
 

 1 

Skilful probabilistic predictions of UK flood 1 

risk months ahead using a large-sample 2 

machine learning model trained on 3 

multimodel ensemble climate forecasts 4 

Simon Moulds1,2*, Louise Slater2, Louise Arnal3, Andy Wood4,5 5 

1 School of GeoSciences, University of Edinburgh, UK [@simmoulds].  6 
2 School of Geography and the Environment, University of Oxford, UK.  7 
3 Ouranos, Montreal, Canada 8 
4 Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO, 9 
USA 10 
5 Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, 11 
CO, USA 12 

* Corresponding author email: simon.moulds@ed.ac.uk 13 

This EarthArXiv original preprint is under review at Hydrology and Earth System Science 14 

(HESS). 15 

  16 

mailto:simon.moulds@ed.ac.uk


 

 2 

Abstract 17 

Seasonal streamflow forecasts are an important component of flood risk 18 

management. Hybrid forecasting methods that predict seasonal streamflow using machine 19 

learning models driven by climate model outputs are currently underexplored, yet have 20 

some important advantages over traditional approaches using hydrological models. Here we 21 

develop a hybrid subseasonal to seasonal streamflow forecasting system to predict the 22 

monthly maximum daily streamflow up to four months ahead. We train a quantile 23 

regression forest model on dynamical precipitation and temperature forecasts from a 24 

multimodel ensemble of 196 members (eight seasonal climate forecast models) from the 25 

Copernicus Climate Change Service (C3S) to produce probabilistic hindcasts for 579 stations 26 

across the UK for the period 2004-2016, with up to four months lead time. We show that 27 

the large-sample (multi-site) ML model trained on pooled catchment data together with 28 

static catchment attributes is narrowly but significantly more skilful compared to single-site 29 

ML models trained on data from each catchment individually. Considering all initialization 30 

months, 60% of stations show positive skill (CRPSS>0) relative to climatological reference 31 

forecasts in the first month after initialization. This falls to 41% in the second month, 38% in 32 

the third month and 33% in the fourth month.  33 

1 Introduction 34 

Reliable streamflow forecasts weeks to months ahead are vital for managing the 35 

impacts of hydrological variability and extremes. Dynamical subseasonal to seasonal (S2S) 36 

streamflow forecasts are commonly produced by forcing a conceptual or physics-based 37 

hydrological model with the outputs of dynamical seasonal forecasts from climate models, 38 

and may also include a subsequent statistical or machine learning post-processing step.  This 39 

may be achieved either directly or indirectly – e.g., by using dynamical climate prediction 40 

information as direct inputs to the hydrological model, or by using the dynamic predictions 41 

or empirical information as conditioning factors in a statistical weather generation scheme 42 

to create the model’s input meteorological forecasts. These systems represent the current 43 

standard in S2S streamflow forecasting, underpinning flood forecasting services in Europe 44 

(Arheimer et al., 2020; Arnal et al., 2018), the USA (Demargne et al., 2014), Australia 45 

(Bennett et al., 2017), and globally (Emerton et al., 2018). 46 
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The chaotic nature of the atmosphere places a time limit of around 14 days on the 47 

predictability of weather from initial atmospheric circulation conditions, although this limit 48 

may vary from less than a week to nearly three weeks depending on local climate features 49 

and the current weather regime. S2S hydro-meteorological forecasts therefore rely on 50 

relatively slowly-varying aspects of the climate system that are more predictable beyond 51 

weather time scales, including initial hydro-meteorological conditions and large-scale 52 

climate variability modes (Doblas-Reyes et al., 2013; Emerton et al., 2018). While the skill of 53 

seasonal climate forecasts is relatively low in the extra-tropics compared to other parts of 54 

the world (Doblas-Reyes et al., 2013), recent progress in forecasting European climate has 55 

resulted in skilful seasonal climate forecasts that support various climate services (e.g. 56 

Arheimer et al., 2020). For example, the European Flood Awareness System (EFAS) is at the 57 

forefront of operational streamflow forecasting in Europe, providing a pan-European service 58 

that aims to support preparatory action before major floods. The seasonal component of 59 

EFAS uses precipitation, temperature and evaporation from the ECMWF System 5 (SEAS5) 60 

seasonal prediction system to drive LISFLOOD, a physics-based distributed hydrological 61 

model that estimates hydrological states and fluxes with a daily time step (Arnal et al., 62 

