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Abstract. The definition of reliable tools for rainfall-induced landslide hazard assessment is often limited by the lack of long 

records of occurred landslides and relevant hydrometeorological variables. This is the case of the mountainous areas of 

Southern Apennines of Campania (Italy), diffusely covered by loose pyroclastic deposits laying upon limestone bedrock, and 10 

frequently subjected to rainfall-triggered shallow landslides. To get around this issue, a 500-year long synthetic dataset of the 

response to precipitation of a typical slope of the area has been generated, by means of a physically based model previously 

validated through experimental data. The obtained dataset, containing hourly values of soil moisture and suction, and of water 

level in an ephemeral aquifer developing in the uppermost fractured bedrock, has been used to assess slope stability through 

the calculation of the factor of safety. Based on the synthetic data, empirical thresholds for the prediction of landslide 15 

occurrence have been defined, either meteorological (i.e., based on rainfall intensity and duration) or hydrometeorological 

(i.e., coupling rainfall depth with antecedent root-zone soil moisture or aquifer water level). The results show that, where 

meteorological forcing and slope characteristics are perfectly known, hydrometeorological thresholds outperform the 

meteorological ones, and that a 3D threshold based on root-zone soil moisture, aquifer level, and rainfall depth, provides nearly 

unerring landslide predictions. The use of two antecedent hydrologic variables also allows identifying two different landslide 20 

triggering mechanisms, respectively typical of the beginning and of the end of the rainy season. 

To extend the application to large areas, the uncertainties linked to the spatial variability on slope geomorphologic 

characteristics and hydrometeorological variables were considered as random errors. Hence, foreseeing the application to the 

north-facing side of Partenio Massif (about 80 km2), the synthetic dataset has been perturbed, superimposing Normal-

distributed random fluctuations to the calculated values of the factor of safety, and to the hydrometeorological variables used 25 

as landslide predictors. Although the uncertainty reduces the predictive skill of all the thresholds, the hydrometeorological 

ones show more robustness, with small numbers of both missed and false alarms. This result is confirmed by the application 

of the obtained thresholds to available data of landslides, rainfall and root-zone soil moisture for the period 2002-2020 in the 

area. 

Keywords: Hydrometeorological thresholds; Early warning; Uncertainty analysis; Conditional landslide probability. 30 
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1 Introduction 

Rainfall-induced landslides are a common natural hazard, involving the displacement of land portions in sloped areas following 

heavy rain periods. In urban zones, the effect of rainfall-induced landslides is critical due to human casualties, significant 

damages to man-made structures (e.g., roads and buildings), and substantial economic losses (Froude and Petley, 2018). Hence, 

predicting the occurrence of such kind of phenomena is highly relevant and needs to be deeply investigated. 35 

Predicting rainfall-induced landslides often relies on defining empirical thresholds separating likely non-triggering from likely 

triggering conditions, which are key component of landslide early warning systems (LEWSs). The most common threshold is 

the purely meteorological relationship between rainfall intensity and duration (Guzzetti et al., 2007, 2008; Segoni et al., 2018). 

However, its lack of physical basis and its overconfidence in data correlations may give rise to important uncertainties, limiting 

the effectiveness of predictions. 40 

It is well recognized that many rainfall-induced landslides are triggered on steep slopes covered with shallow granular deposits, 

usually in unsaturated conditions, following an increase in pore water pressure (Terzaghi, 1943), which is linked to an increase 

in the water stored in the soil (Bogaard and Greco, 2016). In the case of shallow landslides, the achievement of instability is 

favoured by antecedent wet soil conditions, thus landslide initiation depends not only on the triggering rainfall event 

characteristics (Mirus et al., 2018a; Wicki et al., 2020). More generally, the accumulation of water in a slope, up to the eventual 45 

triggering of a landslide, requires that slope drainage mechanisms are not capable of effectively draining out much of the 

infiltrating rainwater (Bogaard and Greco, 2016; Greco et al., 2021; Marino et al., 2021). Slope drainage processes are 

controlled by the hydraulic behaviour of the boundaries of the slope, which is often not static, as it may change in response to 

various large-scale processes (in time and space), which affect the slopes as parts of larger hydrological systems. The whole 

processes controlling slope infiltration and drainage represent the hydrologic predisposing factors (causes), which should be 50 

considered, together with rain event characteristics (trigger), in landslide prediction (Bogaard and Greco, 2018). 

In the last decade, new advancements have been made in LEWS research. Novel hydrometeorological thresholds that combine 

hydrologic predisposing factors with rainfall events leading to slope failure have been developed for landslide forecasting. 

Specifically, adding hydrologic information physically linked to the predisposing processes occurring in the slope (e.g., soil 

moisture content) has been shown to improve the performance of LEWS from local/basin to regional scales (Abraham et al., 55 

2021; Baum and Godt, 2010; Marino et al., 2020b; Mirus et al., 2018b; Palazzolo et al., 2023; Thomas et al., 2019). The 

acquisition of information about soil moisture is nowadays feasible, thanks to remote sensing (Beck et al., 2021), 

meteorological reanalysis products (Muñoz-Sabater et al., 2021), and through conventional field monitoring stations, at 

relatively low cost and in an up-to-date manner (Marino et al., 2020a, 2023). However, depending on site-specific 

characteristics, other hydrological variables as well as soil moisture may add valuable information to understand the seasonally 60 

changing slope response to precipitation (Illien et al., 2021; Roman Quintero et al., 2023). 

Regardless the chosen approach (i.e., purely meteorological or hydrometeorological), a common issue in the definition of 

statistically significant empirical thresholds is the small number of unambiguously identified (in time and space) landslide 
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events in the historical records (Peres and Cancelliere, 2021), especially when the analysis is restricted to small areas (e.g., 

Gonzalez et al., 2023), such as single slopes or small catchments. Expanding the studied area (i.e., moving from local to 65 

regional landslide hazard assessment) allows increasing the number of valid landslide data, but it often implies encompassing 

quite different geomorphological and meteorological contexts in the same dataset, thus hampering the physical significance 

and reliability of the defined thresholds (Gonzalez et al., 2023; Segoni et al., 2018). One potential approach to address this 

issue is by defining landslide thresholds based only on non-triggering conditions, per definition much more numerous in any 

given dataset (Peres and Cancelliere, 2021). The dataset available for the definition of the threshold can also be enriched 70 

through the stochastic generation of synthetic data, an established technique in hydrology (e.g., Hanson, 1982; Michele et al., 

2005; Salas et al., 2006; Keskin et al., 2006), and recently applied to landslide studies by coupling the stochastic generation of 

rainfall series with physically based infiltration and slope stability models (e.g., Peres and Cancelliere, 2014; Peres et al., 2018; 

Marino et al., 2021). 

The case study of a relatively large landslide-prone area on the north-facing slopes of Partenio Massif (Campania, Southern 75 

Italy) is here analysed. The study area shares many major characteristics of landslide-affected areas in Campania: from a humid 

Mediterranean climate with densely vegetated slopes to soil deposits consisting of granular materials originating from the 

explosive eruptions of the Phleagrean Fields and the Somma-Vesuvius volcanoes (Rolandi et al., 1998). The shallow rainfall-

induced landslides in the area always involve a mantle of a few meters of shallow air-fall pyroclastic deposits, mainly ashes 

with layers of pumices, overlaying a fractured karstic limestone bedrock, which during the rainy season hosts perched aquifers 80 

in its uppermost weathered part (epikarst) (Greco et al., 2018). 

