-2016, 2016.  

Field, R.D., van der Werf, G.R., Fanin, T., Fetzer, E. J., Fuller, R., Jethva, H., Levy, R., Livesey, N. J., Luo, M., 

Torres, O., and Worden, H.: Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear 775 
sensitivity to El Niño-induced drought, PNAS, 113 (33) 9204-9209, https://doi.org/10.1073/pnas.1524888113, 2016. 

Fiore, A. M., Horowitz, L. W., Dlugokencky, E. J., and West, J. J.: Impact of meteorology and emissions on methane 

trends, 1990–2004, Geophys. Res. Lett., 33, L12809, https://doi.org/10.1029/2006GL026199, 2006. 

Fiore, A., Mickley, M., Zhu, Q., and Baublitz, C.: Climate and Tropospheric Oxidizing Capacity, Ann Rev EPS, 2024 

52:1, https://doi.org/10.1146/annurev-earth-032320-090307, 2024. 780 

de Foy, B., Lu, Z., Streets, D. G., Lamsal, L., and Duncan, B. N.: Estimates of power plant NOx emissions and lifetimes 

from OMI NO2 satellite retrievals. Atmospheric Environment 116 1-11, 

https://doi.org/10.1016/j.atmosenv.2015.05.056, 2015. 

Franco, B., Clarisse, L., Stavrakou, T., Müller, J. ‐F, Van Damme, M., Whitburn, S., Hadji‐Lazaro, J., Hurtmans, D., 

Taraborrelli, D., Clerbaux, C., and Coheur, P.‐F.: A general framework for global retrievals of trace gases from IASI: 785 
Application to methanol, formic acid, and PAN, J. Geophys. Res., 123, 13963–13984. 

https://doi.org/10.1029/2018JD029633, 2018. 

Franco, B., Clarisse, L., Stavrakou, T., Müller, J. ‐F., Pozzer, A., Hadji‐Lazaro, J., Hurtmans, D., Clerbaux, C., and 

Coheur, P.‐F.: Acetone atmospheric distribution retrieved from space, Geophys. Res. Lett., 46, 2884–2893, 

https://doi.org/10.1029/2019GL082052, 2019. 790 

Franco, B., Clarisse, L., Stavrakou, T., Müller, J. ‐F., Taraborrelli, D., Hadji‐Lazaro, J., Hannigan, J. W., Hase, F., 

Hurtmans, D., Jones, N., Lutsch, E., Mahieu, E., Ortega, I., Schneider, M., Strong, K., Vigouroux, C., Clerbaux, C., 

and Coheur, P.‐F.: Spaceborne measurements of formic and acetic acids: A global view of the regional sources, 

Geophys. Res. Lett., 47, e2019GL086239. https://doi.org/10.1029/2019GL086239, 2020. 

Franco, B., Clarisse, L., Van Damme, M., Hadji-Lazaro, J., Clerbaux, C., and Coheur, P.-F.: Ethylene industrial 795 
emitters seen from space, Nat. Commun., 13(1), 6452, https://doi.org/10.1038/s41467-022-34098-8, 2022. 

Franco, B., Clarisse, L., Theys, N., Hadji-Lazaro, J., Clerbaux, C., and Coheur, P.: Pyrogenic HONO seen from space: 

insights from global IASI observations, Atmos. Chem. Phys., 24, 4973–5007, https://doi.org/10.5194/acp-24-4973-

2024, 2024. 



29 
 

Frankenberg, C., Bar-On, Y. M., Yin, Y., Wennberg, P. O., Jacob, D. J., and Michalak, A. M.: Data drought in the 800 
humid tropics: How to overcome the cloud barrier in greenhouse gas remote sensing. Geophys. Res. Lett., 51, 

e2024GL108791, https://doi.org/10.1029/2024GL108791, 2024. 

Fredrickson, C. D., Theys, N., and Thornton, J. A.: Satellite evidence of HONO/NO2 increase with fire radiative 

power. Geophys. Res. Lett., 50, e2023GL103836, https://doi.org/10.1029/2023GL103836, 2023. 

Fu, D., Worden, J. R., Liu, X., Kulawik, S. S., Bowman, K. W., and Natraj, V.: Characterization of ozone profiles 805 
derived from Aura TES and OMI radiances, Atmos. Chem. Phys., 13, 3445–3462, https://doi.org/10.5194/acp-13-

3445-2013, 2013. 

Fu, D., Bowman, K. W., Worden, H. M., Natraj, V., Worden, J. R., Yu, S., Veefkind, P., Aben, I., Landgraf, J., Strow, 

L., and Han, Y.: High-resolution tropospheric carbon monoxide profiles retrieved from CrIS and TROPOMI, Atmos. 

Meas. Tech., 9, 2567–2579, https://doi.org/10.5194/amt-9-2567-2016, 2016. 810 

Fu, D., Kulawik, S. S., Miyazaki, K., Bowman, K. W., Worden, J. R., Eldering, A., Livesey, N. J., Teixeira, J., Irion, 

F. W., Herman, R. L., Osterman, G. B., Liu, X., Levelt, P. F., Thompson, A. M., and Luo, M.: Retrievals of 

tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation, Atmos. Meas. Tech., 

11, 5587–5605, https://doi.org/10.5194/amt-11-5587-2018, 2018. 

Fu, D., Millet, D.B., Wells, K.C., Payne, V. H., Yu, S., Guenter, A., and Eldering, A.: Direct retrieval of isoprene 815 
from satellite-based infrared measurements, Nat. Commun., 10, 3811, https://doi.org/10.1038/s41467-019-11835-0, 

2019.  