2018). Operationally, EFAS produces seasonal streamflow outlooks for Europe at the 63 

beginning of each month up to seven months ahead. Previous work using this setup 64 

suggests that skilful forecasts may be obtained for lead times up to one month ahead, but 65 

that skill decreases gradually thereafter (Arnal et al., 2018).  66 

The conceptual and physics-based hydrological models used operationally are 67 

computationally intensive relative to data-driven (statistical, empirical, machine learning) 68 

approaches. Spatial downscaling and bias correction of meteorological forecasts are needed 69 

to bridge the gap between the relatively coarse spatial scale of S2S climate prediction 70 

systems and the finer resolution inputs needed by hydrological models, introducing a layer 71 

of methodological uncertainty to the process-based seasonal hydrologic forecasting process. 72 

The hydrological forecast outputs may then require further bias-correction before they can 73 

be used (Yuan et al., 2015). In contrast, hybrid methods for seasonal streamflow forecasting 74 

overcome many of the shortcomings of dynamical approaches (Slater et al. 2023). Instead of 75 

using the downscaled outputs of dynamical seasonal prediction systems to drive a 76 

hydrological model, hybrid methods use dynamical climate predictions to drive statistical or 77 



 

 4 

machine-learning models to directly predict the target variables of interest – e.g. streamflow 78 

quantiles or flood frequency. The dynamical climate predictions provide valuable 79 

information on large-scale climate patterns and atmospheric conditions, while the statistical 80 

or machine-learning models offer the ability to capture complex nonlinear relationships 81 

related to streamflow behaviour. Such hybrid approaches follow from similar concepts used 82 

in empirical S2S hydrologic prediction, in which observed climate system variables, 83 

reanalyses or indices (but not dynamical climate forecasts) are used in statistical schemes to 84 

predict streamflow directly (e.g. Mendoza et al., 2017; Regonda et al., 2006). 85 

By combining the strengths of both dynamical and statistical approaches, hybrid 86 

methods have shown promise for improving seasonal streamflow predictions. For example, 87 

Tian et al. (2022) developed a hybrid framework that skilfully predicted month-ahead 88 

reservoir inflows in two US watersheds (in Colorado and Alabama) using an ML model driven 89 

by seasonal climate forecasts, observed large-scale climate indices and satellite-based 90 

estimates of antecedent conditions. In Europe, Hauswirth et al. (2023) showed that a single-91 

site hybrid seasonal forecasting system could skilfully predict surface water level up to three 92 

months ahead using ML models driven by climate and hydrological inputs from SEAS5. 93 

Hybrid methods are unconstrained by the need to conserve the water balance and can 94 

implicitly handle biases in the climate data (Slater et al., 2023). Further, they are able to 95 

exploit relationships between variables at different spatial and temporal resolutions and 96 

spatial extents – e.g. relating daily local streamflow quantiles to monthly climate inputs or 97 

large-scale climate patterns (Moulds et al., 2023; Tian et al., 2022). 98 

Previous work using observed data for hydrological simulation has shown that ML 99 

models work best when trained on data from multiple catchments (Nearing et al., 2021). 100 

While much of the recent literature on this topic focuses on deep learning architectures 101 

(e.g. Kratzert et al., 2019), similar results have been found for tree-based models (e.g. Gauch 102 

et al., 2021). Large-sample (or multi-site) approaches allow the models to learn relationships 103 

from a large envelope of hydrological variability that encompasses a broad spectrum of 104 

catchment characteristics, which they can use effectively to make predictions in individual 105 

catchments (e.g. Lees et al., 2021; Lees et al., 2022). However, the potential added value of 106 

a large-sample approach has not yet been evaluated for seasonal flood prediction using ML 107 

models trained on climate forecasts. Addressing this gap is necessary because seasonal 108 
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climate forecasts are typically highly uncertain, at levels of skill near a minimal threshold of 109 

uncertainty. The sample size of available records for training hydrological forecast models is 110 

much smaller at sub-seasonal to seasonal scales than at short to medium range scales. Thus, 111 

new methods that pool forecasts over space as well as time may be a promising strategy to 112 

extract greater forecast signal from small-sample noise. 113 

Here we develop and test a hybrid forecasting system to predict the monthly 114 

maximum daily flow values (Qmax) at lead times of up to four months for 579 catchments in 115 

the UK. The maximum probable flow in each month is an indicator of flood risk, though it 116 