It is well-known that the triggering mechanism leading to rainfall-induced landslides on these slopes is the reduction of soil 

suction in the initially unsaturated deposits, and consequently of their shear strength, caused by soil wetting during rainwater 

infiltration (Damiano and Olivares, 2010; Olivares and Picarelli, 2003; Pagano et al., 2010; Pirone et al., 2015). Nevertheless, 

many features remain unknown in the application of this knowledge to wide areas especially for early warning purposes. As a 85 

matter of fact, heavy and persistent rainfall events are commonly followed by the triggering of landslides, but not all slopes 

(apparently similar) in relatively homogeneous geomorphological settings fail during the same event (Greco et al., 2021). In 

fact, the actual triggering of landslides depends on local geomorphologic slope features (Di Crescenzo and Santo, 2005; Crosta 

and Dal Negro, 2003), in some cases even affecting the mechanisms leading to slope failure, ranging from capillary barriers 

developing at the ash-pumice interface and causing flow diversion and local moisture accumulation (Reder et al., 2017), to 90 

locally impervious soil-bedrock interface impeding soil drainage and favouring pore pressure build-up (Damiano et al., 2012; 

Damiano and Olivares, 2010) to soil saturation caused by local exfiltration from the bedrock (Cascini et al., 2008). 

This paper aims at defining empirical thresholds accounting for the effects of hydrometeorological and geomechanical spatial 

variability for operational use in a warning system for landslide forecasting in a wide area involving similar geomorphological 

settings. Two different approaches are compared for threshold definitions: a purely meteorological approach directly relating 95 

rainfall characteristics to landslide triggering, and a hydrometeorological approach based on a cause-trigger relationship. Both 

antecedent root-zone soil moisture and perched aquifer water level have been tested as possible proxies of hydrologic 
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predisposing conditions. To obtain a dataset rich enough for statistical analyses, rainfall stochastic generation is coupled with 

a physically based model of unsaturated flow and slope stability. Specifically, a 500-year long hourly synthetic dataset is used 

to capture the major hydrological processes occurring within the slope of Cervinara, belonging to north-facing slopes of 100 

Partenio Massif, and to assess slope stability. Initially, the analysis is conducted for a simplified reference slope model with a 

constant inclination, covered by a homogeneous soil layer with constant thickness. This approach provides a complete dataset 

including slope conditions (i.e., soil moisture, suction at various depths, and perched aquifer water level), allowing the 

assessment of the effects of every precipitation event on slope stability useful to define thresholds at the reference slope scale.  

As landslide triggering on real slopes in a wide area is influenced by local singularities, (e.g., related to spatial variability of 105 

soil properties, slope and bedrock morphology, soil cover thickness and layering, vegetation, and precipitation), random 

perturbations, generated with a Montecarlo technique, are introduced, to incorporate the effects of uncertainties referred to 

spatial variability of slope characteristics compared to the simplified reference slope model. The perturbed dataset mimics an 

operational early warning system covering the entire study area, based on monitoring information collected in few and sparse 

locations. To this aim, the effects of the spatial variability of monitored hydrometeorological variables (i.e., rainfall, soil 110 

moisture and aquifer level) have been also introduced as random fluctuations around the synthetic data.  

The results show how, for the reference slope, perfectly described by the physically based model used for the generation of 

the synthetic dataset, it is possible to define a nearly unerring 3D hydrometeorological threshold coupling slope conditions one 

hour prior to the onset of rainfall events, expressed as the perched aquifer level and the root-zone soil moisture, with total 

event rainfall depth. The three hydrometeorological variables also allow identifying the antecedent conditions leading to two 115 

different landslide triggering mechanisms. For the same case, a 2D hydrometeorological threshold, based on soil moisture and 

rainfall depth, still ensures very high predictive performance (i.e., no missed alarms and about one false alarm every five 

years). The purely meteorological I-D threshold, instead, even in this perfectly known ideal operating condition, would lead 

to the unacceptable rate of one false alarm per year. The scale of application of the thresholds is enlarged to the entire north-

facing side of the Partenio Massif, introducing the effects of the uncertainty related to spatial variability of hydrometeorological 120 

and geomorphological variables. The obtained results show the robustness of the hydrometeorological thresholds, compared 

to the purely meteorological one. In fact, the reduction of predictive performance at large scale results small, making the 

hydrometeorological thresholds still a reliable tool for landslide hazard assessment in the area, as confirmed by the application 

to the available landslide data of the period 2002-2020.  

2 Materials and methods 125 

2.1 Case study 

The case study refers to an area of the Southern Apennines in Campania, Italy. Specifically, the studied slopes belong to the 

north-facing part of the Partenio Massif, about 40 km northeast of the city of Naples, with a total extension of about 80 km2 

https://doi.org/10.5194/egusphere-2024-2329
Preprint. Discussion started: 19 August 2024
c© Author(s) 2024. CC BY 4.0 License.



5 
 

(Fig. 1). They are covered by deposits of variable thickness of loose coarse-grained pyroclastic soil, consisting of alternating 

layers of ashes and pumices, lying upon a densely fractured limestone bedrock. 130 

 
Figure 1. Study area of north-facing part of the Partenio Massif (green-filled area) with indication of the rain gauges and the major 
landslides reported in different landslide catalogues from 1999 to 2020 (sourced from: Peruccacci et al., 2023; Calvello and Pecoraro, 
2018). 

During the night between 15 and 16 December 1999, the slopes of Mt. Cornito (nearby the city of Cervinara) were affected by 135 

a series of shallow landslides after a rainfall event of about 320 mm in 48 hours. One of the major landslides travelled 

approximately 2 km from the source area and reached the town of Cervinara (Fiorillo et al., 2001), leaving human casualties 

and destroying buildings. Lately, in 2019, a huge debris avalanche affected the community of San Martino Valle Caudina (very 

close to Cervinara, Fig. 1), showing that this local area of a few km2 belonging to northeast-facing slopes of Partenio Mountains 

is recurrently subjected to such kind of phenomena (Greco et al., 2021). The sliding surface of the previously described 140 

landslides, as well as in other similar geomorphological contexts of the region, usually occurs within the layers of ashes, a 

cohesionless soil characterized by friction angle values ranging between 37° and 39° (Olivares and Picarelli, 2003). 

The fractured limestone formations are often the host rock for karstic aquifers. A distinction can be done between the weathered 

uppermost part of the bedrock, known as epikarst (Hartmann et al., 2014; Williams, 2008), more porous and pervious, and the 

deepest part, characterized by wider fracture systems, where the deep groundwater circulation is hosted. The interaction 145 

between the epikarst and the surface system is shown to be important for the hydrological behaviour of the unsaturated soil 
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cover (Roman Quintero et al., 2023). The water that leaks from the soil to the epikarst forms ephemeral perched shallow 

aquifers, that favour the recharge of the deep aquifer and supply surface water circulation through ephemeral springs. 

2.2 Synthetic dataset of reference slope response to precipitation 

A 500-year synthetic dataset was produced to mimic the major hydrological processes in the studied area. As is often the case 150 

with landslide studies, statistical analysis relying solely on historical observations would be limited by data scarcity. Hence, 

synthetic data generation is a suitable method to study slope hydrologic processes over a timescale long enough to allow for 

the occurrence of slope instability multiple times (e.g., Peres and Cancelliere, 2014; Peres et al., 2018; Marino et al., 2020b).  