Fuchs, H., Tan, Z., Lu, K., Bohn, B., Broch, S., Brown, S. S., Dong, H., Gomm, S., Häseler, R., He, L., Hofzumahaus, 

A., Holland, F., Li, X., Liu, Y., Lu, S., Min, K.-E., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., 

Zhang, Y., Wahner, A., and Zhang, Y.: OH reactivity at a rural site (Wangdu) in the North China Plain: contributions 820 
from OH reactants and experimental OH budget, Atmos. Chem. Phys., 17, 645–661, https://doi.org/10.5194/acp-17-

645-2017, 2017.  

Gaubert, B., Arellano, A. F., Barré, J., Worden, H. M., Emmons, L. K., Tilmes, S., Buchholz, R. R., Vitt, F., Raeder, 

K., Collins, N., Anderson, J. L., Wiedinmyer, C., Martinez Alonso, S., Hannigan, J. W., Petri, C., Strong, K., and 

Jones, N.: Toward a chemical reanalysis in a coupled chemistry climate model: An evaluation of MOPITT CO 825 
assimilation and its impact on tropospheric composition, J. Geophys. Res.: Atmospheres, 121, 7310–7343, 

https://doi.org/10.1002/2016JD024863, 2016. 

Gaubert, B., Worden, H. M., Arellano, A. F. J., Emmons, L. K., Tilmes, S., Barré, J., Martinez Alonso, S., Vitt, F., 

Anderson, J. L., Alkemade, F., Houweling, S., and Edwards, D. P.: Chemical feedback from decreasing carbon 

monoxide emissions, Geophys. Res. Lett., 44, 9985–9995, https://doi.org/10.1002/2017GL074987, 2017. 830 

González Abad, G., Vasilkov, A., Seftor, C., Liu, X., and Chance, K.: Smithsonian Astrophysical Observatory 

Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval, Atmos. Meas. Tech., 9, 2797–2812. 

https://doi.org/10.5194/amt-9-2797-2016, 2016. 



30 
 

González Abad, G., Nowlan, C., Wang, H. Chong, H., Houck, J., Liu, X. and Chance, K.: Tropospheric Emissions: 

Monitoring Of Pollution (TEMPO) Project Trace Gas and Cloud Level 2 and 3 Data Products: User Guide, 835 
https://asdc.larc.nasa.gov/documents/tempo/guide/TEMPO_Level-2-3_trace_gas_clouds_user_guide_V1.0.pdf, 

2024. 

Ha, P. T. M., Kanaya, Y., Taketani, F., Andrés Hernández, M. D., Schreiner, B., Pfeilsticker, K., and Sudo, K.: 

Implementation of HONO into the chemistry–climate model CHASER (V4.0): roles in tropospheric chemistry, 

Geosci. Model Dev., 16, 927–960, https://doi.org/10.5194/gmd-16-927-2023, 2023. 840 

Hansen, R. F., Griffith, S. M., Dusanter, S., Gilman, J. B., Graus, M., Kuster, W. C., Veres, P. R., de Gouw, J. A., 

Warneke, C., Washenfelder, R. A., Young, C. J., Brown S. S., Alvarez, S. L., Flynn, J. H., Grossberg, N. E., Lefer, 

B., Rappenglueck, B., and Stevens, P. S.: Measurements of total OH reactivity during CalNex-LA, J. Geophys. Res.: 

Atmospheres, 126, e2020JD032988, https://doi.org/10.1029/2020JD032988, 2021. 

Holmlund, K., Grandell, J., Schmetz, J., Stuhlmann, R., Bojkov, B., Munro, R., Lekouara, M., Coppens, D., Viticchie, 845 
B., August, T., Theodore, B., Watts, P., Dobber, M., Fowler, G., Bojinski, S., Schmid, A., Salonen, K., Tjemkes, S., 

Aminou, D., and Blythe, P.: Meteosat Third Generation (MTG): Continuation and innovation of observations from 

geostationary orbit, Bull. Amer. Meteor. Soc., 102, E990–E1015, https://doi.org/10.1175/BAMS-D-19-0304.1, 2021. 

Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., Guanter, L., Kelley, J., 

McKeever, J., Ott, L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J. R., and Duren, R. M.: Quantifying methane 850 
emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmos. 

Chem. Phys., 22, 9617–9646, https://doi.org/10.5194/acp-22-9617-2022, 2022. 

Joiner, J., Marchenko, S., Fasnacht, Z., Lamsal, L., Li, C., Vasilkov, A., and Krotkov, N.: Use of machine learning 

and principal component analysis to retrieve nitrogen dioxide (NO2) with hyperspectral imagers and reduce noise in 

spectral fitting, Atmos. Meas. Tech., 16, 481–500, https://doi.org/10.5194/amt-16-481-2023, 2023.  855 

Joiner J., Yoshida, Y., Guanter, L., Lamsal, L., Li, C., Fasnacht, Z., Kohler, P., Frankenberg, C., Sun, Y., and Parazoo, 

N.: Noise reduction for solar-induced fluorescence retrievals using machine learning and principal component 

analysis: simulations and applications to GOME-2 satellite retrievals, Artificial Intelligence for the Earth Systems, 

https://doi.org/10.1175/aies-d-23-0085.1, 2024. 

Kim, J., and Coauthors, 2020: New era of air quality monitoring from space: Geostationary Environment Monitoring 860 
Spectrometer (GEMS). Bull. Amer. Meteor. Soc., 101, E1–E22, https://doi.org/10.1175/BAMS-D-18-0013.1, 2020. 

King, M. D., Platnick, S. E., Menzel, W. P., Ackerman, S. A., and Hubanks, P. A.: Spatial and temporal distribution 

of clouds observed by MODIS onboard the Terra and Aqua satellites IEEE Transactions on Geoscience and Remote 

Sensing 51 3826-3852, https://doi.org/10.1109/TGRS.2012.2227333, 2013.  

Lamsal, L. N., Krotkov, N. A., Vasilkov, A., Marchenko, S., Qin, W., Yang, E.-S., Fasnacht, Z., Joiner, J., Choi, S., 865 
Haffner, D., Swartz, W. H., Fisher, B., and Bucsela, E.: Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide 



31 
 

standard product version 4.0 with improved surface and cloud treatments, Atmos. Meas. Tech., 14, 455–479. 

https://doi.org/10.5194/amt-14-455-2021, 2021. 