does not predict the exact timing or volume of a future flood event. We train a large-sample 117 

machine learning model to predict Qmax using seasonal forecasts of precipitation and 118 

temperature from the Copernicus Climate Change (C3S) multimodel ensemble alongside 119 

antecedent conditions and catchment characteristics. We focus on the monthly maximum 120 

daily streamflow rather than other common S2S hydrologic predictands (such as monthly or 121 

seasonal average flow) because it serves as an indicator of future flood hazards at S2S lead 122 

times while also presenting a significant challenge, as individual flood events (timing and 123 

magnitude) cannot be skilfully predicted beyond weather time scales. We address two main 124 

research questions: (i) How skilfully can the monthly maximum daily flow be predicted 125 

several months ahead using uncorrected monthly dynamical climate forecasts and 126 

antecedent conditions? (ii) To what extent can the skill of S2S streamflow predictions be 127 

improved at individual sites by developing a large-sample machine learning model that 128 

leverages static catchment attributes from a large collection of catchments to learn the 129 

hydrological behaviour at individual sites?  130 
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2 Materials and methods  131 

2.1 Data 132 

2.1.1 Streamflow 133 

For the prediction target and observational validation dataset we used daily 134 

streamflow observations for Great Britain from the National River Flow Archive (NRFA, 135 

2024). We first selected stations that had streamflow records between 1994 and 2016 to 136 

match the hindcast period of the climate models, before discarding stations with less than 137 

95% data availability in any given year. We also discarded any stations that were not 138 

included in the CAMELS-GB dataset (Coxon et al., 2020), leaving a total of 579 stations. We 139 

computed specific discharge (mm day-1) by dividing the daily streamflow values by the 140 

catchment area, then calculated the monthly maximum daily specific discharge for all 141 

months and stations. 142 

2.1.2 Climate (re)forecasts 143 

 Monthly predictions of precipitation and temperature were obtained from the 144 

Copernicus Climate Change (C3S) multimodel seasonal forecasting system. We took 145 

seasonal reforecasts (“hindcasts”) of precipitation and temperature for the period 1994-146 

2016 from eight seasonal prediction systems, resulting in a large multimodel ensemble of 147 

196 members (Table S1). We computed the multimodel ensemble mean values of 148 

precipitation and temperature. We found that including quantiles (0.05, 0.25, 0.5, 0.75, 149 

0.95) drawn from the precipitation and temperature ensemble as additional covariates 150 

alongside the mean values in the ML models did not improve skill (results not shown). We 151 

computed the climate inputs for each catchment by taking the area-weighted average 152 

monthly value for each variable. All C3S forecasting systems are assigned a nominal start 153 

date of the first day of each month such that no members are initialized using observations 154 

later than this date, although the initialization method varies across the individual systems. 155 

Hereafter we refer to the predictions for the month immediately following initialization as 156 

having a lead time of zero (e.g. for a forecast initialized on August 1st, the zeroth lead time 157 

prediction covers August 1-31st). The C3S forecasting system predicts climate up to a 158 

minimum of 6 months ahead, but we focus on the first 4 months following initialization as 159 
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we are unlikely to observe substantial skill for monthly predictands thereafter (e.g. Arnal et 160 

al., 2018; Harrigan et al., 2018).  161 

2.1.3 Antecedent catchment conditions 162 

We used antecedent mean monthly streamflow as a proxy indicator of initial 163 

catchment soil moisture conditions, an important driver of seasonal hydrologic predictability 164 

(Arnal et al., 2018; Bierkens & Van Beek, 2009). We used the monthly mean specific 165 

discharge in the three months prior to the forecast initialization to create three predictor 166 

variables describing the mean specific discharge over one month, two months and three 167 

months prior to the nominal forecast initialization date, respectively. We also included 168 

estimates of antecedent precipitation using ERA5 reanalysis data, creating variables to 169 

represent the average precipitation over one month, two months and three months prior to 170 

the initialization time. Antecedent precipitation and streamflow are both employed as 171 

proxies for hydrologic initial conditions and are likely to exhibit some degree of collinearity. 172 

However, as random forests are relatively robust to multicollinearity, we chose to retain 173 

both predictors in the model.  174 

2.1.4 Catchment attributes 175 

Large-sample ML models trained on data from hundreds of stream gauges 176 

simultaneously can benefit from additional information about spatial variability in 177 

catchment characteristics relative to single-site models (e.g. Lees et al., 2021, Slater et al., 178 

