

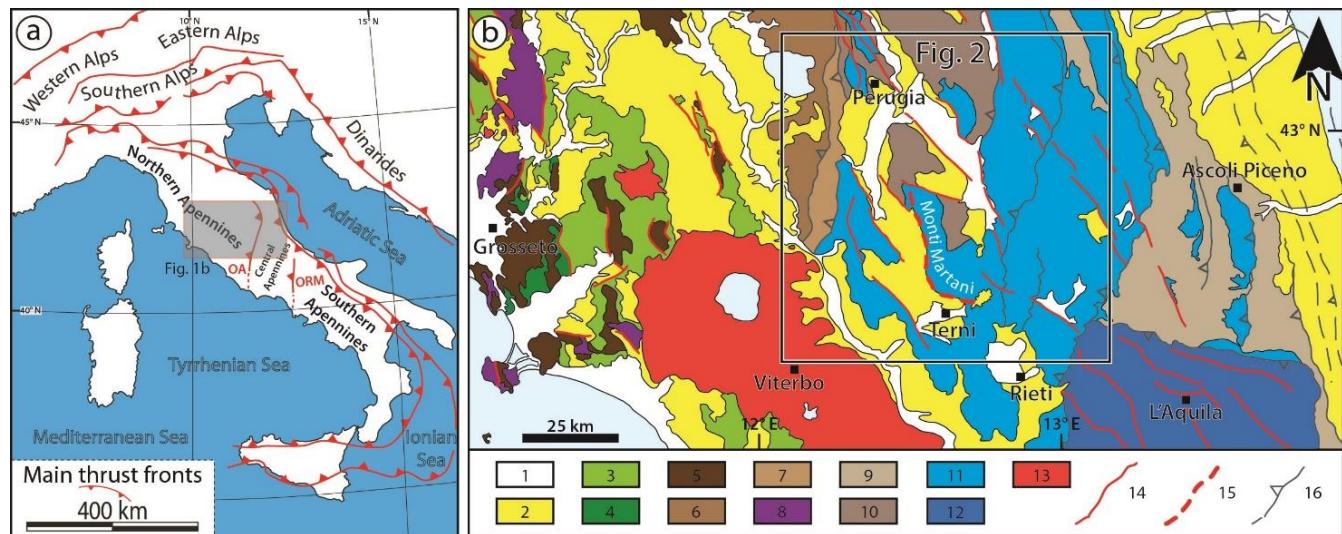
Reconciling post-orogenic faulting, paleostress evolution and structural inheritance in the seismogenic Northern Apennines (Italy): Insights from the Monti Martani Fault System

Riccardo Asti¹, Selina Bonini¹, Giulio Viola¹, Gianluca Vignaroli¹

5 ¹ University of Bologna – Department of Biological, Geological and Environmental Sciences (BIGEA)

Correspondence to: Riccardo Asti (riccardo.asti2@unibo.it)

Abstract Structural inheritance plays a significant role upon the evolution of fault systems in different tectonic settings. Both positive reactivation of pre-orogenic extensional faults and negative reactivation of syn-orogenic reverse faults during orogenic cycles have been extensively studied and documented. By contrast, only few studies have addressed the impact of structural inheritance in regions undergoing polyphase tectonic histories. Here, we present the Monti Martani Fault System (MMFS) case study (Northern Apennines, Italy) as an example of a seismically active region where it is possible to investigate the role of inherited pre-orogenic structural features upon the post-orogenic tectonic evolution. Based on new field structural data from extensional faults that controlled the Plio-Quaternary evolution of the system, we propose that the MMFS does not consist of a kilometer-long L-shaped single normal fault, as previously proposed in the literature, but is instead a set of several NW-SE trending shorter extensional faults arranged in an en-echelon style. Paleostress analysis yielded three distinct extension directions during the Plio-Quaternary post-orogenic extension, which are NE-SW, NNE-SSW and NW-SE. We relate the first two directions to local orientation fluctuations of the regional stress field interacting with moderately oblique inherited structural features, and the latter direction to a short-live orogen-parallel extensional event whose geodynamic causes remain unclear. We suggest that the NE-SW regional post-orogenic extension direction controls the strike of most of the NW-SE Apenninic-trending extensional faults, while the morphostructural trend of the Monti Martani Ridge and of its boundaries with the surrounding Plio-Quaternary Medio Tiberino and Terni basins is controlled by the strike of the ~N-S and ~E-W pre-orogenic (Jurassic) inherited structural features. We also discuss the implications of these observations upon the seismotectonics of the MMFS. Our findings suggest that, in contrast to previous suggestions, the fault system cannot be classified as an active and capable structural feature.


1. Introduction

In tectonically active regions, structural inheritance exerts a significant influence upon stress distribution and the potential reactivation of pre-existing structures over the activation of newly formed faults (e.g., Viola et al., 2012; Autin et al., 2013; Brune, 2014; Wang et al., 2021). Fault geometry and its orientation to the background stress field has a major impact on the associated seismogenic potential (e.g., Cowie et al., 2012). In complex active fault systems, the orientation of the individual fault segments impacts also upon the Coulomb stress transfer during seismic sequences (e.g., Mildon et al., 2017; Galderisi & Galli, 2020). Thus, it is particularly important to properly estimate the role of structural inheritance in tectonically active regions that, as a result of complex and polyphasic tectonic histories, have become saturated with inherited structural features (e.g., Viola et al., 2009, 2012; Scheiber & Viola, 2018; Hoddge et al., 2024).

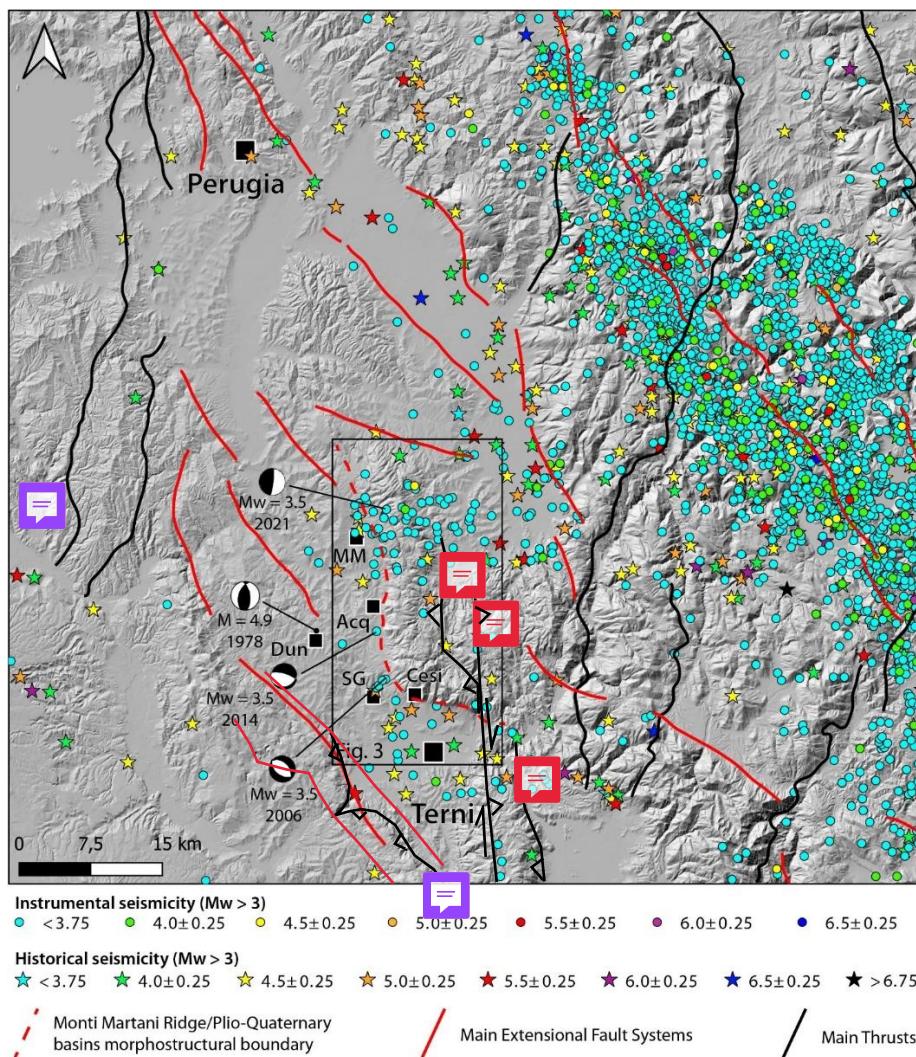
The Apennines are an excellent example of a tectonically active region recording a series of tectonic events, spanning from orogenic rifting, syn-orogenic folding and thrusting, to post-orogenic extension (e.g., Cosentino et al., 2010; Carminati et al., 2012; Cardello & Doglioni, 2015; Conti et al., 2020). Many studies have documented the inversion of inherited structures in the Apennines, during both the sin-orogenic and post-orogenic phases (e.g., Butler et al., 2004; Tavarnelli et al., 2004; Scisciani, 2009; Calamita et al., 2011; Di Domenica et al., 2012; Pace & Calamita, 2014; Curzi et al., 2020; Del Ventisette et al., 2021; Viola et al., 2022; Tavani et al., 2023). Accordingly, the current seismicity related to the post-orogenic extensional regime in the inner part of the belt is likely affected by the pre-existing structural framework (e.g., Chiarabba & Amato, 2003; Buttinelli et al., 2018; Barchi et al., 2021). Recent studies have even documented polyphasic reactivations of pre-orogenic extensional faults during both positive and negative inversion (Mercuri et al., 2024). Additionally, the Northern, Central and Southern Apennines represent former distinct paleogeographic domains separated by ~N-S structural features that are oblique to the strike of most of the orogenic structures (i.e. NW-SE; Fig. 1a). They are also oblique to the present-day NE-SW extensional stress field that affects the internal domains of the chain.

Such a complex structural framework and tectonic scenario is well exemplified by the Monti Martani Ridge (MMR) in the southernmost portion of the Northern Apennines (Fig. 1b), where a Mesozoic-Cenozoic sedimentary succession crops out forming a N-S structural ridge that is bounded by intermountain basins (Medio Tiberino and Terni basins) formed during post-orogenic extensional tectonics.

In this work, we present new field and structural data from the MMR, the Monti Martani Fault System (MMFS) and the associated Medio Tiberino and Terni basins. We performed structural analyses of exposed fault surfaces deforming both the Mesozoic units and the Plio-Quaternary deposits. Aiming at constraining the local post-orogenic stress field at the time of faulting, we carried out paleostress analysis on extensional faults. Our field-based structural geology approach allows us to discuss the role of pre-orogenic structural inheritance on the Plio-Quaternary structuring of the area and to explore the possible relationships between post-orogenic extensional faulting and the Plio-Quaternary continental units to draw inferences on the current state of fault activity and its potential for generating fault displacement hazard.