Landgraf, J., aan de Brugh, J., Scheepmaker, R., Borsdorff, T., Hu, H., Houweling, S., Butz, A., Aben, I., and 

Hasekamp, O.: Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements, Atmos. 870 
Meas. Tech., 9, 4955–4975, https://doi.org/10.5194/amt-9-4955-2016, 2016.  

Lelieveld, J., Dentener, F. J., Peters, W., and Krol, M. C.: On the role of hydroxyl radicals in the self-cleansing capacity 

of the troposphere, Atmos. Chem. Phys., 4, 2337–2344, https://doi.org/10.5194/acp-4-2337-2004, 2004. 

Lelieveld, J., Brenninkmeijer, C., Joeckel, P., Isaksen, I., Krol, M., Mak, J., Dlugokencky, E., Montzka, S., Novelli, 

P., and Peters, W.: New Directions: Watching over tropospheric hydroxyl (OH). Atmospheric Environment, 40(29), 875 
5741–5743, https://doi.org/10.1016/j.atmosenv.2006.04.008, 2006. 

Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and 

reactivity, Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, 2016. 

Lew, M. M., Rickly, P. S., Bottorff, B. P., Reidy, E., Sklaveniti, S., Léonardis, T., Locoge, N., Dusanter, S., Kundu, 

S., Wood, E., and Stevens, P. S.: OH and HO2 radical chemistry in a midlatitude forest: measurements and model 880 
comparisons, Atmos. Chem. Phys., 20, 9209–9230, https://doi.org/10.5194/acp-20-9209-2020, 2020. 

Li, C., Joiner, J., Liu, F., Krotkov, N. A., Fioletov, V., and McLinden, C.: A new machine-learning-based analysis for 

improving satellite-retrieved atmospheric composition data: OMI SO2 as an example, Atmos. Meas. Tech., 15, 5497–

5514, https://doi.org/10.5194/amt-15-5497-2022, 2022.  

Liang, Q., Chipperfield, M. P., Fleming, E. L., Abraham, N. L., Braesicke, P., Burkholder, J. B., Daniel, J. S., Dhomse, 885 
S.,   Fraser, P. J., Hardiman, S., Jackman, C. H., Kinnison, D. E., Krummel, P. AB., Montzka, S. A., Morgenstern, O., 

McCulloch, A., Muhle, J., Newman, p. A., Orkin, V. L., Pitari, G., Prinn, R. G., Rigby, M., Rozanov, E., Stenke, A., 

Tummon, F., Velders, G. J. M., Visioni, D., and Weiss, R. F.: Deriving global OH abundance and atmospheric 

lifetimes for long-lived gases: A search for CH3CCl3 alternatives, J. Geophys. Res.: Atmospheres, 122, 11,914–11,933, 

https://doi.org/10.1002/2017JD026926, 2017.   890 

Liao, J., Wolfe, G. M., Kotsakis, A. E., Nicely, J. M., St. Clair, J. M., Hanisco, T. F., Gonzalez Abad, G., Nowlan, C. 

R., Ayazpour, Z., De Smedt, I., Apel, E. C., and Hornbrook, R. S.: Validation of formaldehyde products from three 

satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of 

ATom aircraft observations, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-72, 2024.  

Lindsey, D. T., Heidinger, A. K., Sullivan, P. C., McCorkel, J., Schmit, T. J., Tomlinson, M., Vandermeulen, R., Frost, 895 
G. J., Kondragunta, S., and Rudlosky, S.: GeoXO: NOAA’s Future Geostationary Satellite System. Bull. Amer. 

Meteor. Soc., 105, E660–E679, https://doi.org/10.1175/BAMS-D-23-0048.1, 2024. 

Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., Liu, M., Lamsal, L. N., Barkley, M., 

De Smedt, I., Van Roozendael, M., Wang, Y., Wagner, T., Beirle, S., Lin, J.-T., Krotkov, N., Stammes, P., Wang, P., 



32 
 

Eskes, H. J., and Krol, M.: Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals, 900 
Atmos. Meas. Tech., 10, 759-782, https://doi.org/10.5194/amt-10-759-2017, 2017. 

Madronich, S., Bernhard, G. H., Neale. R. E., Neale, P. J., Heikkilä, A., Sulbæk Andersen, M. P., Andrady, A. L., 

Aucamp, P. J., Bais, A. F., Banaszak, A. T., Barnes, P. J., Bornman, J. F., Bruckman, L. S., Busquets, R., Chiodo, G., 

Häder, D.-P., Hanson, M. L., Hylander, S., Jansen, M. A. K., Lucas, R. M., Mackenzie Calderon, R., Olsen, C., Ossola, 

R.,  Pandey, K., Petropavlovskikh, I.,  Revell, L. E., Rhodes, L. E., Robinson, S. A., Robson, T. M., Rose, K. C., 905 
Schikowski, T., Solomon, K. R., Sulzberger, B., Wallington, T. J., Wang, Q.-W., Wängberg,  S.-Å., White, C. C. 

Wilson, S. R., and Zhu, L.: Continuing benefits of the Montreal Protocol and protection of the stratospheric ozone 

layer for human health and the environment, Photochem. Photobiol. Sci., https://doi.org/10.1007/s43630-024-00577-

8, 2024. 

Marais, E. A., Jacob, D. J., Choi, S., Joiner, J., Belmonte-Rivas, M., Cohen, R. C., Beirle, S., Murray, L. T., Schiferl, 910 
L. D., Shah, V., and Jaeglé, L.: Nitrogen oxides in the global upper troposphere: interpreting cloud-sliced NO2 

observations from the OMI satellite instrument, Atmos. Chem. Phys., 18, 17017–17027, https://doi.org/10.5194/acp-

18-17017-2018, 2018. 