2024). Here we included static catchment descriptors from the CAMELS-GB dataset (Table 179 

S3; Coxon et al., 2020) in our ML model. We also tried including streamflow signatures that 180 

describe the hydrologic behaviour of each catchment, including the baseflow index, slope of 181 

the flow duration curve, the 5th and 95th percentile of daily streamflow, and the mean daily 182 

streamflow. These were computed using data up to the start of the test period (2004) of our 183 

hybrid models, to prevent data leakage (i.e., the situation where a statistical or ML model is 184 

inadvertently trained on the same data it will later be tested on). However, although the 185 

signature predictors assumed high importance in the QRF model, they did not increase Qmax 186 

forecasting skill, suggesting that the model can learn these hydrological characteristics from 187 
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the static catchment attributes alone. We therefore left out the streamflow signatures from 188 

the final multi-site model.  189 

2.2 Methods 190 

 We predict the monthly maximum daily streamflow (Qmax) using both dynamic and 191 

static predictor variables. Most large-sample ML approaches for hydrologic prediction 192 

employ Long Short Term Memory models (LSTMs), which are well-suited for sequential 193 

modelling at daily timesteps. However, in this study, we employ quantile regression forests 194 

(QRF; Meinshausen, 2006), a nonparametric ensemble method that is well-suited for 195 

working with single monthly aggregated forecasts from C3S. QRFs extend traditional 196 

random forests (Breiman, 2001) by estimating conditional quantiles of the response 197 

variable, enabling probabilistic predictions. Like random forests, QRFs are adept at 198 

exploiting nonlinear relationships between dependent and independent variables and 199 

require relatively little tuning because their performance is less sensitive to the values of 200 

hyperparameters compared to many other ML methods (Tyralis et al., 2019). QRFs can also 201 

be interrogated to establish the relative importance of predictor variables. 202 



 

 9 

203 

Figure 1: Key features of the forecast system. a. Overview of steps in the forecasting 204 

workflow. b. Forecast lead times used in the study. A separate model is trained for each lead 205 

time to account for changing climate model biases. c. Schematic of the forward-chain cross-206 

validation procedure employed during model training. 207 

2.2.1 Model training 208 

We train the model directly on the dynamical S2S forecast outputs to avoid 209 

introducing additional uncertainty due to post-processing (Figure 1a). Like other forms of 210 

regression, the ML model implicitly performs bias correction by relating the raw climate 211 

inputs to observed streamflow (e.g. Slater et al. 2023; Slater and Villarini 2018). We 212 

compared three model structures to predict Qmax in each catchment (Table 1). First, we 213 

trained QRF models on each streamflow time series independently, giving a site-specific 214 

model for every catchment. We compared the single-site models with a multi-site QRF 215 

model that was trained on all (n=579) available streamflow time series data at once.  To 216 

assess the extent to which the multi-site model learns from catchment attributes, we also 217 

include a multi-site model with the catchment ID as the only static attribute. Owing to the 218 

inherent robustness of QRF to potentially irrelevant predictors, whereby unimportant 219 
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features are automatically downweighted, we do not perform predictor variable selection or 220 

screening. 221 

Table 1: Formulation of the three ML models used in the analysis. Precipitation and 222 
temperature are the monthly ensemble mean values from the C3S multimodel system. 223 
Antecedent precipitation is the forecasted precipitation from the month prior to the target 224 
month, with lead time varying between 1 and 3 months (i.e. to make a prediction in lead 225 
time 4 the antecedent precipitation would be taken from lead time 3). Antecedent 226 
streamflow is the mean daily observed streamflow prior to the forecast initialization. 227 
Catchment attributes are listed in Table S1.  228 

Model name Configuration Model description 

Single-site Single-site Precipitation, temperature, antecedent 
streamflow and precipitation 

Multi-site with ID Multi-site As for single-site model, plus catchment ID 

Multi-site with attributes Multi-site As for single-site model, plus 15 static catchment 
attributes 