Figure 1: a) Schematic tectonic framework of the Italian peninsula with location of the main thrust fronts and subdivision of the main domains of the Apennines belt (modified after Zuccari et al., 2022). OA: Olevano-Antrodoco tectonic line; ORM: Ortona-Roccamontefina tectonic line. b) Tectonic map of the Northern Apennines at the transition with the Central Apennines. Redrawn and modified after Conti et al. (2020). 1: Quaternary deposits; 2: Miocene-Pleistocene succession; 3: Ligurian Units; 4: Subligurian Units, tectonic mélanges; 5: Tuscan Nappe; 6: Cervarola-Falterona Unit; 7: Rentella Unit; 8: Tuscan Metamorphic Units; 9: Umbria-Marche-Romagna Unit: turbidite successions of “minor” and outer basins; 10: Umbria-Marche-Romagna Unit: turbidite successions of the inner basins; 11: Umbria-Marche domain: Triassic-Miocene succession; 12: Lazio-Abruzzi carbonate Units; 13: Magmatic rocks; 14: Normal faults; 15: Martani Fault System; 16: Thrusts.

2. Geological setting

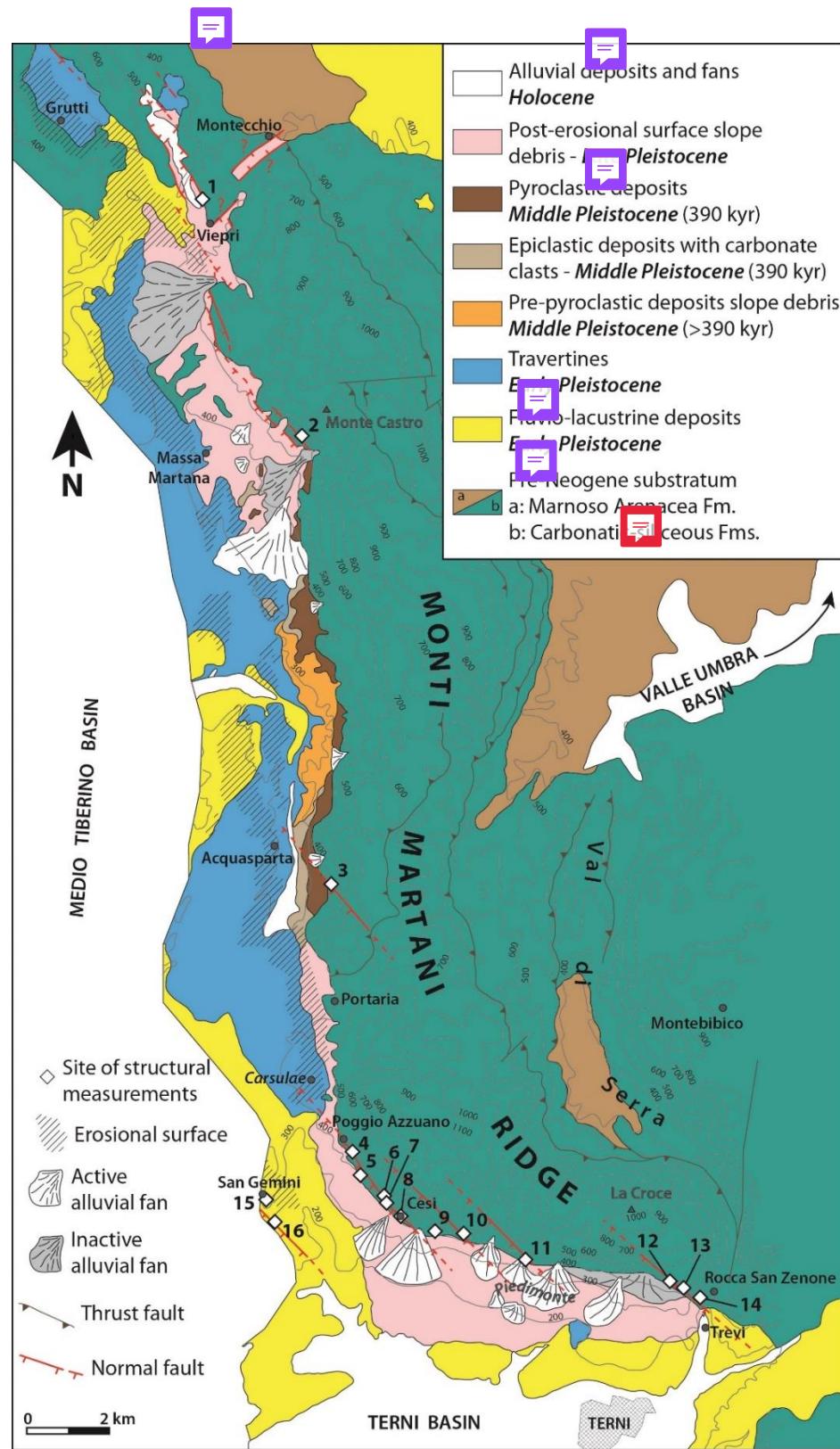

2.1. The Northern Apennines

The Northern Apennines of Italy (Fig. 1) are a seismically active belt that results from a complex and polyphase evolution that started in the Mesozoic. It recorded a Jurassic rifting phase related to opening of the Alpine Tethys, a later Late Cretaceous to Neogene orogenic phase related to Africa-Eurasia convergence and a final post-orogenic extensional phase that affected the internal part of the orogen since the Miocene (e.g., Boccaletti et al., 1971, 1985; Boccaletti & Guazzone, 1974; Principi & Treves, 1984; Vai & Martini, 2001; Molli, 2008; Conti et al., 2020 and references therein). This complex evolution makes the Northern Apennines a natural laboratory for understanding the intricate relationships between structural inheritance, active tectonics and seismicity.

The Jurassic rifting started in the Sinemurian, resulting in the dismembering of an extensive carbonate platform and the progressive separation of Europe from the Adriatic plate (e.g., Bernoulli et al., 1979; Ziegler, 1988). On the Adria margin, rifting led to the development of an articulated paleogeography with structural highs and lows leading to the deposition of pelagic series in the structural lows and of condensed sequences on pelagic carbonate platforms (PCPs) on structural highs (e.g., Santantonio, 1993; Santantonio & Carminati, 2011; Cipriani et al., 2020; Santantonio et al., 2020). This inherited structural template was crucial for the localization of deformation during the subsequent orogenic phase through the positive

inversion of the extensional pre-orogenic faults bounding the **structural Jurassic highs** (e.g., Butler et al., 2004; Pizzi & Galadini, 2009; Scisciani, 2009; Pace and Calamita, 2014; Tavan et al., 2023).

Starting from the Late Cretaceous, Africa-Eurasia convergence led to the progressive closing of the Alpine Tethys, which 85 culminated in the Eocene-Oligocene collision between Eurasia and Adria (e.g., Doglioni et al., 1999; Rosenbaum et al., 2004; Mantovani et al., 2009 and references therein). This led to the construction of the Northern Apennines fold-and-thrust belt. This contractional phase caused nappe stacking of different paleogeographic domains from the former Adriatic margin of the **Liguro-Piemontese** Ocean (e.g., Elter, 1975; Vai & Martini, 2001; Vezzani et al., 2010; Cosentino et al., 2010; Conti et al., 2020). The eastward **migration** of NE-verging thrusting and folding (**orthogonal**, that is, to the orientation of the present-day 90 belt axis) controlled the structural development of the belt toward the foreland. This resulted in overthrusting of oceanic and transitional units, originally located farther west, on top of the external units (eastern side) belonging to the Adria microplate (Tuscan Domain, Umbria-Marche Domain).


95 **Figure 2:** Digital Terrain Model of the Monti Martani Ridge and surrounding region with location of the epicenters of the instrumental (dots) and historical (stars) earthquakes with $Mw > 3$. Instrumental seismicity is from INGV-ISIDe catalogue (see ISIDe Working Group, 2007). Historical seismicity is from INGV-ASMI-CPTI catalogue (see Rovida et al., 2020, 2022). Earthquake focal mechanisms are from INGV-TDMT catalogue (see Scognamiglio et al., 2006), with the exception of the 1979 $M = 4.9$ Dunarobba earthquake which is from Gasperini et al. (1985). Main extensional fault systems and thrusts are from Conti et al. (2020).

Starting in Miocene times, the internal part of Apennines underwent post-orogenic extension, resulting in the opening of the 100 Tyrrhenian basin and of a series of intermontane marine-to-continental basins on the Tyrrhenian side of the belt (e.g., Malinverno & Ryan, 1986; Keller et al., 1994; Cavinato & De Celles, 1999; Faccenna et al., 1997, 2001; Rosenbaum & Lister, 2004; Patacca et al., 2008; Carminati et al., 2012). The extensional front progressively migrated E- and NE-ward through the activation of NW-SE-striking normal faults. This tectonic regime still governs most of the current seismicity (producing up to $Mw=7$ events; ISIDe Working Group, 2007; Fig. 2) of the hinterland and axial regions of the Apennines (e.g., Cello et al., 105 Mariucci et al., 1999; Boncio et al., 2000).

2.2. The Monti Martani Ridge

The MMR is a ~N-S trending, ~40 km long, L-shaped mountain ridge located in the southern part of the Northern Apennines. It separates the Medio Tiberino Basin to the W from the Umbria Valley Basin to the east (Figs. 1b, 2 and 3) and to the south it is bounded by the Terni Basin. The ridge is composed of a Mesozoic carbonate platform transitioning to pelagic deposits of 110 the Umbria-Marche succession (sensu Centamore et al., 1986; Fig. 1) dropping out with a Tertiary foreland basin series (Accordi, 1966; Barchi, 1991; Brozzetti & Lavecchia, 1995; Fig. 3). The overall structural architecture of the ridge consists in 115 converging anticline (to the west), mainly exposing the Meso-Cenozoic carbonate to marly series and thrusting towards the ~E on a ~N-S trending syncline cored by Oligo-Miocene turbiditic units (Brozzetti & Lavecchia, 1995). On top of the Hettangian-Sinemurian platform carbonate (Calcare Massiccio Fm Auctt.), the Jurassic stratigraphic succession reveals an 120 articulated paleogeography in the Monti Martani area. In fact, the typical pelagic to emipelagic Jurassic formations of the complete Umbria-Marche succession are locally replaced by condensed sequences or by the Bugarapie (Auctt.), which both deposited on top of Jurassic structural highs (Barchi et al., 1991; Brozzetti & Lavecchia, 1995; Bruni et al., 1995; Fig. 4). For this reason, Cipriani et al. (2020) proposed that the Monti Martani area was a Jurassic pelagic carbonate platform, implicitly suggesting that the structural trends of the modern MMR (i.e. ~N-S and ~WNW-ESE) are inherited from the Jurassic 125 lifting phase. Accordingly, Jurassic faults have been documented to trend N-S, N20°, E-W and N110° (Bruni et al., 1995). Moreover, a significant influence of pre-Pliocene ~N-S and ~W-E trending structural features has been reported from the easternmost sector of the MMR (Montebibico area) and has been attributed to the inherited structural template of the Jurassic extension (Coltorti et al., 1995).

The present-day regional stress field of the internal part of the Northern and Central Apennines relates to an extensional tectonic 125 regime with a minimum horizontal stress axis (Shmin) oriented NE-SW (Mariucci & Montone, 2024 and references therein). However, local deviations are reported from the Monti Martani area, where focal mechanisms of extensional earthquakes with a Shmin oriented N-S or E-W have been reported (Pondrelli et al., 2006).

130

Figure 3: Schematic geological map of the Martani Fault System (redrawn and modified after Bonini et al., 2003) with location of the structural stations. Traces of normal faults have been schematically redrawn according to original field observations presented in this study.

Figure 4: Chronostratigraphy and lithostratigraphic log of the Umbria-Marche succession (sensu Centamore et al., 1986) outcropping in the Monti Martani Ridge. Redrawn after Conti et al. (2020).