Marais, E. A., Roberts, J. F., Ryan, R. G., Eskes, H., Boersma, K. F., Choi, S., Joiner, J., Abuhassan, N., Redondas, 

A., Grutter, M., Cede, A., Gomez, L., and Navarro-Comas, M.: New observations of NO2 in the upper troposphere 915 
from TROPOMI, Atmos. Meas. Tech., 14, 2389–2408, https://doi.org/10.5194/amt-14-2389-2021, 2021. 

Mettig, N., Weber, M., Rozanov, A., Burrows, J. P., Veefkind, P., Thompson, A. M., Stauffer, R. M., Leblanc, T., 

Ancellet, G., Newchurch, M. J., Kuang, S., Kivi, R., Tully, M. B., Van Malderen, R., Piters, A., Kois, B., Stübi, R., 

and Skrivankova, P.: Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements, Atmos. 

Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, 2022. 920 

Martin, R. V., Jacob, D. J. Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in tropospheric 

oxidants from photochemical effects of aerosols, J. Geophys. Res., 108, 4097, https://doi.org/10.1029/2002JD002622, 

2003. 

Miller, D. O., and Brune, W. H.: Investigating the understanding of oxidation chemistry using 20 years of airborne 

OH and HO2 observations, J. Geophys. Res.: Atmospheres, 127, e2021JD035368, 925 
https://doi.org/10.1029/2021JD035368, 2022. 

Minschwaner, K., Canty, T., and Burnett, C.R.: Hydroxyl column abundance measurements: PEPSIOS 

instrumentation at the Fritz Peak Observatory and data analysis techniques, J. Atmospheric and Solar-Terrestrial 

Physics, 65, 3, 335-334, https://doi.org/10.1016/S1364-6826(02)00297-3, 2003. 

Miyazaki, K., Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M., and Boersma, K. F: Simultaneous assimilation of 930 
satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions, Atmos. 

Chem. Phys., 12, 9545–9579, https://doi.org/10.5194/acp-12-9545-2012, 2012. 



33 
 

Millet, D. B., Palmer, P. I., Levelt, P. F., Gallardo, L., and Shikwambana, L.: Coordinated geostationary, 

multispectral satellite observations are critical for climate and air quality progress, AGU Advances, 5, 

e2024AV001322. https://doi.org/10.1029/2024AV001322, 2024 935 

Miyazaki, K., Bowman, K. W., Yumimoto, K., Walker, T., and Sudo, K.: Evaluation of a multi-model, multi-

constituent assimilation framework for tropospheric chemical reanalysis, Atmos. Chem. Phys., 20, 931–967, 

https://doi.org/10.5194/acp-20-931-2020, 2020.  

Mok, J., Krotkov, N. A., Arola, A., Torres, O., Jethva, H., Andrade, M., Labow, G., Eck, T., Li, Z., Dickerson, R., 

Stenchikov, G. L., Osipov, S., and Ren, X.: Impacts of atmospheric brown carbon on surface UV and ozone in the 940 
Amazon Basin, Sci. Rep., 6, 36940, https://doi.org/ 10.1038/srep36940, 2016. 

Murray, L.T., Fiore, A.M., Shindell, D.T., Naik, V., and Horowitz, L.W.: Large uncertainties in global hydroxyl 

projections tied to fate of reactive nitrogen and carbon, PNAS 118:e2115204118, 

https://doi.org/10.1073/pnas.2115204118, 2021.   

NASA Goddard Space Flight Center: MERRA2 GMI, NASA [data set], https://acd-945 
ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/, last access: 10 July 2024. 

Nicely J. M., Anderson, D. C., Canty, T. P., Salawitch, R. J., Wolfe, G. M., Apel, E. C., Arnold, S. R., Atlas, E. L.,  

Blake, N. J., Bresch, J. F., Campos, T. L., Dickerson, R. R., Duncan, B.,  Emmons, L. K., Evans, M. J., Fernandez, R. 

P., Flemming, J., Hall, S. R., Hanisco, T. F., Honomichl, S. B., Hornbrook, R. S., Huijnen, V., Kaser, L., Kinnison, 

D.E., Lamarque, J., Mao, J., Monks, S. A., Montzka, D. D., Pan, L. L., Riemer, D. D., Saiz-Lopez, A., Steenrod, S. 950 
D., Stell, M. H., Tilmes, S., Turquety, S., Ullmann, K., and Weinheimer, A. J.: An observationally constrained 

evaluation of the oxidative capacity in the tropical western Pacific troposphere, J. Geophys. Res. Atmos., 121, 7461–

7488, https://doi.org/10.1002/2016JD025067, 2016. 

Nicely, J. M., Canty, T. P., Manyin, M., Oman, L. D., Salawitch, R. J., Steenrod, S. D., Strahan, S. E., and Strode, S. 

A.: Changes in global tropospheric OH expected as a result of climate change over the last several decades, J. Geophys. 955 
Res.: Atmospheres, 123, 10,774–10,795, https://doi.org/10.1029/2018JD028388, 2018. 

Nicely J. M., Salawitch, R. J., Canty, T., Manyin, M., Oman, L. D., Salawitch, R. J., Steenrod, S. D., Strahan, S. E., 

and Strode, S. A.: Quantifying the Causes of Differences in Tropospheric OH within Global Models, J. Geophys. Res.: 

Atmospheres https://doi.org/10.1002/2016jd026239, 2017. 