 229 

In both single-site and multi-site approaches, a separate QRF model is trained for 230 

each lead time using all months from the training period. This is because the biases in the 231 

climate forecasts often change over time from initialization, so a model trained on climate 232 

forecasts with a lead time of one month would be unsuitable to make predictions using 233 

climate forecasts with a lead time of two months. We note that a similar approach is used 234 

for bias correcting seasonal climate forecasts (Crochemore et al., 2016). Another possibility 235 

would be to train a model on all lead times at once, with the lead time itself included as a 236 

categorical variable. We tried this but found that it degraded predictive skill. Thus, for each 237 

training period we obtain four models, trained on climate predictions with lead times of 238 

one, two, three and four months ahead, respectively (Figure 1b).  Dataset stratification 239 

choices are important in S2S prediction because predictability and prediction system biases 240 

typically vary seasonally and with lead time. There are strong geophysical reasons to tailor a 241 

statistical or empirical model using both factors, but each stratification dimension reduces 242 

the sample size available for training and testing, thus a trade-off is often adopted (e.g. 243 

Lehner et al., 2017).  Here we do not stratify by initialization date (i.e., month).  We 244 

construct an ensemble forecast by using the QRF model to predict the conditional quantiles 245 

of Qmax corresponding to probabilities between 0.01 and 0.99, with an interval of 0.02.  246 
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We use a forward-chain cross-validation approach whereby the models are trained 247 

on reforecasts from the previous n years and tested on the current year (Figure 1c). For 248 

example, to predict all months in 2004, the first training period was taken as January 1994 249 

to December 2003. For 2005, we then extended the training period by one year to 250 

December 2004, and continued adding one year until 2016, the final year in the test period, 251 

at which point the training period for the QRF models was January 1994 to December 2015. 252 

The climate predictors consisted of the multimodel ensemble mean of monthly precipitation 253 

and temperature (Table S1). We did not include a separate validation dataset (i.e., in a 254 

train/validate/test framework) because we found there was limited benefit to be gained 255 

from tuning the hyperparameters of the QRF model. The forward-chain cross-validation 256 

approach means that the model was retrained each year using data up to the previous year. 257 

The overall test results combine the test results for the individual years. This ensures the 258 

model is never tested on data it has been exposed to during training. 259 

2.2.2 Forecast evaluation 260 

  We evaluated predictive skill using the continuous ranked probability score (CRPS) 261 

and associated skill score (CRPSS), common metrics for ensemble forecast evaluation. The 262 

CRPS represents the error between the forecast and observed cumulative distribution 263 

functions (Wilks, 2019). It ranges between zero and positive infinity and is negatively 264 

oriented (i.e. smaller values are better), similar in concept to other common error terms 265 

(e.g., mean absolute error). We evaluated our forecasts against an observation-based 266 

ensemble climatological forecast consisting of the observed monthly maximum daily 267 

streamflow values from the previous 20 years (e.g. Hauswirth et al., 2023), as well as EFAS 268 

seasonal hindcasts. We used the CRPSS to evaluate the probabilistic skill of our ML forecasts 269 

relative to the reference ensemble climatology. The CRPSS ranges between negative infinity 270 

and 1, where 1 indicates perfect skill and 0 or below indicates no skill compared to the 271 

reference forecast. We computed the CRPS of the forecast and reference for each month in 272 

the test period (2004-2016) and took the mean across individual months to compute the 273 

CRPSS.  274 

 We complemented the CRPS (CRPSS) with the anomaly correlation coefficient (ACC) 275 

and reliability index (RI) (Renard et al., 2010). The ACC varies between -1 and 1, with a score 276 



 

 12 

of 1 representing perfect correlation between observed and forecast streamflow values. The 277 

RI is a probabilistic measure of the extent to which the forecast ensemble spread represents 278 

the uncertainty in observations. It varies between 0 and 1, with 1 denoting a perfectly 279 

reliable forecast. Like the CRPSS, we calculate the ACC and RI for every month and lead time 280 

separately. Lastly, we assessed the relative importance of the predictor variables using the 281 

Gini index, which measures the importance of individual variables in tree-based ML models. 282 

Specifically, the Gini index quantifies the extent to which a variable contributes to making 283 

homogeneous groups, where outcomes are similar and predictions are more reliable, while 284 

reducing impurity, indicating mixed groups with less predictable outcomes.   285 

3 Results 286 

The multi-site model with catchment attributes significantly outperforms the multi-287 

site model with the catchment ID alone (Figure 2a). This suggests that including static 288 

catchment attributes enables the model to better reproduce the hydrologic behaviour of 289 

different catchments, aligning with previous research for the UK on ML applied to daily 290 

streamflow simulation using observed climate inputs (e.g. Lees et al., 2021; Lees et al., 291 