135

2.3. The Monti Martani Fault System

The MMR is bounded to the west and to the south by the MMFS (also referred to in the literature as Faglia Martana, Brozzetti & Stoppa, 1995, Faglia dei Monti Martani, Brozzetti & Lavecchia, 1995, or Martana Fault, Bonini et al., 2003), an extensional fault system separating the Meso-Cenozoic carbonate succession from the Plio-Quaternary Medio Tiberino (to the west) and Terni (to the south) basins. In the literature, this fault system is described as a single L-shaped structure, with a ENE-facing

140 concavity, including a ~30 km long N-S to NNW-SSE-striking segment extending from Grutti to San Gemini, and a ~10 km long WNW-ESE-striking segment extending from Cesi to Trevi (Brozzetti & Lavecchia, 1995; Bonini et al., 2003; Fig. 3). Although this fault system is commonly represented in the literature as a continuous fault, with the two segments merging at the southwestern tip of the MMR, its surface expression is much more complex and ambiguous and does not necessarily match the morphostructure of the western and southern flanks of the MMR (see below). The cumulative vertical displacement across
145 the MMFS has been estimated to ~2000 m on a seismic cross-section across the northern tip of the MMR, even though the thickness of the associated Medio Tiberino Basin is only ~500 m (Barchi et al., 1991). Bonini (1998) proposed that the MMFS developed as an extensional reactivation of the ramp of an earlier Monti Martani thrust.

The Medio Tiberino Basin is a N-S to NNW-SSE trending graben to the west of the MMR and is filled by a ~500 m thick
150 **Upper Pliocene-Quaternary continental succession** (Barchi et al., 1991; Basilici, 1997). The lower part of the succession

150 consists of Upper Pliocene-Lower Pleistocene fluvio-lacustrine clay, sand and gravel, overlain by ~50 m thick Lower Pleistocene bedded travertine (Barchi et al., 1991). These deposits are typically overlain by slope debris and volcanic/volcanoclastic deposits (Brozzetti & Stoppa, 1995; Bonini et al., 2003) dated to the Middle Pleistocene by $^{39}\text{Ar}/^{40}\text{Ar}$ method (0.39 ± 0.01 Ma; Laurenzi et al., 1994). This part of the succession is modelled by a planation surface which has been eroded during the Middle Pleistocene (Bonini et al., 2003) and has a smooth N-S topographic gradient. Reddish Upper
155 Pleistocene slope debris postdate the erosional surface and crop out extensively along the western and southern slopes of the MMR (Bonini et al., 2003). The Terni Basin is a E-W trending graben exposed to the south of the MMR and is considered the southeastern branch of the Medio Tiberino Basin, with which it shares a common stratigraphic evolution (Basilici, 1993; Cattuto et al., 2002). To the north, the Terni Basin terminates against the ~ESE trending slopes of the southern termination of the MMR.

160 The Parametric Catalogue of Italian Earthquakes – CPTI (Rovida et al., 2020, 2022) contains few historical earthquake epicenters with $M_w > 4$ along the MMFS, with the strongest being the 5.1 M_w 1751 AD Terni earthquake and no historical earthquake reported in the **Acquasparta segment** of the fault system (Fig. 1b). Instrumental seismicity recorded since 1985 by
165 INGV (see ISIDe Working Group, 2007) highlights moderate seismic activity ($M_w \leq 3.5$) along the MMFS, with two main clusters located in the Massa Martana and Cesi/San Gemini sectors (Fig. 1b). Only three focal mechanisms have been resolved along the MMFS for three 3.5 M_w earthquakes (Scognamiglio et al., 2006) and they show inconsistent fault plane solutions:

while the 2006 San Gemini earthquake yields an extensional mechanism with an horizontal NE-SW extension direction compatible with the current regional stress field, the 2014 Acquasparta earthquake yields ~N-S extension with a slightly oblique dextral component and the 2021 Massa Martana earthquake is associated with a compressional mechanism with N-S trending planes and a W-plunging P axis (Fig. 1b). Although the latter event seems totally incoherent with the overall regional
170 stress field, it is quite consistent with the N-S striking planes with a sub-horizontal E-W trending P axis of the focal mechanism reconstructed for the 1978 Dunarobba earthquake, on the western margin of the Medio Tiberino Basin (Gasperini et al., 1985).

Despite the complexity of this seismic framework, only the ~ESE trending segment bounding the northern margin of the Terni Basin has been proposed as a potential seismogenic fault (Lavecchia et al., 2002). However, both segments of the MMFS are

considered as active and capable faults in the ITHACA catalogue (ITaly HAzard from CApable faults; ITHACA Working Group, 2019). Accordingly, Bonini et al (2003) suggested that the MMFS cuts through Upper Pleistocene slope debris and displaces the archeological ruins of the Roman town of Carsulae. However, this interpretation has been challenged by later archeological studies (Tari & Sepe, 2013).

3. Methods

In this work, we used a field-based approach to characterize fault geometry and kinematics and to make inferences on the relationships between faulting and deposition of the Plio-Quaternary basin infill. In particular, we focused our attention on mapping the faults exposed along the morphological boundary between the MMR and the Medio Tiberino and Terni basins (i.e., along the trace of the supposed L-shaped Martana Fault System; Fig. 3). We defined their orientation, geometry, kinematics and, when possible, cross-cutting relationships between fault populations. Most of the measurements were made in the Mesozoic carbonate succession of the MMR (i.e., in the footwall of the supposed L-shaped MMFS), while only few structural stations were studied in the Plio-Quaternary basin fill due to a substantial lack of exposures (Fig. 3; Table 1).

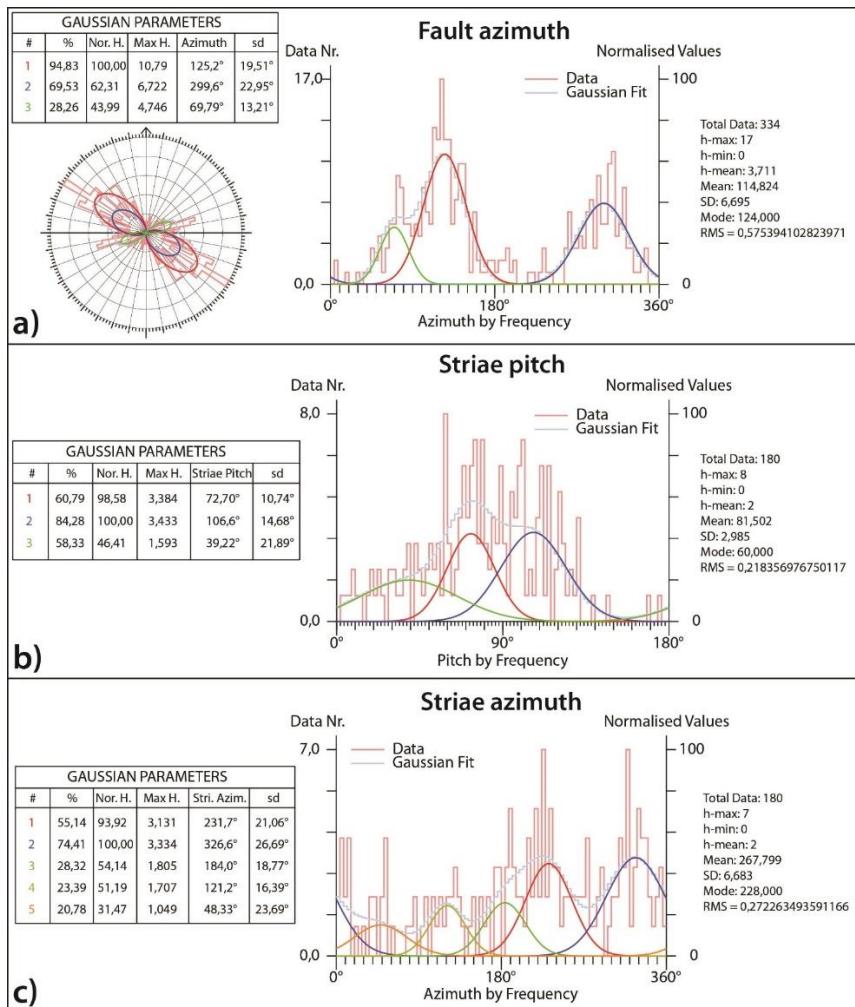
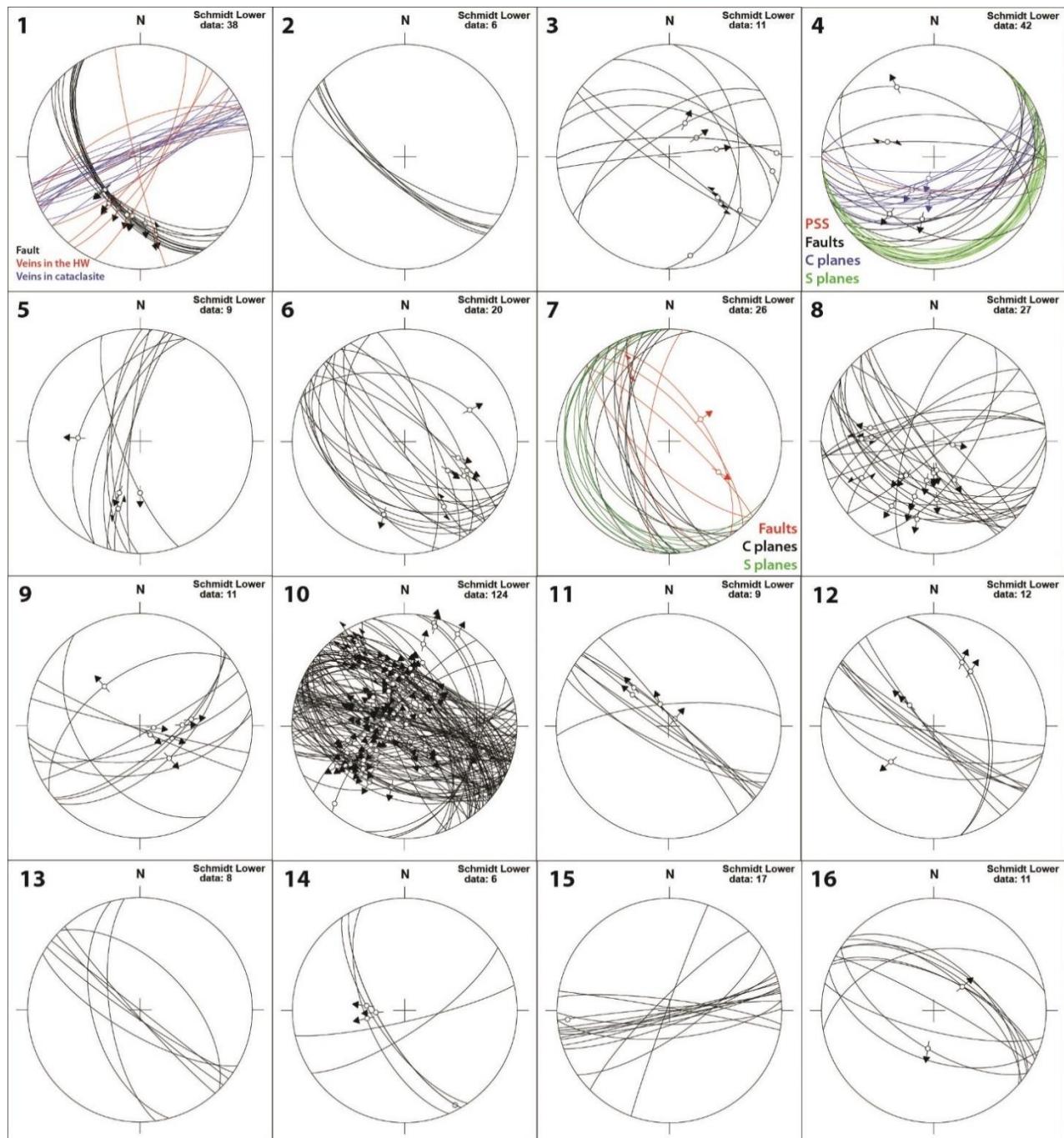
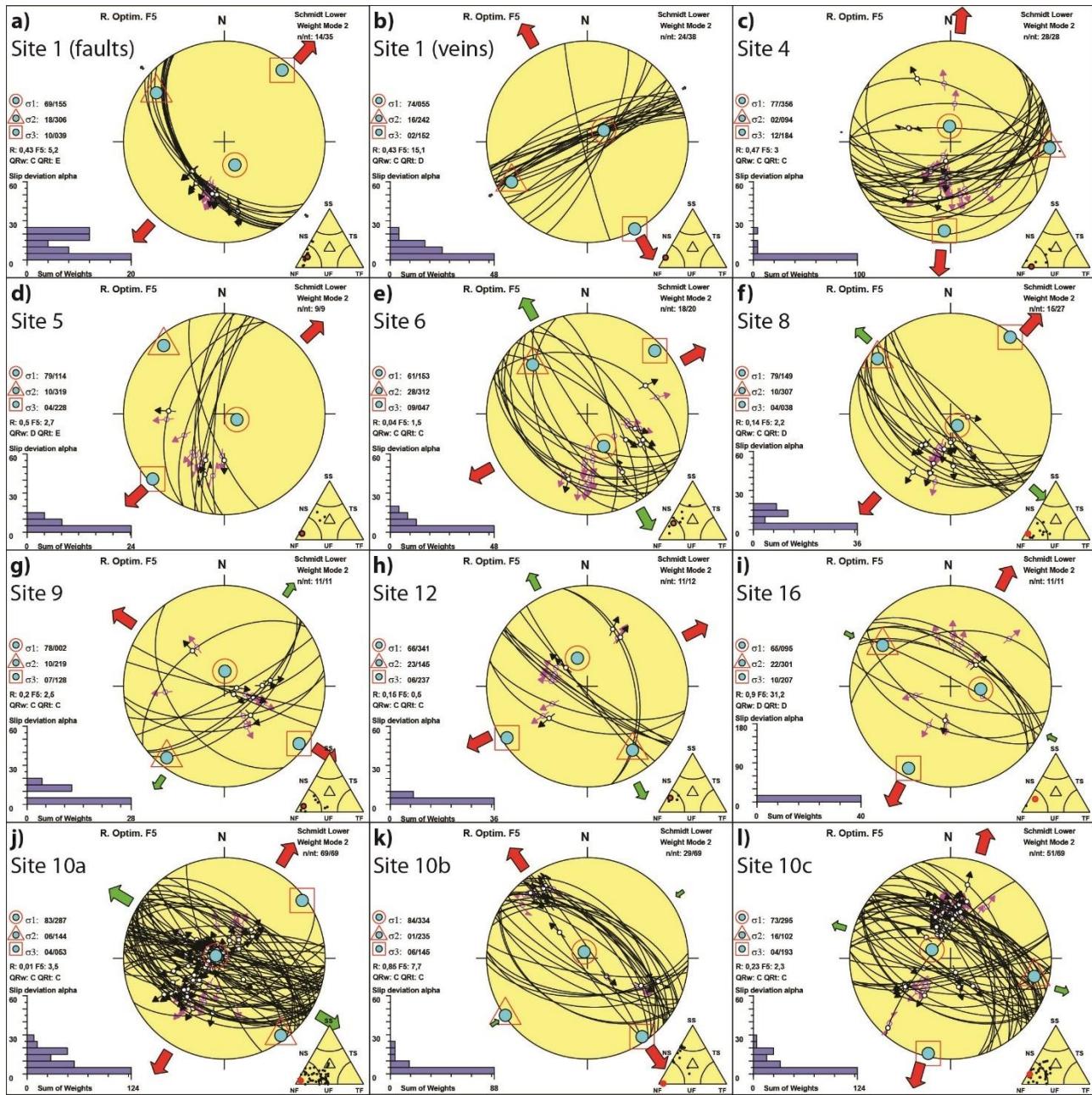