Nicely, J. M., Duncan, B. N., Hanisco, T. F., Wolfe, G. M., Salawitch, R. J., Deushi, M., Haslerud, A. S., Jöckel, P., 960 
Josse, B., Kinnison, D. E., Klekociuk, A., Manyin, M. E., Marécal, V., Morgenstern, O., Murray, L. T., Myhre, G., 

Oman, L. D., Pitari, G., Pozzer, A., Quaglia, I., Revell, L. E., Rozanov, E., Stenke, A., Stone, K., Strahan, S., Tilmes, 

S., Tost, H., Westervelt, D. M., and Zeng, G.: A machine learning examination of hydroxyl radical differences among 

model simulations for CCMI-1, Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, 

2020.  965 



34 
 

Nguyen, N. H., Turner, A. J., Yin, Y., Prather, M. J., and Frankenberg, C.: Effects of chemical feedbacks on decadal 

methane emissions estimates. Geophys. Res. Lett., 47, e2019GL085706, https://doi.org/10.1029/2019GL085706, 

2020. 

Okamoto, K., Owada, H., Fujita, T., Kazumore, M., Otsuka, M., Seko, H., Ota, Y., Uekiyo, N., Ishimoto, H., Hayashi, 

M., Ishida, H., Ando, A., Takahashi, M., Bessho, K., and Yokota, H.: Assessment of the potential impact of a hyper-970 
spectral infrared sounder on the Himawari follow-on geostationary satellite, SOLA, 16, 162–168, 

https://doi.org/10.2151/sola.2020-028, 2020. 

Oman, L. D., Ziemke, J. R. Douglass, A. R., Waugh, D. W., Lang, C. Rodriguez, J. M., and Nielsen, J. E.: The response 

of tropical tropospheric ozone to ENSO, Geophys. Res. Lett., 38, L13706, https://doi.org/10.1029/2011GL047865, 

2011.  975 

Oman, L. D., Douglass, A. R., Ziemke, J. R., Rodriguez, J. M., Waugh, D. W., and Nielsen, J. E.: The ozone response 

to ENSO in Aura satellite measurements and a chemistry-climate simulation, J. Geophys. Res., 118, 965–976, 

https://doi.org/10.1029/2012JD018546, 2013.  

Orfanoz-Cheuquelaf, A., Arosio, C., Rozanov, A., Weber, M., Ladstätter-Weißenmayer, A., Burrows, J. P., 

Thompson, A. M., Stauffer, R. M., and Kollonige, D. E.: Tropospheric ozone column dataset from OMPS-LP/OMPS-980 
NM limb–nadir matching, Atmos. Meas. Tech., 17, 1791–1809, https://doi.org/10.5194/amt-17-1791-2024, 2024. 

Pan, L., Geng, J., Hanisco, T. F., and Jiang, S.: Single frequency tunable UV laser at 308 nm based on all-fiberized 

master oscillator power amplifiers, Opt. Lett. 47, 5845-5848, https://doi.org/10.1364/OL.472559, 2022. 

Patra, P. K., Krol, M. C., Prinn, R. G., Takigawa, M., Mühle, J., Montzka, S. A., Lal, S., Yamashita, Y., Naus, S., 

Chandra, N., Weiss, R. F., Krummel, P. B., Fraser, P. J., O’Doherty, S., and Elkins, J. W.: Methyl chloroform 985 
continues to constrain the hydroxyl (OH) variability in the troposphere, J. Geophys. Res.: Atmospheres, 126, 

e2020JD033862, https://doi.org/10.1029/2020JD033862, 2021.  

Pimlott, M.A., Pope, R.J., Kerridge, B.J., Latter, B.G., Knappett, D.S., Heard, D.E., Ventress, L.J., Siddans, R., Feng, 

W., and Chipperfield, M.P.: Investigating the global OH radical distribution using steady-state approximations and 

satellite data, Atmos. Chem. Phys., 22, 10467–10488, https://doi.org/10.5194/acp-22-10467-2022, 2022. 990 

Prather, M.J., and Zhu, L.: Resetting tropospheric OH and CH4 lifetime with ultraviolet H2O absorption, Science, 385, 

201-204, https://doi.org/10.1126/science.adn0415, 2024. 

Rohrer, F., and Berresheim, H.: Strong correlation between levels of tropospheric hydroxyl radicals and solar 

ultraviolet radiation. Nature 442, 184–187, https://doi.org/10.1038/nature04924, 2006. 

Shutter, J.D., Millet, D. B., Wells, K. C., Payne, V. H., Nowlan, C. R., and Gonzalez Abad, G.: Interannual changes 995 
in atmospheric oxidation over forests determined from space, Science Advances, 

https://doi.org/10.1126/sciadv.adn1115, 2024. 

Souri, A. H., Duncan, B. N., Strode, S. A., Anderson, D. C., Manyin, M. E., Liu, J., Oman, L. D., Zhang, Z., and Weir, 

B.: Enhancing Long-Term Trend Simulation of Global Tropospheric OH and Its Drivers from 2005–2019: A 



35 
 

Synergistic Integration of Model Simulations and Satellite Observations, Atmos. Chem. Phys., 24, 8677–8701, 1000 
https://doi.org/10.5194/acp-24-8677-2024, 2024.  

Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M., Jones,  D. B. A., 

Horowitz,  L. W., Fusco,  A. C., Brenninkmeijer,  C. A. M., Prather,  M. J., Wofsy, S. C., McElroy, M. B.: Three-

dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res., 105(D7), 8931–

8980, https://doi.org/10.1029/1999JD901006, 2000.  1005 

Stolarski, R.S., Krueger, A. J., Schoeberl, M. R., McPeters, R. D., Newman, P. A., and Alpert, J. C.: Nimbus 7 satellite 

measurements of the springtime Antarctic ozone decrease, Nature, 322, 808–811, https://doi.org/10.1038/322808a0, 

1986. 

Stone, D., Whalley, L.K., and Heard, D.E.: Tropospheric OH and HO2 radicals: field measurements and model 

comparisons, Chem. Soc. Rev., 2012,41, 6348-6404, https://doi.org/10.1039/C2CS35140D, 2012. 1010 

Thompson, R. L., Montzka, S. A., Vollmer, M. K., Arduini, J., Crotwell, M., Krummel, P. B., Lunder, C., Mühle, J., 

O'Doherty, S., Prinn, R. G., Reimann, S., Vimont, I., Wang, H., Weiss, R. F., and Young, D.: Estimation of the 

atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs), Atmos. Chem. Phys., 24, 

1415–1427, https://doi.org/10.5194/acp-24-1415-2024, 2024. 