2022), and with findings on the performance of ML models for prediction in ungauged 292 

basins (Kratzert et al. 2019). Considering the skill scores for each lead time and combining all 293 

initialization months, the multi-site model with catchment attributes narrowly but 294 

significantly outperforms the single-site models at lead times of one to three months, with a 295 

similar average performance between the multi-site and single-site model for the zeroth 296 

lead time (Figure 2b). However, the relative performance of the multi-site model with 297 

attributes and the single-site model varies by forecast month and lead time (Figure 3). For 298 

the zeroth lead time, the multi-site model tends to outperform the single-site model in the 299 

months where the highest skill is observed (i.e. December, January, June, July).  300 
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 301 
Figure 2: Analysis of model performance. a. Comparison of CRPSS for all months for multi-302 

site models with catchment attributes and with the catchment ID only. We used a two-sided 303 

Wilcoxon signed rank test to assess whether differences in skill scores between the models 304 

were significant (*** = p < 0.001, ** = p < 0.01, * = p < 0.05). b. Comparison of single-site 305 

model with multi-site model with catchment attributes. c. Relative importance of predictor 306 

variables in the multi-site model with catchment attributes for each lead time. Time-varying 307 

predictors are marked with an asterisk (e.g. *Mean precipitation). 308 
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 309 
Figure 3: Comparison of CRPSS values for all forecast locations between the single-site 310 

model (green) and multi-site model with catchment attributes (blue) by month. The skill 311 

score uses a reference forecast of climatology. We used a one-sided Wilcoxon signed rank 312 

test to assess whether differences in skill scores between the models were significant (*** = 313 

p < 0.001, ** = p < 0.01, * = p < 0.05).  314 

 315 

We used the Gini index to assess the importance of each predictor variable to the 316 

multi-site model with catchment attributes at each lead time (Figure 2c). Monthly 317 

precipitation forecasts have high importance across lead times, while mean temperature 318 

forecasts have moderate importance. We also included antecedent conditions from 319 

observed streamflow and forecast precipitation. Antecedent streamflow is the most 320 

important variable at one-month lead time but decreases with importance at later lead 321 
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times. This is because we are limited to providing antecedent conditions prior to forecast 322 

initialization, which has decreasing relevance as the lead time increases, reflecting our 323 

general understanding of the influence of initial versus boundary conditions in S2S 324 

hydrologic forecasting (e.g. Wood et al., 2016).  325 

We assessed skill by computing the monthly CRPSS using a climatological prediction 326 

as a reference. We find that there is significant variability in skill during the different months 327 

of the year (Figure 5a), especially at shorter lead times. For lead time 0, we observed the 328 

highest skill in extended winter (DJFM) and late summer (JJAS), with lower skill during spring 329 

and autumn. This is a positive result because in the UK high river flows are usually seen 330 

during the winter months. In December and July more than 80% of stations have positive 331 

skill in lead time 0 (Table 2). In most months, the skill decreases sharply over time, whereas 332 

for other months (e.g. March) the skill remains relatively consistent as lead time increases. 333 

The variation in skill likely reflects the varying importance of antecedent conditions during 334 

the year, as well as the varying skill of the climate forecasts. 335 

 336 
Figure 4: Continuous rank probability skill score of the multi-site model with catchment 337 
attributes using bias-corrected EFAS seasonal hindcasts as a benchmark.  338 

 339 
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 340 
Figure 5: Performance assessment of the multi-site model with catchment attributes for 341 

each forecast month and lead time, using an ensemble climatological forecast as the 342 

reference. a. Continuous ranked probability skill score (CRPSS). We use climatological 343 

forecast as the reference forecast, which is computed separately for each test year in the 344 
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simulation. b. Anomaly correlation coefficient (ACC). c. Reliability index (RI).  The four lead 345 

times are shown with different colours. 346 

As with the CRPSS, the ACC varies by forecast month and lead time (Figure 5b), with 347 

the monthly variability in ACC following a similar pattern to that of the CRPSS. At lead time 348 

0, the ACC is positive in >75% of stations across all months. During lead time 1, the ACC is 349 

positive in >50% of stations in all months except April, May, and October. Compared to the 350 

CRPSS and the ACC, the RI is more consistent across months and lead times (Figure 5c). 351 