The first step in generating a synthetic dataset is defining a reliable model of the major hydrological processes occurring within 

a slope, which will be used to assess slope stability. In this regard, a previously developed physically based model of 155 

unsaturated flow in the soil covering a simplified slope with known geometric, hydraulic, and geotechnical characteristics 

(referred to hereinafter as the reference slope model) was adopted. This model should be regarded as representative of the 

typical features of the slopes of the area. Although the soil cover is layered, effective parameters of a homogeneous soil layer 

resembling the mean hydraulic behaviour of the deposit have been assumed (Greco et al., 2013, 2018; Marino et al., 2020b). 

The model had been calibrated and validated according to field monitoring data and laboratory analyses, proving to be able to 160 

reliably reproduce field measurements (Comegna et al., 2016; Greco et al., 2013, 2014, 2018). As shown in Fig. 2, due to the 

relatively thin soil deposit in comparison to the length of the slope, the assumption of 1D flow is feasible. The interaction with 

the atmosphere considers rainfall infiltration and evapotranspiration, and the underlying perched aquifer, modelled as a linear 

reservoir, is connected to the overlying unsaturated soil through a coupling hydraulic condition assumed at the soil-bedrock 

interface. 165 
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Figure 2. Water flow scheme for the 1D coupled flow model considering (from top to bottom): rainwater infiltration from the soil 
surface, unsaturated flow through the soil deposit accounting the effect of evapotranspiration, water leakage through the soil-
bedrock interface, and saturated water flow in the epikarst joined to the soil-bedrock interface affecting the water potential. 

The water flow in the unsaturated soil deposit is modelled assuming a homogeneous soil layer, using the 1D Richards’ equation 170 

(1), where 𝜓𝜓 is the soil matric potential, 𝜃𝜃 the volumetric water content, 𝑧𝑧 is the vertical direction (see Fig. 2), and 𝑘𝑘 is the 

unsaturated hydraulic conductivity. The actual evapotranspiration is considered in the source term 𝑞𝑞𝑟𝑟 in Eq. (1), representing 

root water uptake, estimated from the potential evapotranspiration with the model of (Feddes et al., 1976), assuming a 

triangular root distribution penetrating the entire cover thickness. 
𝜕𝜕𝜃𝜃
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The hydraulic characteristic curves, 𝜃𝜃(𝜓𝜓) and 𝑘𝑘(𝜓𝜓), are modelled with the van Genuchten-Mualem model shown in Eqs. (2) 175 

and (3), where 𝜃𝜃𝑟𝑟 and 𝜃𝜃𝑠𝑠 are the residual and saturated volumetric water content, respectively; 𝛼𝛼, 𝑛𝑛, and 𝑚𝑚 = 1 − 1 𝑛𝑛⁄  are 

shape parameters; 𝑆𝑆𝑒𝑒 = (𝜃𝜃 − 𝜃𝜃𝑟𝑟) (𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟)⁄  is the effective degree of saturation; 𝐾𝐾𝑠𝑠 is the saturated hydraulic conductivity 

(Mualem, 1976). 
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𝜃𝜃𝑠𝑠 if 𝜓𝜓 ≥ 0
 (2) 

𝑘𝑘(𝜓𝜓) = �𝐾𝐾𝑠𝑠𝑆𝑆𝑒𝑒
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2

 if 𝜓𝜓 < 0
𝐾𝐾𝑠𝑠 if 𝜓𝜓 ≥ 0

 (3) 

The unsaturated flow model in the soil cover is coupled with a linear reservoir model simulating the water accumulation in the 

epikarst aquifer. The water balance equation of the perched epikarst aquifer reads: 180 
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In Equation (4), 𝑛𝑛𝑎𝑎 is epikarst effective porosity, h is the water table depth, 𝑖𝑖𝑏𝑏 is the water leakage from the soil cover to the 

bedrock, and 𝐾𝐾𝑎𝑎 is the time constant of the linear reservoir. The aquifer water level is assumed to linearly affect the suction 

(𝜓𝜓𝑏𝑏) at the base of the soil deposit, 𝜓𝜓𝑏𝑏 = 𝐻𝐻𝑒𝑒 − ℎ, where 𝐻𝐻𝑒𝑒  is the epikarst thickness. All the model parameters are summarised 

in Table 1. 185 
Table 1. Hydraulic parameters applied in the coupled model of 1D water flow for the unsaturated soil cover and for the perched 
aquifer hosted in the Epikarst. 

Soil cover 

𝜽𝜽𝒔𝒔 (-) 0.70 
𝜃𝜃𝑟𝑟 (-) 0.01 
𝛼𝛼 (m-1) 6 
𝑛𝑛 (-) 1.3 

Soil cover thickness (m) 2 
Saturated hydraulic conductivity, 𝐾𝐾𝑠𝑠 (m∙s-1) 3x10-5 

Slope inclination angle, 𝛽𝛽 (°) 40 

Epikarst 
Epikarst thickness, 𝐻𝐻𝑒𝑒  (m) 14 

Effective porosity (-) 0.005 
Time constant of linear reservoir (days) 871 days 

 

The above-described model was run to simulate the water flow with a 500-year synthetic hourly rainfall series, generated with 

the Neyman-Scott Rectangular Pulse model (NSRP) (Rodriguez-Iturbe et al., 1987). The NSRP is a stochastic model that 190 

reproduces the rainfall process based on a random selection of the origin, rainfall amount and duration of single rainfall cells 

(rectangular pulses), that can overlap with each other. Specifically, every cell width and height represent the duration and the 

intensity of each rainfall cell, respectively. Hence, when many cells overlap, the total intensity at any time is the result of the 

direct summation of the intensities of the overlapping cells. The model has been calibrated with the method of moments 

(Cowpertwait et al., 1996; Peres and Cancelliere, 2014), based on a 17-year long rainfall dataset with a time resolution of 10 195 

minutes, from the rain gauge of Cervinara, managed by the Civil Protection Agency of Campania (Marino et al., 2020b; Roman 

Quintero et al., 2023). 

Equations (1) and (4) have been solved with the finite differences technique in a 2 cm spacing grid with hourly timestep, 

allowing to obtain the 500-year synthetic series of volumetric water content 𝜃𝜃 and water potential in the soil profile, and of 

perched aquifer water level in the epikarst (hereinafter it will be indicated as the depth of the water table below the soil-bedrock 200 

interface, ℎ𝑎𝑎 = −𝜓𝜓𝑏𝑏 , as sketched in Fig. 2). 

Based on the results of the model simulations, slope stability is assessed by evaluating the factor of safety (FS) at every 

simulated time. The assumed 1D geometry allows carrying out the slope stability analysis under the infinite slope hypothesis, 

i.e., FS being the ratio between the resistive shear strength and the effective shear stress, derived from the equilibrium analysis 

of a soil column element of height 𝑑𝑑 resting on a slope with inclination angle 𝛽𝛽: 205 

𝑛𝑛𝑎𝑎
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑏𝑏 −
h
𝐾𝐾𝑎𝑎

 (4) 
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FS =
𝑐𝑐′ + 𝛾𝛾𝛾𝛾 cos2 𝛽𝛽 tan𝜙𝜙′ − 𝛾𝛾𝑤𝑤Se𝜓𝜓 tan𝜙𝜙′

𝛾𝛾𝛾𝛾 sin𝛽𝛽 cos𝛽𝛽
 (5) 

In Equation (5), 𝑐𝑐′and 𝜙𝜙′ are effective soil cohesion and friction angle, respectively; 𝛾𝛾𝑤𝑤 is the unit weight of water; 𝛾𝛾 is the 

mean unit weight of the wet soil column; χ is the Bishop coefficient, function of 𝜓𝜓 and here assumed equal to the effective 

degree of saturation (χ = Se) (Lu and Likos, 2006). As a layer of cohesive altered ashes is present near the soil-bedrock 

interface, with a typical thickness of about 50 cm, the failure depth is assumed at the base of the cohesionless soil profile, i.e., 