Travis, K. R., Heald, C. L., Allen, H. M., Apel, E. C., Arnold, S. R., Blake, D. R., Brune, W. H., Chen, X., Commane, 1015 
R., Crounse, J. D., Daube, B. C., Diskin, G. S., Elkins, J. W., Evans, M. J., Hall, S. R., Hintsa, E. J., Hornbrook, R. 

S., Kasibhatla, P. S., Kim, M. J., Luo, G., McKain, K., Millet, D. B., Moore, F. L., Peischl, J., Ryerson, T. B., Sherwen, 

T., Thames, A. B., Ullmann, K., Wang, X., Wennberg, P. O., Wolfe, G. M., and Yu, F. : Constraining remote oxidation 

capacity with ATom observations, Atmos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-20-7753-2020, 

2020.  1020 

Theys, N., Volkamer, R., Müller, J.-F., Zarzana, K. J., Kille, N., Clarisse, L., De Smedt, I., Lerot, C., Finkenzeller, 

H., Hendrick, F., Koenig, T. K., Lee, C. F., Knote, C., Yu, H., and Van Roozendael, M.: Global nitrous acid emissions 

and levels of regional oxidants enhanced by wildfires, Nature Geoscience, 13(10), 681–686, 

https://doi.org/10.1038/s41561-020-0637-7, 2020. 

Turner, A.J., Frankenberg, C., Wennberg, P. O., and Jacob, D. J.: Ambiguity in the causes for decadal trends in 1025 
atmospheric methane and hydroxyl, PNAS 114(21) 5367-5372. https://doi.org/10.1073/pnas.1616020114, 2016.  

Turner, A.J., Fung, I., Naik, V., Horowitz, L. W., and Cohen, R. C.: Modulation of hydroxyl variability by ENSO in 

the absence of external forcing, Nature 115 (36), 8931-8936, https://doi.org/10.1073/pnas.1807532115, 2018.  

Valin, L.C., Russell, A. R., and Cohen, R. C.: Variations of OH radical in an urban plume inferred from NO2 column 

measurements, Geophys. Res. Lett. 40, 1856–1860, https://doi.org/10.1002/grl.50267, 2013.  1030 

Valin, L. C., A. M. Fiore, A. M., Chance, K., and González Abad, G.: The role of OH production in interpreting the 

variability of CH2O columns in the southeast U.S., J. Geophys. Res. Atmos., 121, 478–493, 

https://doi.org/10.1002/2015JD024012, 2016. 



36 
 

van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers, B. M., Chen, Y., Veraverbeke, S., Giglio, L., and Morton, 

D. C.: Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire 1035 
Emissions Database (GFED), Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, 2022. 

Vasilkov, A., Krotkov, N., Yang, E.-S., Lamsal, L., Joiner, J., Castellanos, P., Fasnacht, Z., and Spurr, R.: Explicit 

and consistent aerosol correction for visible wavelength satellite cloud and nitrogen dioxide retrievals based on optical 

properties from a global aerosol analysis, Atmos. Meas. Tech., 14, 2857–2871, https://doi.org/10.5194/amt-14-2857-

2021, 2021. 1040 

Vasilkov, A., Krotkov, N. A., Haffner, D., Fasnacht, Z., and Joiner, J.: Estimates of hyperspectral surface and 

underwater UV planar and scalar irradiances from OMI measurements and radiative transfer calculations, Remote 

Sensing, volume 14, issue 9: 2278, https://doi.org/10.3390/rs14092278, 2022. 

von Clarmann, T., Degenstein, D. A., Livesey, N. J., Bender, S., Braverman, A., Butz, A., Compernolle, S., Damadeo, 

R., Dueck, S., Eriksson, P., Funke, B., Johnson, M. C., Kasai, Y., Keppens, A., Kleinert, A., Kramarova, N. A., Laeng, 1045 
A., Langerock, B., Payne, V. H., Rozanov, A., Sato, T. O., Schneider, M., Sheese, P., Sofieva, V., Stiller, G. P., von 

Savigny, C., and Zawada, D.: Overview: Estimating and reporting uncertainties in remotely sensed atmospheric 

composition and temperature, Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, 2020. 

Walker, J. C., Dudhia, A., and Carboni, E.: An effective method for the detection of trace species demonstrated using 

the MetOp Infrared Atmospheric Sounding Interferometer, Atmos. Meas. Tech., 4, 1567–1580, 1050 
https://doi.org/10.5194/amt-4-1567-2011, 2011. 

Wang, S., Pickett, H.M., Pongetti, T.J., Cheung, R., Yung, Y.L., C. Shim, Li, Q., Canty, T., Salawitch, R.J., Jucks, 

K.W., Drouin, B., and Sander, S.P.: Validation of Aura Microwave Limb Sounder OH measurements with Fourier 

Transform Ultra-Violet Spectrometer total OH column measurements at Table Mountain, California, J. Geophys. Res., 

113, D22301, https://doi.org/10.1029/2008JD009883, 2008. 1055 

Weber, M., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Wild, J. D., Burrows, J. P., Long, C. S., and Loyola, 

D.: Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone 

recovery, Atmos. Chem. Phys., 18, 2097–2117, https://doi.org/10.5194/acp-18-2097-2018, 2018. 

Wells, K.C., Millet, D. B., Payne, V. H., Deventer, M. J., Bates, K. H.,  de Gouw, J. A., Graus, M., Warneke, C., 

Wisthaler, A., and Fuentes, J. D.: Satellite isoprene retrievals constrain emissions and atmospheric oxidation, Nature, 1060 
585, 7824, 225-233, https://doi.org/10.1038/s41586-020-2664-3, 2020.  