Overall, our ensemble hindcasts have high reliability, with the mean RI across all stations 352 

exceeding 0.8 in all months except August. 353 

We also compared our results to monthly Qmax drawn from daily EFAS seasonal 354 

predictions for a subset of the stations included in this study (n=188) that overlapped with 355 

the EFAS reference dataset. We bias corrected the EFAS outputs using a quantile mapping 356 

approach employing an empirical cumulative distribution function so that they could be 357 

directly compared with observations. As EFAS produces daily streamflow estimates we took 358 

the maximum daily streamflow prediction from each month and used this value as the 359 

reference forecast to estimate CRPSS. Our results are skilful compared to EFAS (Figure 4), 360 

and this high relative skill, coupled with the general lack of positive skill of the QRF forecast 361 

for lead times of 1-3 months compared to a climatological reference, indicates that the EFAS 362 

predictions were poorer than expected as a benchmark for this monthly extreme target 363 

variable.  We note that our model is specifically trained to predict Qmax, while EFAS seasonal 364 

forecasts are developed for more general purposes, such as supporting tercile probability 365 

forecasts for monthly or seasonal mean conditions, a common S2S hydrological product 366 

(e.g. Arnal et al., 2018). 367 

Table 2: Percentage of stations (n=579) that are skilful (CRPSS>0) compared to 368 

climatological reference forecast at each lead time and forecast month for the multi-site 369 

model with catchment attributes.  370 

Forecast month Lead time 

0 1 2 3 

January 51.7 42.2 25.3 26.3 

February 66.1 59.2 28.0 29.4 
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March 58.8 42.2 62.3 50 

April 38.4 19.2 22.0 20.8 

May 46.0 29.8 33.6 24.4 

June 76.1 48.3 44.3 31.0 

July 81.1 64.5 41.7 59.3 

August 56.4 44.3 42.6 33.6 

September 67.1 38.2 43.8 31.7 

October 53.8 26.6 23.5 18.9 

November 40.1 41.3 42.2 42.2 

December 83.4 40.0 45.5 28.2 

We examined the spatial variability in model skill by averaging the monthly skill 371 

scores for the multi-site model (with catchment attributes) within each season (Figure 6). At 372 

lead time 0 we observe skill across much of the UK, while at later lead times, skilful 373 

catchments tend to cluster in southern England. This could be related to the presence of 374 

relatively slower responding catchments with greater subsurface storage in the south-375 

eastern UK. However, we found relatively weak correlation between ACC and the baseflow 376 

index (R=0.33, 0.31, 0.27, 0.25 for the four lead times). We observe a tendency for the QRF 377 

models to underestimate the observed Qmax, especially the more extreme values (Figure 7). 378 

The underestimation is more pronounced as lead time increases, likely due to greater noise 379 

in the seasonal climate forecasts at longer lead times. 380 
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 381 

Figure 6: Average seasonal skill compared to climatological reference forecast in every 382 

catchment by lead time. We calculate the CRPSS per month and catchment, then compute 383 

the seasonal average (DJF, MAM, JJA, SON). 384 
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 385 

Figure 7: Comparison of observed and predicted Qmax across all months for 12 randomly 386 

selected catchments, by lead time. 387 

4 Discussion 388 

We developed a hybrid forecasting approach for UK flood risk prediction at 389 

subseasonal-to-seasonal time scales using a large multimodel ensemble of climate 390 

predictions. Addressing our first research question, we found that S2S flood predictions are 391 

generally skilful (CRPSS>0) up to 1 month following initialization, but skill declines 392 

thereafter. However, 90 stations out of 579 retained positive skill in at least three months of 393 

the year for all four lead times. Across all initialization times, 60% of stations show positive 394 

skill compared to the climatological benchmark in the first month after initialization. This 395 
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proportion drops to 41% in the second month, 38% in the third month and 33% in the fourth 396 

month. The level of skill varies within the year, with some months generally more skilful 397 

than others. The seasonal variation in skill is likely due to a combination of varying climate 398 

predictability and the varying importance of antecedent conditions to flood magnitude and 399 

frequency during the year. The underlying seasonal forecasts of precipitation and 400 

temperature are also most skilful at shorter lead times, although they retain some 401 

information at longer lead times.  402 

Our work provides guidance on how to build hybrid streamflow prediction systems 403 

that combine ML with dynamical model forecasts. With respect to our second research 404 

question, we found that a large-sample ML model trained on data from all catchments at 405 

once tends to outperform single-site model forecasts across all lead times. This results aligns 406 

with previous research on ML-based hydrological modelling, which revealed the benefit of a 407 

larger training dataset in large-sample models relative to single-site approaches (e.g. 408 