1.5 m below the ground surface (Marino et al., 2021). Landslide triggering is assumed to occur whenever FS < 1.0. 210 

Once the landslide triggering has been identified, an association between the rain events and the occurrence or non-occurrence 

of landslides is needed. To this aim, rainfall events have been separated within the 500-year hourly rainfall series, assuming 

that rainfall can be regarded as a new event only when the effects of the previous one have disappeared from the topsoil, the 

moisture of which controls rainwater infiltration during the new event. To this aim, a separation interval of 24 hours with rain 

depth smaller than the mean daily evapotranspiration, estimated as 2 mm/day, has been assumed, as after this time the topsoil 215 

moisture returned to the field capacity for all the simulated rainfall events (Roman Quintero et al., 2023). Under this 

assumption, 26363 rain events were identified, with durations between 1 and 427 h and total rainfall depth between 2 mm and 

645 mm. 

The way the rain events have been associated to the occurrence or non-occurrence of landslides is shown in Fig. 3.  

 220 
Figure 3. Schematic representation of the occurrence of landslides associated to rainfall events in two different cases: (a) associated 
to the previous event if FS < 1.0 after the end of the rainfall; (b) associated to the actual ongoing event if FS < 1.0 within the rainfall 
event. 

Within the time series, the landslide occurrence condition (i.e., FS < 1.0) might be related to the triggering rain event in two 

different ways, as depicted in Figs. 5a and 5b, which show three rainfall events, H1, H2 and H3. In the first case (Fig. 3a), FS <225 

1.0 is attained during a dry interval, owing to the delay in rainwater infiltration, thus the triggering of the landslide is associated 

to the previous rainfall event (H2). In the second case (Fig. 3b), the critical condition is attained during the rainfall event H3, 
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and so the landslide is associated to the ongoing event. To avoid misinterpretation of the actual triggering event, whenever the 

rainfall event associated to a landslide resulted smaller than 20 mm, it was merged with the immediately previous one. 

2.3 Empirical landslide threshold definition 230 

Empirical thresholds are a useful tool for separating rainfall events with landslides from those without. They consist in a line, 

or a surface, plotted in a suitable 2D or 3D space, often adopted in landslide early warning systems. The definition of empirical 

thresholds can be made with different functional formats, according to the shape of the data cloud in the chosen space (Mirus 

et al., 2024). 

The hydrologic analysis of the synthetic dataset carried out by (Roman Quintero et al., 2023) has showed that, in the studied 235 

geomorphological context, the fraction of water remaining stored in the soil cover at the end of a rainfall event (𝛥𝛥𝛥𝛥 𝐻𝐻⁄ ) is 

strongly related to the mean volumetric water content of the uppermost 100 cm of the soil profile (θ) and the antecedent perched 

aquifer water level (ℎ𝑎𝑎), both evaluated one hour before the initiation of the event. This suggests that these two variables may 

be used for the definition of hydrometeorological landslide thresholds. Hence, different empirical thresholds have been here 

tested, aiming at comparing their landslide forecasting performances, ranging from the traditional meteorological rainfall 240 

intensity-duration threshold (𝐷𝐷, 𝐼𝐼) to the hydrometeorological one (𝜃𝜃, 𝐻𝐻), in which the hydrological information θ has been 

considered as representative of conditions that predispose the slopes to failure, to novel functional format for 

hydrometeorological threshold defined in the 3D space (𝜃𝜃, ℎ𝑎𝑎, H). 

The parameters of all the tested functional formats for the empirical thresholds have been identified by maximizing the True 

Skill Statistic TSS (Peirce, 1884), which gives a measure of the predictive performance of the threshold: 245 

TSS = 1 −  
𝑀𝑀
𝑃𝑃
−
𝐹𝐹
𝑁𝑁

 (6) 

In equation (6), 𝑀𝑀 is the number of missed alarms (i.e., events not exceeding the threshold, but followed by a landslide), P is 

the total number of landslides (true positives), 𝐹𝐹 is the number of false positives (i.e., rainfall events exceeding the threshold, 

without any landslide occurrence) and 𝑁𝑁 is the total number of rainfall events not followed by any landslide (true negatives). 

A perfectly working threshold curve gives TSS = 1, while TSS = −1 indicates an always failing threshold. The objective 

function (6) is optimized by using a Genetic Algorithm (GA) (Goldberg and Holland, 1988). 250 

Basically, it is worth to note that whenever 𝑁𝑁 ≫ 𝑃𝑃 (i.e., landslide triggering is a rare phenomenon), thus TSS is more sensitive 

to the missed alarms 𝑀𝑀, rather than to the false alarms 𝐹𝐹. Nevertheless, this bias can be useful for landslide prediction purposes, 

because a missed alarm error could have catastrophic consequences, while false alarms may only cause inconvenience to the 

served inhabitants and may affect their responsiveness and trust in an Early Warning System in the long run, owing to the 

well-known cry-wolf effect (Breznitz, 1984). 255 
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2.4 Real slope response to precipitation 

The operational use of empirical thresholds for early warning purposes requires the monitoring (or prediction) of the adopted 

hydrometeorological variables, that are then used to identify the conditions leading to landslide occurrence. Compared to the 

simplified reference slope model, the real slopes of the study area present variable characteristics, in terms of geomorphology 

as well as hydraulic and mechanical properties of the soil. Spatial variability of slope characteristics, as well as of rainfall 260 

input, affects both the assessment of slope stability and the representativeness of the values of the variables used for the 

definition of the empirical threshold.  

In this respect, to mimic the operational use of the empirical thresholds at large scale (i.e., referred to north-facing part of the 

Partenio Massif, about 80 km2), the effects of the uncertainty affecting all the variables should be considered.  

Specifically, Normal distributed fluctuations are superimposed on the synthetic meteorological and hydrological variables used 265 

for the definition of the local thresholds.  

2.4.1 Uncertainty in the hydrometeorological variables for threshold application to a large area 

In the reference slope model, both the meteorological (i.e., rain event duration, depth, and mean intensity) and hydrological 

variables (i.e., root zone soil moisture and perched aquifer water level), that can be used for empirical thresholds definition, 

are perfectly representative of the actual meteorological forcing and hydrologic antecedent conditions of the slope. Instead, in 270 

real operational applications to a wide area, the same variables would be the result of sparse measurements or of model 

simulations with limited spatial resolution. Hence, the characteristics of the considered rainfall events are not those affecting 

all the slopes of the area. Similarly, the values of antecedent hydrological variables would not remain unchanged if measured 

(or simulated) at different points of the study area. Therefore, uncertainty affects the hydrometeorological variables to be used 

for threshold application to a large area. The greatness of uncertainty is related to the extension of the area to which the 275 

threshold is applied, compared to the spatial density of the input data. 