Wells, K., Millet, D., Brewer, J., Payne, V., Cady-Pereira, K., Pernak, R., Kulawik, S., Vigouroux, C., Jones, N., 

Mahieu, E., Makarova, M., Nagahama, T., Ortega, I., Palm, M., Strong, K., Schneider, M., Smale, D., Sussmann, R., 

and Zhou, M.: Long-term global measurements of methanol, ethene, ethyne, and HCN from the Cross-track Infrared 

Sounder, Atmos. Meas. Tech., https://doi.org/10.5194/egusphere-2024-1551, 2024.  1065 

Wofsy, S. C., Afshar, S., Allen, H. M., Apel, E. C., Asher, E. C., Barletta, B., Bent, J., Bian, H., Biggs, B. C., Blake, 

D. R., Blake, N., Bourgeois, I., Brock, C. A., Brune,W. H., Budney, J.W., Bui, T. P., Butler, A., Campuzano-Jost, P., 



37 
 

Chang, C. S., Chin, M., Commane, R., Correa, G., Crounse, J. D., Cullis, P. D., Daube, B. C., Day, D. A., Dean-Day, 

J. M., Dibb, J. E., DiGangi, J. P., Diskin, G. S., Dollner, M., Elkins, J.W., Erdesz, F., Fiore, A. M., Flynn, C. M., 

Froyd, K. D., Gesler, D. W., Hall, S. R., Hanisco, T. F., Hannun, R. A., Hills, A. J., Hintsa, E. J., Hoffman, A., 1070 
Hornbrook, R. S., Huey, L. G., Hughes, S., Jimenez, J. L., Johnson, B. J., Katich, J. M., Keeling, R. F., Kim, M. J., 

Kupc, A., Lait, L. R., McKain, K., McLaughlin, R. J., Meinardi, S., Miller, D. O., Montzka, S. A., Moore, F. L., 

Morgan, E. J., Murphy, D. M., Murray, L. T., Nault, B. A., Neuman, J. A., Newman, P. A., Nicely, J. M., Pan, X., 

Paplawsky, W., Peischl, J., Prather, M. J., Price, D. J., Ray, E. A., Reeves, J. M., Richardson, M., Rollins, A.W., 

Rosenlof, K. H., Ryerson, T. B., Scheuer, E., Schill, G. P., Schroder, J. C., Schwarz, J. P., St.Clair, J. M., Steenrod, S. 1075 
D., Stephens, B. B., Strode, S. A., Sweeney, C., Tanner, D., Teng, A. P., Thames, A. B., Thompson, C. R., Ullmann, 

K., Veres, P. R., Wagner, N. L., Watt, A., Weber, R., Weinzierl, B. B., Wennberg, P. O., Williamson, C. J., Wilson, 

J. C., Wolfe, G. M., Woods, C. T., Zeng, L. H., and Vieznor, N.: ATom: Merged Atmospheric Chemistry, Trace 

Gases, and Aerosols, Version 2, ORNL Distributed Active Archive Center [data set], Oak Ridge, Tennessee, USA, 

https://doi.org/10.3334/ORNLDAAC/1925, 2021. 1080 

Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J. C., Drummond, J. R., and Nédélec, P.: Observations of near-

surface carbon monoxide from space using MOPITT multispectral retrievals, J. Geophys. Res., 115, D18314, 

https://doi.org/10.1029/2010JD014242, 2010. 

Wu, D., Zhang, J., Wang, M., An, J., Wang, R., Haider, H., Ri, Z., Huang, Y., Zhang, Q., Zhou, F., Tian, H., Zhang, 

X., Deng, L., Pan, Y., Chen, X., Yu, Y., Hu, C., Wang, R., Song, Y., Gao, Z., Wang, Y., Hou, L., and Liu, M.: Global 1085 
and regional patterns of soil nitrous acid emissions and their acceleration of rural photochemical reactions, J. Geophys. 

Res.: Atmospheres, 127, e2021JD036379, https://doi.org/10.1029/2021JD036379, 2022.  

Yang, Y., Shao, M., Wang, X., Nölscher, A. C., Kessel,  S., Guenther, A., and Williams, J.: Towards a quantitative 

understanding of total OH reactivity: A review, Atmos. Environ., 134, 

https://doi.org/10.1016/j.atmosenv.2016.03.010, 2016. 1090 

Yang, J., Zhang, Z., Wei, C., Lu, F., and Guo, Q.: Introducing the new generation of Chinese geostationary weather 

satellites, Fengyun-4, Bull. Amer. Meteor. Soc., 98, 1637-1658, https://doi.org/10.1175/BAMS-D-16-0065.1, 2017. 

Yang, X., Lu, K., Ma, X., Gao, Y., Tan, Z., Wang, H., Chen, X., Li, X., Huang, X., He, L., Tang, M., Zhu, B., Chen, 

S., Dong, H., Zeng, L., and Zhang, Y.: Radical chemistry in the Pearl River Delta: observations and modeling of OH 

and HO2 radicals in Shenzhen in 2018, Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-1095 
2022, 2022. 

Yang, X., Wang, H., Lu, K. et al.: Reactive aldehyde chemistry explains the missing source of hydroxyl radicals, Nat. 

Commun., 15, 1648, https://doi.org/10.1038/s41467-024-45885-w, 2024.  

Zhang, Y., Jacob, D. J., Maasakkers, J. D., Sulprizio, M. P., Sheng, J.-X., Gautam, R., and Worden, J.: Monitoring 

global tropospheric OH concentrations using satellite observations of atmospheric methane, Atmos. Chem. Phys., 18, 1100 
15959–15973, https://doi.org/10.5194/acp-18-15959-2018, 2018.  