Site n°	Locality	Latitude	Longitude	Data number	Data type
1	Viepri	N 42° 49' 51.373"	E 012° 31' 15.008"	38	Faults + Veins
2	Massa Martana (Monte Castro)	N 42° 46' 52.559"	E 012° 33' 02.951"	6	Faults
3	Acquasparta (quarry)	N 42° 40' 24.271"	E 012° 33' 25.502"	11	Faults
4	Poggio Azzano	N 42° 37' 24.635"	E 012° 34' 12.472"	42	Faults + S-C structures
5	Poggio Azzano	N 42° 37' 09.607"	E 012° 34' 20.333"	9	Faults
6	Cesi	N 42° 36' 42.534"	E 012° 35' 01.513"	20	Faults
7	Cesi	N 42° 36' 39.509"	E 012° 35' 02.279"	26	Faults + S-C structures
8	Cesi (Grotta Eolia)	N 42° 36' 30.530"	E 012° 35' 12.480"	27	Faults
9	Cesi	N 42° 36' 19.106"	E 012° 35' 51.923"	11	Faults
10	Cesi (quarry)	N 42° 36' 18.339"	E 012° 36' 09.296"	124	Faults
11	Piedimonte (Madonna dell'Olivo)	N 42° 35' 59.432"	E 012° 37' 23.148"	9	Faults
12	La Croce	N 42° 35' 41.711"	E 012° 39' 56.370"	12	Faults
13	Fontana della Madonna	N 42° 35' 39.459"	E 012° 40' 10.450"	8	Faults
14	Rocca San Zanone	N 42° 35' 32.093"	E 012° 40' 33.144"	6	Faults
15	San Gemini	N 42° 36' 35.124"	E 012° 32' 58.784"	17	Fractures
16	San Gemini (quarry)	N 42° 36' 06.480"	E 012° 33' 32.610"	11	Faults

Table 1: Location of structural stations with number and type of data collected

Statistical analysis of fault and striae populations on the cumulative fault dataset was performed using Daisy v.4.1 software (Salvini et al., 1999; Salvini, 2002; <http://host.uniroma3.it/progetti/fralab>; Fig. 5). Structural data were represented on stereographic projections (Schmidt net, lower hemisphere) for each structural station (Fig. 6). When sufficiently abundant and statistically meaningful, these data were used to perform paleostress analysis to reconstruct the orientation of the paleostress tensor for each structural station (Fig. 7). Paleostress analysis was performed with the Win-Tensor program (Delvaux, 1993), which uses a refined version of the Right Dihedron method (Angelier & Mechler, 1977) and an iterative Rotational


Optimisation procedure (Delvaux & Sperner, 2003). Data separation for tensorial analysis followed the workflow described in
 195 Mattila & Viola (2014) and was first performed based on field observations (i.e., cross-cutting relationships between faults or separation of different kind of structures, such as faults, veins, cleavage planes, etc.) and on a qualitative kinematic analysis of the stereonets (i.e., definition of striae trend populations). We then adopted an iterative approach by using in sequence the Right Dihedron method and the Rotational Optimisation procedure to compute a paleostress tensor while progressively removing data that showed kinematically incompatible with the calculated stress model. In particular, we removed all data
 200 with a slip deviation angle $\alpha > 30^\circ$, which is defined as the acute angle between the measured slip vector on a fault plane and the theoretical optimal slip vector on the same fault plane with respect to the computed paleostress tensor. This parameter determines the robustness of optimization procedure, since faults with $\alpha \leq 30^\circ$ are considered as compatible with the calculated reduced paleostress tensor.

205


Figure 5: Cumulative fault data collected in this study. Polymodal Gaussian distribution statistics of the cumulative fault azimuth (a), slickenside striations pitch (b) and azimuth (c). Statistical analysis was performed using Daisy v.4.1 software (Salvini et al., 1999; Salvini, 2002; <http://host.uniroma3.it/progetti/fralab>).

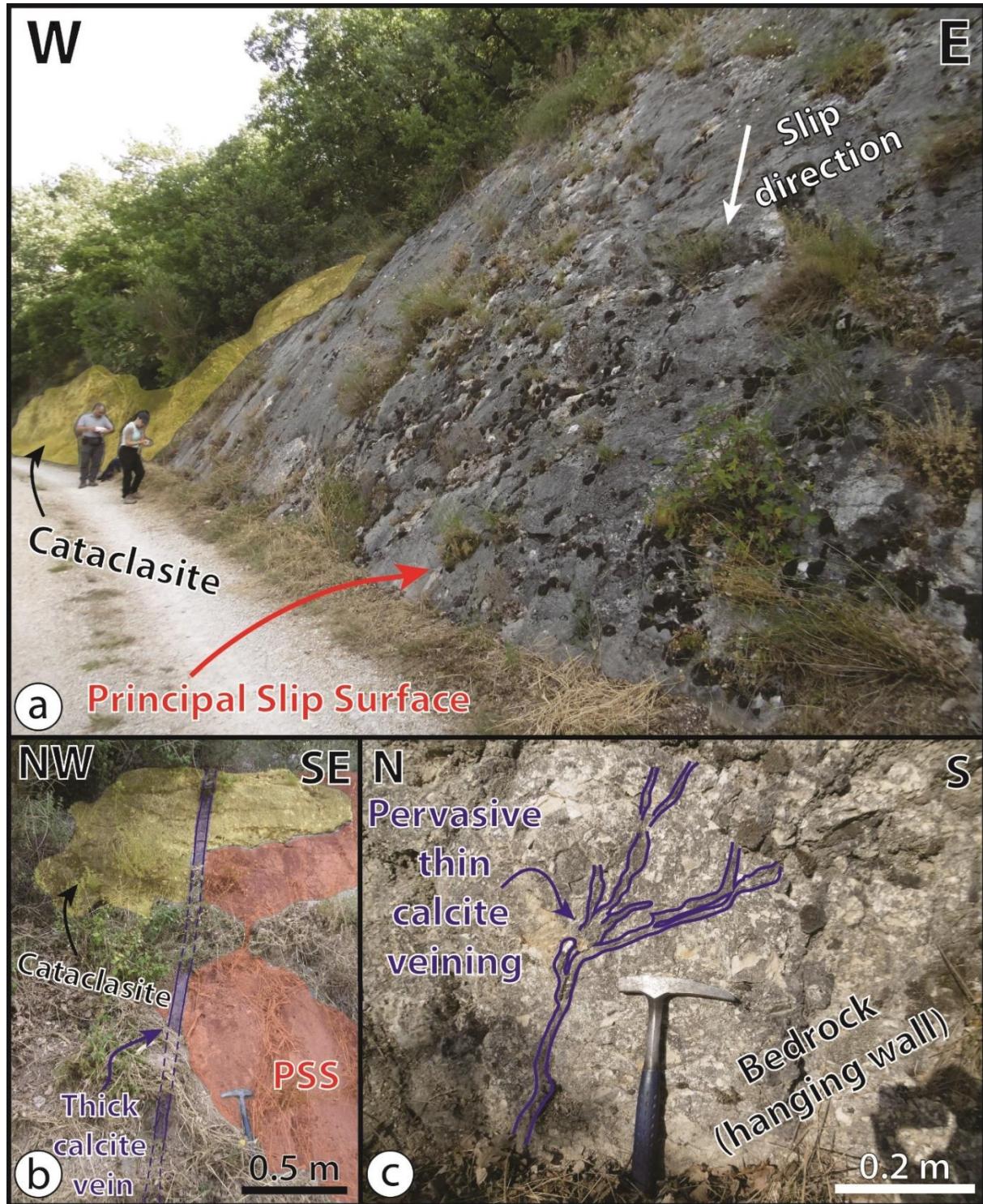
210

Figure 6: Equal area stereoplots (Schmidt net, lower hemisphere) showing the attitude of the main structural features measured in the field. Numbers refer to the sites of structural measurements shown in Fig. 3.