For the case of the north-facing side of Partenio Mountains (about 80 km2), the spatial variability of rain depth of events, 

separated as described in section 2.2, has been analyzed based on the experimental data recorded in the period 2001-2021 by 

three rain gauges managed by the Civil Protection in Cervinara, Rotondi, and San Martino Valle Caudina (S.M.V.C.), reported 

in Fig. 1. The distance between the rain gauges ranges from 4.8 km (between Rotondi and Cervinara) to 10.0 km (between 280 

Rotondi and S.M.V.C.), with the rain gauge of S.M.V.C. installed at a significantly higher altitude compared to the other two 

(Table 2). The rain events observed at different rain gauges, that overlapped for at least one hour in the time series, were 

considered contemporary. When the different intermittency of the rain observed at two gauges gave rise to the correspondence 

of a single event at a rain gauge with multiple shorter events at another, the short events were merged in a single event, so to 

obtain comparable total rainfall depths (i.e., in these cases, the separation criterion of 24 hours with less than 2 mm was 285 

disapplied). Table 2 reports some statistical indices of the difference of the rainfall observed at the three gauges, including the 

total number of events at each rain gauge, and the number of events overlapping with any of the others. 
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Table 2. Characteristics and degree of overlapping of rainfall events recorded at the three rain gauges of the study area. 

Rain 
gauge 

Elevation 
(m s.l.m.) 

Mean 
yearly 

rainfall 
(mm) 

Minimum 
and 

maximum 
event 
depth 
(mm) 

Minimum 
and 

maximum 
event 

duration 
(h) 

Total 
number 

of 
events 

Number of 
events 

overlapping 
with 

Cervinara 

Number of 
events 

overlapping 
with 

Rotondi 

Number of 
events 

overlapping 
with 

S.M.V.C. 

Cervinara 349 1600 [2, 266.6] [1, 219] 1010 1010 845 831 
Rotondi 483 1500 [2, 260.6] [1, 218] 1010 845 1010 840 

S.M.V.C. 850 2000 [2, 403] [1, 290] 1052 831 840 1052 
 

As an example, for two couplings of rain gauges, i.e. Cervinara with Rotondi and Cervinara with San Martino Valle Caudina, 290 

the scatterplots of the differences, ΔH = H1 − H2, vs. the mean values, Hmed = (H1 + H2) 2⁄ , of event depths recorded at the 

two gauges are reported in Fig. 4. The coupling between Rotondi and San Martino Valle Caudina has not been represented, as 

it resulted very similar to that of Cervinara with San Martino Valle Caudina. 

 
Figure 4. Scatterplots of the differences 𝚫𝚫𝑯𝑯 vs. the mean values 𝐇𝐇𝐦𝐦𝐦𝐦𝐦𝐦 of rainfall depths of events recorded at the rain gauges of (a) 295 
Cervinara and Rotondi, and (b) Cervinara and San Martino Valle Caudina. The black dashed line represents the linear fitting of 
the 𝚫𝚫𝚫𝚫(𝐇𝐇𝐦𝐦𝐦𝐦𝐦𝐦) relationship. The solid and dashed red lines are power-law equations around the black dashed line, including 68.3% 
and 86.6% of the dots, respectively.   

The black dashed line in each graph represents the linear fitting of the dependence of the fluctuation Δ𝐻𝐻 on 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 , i.e., Δ𝐻𝐻 =

𝛼𝛼𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 . The solid and dashed red lines, symmetric around the black dotted line, represent equations of the format Δ𝐻𝐻 =300 

𝛼𝛼𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 ± 𝐴𝐴 × 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵 , with the power-law terms characterized by the same exponent 𝐵𝐵 and different values of the coefficient 

𝐴𝐴. The exponent 𝐵𝐵 and the coefficients 𝐴𝐴 of the solid and dashed curves, reported in table 3, have been obtained by searching 

the curves delimiting the zones containing 68.3% and 86.6% of the dots, respectively, and leaving outside the same number of 
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dots above and below them. If the ratio of the coefficients 𝐴𝐴 obtained for the dashed and solid lines is close to 1.5, this indicates 

that the dot clouds are arranged in such a way to allow assuming the fluctuations of the rain depth difference to be Normal 305 

distributed around their mean, with mean and standard deviations depending on the mean total event depth according to the 

above mentioned linear and power-law relationships, respectively. 
Table 3. Dependence of mean and standard deviation of rain event total depth fluctuations on mean total depth, for coupled rain 
gauge stations of the north side of Partenio mountains. 

First rain gauge (𝐇𝐇𝟏𝟏) Second rain gauge (𝐇𝐇𝟐𝟐) 𝜶𝜶 𝑨𝑨 (68.3%) 𝑨𝑨 (86.6%) 𝑩𝑩 
Cervinara Rotondi -0.020 1.30 2.15 0.53 
Cervinara San Martino Valle Caudina -0.276 1.38 2.21 0.59 

 310 

The analysis of rain events for the three considered stations shows that both the distance and the difference of altitude affect 

the spatial variability of rainfall depth. Specifically, the rain event depths recorded at the stations of Rotondi and Cervinara, 

located at the foot of the north-facing slopes at close altitude, share the same mean, and the spreading of the depth difference 

around the mean looks similar. Whereas the rain gauge of San Martino Valle Caudina, at a significantly higher altitude, is 

considered, the dependence of mean event rain depth on the altitude clearly arises, and the spreading of rain depth difference 315 

looks slightly larger, as if the difference of elevation also affects event depth fluctuations and not only their mean value. 

However, the analysis of how topographic factors affect the spatial variability of rainfall event depth in the Partenio Massif 

cannot be based on the analysis of only three gauges, but it should be more deeply investigated based on rain data from all the 

rain gauges operating in the study area. 

Regarding the variability of rain event depth moving away from the gauge position, the analyses for the three considered rain 320 

gauges indicates that the standard deviation of rain event depth at about 5 km from the measurement point can be approximated 

as 𝜎𝜎(𝐻𝐻) ≅ 1.5 × 𝐻𝐻0.5. However, the density of the rain gauges managed by the Civil Protection agency in the study area (Fig. 

1) is such that each rain gauge covers an area of about 10 km2, so that the maximum distance of a slope from the closest rain 

gauge can be considered smaller than 2 km. Hence, to introduce the uncertainty deriving from the spatial variability of rain, 

the following relationship has been assumed for the standard deviation of rain event depth: 325 

σ(𝐻𝐻) = 0.75 × 𝐻𝐻0.5                                                                                                                                                                (7) 

Moreover, the uncertainty on the hydrological variables 𝜃𝜃 and ha was introduced by considering a Normal-distributed random 

Absolute Error (AE) with zero mean and known standard deviation. Firstly, in the case of 𝜃𝜃, the standard deviation of the AE 

distribution was assumed to be equal to 0.02. Brocca et al. (2012) showed that in relatively small areas (i.e. less than 100 km2) 

monitored through conventional stations, an AE of ± 0.04 on the readings of 𝜃𝜃 can be addressed with a 95% confidence with 330 

a relatively low sampling density. Figure 5a shows the distribution of the AE on 𝜃𝜃, where the 95% of the data falls between 

approximately ± 0.04. Similarly, (Dari et al., 2019) estimated that an AE in an area of about 500 km2 instrumented with 12 

stations shall be capable of give lectures with an error around 0.03, somehow confirming this picture even for larger areas. 

However, measurements obtained through remote sensing techniques, such as ERA-5 land products, often display a typical 
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error around 0.02 in the studied area (Hersbach et al., 2020; Muñoz-Sabater et al., 2021). Thus, the selected standard deviation 335 

of 0.02 encompasses the expected variability in volumetric water content measurements across different methodologies and 

environmental conditions.  