Kratzert et al., 2019). However, our work specifically considers forecasting months ahead, 409 

whereas previous work only studied out-of-sample simulation or short-term prediction 410 

using observed meteorological or weather forecast inputs. The large-sample approach 411 

enables ML models to combine information across time and space into a single model that is 412 

trained to discriminate a range of hydrological behaviours. The inclusion of static catchment 413 

attributes enables such models to learn the different rainfall-runoff behaviours across many 414 

catchments. This is especially important when using ML to predict extremes when training 415 

data are limited in time, as it means multi-site models remain realistic over a larger range of 416 

conditions than single-site models.  417 

Hybrid prediction systems require training and testing partitions to evaluate model 418 

performance, and different approaches exist to do this. Here we implemented a forward-419 

chain cross validation approach such that the model is never trained on data more recent 420 

than the test partition. This reproduces an operational setup as far as possible, where the 421 

model is never exposed to information from the future. However, one limitation of this 422 

approach for hindcast studies is that the relatively short hindcast period of the C3S 423 

multimodel ensemble (i.e. 1994-2016) means the smallest training partition may contain as 424 

few as 10 years of monthly data. Nevertheless, during model development we found that 425 

increasing the length of the training period – by focusing on the predictions from the SEAS5 426 
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system, which has an extended hindcast period of 1981-2016 – did not significantly enhance 427 

the performance of the QRF models (results not shown). Moreover, using a multi-site 428 

approach reduces the impact of the relatively short reforecast period by pooling data from 429 

many catchments to create a much larger training dataset than is used by single-site models 430 

(i.e. swapping space for time).  431 

Our hybrid seasonal flood forecasts based on eight models from the C3S multimodel 432 

ensemble exhibit relatively low skill, as is also the case with traditional (i.e. process-based 433 

hydrological model) flood forecasting systems driven by C3S (e.g. Arnal et al., 2018). These 434 

findings suggest that the primary constraint on enhanced skill lies in the seasonal climate 435 

forecasts. Increasing the skill of climate forecasts is therefore a priority to achieve more 436 

useful seasonal streamflow forecasts. One area for further research is to develop ways of 437 

identifying ensemble members that are likely to be more skilful over a given time period. 438 

Selecting members based on their ability to reproduce large-scale climate patterns such as 439 

the NAO is one potential option that has proved successful in other applications (e.g. 440 

Dobrynin et al., 2022; Moulds et al., 2023). Observed climate states, teleconnections and 441 

indices (e.g., describing El Nino, the Southern Oscillation, and other climate modes) may be 442 

similarly exploited in regions where they exert an influence on weather patterns.  These 443 

patterns have been deployed in empirical hydrologic forecast systems for many years, while 444 

the operational outputs from climate forecast models remain a relatively less-explored 445 

source of predictability in hybrid approaches.   446 

5 Conclusion 447 

Operational services for seasonal streamflow forecasts have existed for over a 448 

century, offering highly skilled predictions in many parts of the world, and particularly when 449 

and where predictors with long persistence are present – such as snowpack or groundwater 450 

– as well as strong climate seasonality.  Despite their successes, there is growing demand 451 

from stakeholders for improved seasonal flow prediction skill at times and in places where it 452 

has been more difficult to achieve, usually due to data limitations or hydroclimate 453 

considerations.  454 
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This study illustrates that a hybrid multi-site forecasting approach trained over a large-455 

sample collections of watersheds may offer benefits for monthly to seasonal predictions of 456 

streamflow. Our approach affords users significant flexibility to define target variables of 457 

interest (e.g. Qmax). We use static catchment attributes as predictor variables to allow the 458 

QRF model to learn the different relationships between hydroclimate input data and 459 

monthly maximum daily streamflow, demonstrating an ability to produce skilful seasonal 460 

forecasts of monthly flood risk up to four months ahead in a moderate fraction of the 461 

catchments studied.  The use of a multi-site ML model that is trained on data from multiple 462 

catchments at once may help to alleviate the long-standing problem of small sample sizes 463 

when training seasonal predictions on individual sites alone, while also enabling prediction 464 

in ungauged basins. However, although the performance benefit of the multi-site model 465 

over single-site models is statistically significant, the improvement is modest, suggesting 466 

that the primary constraint on enhancing skill remains the quality of seasonal climate 467 

forecasts themselves. 468 
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