Figure 7: Paleostress tensors calculated from the inversion of fault-slip data using TENSOR program (Delvaux, 1993). Stereograms are Schmidt lower hemisphere projections. Site numbers refer to numbers of the structural stations in Fig. 3.

4. Results

215 4.1. Cumulative fault data analysis


Merging of all fault datasets from the different structural stations allowed us to perform a cumulative statistical analysis on fault data at the scale of the study area (Fig. 5). Distribution of fault azimuth reveals that there are two major trends in fault strike (Fig. 5a). The dominant trend is represented by a vast majority of NW-SE striking faults ($N125^\circ$ and $N300^\circ$), while a second subsidiary fault population is composed of fault planes striking ENE-WSW ($N070^\circ$). None of these two trends 220 correlates with the orientation of the morphological boundary between the MMR and the Medio Tiberino and Terni basins (i.e., $\sim N-S$ and $\sim N100^\circ$, respectively).

Three pitch populations have been found for the slickenside striations measured on fault surfaces (73° , 107° and 39° ; Fig. 5b). This distribution documents dominant dip-slip over subordinate strike-slip kinematics. Analysis of striae azimuth distribution on normal, oblique/normal and strike-slip faults identified five different populations ($N232^\circ$, $N327^\circ$, $N184^\circ$, $N121^\circ$ and $N048^\circ$; 225 Fig. 5c). These populations define three main directions of movement along fault planes that are NE-SW (populations 1 and 5 in Fig. 5c), NW-SE (populations 2 and 4 in Fig. 5c) and N-S (population 3 in Fig. 5c).

4.2. Fault data and paleostress analysis on single structural stations

In the following, we describe the key structural features observed at selected field stations along the trace of the supposed L-shaped MMFS, starting from its northernmost tip and progressing towards its southeastern end (Fig. 3).

230 The Viepri site (structural site n° 1 in Fig. 3) is characterized by a SW-dipping normal fault that separates the Jurassic micritic limestones of the Corniola F in the footwall, from the Eocene marls of the Scaglia Variegata Fm, in the hanging wall (Fig. 8). The principal slip surface (PSS) of the fault is marked by a fine grained cohesive cataclasite formed at the expenses of the Jurassic carbonate (Fig. 8), while above the PSS a few meters thick layer of cataclasite and proto-cataclasite was formed at the expenses of the Eocene marly lithotypes. These latter have a coarser grain size and are less consolidated than those of the PSS 235 and contain an extensional top-to-the-SW S/C fabric (sensu Berthé et al., 1979). Slickenside striations on the PSS point to a normal to normal/oblique sense of shear with a sinistral component (stereonet n° 1 in Fig. 6). Cataclasites in the hanging wall of the PSS and, locally, the PSS itself are cut by cm- to dm-thick NE-SW trending subvertical calcite veins (Fig. 8b). Subvertical calcite veining also occurs in marls of the Scaglia Variegata Fm in the hanging wall of the fault, though with a more diffuse and pervasive spatial distribution (Fig. 8c). The paleostress tensor reconstructed with data from the PSS shows a 240 sub-horizontal NE-SW trending σ_3 axis (Fig. 7a), while the opening of tensile veins in the hanging wall of the faults is compatible with a NW-SE trending σ_3 axis (Fig. 7b).

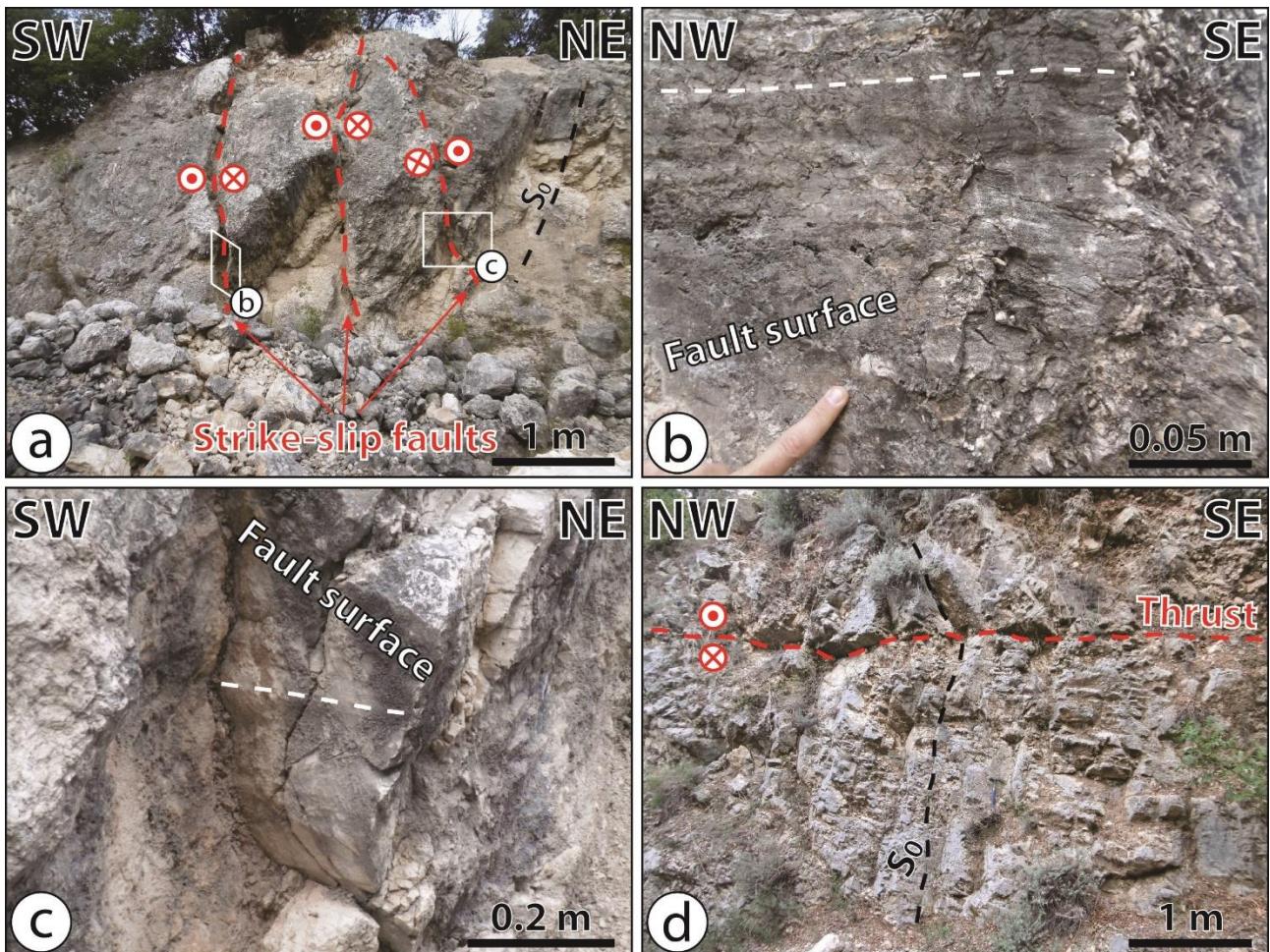
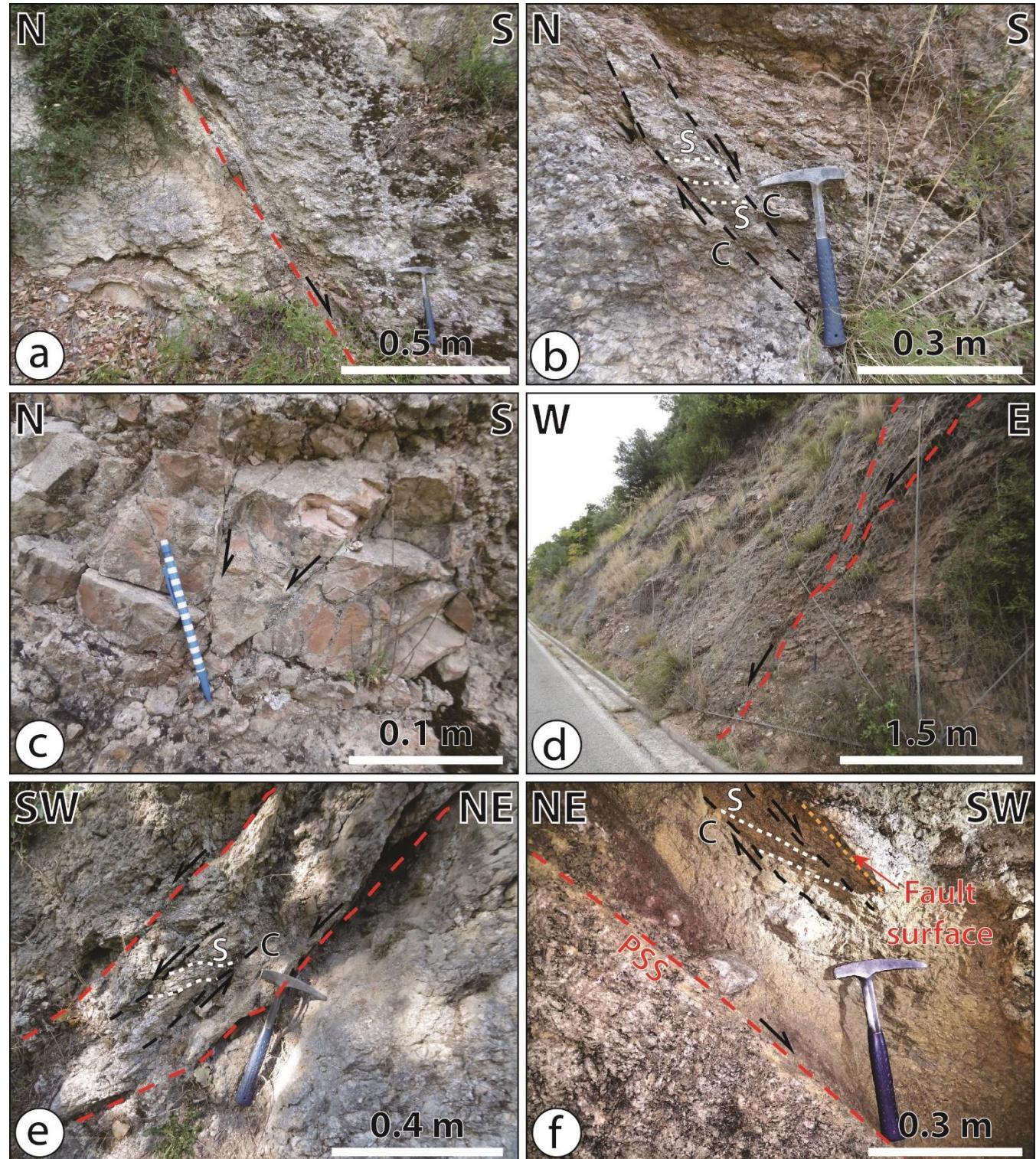


Figure 8: Extensional fault surface exposed in the Viepri area (site 1 in Fig. 3) (a) with examples of the calcite veins network hosted in the cataclasite (b) and the hanging wall (c). Structural measurements from this site are reported in stereonet n° 1 in Fig. 6.