Likewise, the standard deviation of the distribution of AE accounting for the uncertainty in the ground water monitoring, was 

assumed here to be equal to 1 m. Figure 5b presents the assumed distribution of AE on ℎ𝑎𝑎, ranging around ±2 m with a 95% 

confidence level. With this assumptions, the perturbed water levels will very unlikely approach the ground surface, consistently 340 

with the gushing out of water in natural springs at ground, observed rarely in the area, and only downhill, near the main streams 

Cornito and Castello (Marino et al., 2020b; Roman Quintero et al., 2023). The aim of introducing ℎ𝑎𝑎 is to assess the potential 

use of ephemeral aquifer formation in slope areas as an indicator of the conditions affecting water accumulation in the soil 

cover, including active and impeded drainage mechanisms (Roman Quintero et al., 2023). Indeed, some studies indicate that 

ephemeral aquifer systems can emerge in highlands and their water levels, related to wet and dry seasons, are spatially stable 345 

in wide areas (e.g., Bennett et al., 2022). In this respect, some data provided by one-year observations from wells placed 

downhill in the study area, show that the groundwater table depth difference at the wells seems to agree with the assumed 

maximum AE, ranging around ± 2 m (Autorità di Bacino, 2013). 

 
Figure 5. Frequency distributions of the absolute error associated with (a) the volumetric water content, ∆𝜽𝜽, and (b) the ground 350 
water level, ∆𝐡𝐡𝐚𝐚, assumed to randomly perturb the original dataset. 

2.4.2 Uncertainty in the assessment of slope stability 

In equation (5), the uncertainty of failure surface depth, 𝑑𝑑, and of slope inclination, 𝛽𝛽, depend on the variability of slope 

morphology; uncertainty of soil strength parameters, 𝑐𝑐′and 𝜙𝜙′, is linked to the variability of soil properties; uncertainty of soil 

column mean unit weight, 𝛾𝛾, and of the value of 𝜓𝜓 at the considered depth, may depend on the variability of both slope 355 

morphology and soil properties, as well as on the spatial variability of the meteorological forcing (mainly rainfall), vegetation 
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and boundary conditions. Hence, the uncertainty affecting the calculated values of FS has been assessed as the combined 

effects of all these uncertain factors, characterized as Normally distributed, with the standard deviations given in Table 4. 
Table 4. Mean values and standard deviations of the factors affecting the uncertainty of the values of the factor of safety calculated 
for the simplified slope model. 360 

Variable Mean value (reference slope) Standard deviation (Large scale) 
𝒅𝒅 (m) 1.5 0.1 
𝜷𝜷 (°) 40.0 2.0 

𝒄𝒄′ (N/m2) 0.0 0.0 (always assumed cohesionless soil) 
𝝓𝝓′ (°) 38.0 0.5 

𝜸𝜸 (N/m3) 
variable for every event,  

depending on calculated soil moisture profile 10% of the mean 

𝝍𝝍 (N/m2) variable for every event,  
depending on calculated FS value 

1000.0 

FS (-) variable for every time 0.1 
 

The values of the standard deviations reported in Table 4 for the large scale can be considered representative of the spatial 

variability of the characteristics of the slopes affected by shallow landslides in the north-facing side of Partenio Mountains 

(Fig. 1). In fact, the pyroclastic soil deposits, originated by the same eruptions, share similar stratigraphy and physical 

properties (e.g., Roman Quintero et al., 2024), thus explaining the small uncertainty affecting  𝜙𝜙′ and 𝑐𝑐′(this latter has been 365 

considered constantly equal to zero, as this is a conservative assumption for slope stability assessment). The factors related to 

slope morphology also present limited variability in the study area, as relatively big landslides usually occur in a relatively 

narrow range of inclination angles. In fact, slopes above 45° inclination typically present a very thin soil coverage (Del Soldato 

et al., 2018; De Vita and Nappi, 2013), while those with inclinations smaller than 35°, due to the high effective friction angle, 

would fail only if positive pore water pressure is reached. However, soil saturation is very unlikely in the considered slopes, 370 

thanks to the high porosity and hydraulic conductivity of the soil, as well as to the perviousness of the underlying fractured 

bedrock. Thus, the standard deviation of the fluctuation of FS around the values calculated for the simplified slope model 

results 0.10 (Table 4).   

3 Results and discussion 

3.1 Simplified reference slope thresholds 375 

The slope stability analysis applied to the synthetic dataset of the reference slope leads to 20 triggering events in 500 years, a 

frequency which appears consistent with the historical dataset of landslides occurred nearby the city of Cervinara (landslides 

1 and 9 of Fig. 1).  

In Fig. 6, the scatterplots of triggering (red points) and non-triggering (green points) rainfall events are shown in the plane of 

rainfall duration and intensity (𝐷𝐷, 𝐼𝐼), as well as in the plane of mean volumetric water content of the uppermost 100 cm and 380 

the rainfall events height (θ, H). The definition of the meteorological (Fig. 6a) and hydrometeorological (Fig. 6b) thresholds 
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have been made by means of power-law (𝐼𝐼 = 𝑎𝑎 𝐷𝐷𝑏𝑏) and linear (𝐻𝐻 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏) functional formats, which share the same 

number of parameters.  

 

Figure 6. Power-law meteorological threshold (a); linear hydrometeorological threshold (b). In the 500 year-long synthetic data set, 385 
the red dots represent the rainfall events followed by the triggering of a landslide; the green ones are rainfall events after which no 
landslide occurs.  

Table 5 summarizes the obtained parameters and the performance metrics for the tested thresholds. 
Table 5. Parameters and metrics of the tested functional formats both the meteorological and hydrometeorological thresholds 
defined in Fig. 6.  390 

Functional formats a b TSS 
Missed  
Alarms 

False  
Alarms 

Total  
events 

Meteorological 
Power-law  
(Fig. 6a) 

39.22 -0.69 0.983 0 452 

26363 
Hydrometeorological 

Linear  
(Fig. 6b) 

-3097.86 1502.76 0.996 0 96 

 

As can be seen in Fig. 6a, the meteorological threshold captures the landslides occurring within rain intensities and durations 

ranging in several orders of magnitude. Instead, as shown in Fig. 6b, the adoption of a physically based hydrometeorological 

relationship can capture the extreme value nature of the landslide events, restricting the hazardous conditions to the outermost 

part of the dot cloud. In fact, most of the landslide red dots are disposed on the top-right side, where the soil wettest conditions 395 

occur and, sometimes, the highest rainfall events are also present. Since the separation between red and green points is well 

captured by the proposed hydrometeorological linear threshold, it performs better compared to the purely meteorological one 

(Table 5), even if both functional formats have the same number of parameters.  
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Moreover, the addition of a second hydrological variable (ℎ𝑎𝑎) has allowed to incorporate the influence of the lowermost 

boundary condition of the soil cover, as seen in Fig. 7. Specifically, a novel 3D threshold format, consisting of two planes (θ, 400 

H) parallel to the axis ℎ𝑎𝑎 and separated by a limit value of perched aquifer water level (ℎ𝑥𝑥), is proposed. In particular, the bi-

plane format has 5 parameters: slope and intercept of the two traces of planes in the coordinate plane (θ, H), and the separating 

value of antecedent condition hx, separating low from high water level (i.e., 𝐻𝐻 = 𝑎𝑎1𝜃𝜃 + 𝑏𝑏1 with ℎ𝑎𝑎 ≥ ℎ𝑥𝑥 and 𝐻𝐻 = 𝑎𝑎2𝜃𝜃 + 𝑏𝑏2 

with ℎ𝑎𝑎 <  ℎ𝑥𝑥, respectively, Fig. 7b and Fig. 7c).  