38 
 

Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen, L., Qu, Z., Sulprizio, M. P., 

Chang, J., Bloom, A. A., Ma, S., Worden, J., Parker, R. J., and Boesch, H.: Attribution of the accelerating increase in 

atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations, Atmos. Chem. Phys., 21, 3643–

3666, https://doi.org/10.5194/acp-21-3643-2021, 2021.  1105 

Zhang, Q., P. Liu, Y. Wang, C. George, T. Chen, S. Ma, Y. Ren, Y. Mu, M. Song, H. Herrmann, A. Mellouki, J. Chen, 

Y. Yue, X., Zhao, S. Wang, and Y. Zeng: Unveiling the underestimated direct emissions of nitrous acid (HONO), 

PNAS 120, 35, https://doi.org/10.1073/pnas.2302048120, 2023. 

Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin, M. I., Canadell, J. G., Jackson, R. B., Hauglustaine, 

D. A., Szopa, S., Stavert, A. R., Abraham, N. L., Archibald, A. T., Bekki, S., Deushi, M., Jöckel, P., Josse, B., 1110 
Kinnison, D., Kirner, O., Marécal, V., O'Connor, F. M., Plummer, D. A., Revell, L. E., Rozanov, E., Stenke, A., 

Strode, S., Tilmes, S., Dlugokencky, E. J., and Zheng, B.: Inter-model comparison of global hydroxyl radical (OH) 

distributions and their impact on atmospheric methane over the 2000–2016 period, Atmos. Chem. Phys., 19, 13701–

13723, https://doi.org/10.5194/acp-19-13701-2019, 2019. 

Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Hegglin, M. I., Canadell, J. G., Jackson, R. B., and Zheng, B.: 1115 
Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations, Atmos. 

Chem. Phys., 23, 789–807, https://doi.org/10.5194/acp-23-789-2023, 2023.  

Zhu, L., González Abad, G., Nowlan, C. R., Chan Miller, C., Chance, K., Apel, E. C., DiGangi, J. P., Fried, A., 

Hanisco, T. F., Hornbrook, R. S., Hu, L., Kaiser, J., Keutsch, F. N., Permar, W., St. Clair, J. M., and Wolfe, G. M.: 

Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns, Atmos. Chem. 1120 
Phys., 20, 12329–12345, https://doi.org/10.5194/acp-20-12329-2020, 2020.  

Zhu, Q., Laughner, J.L., and Cohen, R.C.: Estimate of OH trends over one decade in North American cities. 

Proceedings of the National Academy of Sciences 119, e2117399119, https://doi.org/10.1073/pnas.2117399119, 

2022a.  

Zhu, Q., Laughner, J.L., and Cohen, R.C.: Combining Machine Learning and Satellite Observations to Predict Spatial 1125 
and Temporal Variation of near Surface OH in North American Cities, Environ. Sci. Technol., 56, 11, 

https://doi.org/10.1021/acs.est.1c05636, 2022b. 

Zhu, Q., Fiore, A. M., Correa, G., Lamarque, J. F., and Worden, H.: The impact of internal climate variability on OH 

trends between 2005 and 2014, Environ. Res. Lett., https://doi.org/10.1088/1748-9326/ad4b47, 2024.  

Ziemke, J. R., Chandra, S., Duncan, B.N. Froidevaux, L., Bhartia, P. K., Levelt, P. F., and Waters, J. W.: Tropospheric 1130 
ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling 

Initiative's Chemical Transport Model, J. Geophys. Res., 111, D19303, https://doi.org/10.1029/2006JD007089, 2006. 

Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J., Hilton, B. B., Nicks, D. K., 

Newchurch, M., Carr, J. L., Janz, S., Andraschko, M., Arola, A., Baker, B. D., Canova, B. P., Miller, C. C., Cohen, 

R. C., Davis, J. E., Dussault, M. E., Edwards, D., Fishman, J., Ghulam, A., Abad, G. G., Grutter, M., Herman, J. R., 1135 



39 
 

Houck, J., Jacob, D. J., Joiner, J., Kerridge, B. J., Kim, J., Krotkov, N., Lamsal, L. N., Li, C., Lindfors, A., Martin, R. 

V., McElroy, C. T., McLinden, C., Natraj, V., Neil, D. O., Nowlan, C. R., O'Sullivan, E. J., Palmer, P. I., Pierce, R. 

B., Pippin, M. R., Saiz-Lopez, A., Spurr, R. J. D., Szykman, J., Torres, O., Veefkind, J. P.,  Veihelmann, B., Wang, 

H., Wang, J., and Chance, K.: Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. 

Transfer, 186, 17-39, https://doi.org/10.1016/j.jqsrt.2016.05.008, 2017. 1140 


	1 Introduction
	2 Current Approaches to Indirectly Constrain Local and Regional Concentrations, Trends, and Variations of Tropospheric OH with Satellite Observations
	2.1 Process-based Approaches
	2.2 Machine Learning (ML) Approaches
	2.3 Chemical Data Assimilation Approaches
	2.4 Simplified Hybrid Approaches

	3 Recommendations for Suborbital Needs
	4 Recommendations for Retrieval Algorithm Refinement
	4.1 Ultraviolet/Visible (UV/Vis)
	4.2 Thermal Infrared (TIR)
	4.3 Short-wave Infrared (SWIR)
	4.4 Enhancing Vertical Resolution

	5 Recommendations for Satellite Needs
	5.1 Optimizing an Observing Strategy through Tradespace Analyses
	5.1.1 Continuity
	5.1.2 Accuracy/Precision and Signal-to-Noise (SNR)
	5.1.3 Spatio-Temporal Coverage
	5.1.4 Case Studies

	5.2 Assessment of Current Satellite Data to Constrain Chemical Processes that Influence OH
	5.2.1 A Thought Experiment
	5.2.2 Looking Backward

	5.3 Influence of Tropospheric Dynamics on OH
	5.4 Addressing “Clear-Sky” Bias of Inferred OH from Satellite-Based Approaches

	6 Summary of Recommendations
	Data Availability
	Author Contributions
	Financial Support
	References