245 East of Massa Martana, on the western slope of the Monte Castro (structural site n° 2 in Fig. 3), mesoscale NW-SE trending normal faults cut through the Lower Jurassic limestone of the Calcare Massiccio Fm (stereonet n° 2 in Fig. 6). Due to the lack of striae on the fault surfaces, the dataset is here too small for a reliable paleostress analysis. However, at the first order the strike of these few faults is generally compatible with a NE-SW trending direction of extension.

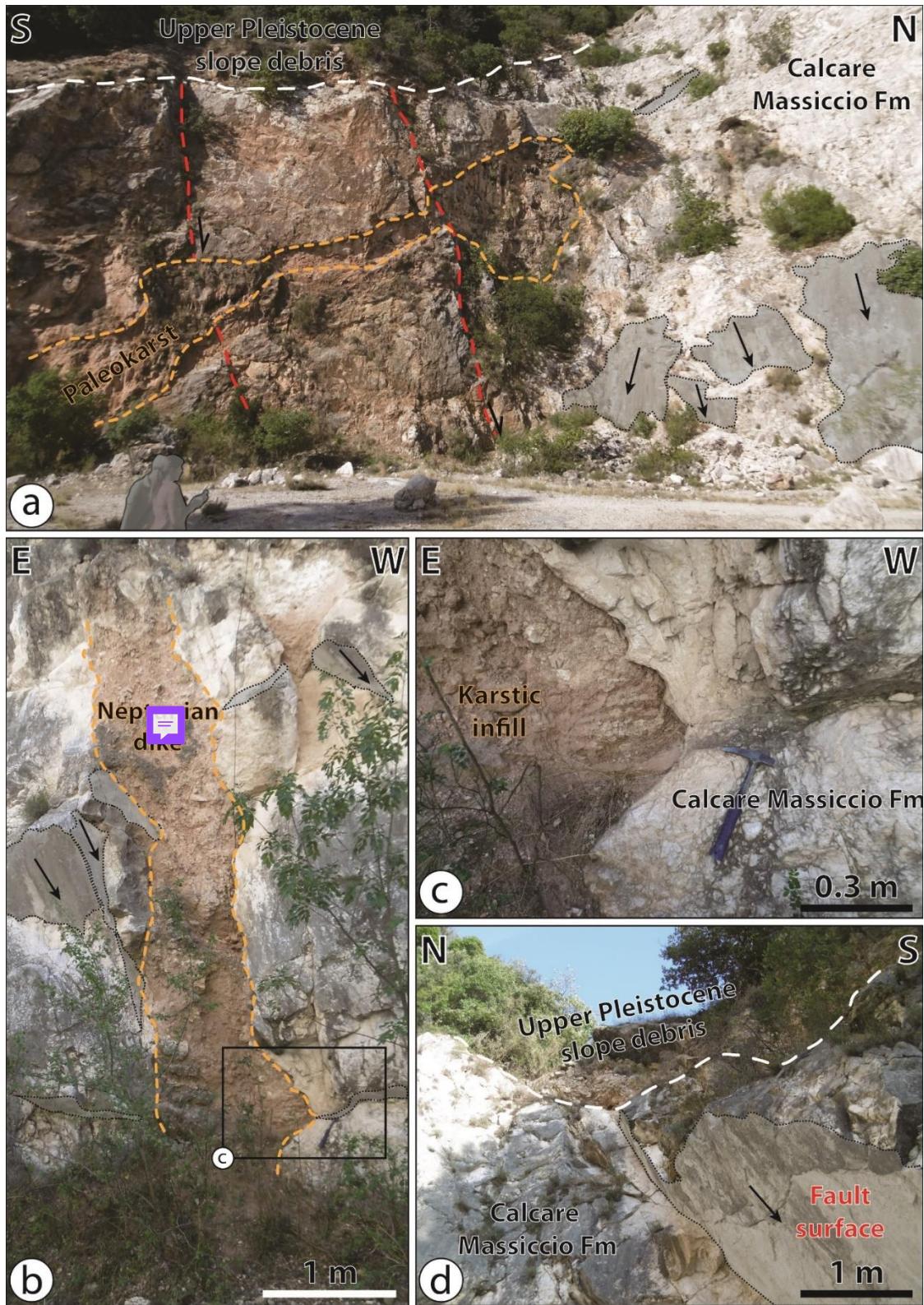
250 In the abandoned quarry to the east of Acquasparta (structural site n° 3 in Fig. 3), the Calcare Massiccio Fm appears to be highly fractured and cut by an intricate tangle of faults, including normal/oblique and subvertical sinistral fault planes (stereonet n° 3 in Fig. 6; Fig. 9). Intense fracturing at the outcrop scale appears to be correlated with diffuse strike-slip and reverse faulting likely related to the orogenic contractional phase. Consequently, it is here hard to distinguish if the oblique/extensional planes are neo-formed or reactivated inherited slip surfaces. At this site, our difficulty in identifying proper fault clusters related to specific tectonic events precluded a reliable paleostress analysis.


Figure 9: Examples of syn-orogenic structures in the Calcare Massiccio Fm in the Acquasparta quarry (site n° 3 in Fig. 3; stereonet n° 3 in Fig. 6). a) Subvertical, NE-SW and NW-SE trending strike-slip faults (marked by red dashed lines), with details of two faults surfaces (in b and c) with strike-slip slickenlines marked by white dashed lines. d) NW-SE trending thrust fault marked by the dashed red line. Note the diffuse brecciation and fracturing at the outcrop scale.

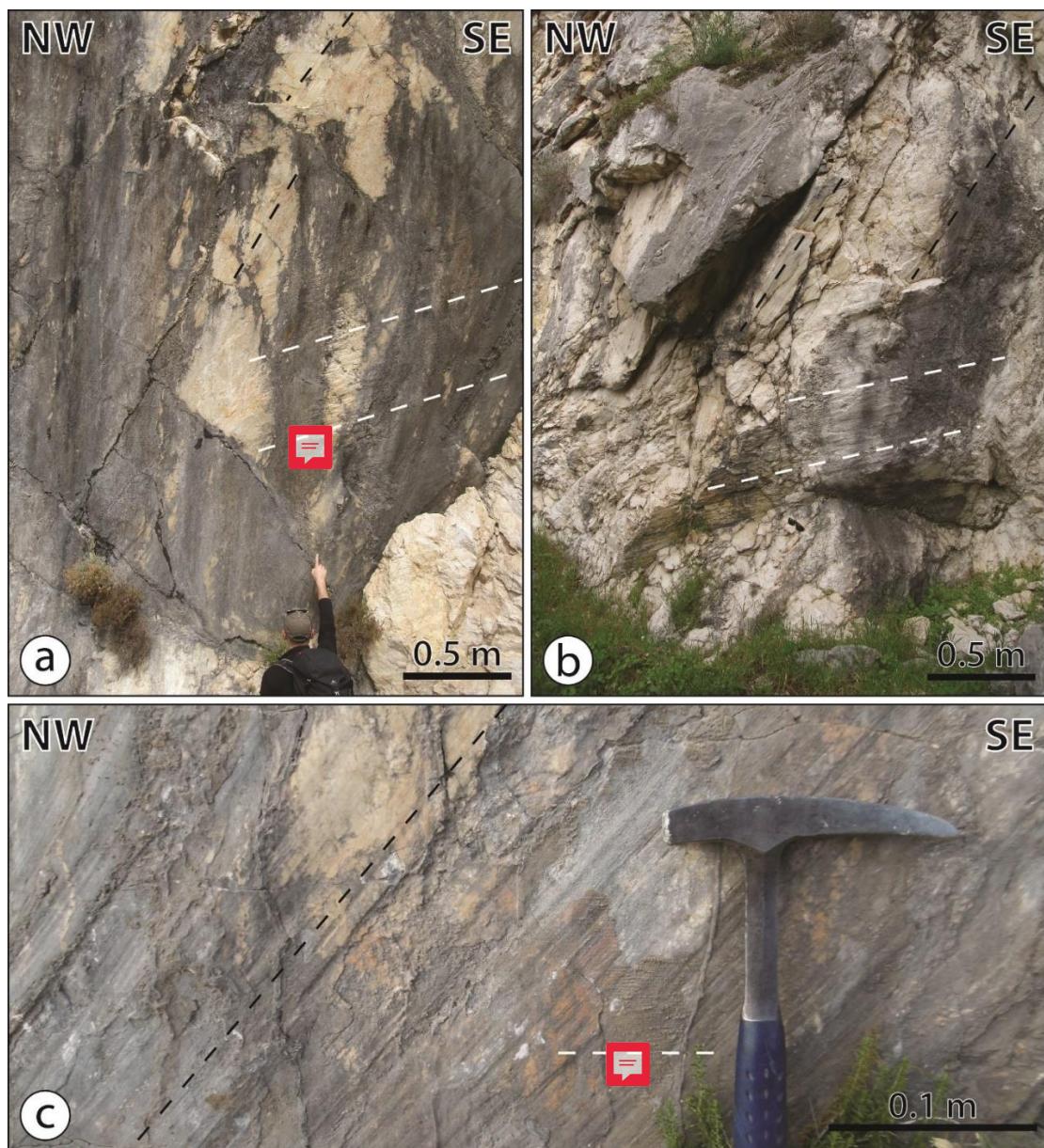
260 In the Poggio Azzuano area (structural site n° 4 in Fig. 3), at the southernmost tip of the N-S trending segment of the boundary
261 between the MMR and the Medio Tiberino and Terni basins, a S-dipping PSS is found along with extensional top-to-the-S S/C
262 structures within the marly limestone of the Cretaceous Scaglia Rossa Fm (stereonet n° 4 in Fig. 6; Fig. 10a-c). The paleostress
263 tensor calculated at this site shows a NNE-SSW direction of extension (Fig. 7c). About 500 m to the SSE of this site, along
264 the road to Cesi (structural site n° 5 in Fig. 2), the computed paleostress tensor is substantially different. The Scaglia Rossa
265 Fm is there cut by N-S normal to normal/oblique faults with a sinistral component (stereonet n° 5 in Fig. 6; Fig. 10d).
266 Paleostress determination from this fault system yielded an extensional regime with a NE-SW trending sub-horizontal σ_3 axis
(Fig. 7d), compatible with that reconstructed from the Viepri site.