 405 
Figure 7. Optimal hydro-meteorological threshold in the space (θ, ha, H): (a) scatter plot of data in the 3D space; (b) ha ≥ 12.4 m (low 
perched aquifer water level) and (c) ha < 12.4 m (high perched aquifer water level). The green dots indicate conditions not leading 
to landslides. Landslide events have been split in red and blue dots, corresponding to different antecedent aquifer level; (d) 
comparison of the obtained thresholds for low and high aquifer level. 

All the parameter values and the performance metrics obtained by maximization of TSS are reported in Table 6. 410 
Table 6. Parameters of the tested functional format for the 3D hydrometeorological threshold defined in Fig. 7.  

Functional format 
Antecedent  
conditions 

a b 𝐡𝐡𝐱𝐱 TSS 
Missed  
alarms 

False  
alarms 

Total 
events 

Bi-plane 
ha ≥  hx -3134.03 1578.39 

12.39 0.999 0 18 26363 
ha <  hx -1916.91 1000.42 

 

It is worth to note from Table 6 that the performance of this threshold is further improved compared to those obtained with 2D 

analysis (Table 5), leading to the lowest total number of false alarms, i.e., 18 in 500 years. The obtained value ℎ𝑥𝑥 

(corresponding to about 12.4 m) provides the optimal separation between two triggering mechanisms. More specifically, 415 
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looking at Fig. 7b, the red dots represent landslides occurring with low perched aquifer water level (i.e., ℎ𝑎𝑎 ≥  ℎ𝑥𝑥), a condition 

typical of late autumn, which indicates that leakage through the soil-bedrock interface is hampered by the dryness of the 

lowermost part of the soil cover. In this condition, during large rainfall events, all the infiltrating water remains stored in the 

soil mantle, which is saturated from the top. Looking at Fig. 7c, instead, the blue dots represent landslides occurring with high 

epikarst aquifer water level (ℎ𝑎𝑎 <  ℎ𝑥𝑥), i.e., when the bedrock is already filled with the water previously leaked from the soil 420 

deposit, as observed after persistent rainy seasons. In this case, pore pressure increase occurs at the base of the soil deposit, 

which is saturated from the bottom, and in some cases even exfiltration from the bedrock can occur.  

3.2 Large scale application 

In operational applications of landslide forecasting in large areas, such as the Partenio Mountains, a simple tool for hazard 

assessment should be defined, relying on hydrometeorological information, typically available in few and sometimes sparse 425 

positions (i.e., the nodes of the grid of modelling or remote sensing products, or the locations of measurement instruments in 

the field). Therefore, the effects of spatial variability on slope stability as well on the representativeness of hydrometeorological 

information should be considered.  

To this aim, the series of FS has been perturbed with Normal-distributed random fluctuations, with standard deviation 0.10 

(section 2.4.2). Interestingly, 175 slope failures in 500 years have been obtained, corresponding to a mean frequency of more 430 

than one landslide every two years, which is comparable with the 10 landsides reported in the entire study area in the period 

1999-2020 according to existing landslide catalogs (Calvello and Pecoraro, 2018; Peruccacci et al., 2023). 

Similarly, the spatial variability of the hydrometeorological variables (θ, ha, H), used for the definition of the threshold for the 

reference slope (section 3.1) and supposed to be measured in a single place for the considered area, has been introduced. 

Specifically, 100 different perturbed series (hereinafter “scenarios”) have been generated embedding both the hydrological (θ 435 

and ℎ𝑎𝑎) and meteorological (H) information as probabilistic variables with Normal-distributed random fluctuations with zero 

mean and the standard deviation values reported in section 2.4.1. For the sake of simplicity, the duration of rainfall events has 

been left unchanged, and the perturbed mean intensity has been obtained as 𝐼𝐼 = 𝐻𝐻𝐷𝐷−1. 

For all the scenarios, Fig. 8 shows the scatter plots of the perturbed variables in the planes (𝐷𝐷, 𝐼𝐼) and (𝜃𝜃,𝐻𝐻). The red dots 

represent the conditions followed by landslide occurrence, the green dots those without landslides. It looks clear from the dot 440 

arrangement that, even considering the randomness due to the spatial variability of all the considered variables, the 

hydrometeorological variables 𝜃𝜃 and 𝐻𝐻 separate landslides from non-landslides much more effectively than the meteorological 

variables 𝐼𝐼 and 𝐷𝐷. This result is confirmed by the landslide probability distributions, reported in Fig. 9 in the same planes. To 

draw the graphs, a rectangular grid with variable spacing has been defined, so to have at least 20 dots falling within each 

rectangle. The landslide probability has been estimated in each rectangle as the ratio between the number of landslides and the 445 

total number of dots. Indeed, the transition from small to high probability of landslide looks sharper in the (𝜃𝜃,𝐻𝐻) plane than 

in the (𝐷𝐷, 𝐼𝐼) plane (notice that this latter graph is plotted in logarithmic scales). This suggests that the adoption of a threshold 

line to separate landslides from non-landslides, as an operational tool for landslide hazard assessment, should ensure a good 
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performance in the (𝜃𝜃,𝐻𝐻) plane, containing at the same time both missed and false alarms. The shape of the transition zone 

from small to high landslide probability in the two planes also confirms that the power-law equation (a straight line in a log-450 

log plane) and the linear equation are suitable functional formats for the threshold lines in the (𝐷𝐷, 𝐼𝐼) and (𝜃𝜃,𝐻𝐻) planes, 

respectively. 

 
Figure 8. Scatter plot of perturbed meteorological and hydrometeorological variables of 100 scenarios: (a) in the meteorological 
plane (D, I) with logarithmic axes; (b) in the hydrometeorological plane (𝜽𝜽, 𝑯𝑯). 455 

 
Figure 9. Conditional landslide probability distributions: (a) in the meteorological plane (D, I) with logarithmic axes; (b) in the 
hydrometeorological plane (𝜽𝜽, 𝑯𝑯). 
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The suitability of threshold lines has been investigated by defining an optimal threshold for each scenario (i.e., maximizing 

TSS), for all the functional formats tested for the reference slope. 460 

Fig. 10 shows the scatter plot of the perturbed variables with the dashed thresholds obtained by calculating the mean value of 

threshold line parameters obtained for all scenarios, in the (𝐷𝐷, 𝐼𝐼) plane with power-law equation (Fig. 10a), in the (𝜃𝜃,𝐻𝐻) plane 

with linear equation (Fig. 10b), and in the 3D space (𝜃𝜃, ℎ𝑎𝑎 ,𝐻𝐻) with the bi-plane format (Figs. 10c and 10d). In the latter case, 

the events with landslides have been split in red and blue dots, according to the low and high-water level, respectively. 

Moreover, in Fig. 10, the shaded areas represent the spanning of the 100 thresholds obtained for all the scenarios.  465 

 

Figure 10. Scatter plot of perturbed meteorological and hydrometeorological variables with the thresholds obtained by the 
optimization of 100 scenarios using different functional formats: (a) Power-law meteorological  thresholds in the meteorological 
plane (I, D) with logarithmic axes; (b) linear hydrometeorological thresholds in the plane (𝜽𝜽, 𝑯𝑯); Bi-plane hydrometeorological 
thresholds in the plane (𝜽𝜽, 𝑯𝑯) according to different antecedent aquifer level 𝐡𝐡𝐚𝐚: (c) low perched aquifer water level (𝒉𝒉𝒂𝒂 ≥ 𝒉𝒉𝒙𝒙: red 470 
dots) and (d) high perched aquifer water level (𝒉𝒉𝒂𝒂 < 𝒉𝒉𝒙𝒙: blue dots). 

The predictive performances displayed by the investigated thresholds for the large area (80 km2) are consistent with those 

obtained for the reference slope. In fact, the performance increases moving from pure meteorological, to hydrometeorological 
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2D, to hydrometeorological 3D, as sketched in Fig. 11, in which the distributions of the obtained TSS values for all 100 

scenarios are shown through box and whiskers plots.  475 

 

Figure 11. Performance comparison of the tested functional formats for all scenarios referred to meteorological and 
hydrometeorological thresholds. 

As depicted in the box plots, the hydrometeorological approach leads to TSS values ranging between 0.72 and 0.80 (2D 

threshold), and between 0.77 and 0.85 (3D threshold). Instead, the meteorological approach shows TSS values between 0.59 480 

and 0.64. For each functional format, the red lines inside the box represent the median value, overlapping with the average of 

TSS (red dots in the middle of the boxes). For the three tested formats, Table 7 summarizes the parameters and the performance 

indicators of the median TSS, as well as the overall TSS range (ΔTSS).  
Table 7. Summary of performance indicators obtained by maximizing the TSS values of the landslide thresholds applied to the 
different scenarios. 485 

Functional formats a b 𝐡𝐡𝐱𝐱 
TSS 

median 
Missed 
alarms 

False 
alarms 

Total 
events 

ΔTSS 

Meteorological Power-law 168.37 -1.47 - 0.614 26 6216 
 

26363 
 

0.05 

Hydrometeorological 
Linear -3467.71 1502.54 - 0.757 16 3962 0.08 

Bi-plane 
-2896.64 1308.85 

11.03 0.804 11 3406 0.08 
-3559.64 1478.81 

 
Looking at 2D thresholds, the parameters of meteorological power-law exhibit a large change compared to one referred to 

reference slope (Table 5), likely due to the lack of physical basis, while the change for the simple linear hydrometeorological 

is less pronounced. However, looking at the 3D threshold, the change is more significant, owing to the addition of the random 

perturbation of groundwater level. 490 
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It is worth to note that the median linear hydrometeorological format allowed to obtain a total number of false alarms in the 

whole area equal to 3962 in 500 years (i.e., on average, 8 per year), with missed alarms only once every 31 years. 

Moreover, applying the bi-plane threshold would further improve the predictive performance, leading to the lowest total 

number of missed alarms, i.e., only 11 in 500 years (on average once every 45 years), as well as the lowest number of false 

alarms, as reported in Table 7. 495 

3.3 Application to real landslide dataset 

A practical application to a real dataset has been carried out for the period from 2002 to 2020, during which 9 landslide events 

were registered and validated in the study area (Calvello and Pecoraro, 2018; Peruccacci et al., 2023). The rainfall time series 

within such temporal window has been taken from the Cervinara rain gauge station. For the root zone volumetric water content, 

θ, the ERA5 reanalysis data were used. The median 2D thresholds reported in Fig. 10 (section 3.2) have been kept for assessing 500 

their performances referred to the real landslide dataset. Figure 12a and 12b report, respectively, the application of the 

meteorological (𝐷𝐷, 𝐼𝐼) and hydrometeorological (𝜃𝜃,𝐻𝐻) thresholds. 

 
Figure 12. Application to real landslides, from 2002 to 2020, of the power-law meteorological (a) and the linear hydrometeorological 
thresholds (b) defined in the section 3.2. In both planes, the scattered dots representing rainfall events not followed by any landslide 505 
(green dots) and rainfall events after which landslides were registered (red dots). On the right side, landslide triggering dates are 
reported. 

Also in this case, the hydrometeorological threshold performs better in the prediction of real landslide occurrences. Indeed, it 

reaches a TSS value of 0.50, whereas for the purely meteorological it is equal only to 0.35. The number of false alarms results 

consistent with the application to the synthetic dataset (i.e., 143 and 269 in 19 years for the hydrometeorological and 510 

meteorological thresholds, respectively), but the missed alarms, three for both the thresholds, are much more than expected. 

However, this result can be ascribed to intrinsic uncertainties affecting the landslide inventory, where indeed some of the 

reported landslides have been classified as having very limited geographic (i.e., landside nr. 3) or temporal (i.e., landside nr. 

7) accuracy. Furthermore, the rain data from the gauge of Cervinara may be not representative for some of the farthest 

landslides (e.g., landslide nr. 10, represented in Fig. 1). The correction of just some of the three missed landslides would bring 515 

the performances back to the same level as for the synthetic dataset. 
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4 Conclusions 

The paper investigates the potential advancements that may be achieved by including one or more hydrological variables in 

the definition of empirical thresholds for rainfall-induced landslide forecasting. As landslide inventories usually provide 

limited amounts of data suitable for statistical analyses, a 500-year long synthetic dataset has been generated by means of a 520 

physically based model. The model, previously calibrated and validated thanks to detailed laboratory and field experiments, 

reproduces the response to meteorological forcing of a reference slope, with perfectly known geomorphologic and physical 

properties. The reference slope is representative of a wide area of Campania (Italy), characterised by carbonate massifs covered 

with a thin layer of pyroclastic deposits, frequently affected by rainfall-induced shallow landslides.  

The analysis of the synthetic dataset of the reference slope, including soil moisture and suction distributions in the soil deposit, 525 

as well as perched aquifer water level, allowed the assessment of slope stability at hourly resolution. The results show that a 

hydrometeorological threshold, based on root-zone soil moisture and rainfall depth, outperforms the usually adopted purely 

meteorological threshold, based on rainfall intensity and duration. Furthermore, a novel hydrometeorological threshold, 

defined in the 3D space of root-zone soil moisture and aquifer water level (as indicators of antecedent slope conditions) and 

rainfall depth, provides nearly unerring predictions of landslide triggering. The proposed 3D threshold also allows identifying 530 

the antecedent conditions leading to the activation of two different landslide triggering mechanisms, related to the beginning 

and the end of the rainy season. 

To extend the analysis to a large area, the effects of the spatial variability of slope characteristics and rainfall has been 

introduced as Normal-distributed random perturbations of the reference slope variables. In fact, uncertainty affects the 

assessment of slope stability, as well as the representativeness for a wide area of hydrometeorological variables collected at 535 

few locations. The distributions of landslide probability, conditional to meteorological (i.e., rain intensity and duration) and 

hydrometeorological (i.e., root-zone soil moisture and rain depth) variables, clearly indicate that these latter are more robust 

with respect to uncertainty, as the transition from small to high landslide probability is sharper in the hydrometeorological 

plane. This result is confirmed by the small reduction of the predictive performance of the hydrometeorological thresholds 

applied at large scale, compared to the meteorological one.  540 

The proposed approach, although based on synthetic data, looks promising for operational early warning application, as it is 

shown by the results obtained with real data for the north-facing side of Partenio Massif, with an extension of about 80 km2. 

Specifically, rainfall data from a rain gauge of the area and root-zone soil moisture data from ERA5 meteorological reanalysis 

have been used to assess the performance of the obtained meteorological and hydrometeorological thresholds for the prediction 

of the landslides of the period 2002-2020 reported in available inventories. The small numbers of missed and false alarms 545 

indicate that the hydrometeorological threshold obtained with the synthetic data can be used as an effective tool for landslide 

early warning in the study area. 

The obtained results point out the importance of supplementing meteorological networks with hydrological monitoring for 

landslide hazard assessment. In this respect, the possibility of getting information about perched aquifer level (e.g., linking it 
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to measurements of water level in supplied streams) should be investigated, as it would likely further improve the reliability 550 

of the predictions. 
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