267 In the western part of the Cesi village (structural site n° 6 in Fig. 3), steeply dipping extensional fault planes cut through
268 cohesive cataclasites formed at the expenses of the fine-grained limestone of the Corniola Fm. All these faults strike NW-SE
269 and dip either to the NE with oblique normal/dextral striae, or to the SW with oblique normal/sinistral striae (stereonet n° 6 in
270 Fig. 6). Tensorial analysis performed on this dataset yielded a NE-SW trending sub-horizontal σ_3 axis, with a steeply dipping
271 σ_1 axis and a gently dipping σ_2 axis (Fig. 7e). In this same area (structural site n° 7 in Fig. 3), foliated cataclasites in the
272 Corniola Fm display a penetrative S-C fabric (stereonet n° 7 in Fig. 6; Fig. 10e). This dataset did not allow us to perform a
273 proper tensorial analysis. However, the attitude of the S-C fabric is consistent with an extensional tectonic regime with a NE-
274 SW trending direction of extension.

275 At the karstic cave of the Grotta Eolia site in the Cesi village (structural site n° 8 in Fig. 3), a complex network of faults
276 belonging to an extensional fault system juxtaposes the Calcare Massiccio Fm in the footwall against cataclastic red marly
277 limestone in the hanging wall (stereonet n° 8 in Fig. 8; Fig. 10f). Rocks in the hanging wall can be tentatively attributed to the
278 Rosso Ammonitico Fm. Variably oriented high- and low-angle faults inherited from the previous orogenic phase are also
279 present in the cave. NW-SE trending normal to oblique/normal faults, with striae pitch values between $\sim 70^\circ$ and $\sim 100^\circ$ (Fig.
280 10f), are compatible with an extensional paleostress tensor with a NE-SW trending sub-horizontal σ_3 axis (Fig. 7f), alike the
281 other two above-described sites in the western part of the Cesi village (structural sites n° 6 and 7 in Fig. 6). By contrast, a
282 substantially different paleostress tensor has been obtained for a NE-SW striking extensional faults system exposed ~ 1 km E
283 of Cesi (structural site n° 9 in Fig. 3) and cutting through the micritic limestone of the Maiolica Fm (stereonet n° 9 in Fig. 6).
284 There, paleostress analysis resulted in an Andersonian extensional system with a NW-SE trending direction of extension (Fig.
285 7g). This paleostress tensor is consistent with that responsible for the formation of the tensile veins at the Viepri site (site n° 1
286 in Fig. 6 and Fig. 7b).



290 **Figure 10:** a) S-dipping PSS of a normal fault cutting through the Scaglia Rossa Fm in the Poggio Azzuano area (site n° 4 in Fig. 3; stereonet n° 4 in Fig. 6), with detail of the extensional top-to-the-S S-C fabric developed within the cataclasite of the damage zone (b) and of a second-order conjugate normal faults pair (c) in the hanging wall of the PSS. d) Example of a W-dipping normal fault cutting through the Scaglia Rossa Fm E of Poggio Azzuano (site n° 5 in Fig. 3; stereonet n° 5 in Fig. 6). e) Extensional top-to-the-SW S-C fabric within foliated cataclasite formed at the expenses of the Corniola Fm cropping out W of Cesi (site n° 7 in Fig. 3; stereonet n° 7 in Fig. 6). f) Extensional SW-dipping PSS putting in contact the Calcare Massiccio Fm (in the footwall) with the Rosso Ammonitico Fm (in the hanging wall) in the Grotta Eolia site in Cesi (site n° 8 in Fig. 3; stereonet n° 8 in Fig. 6); note the top-to-the-SW extensional S-C fabric developed within the fine-grained cataclasite of the fault core and a second order SW-dipping fault surface with dip-slip slickenlines (marked by the thin dashed orange line) in the hanging wall of the PSS.


295 About 1 km to the east of Cesi, the limestone of the Calcare Massiccio Fm exposed in an abandoned quarry (structural site n° 10 in Fig. 3) appears intensely fractured and cut by a dense network of high angle normal, oblique and strike-slip faults (Fig. 300 11 + stereonet n° 10 in Fig. 6). Some NE-dipping fault planes bear two sets of slickenlines, one related to normal to oblique slip (pitch = 60°-70°) and one related to strike slip (pitch ~5°-25°), with the latter post-dating the first (Fig. 12). We performed 305 tensorial analysis on a dataset of more than one hundred fault planes, most of which strike NW-SE. After data treatment, we distinguished three data subsets, (i) one including normal/oblique fault planes with NE-SW trending slickenlines, (ii) one characterized by sinistral strike-slip faults with NW-SE trending slickenlines, and (iii) one with normal/oblique (with a sinistral 310 component) fault planes with NNE-SSW trending slickenlines (Fig. 7j, k, l, respectively). Tensorial analysis performed on these three data subsets yielded three different andersonian extensional paleostress tensors, with a sub-vertical σ_1 axis and a sub-horizontal σ_3 axis trending NE-SW, NW-SE, and NNE-SSW respectively (Fig. 7j, k, l). All these results have a satisfying slip deviation angle $\alpha < 30^\circ$. It is worth noting that these three paleostress tensors reconstructed from this large dataset in a single location are consistent with those calculated in other sites along the MMFS, where datasets are smaller and tensorial analysis only gave one paleostress tensorial solution for each site.

315 Subvertical NW-SE striking normal/oblique fault planes in the Calcare Massiccio Fm have also been measured close to the Madonna dell'Olivo Sanctuary, in the Piedimonte area (structural site n° 11 in Fig. 3; stereonet n° 11 in Fig. 6). Unfortunately, dispersion of planes is too small in this dataset to perform a reliable tensorial analysis. At this same location, Brozzetti & Lavecchia (1995) and Bonini et al. (2003) reported mainly E-W to WNW-ESE trending normal/oblique (dextral) faults, compatible with an extensional paleostress tensor with a sub-horizontal NE-SW σ_3 axis (Brozzetti & Lavecchia, 1995).

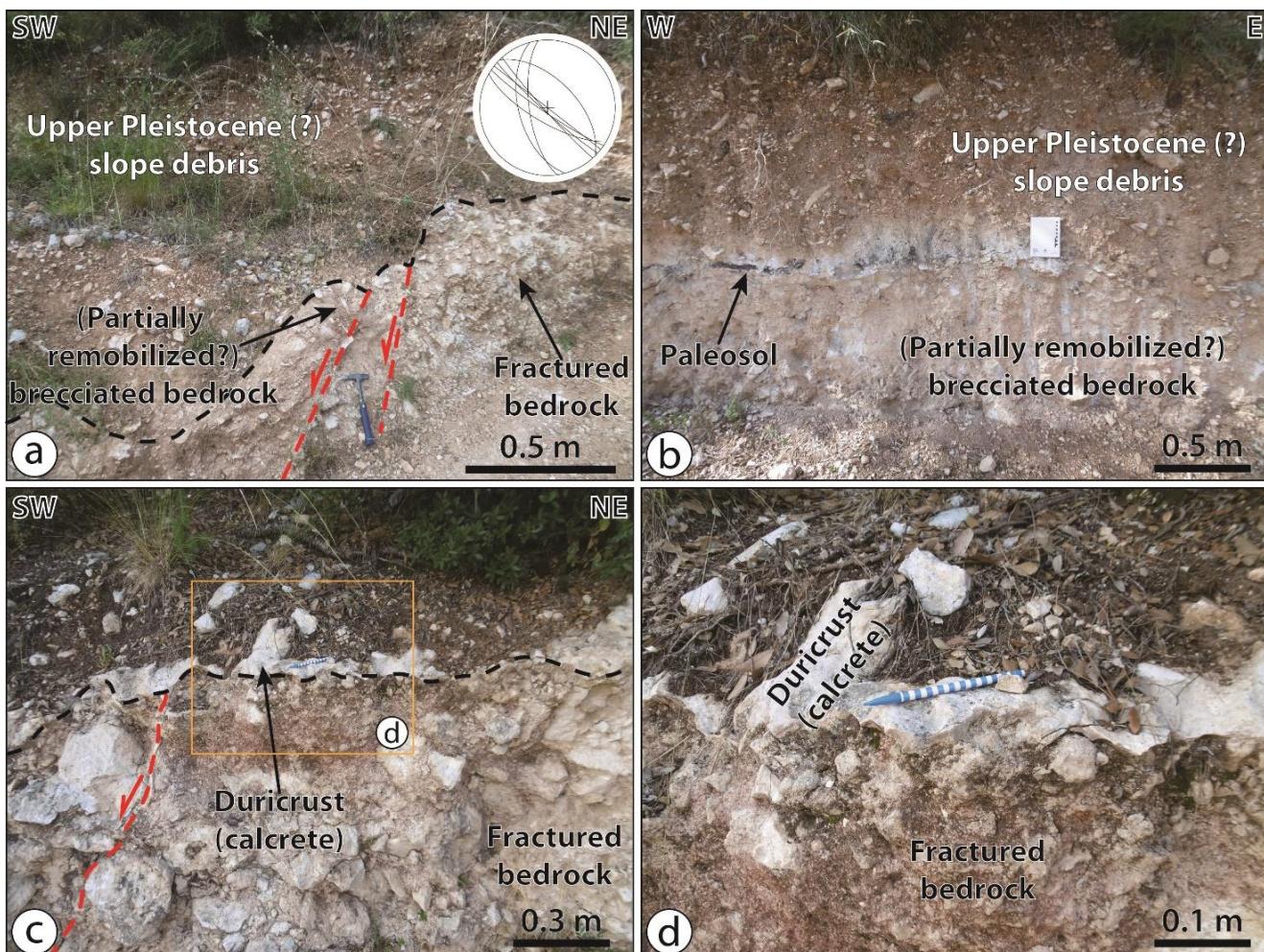
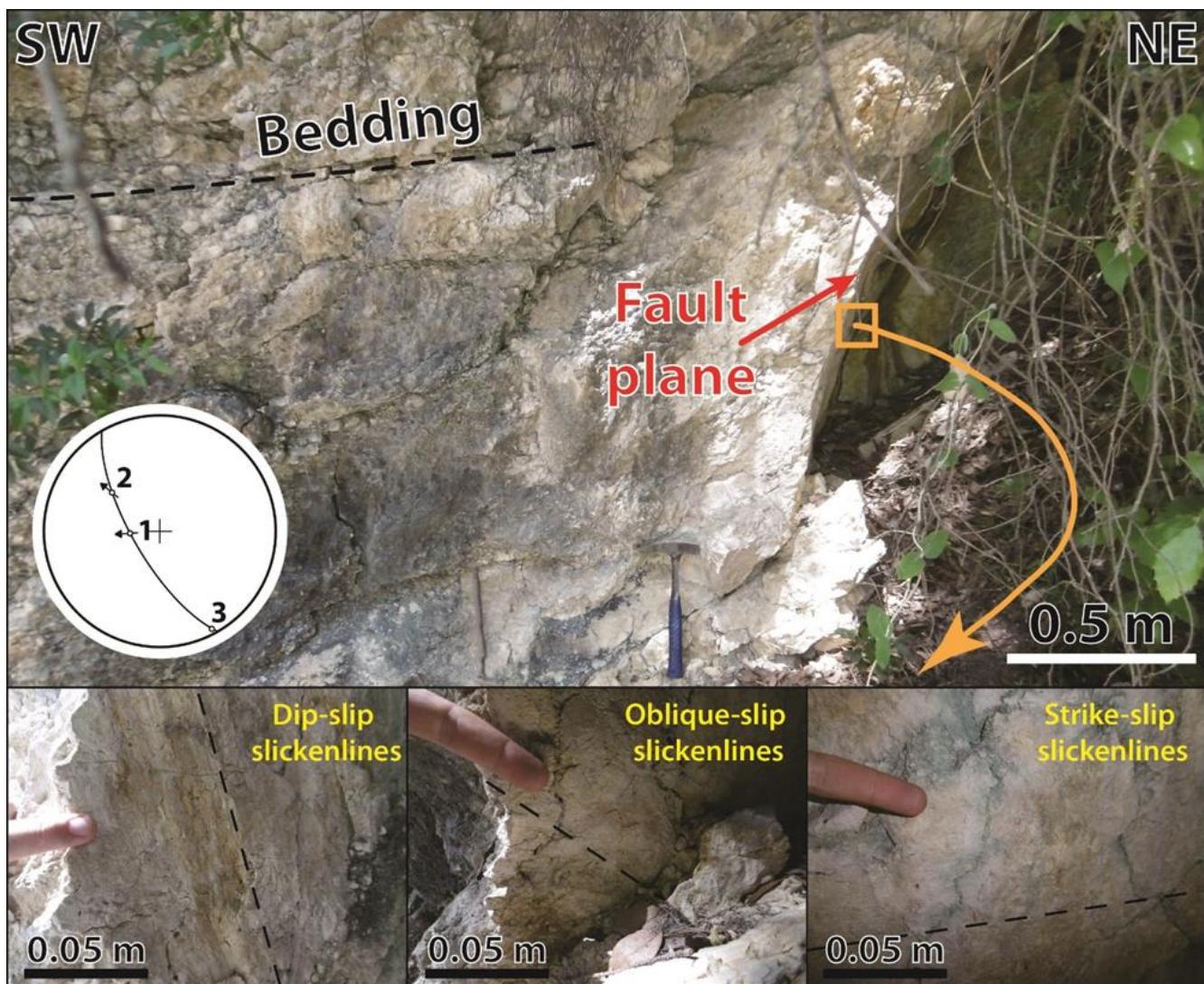

Figure 11: Outcrop pictures from the Cesi quarry (site 10 in Fig. 3). Structural measurements from this site are reported in stereonets n° 10 in Fig. 6. Red arrows indicate extensional fault planes in the Calcare Massiccio Fm. a) Panoramic view of the western wall of the quarry, with a south-dipping paleo-karstic network with speleothems developed in the faulted limestone of the Calcare Massiccio Fm; note that 320 Upper Pleistocene slope debris suture normal fault planes. b) Example of a sub-vertical, non-faulted, Quaternary **neptunian dike** within the Calcare Massiccio Fm. c) Detail of the contact between a neptunian dike and the Calcare Massiccio Fm (see Fig. 10 for location); note that the faults and fractures affecting the limestone do not propagate within the karstic infill of the neptunian dike. d) Example of Upper Pleistocene slope debris suturing a normal fault cutting through the Calcare Massiccio Fm. Shaded gray polygons show fault surfaces with black arrows showing the slip direction of the hanging wall block.

Figure 12: Examples of steeply-dipping, NW-SE trending faults in the Cesi quarry (site n° 10 in Fig. 3; stereonet n° 10 in Fig. 6) with a later generation of strike-slip slickenlines (marked by white dashed lines) overprinting an older generation of normal-to-oblique-slip slickenlines.

At structural site n° 12 (Fig. 3), NW-SE striking extensional fault planes cut through the limestone of Calcare Massiccio Fm 330 (stereonet n° 12 in Fig. 6). The paleostress tensor reconstructed at this site has a NE-SW trending sub-horizontal σ_3 axis (Fig. 7h), even though the σ_1 axis is not exactly subvertical (dip angle 66°). An analogue set of faults has been measured at structural site n° 13 (Fig. 3; stereonet n° 13 in Fig. 6). These extensional faults cut through the brecciated Corniola Fm and are sutured by Upper Pleistocene slope debris (Fig. 13). Unfortunately, no slickenlines were observed at this site, thus preventing tensorial analysis.

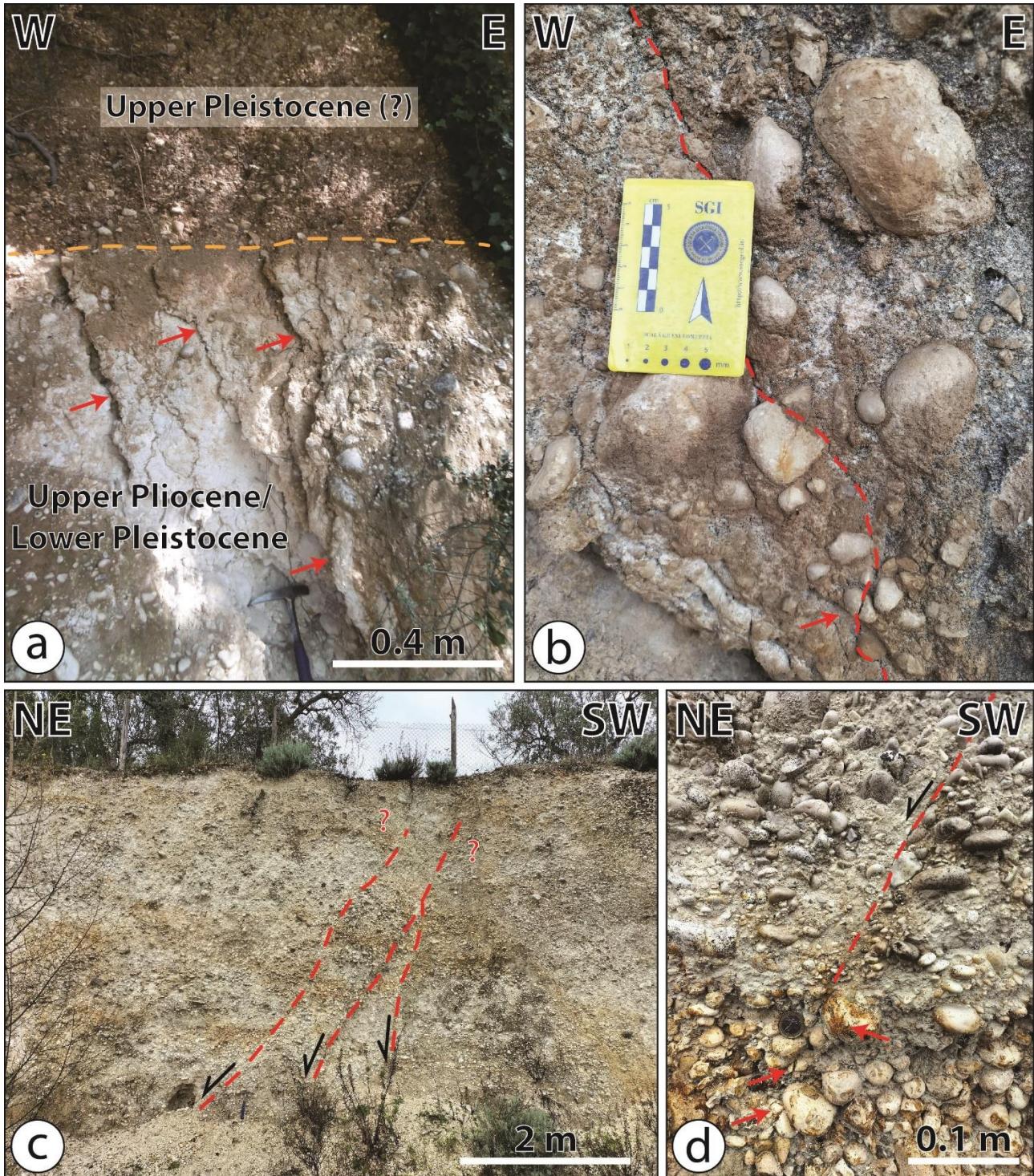
335


Figure 13: Outcrops in the Fontana della Madonna area (site n° 13 in Fig. 3). a) Example of extensional faults cutting through the Meso 340 carbonatic substratum and being sutured by Upper Pleistocene (?) slope debris, with stereographic projection (Schmidt net, lower hemisphere) of fault data from this site. b) Dark brown paleosol at the contact between the brecciated Mesozoic bedrock and the overlying Upper Pleistocene slope debris. c-d) Carbonate duricrust (calcrete) locally hardening the paleosol between the brecciated Mesozoic bedrock and the overlying Upper Pleistocene slope debris and suturing normal faults cutting through the carbonate substratum.

A similar situation has been observed on the easternmost structural site at the eastern tip of the MMFS, in the Rocca San Zenone area (structural site n° 14 in Fig. 3), where extensional, oblique, and strike-slip faults cut through the brecciated

345

Corniola Fm and are sutured by Upper Pleistocene slope debris (stereonet n° 14 in Fig. 6). On a single NW-SE striking and SW dipping fault plane, three different generations of striae have been observed, pointing to a polyphase reactivation of this fault plane with a normal, oblique (normal/dextral) and strike-slip movement (Fig. 14). However, the dispersion of planes in this dataset is too small to generate a reliable tensorial analysis.


Figure 14: Example of a fault plane in the Trevi area cutting through the Mesozoic carbonate substratum and displaying three different sets of slickenlines (site 14 in Fig. 3). Structural measurements from this site are reported in stereonet n° 14 in Fig. 6.

350

As to extensional deformation in the Plio-Quaternary fill of the Medio Tiberino and Terni basins, brittle structures were only observed in the San Gemini area cutting through Upper Pliocene/Lower Pleistocene yellow sandy conglomerates, likely belonging to the Fosso Bianco Fm sensu Basilici (1992, 1997) (Fig. 15). These structures consist of subvertical fractures within the San Gemini area (structural site n° 15 in Fig. 3; stereonet n° 15 in Fig. 6) and normal faults exposed in an abandoned quarry

355 south of San Gemini (structural site n° 16 in Fig. 3; stereonet n° 16 in Fig. 6). Tensorial analysis performed on this latter fault set provided an extensional paleostress tensor with a sub-horizontal NE-SW trending σ_3 axis (Fig. 7i).

360

Figure 15: Examples of brittle structures within Upper Pliocene/Lower Pleistocene yellowish conglomerates in the San Gemini area. a) Sub-vertical fractures (indicated by red arrows) within Upper Pliocene/Lower Pleistocene conglomerates sutured by Upper Pleistocene (?) reddish alluvial conglomerates in San Gemini (site 15 in Fig. 3; stereonet n° 15 in Fig. 6). b) Detail of an irregular sub-vertical fracture within Upper Pliocene/Lower Pleistocene yellowish conglomerates at the same site as (a); the red arrow points to a broken pebble straddling the fracture plane. c) NE-dipping normal faults within Upper Pliocene/Lower Pleistocene conglomerates exposed in an abandoned quarry south of San Gemini (site 16 in Fig. 3; stereonet n° 16 in Fig. 6); note that upward fault throw appears progressively less evident. d) detail of a NE dipping normal fault in the same site as (c); note the broken pebbles marked by red arrows in the downward continuation of the fault plane (marked by a dashed red line).

365 4.3. Relationships between extensional faults and the Plio-Quaternary series

370

375

380

385

390

The vast majority of the studied fault surfaces along the MMFS cut through the Meso-Cenozoic carbonate sequences of the MMR. Very few faults have instead been documented in the Plio-Quaternary infill of the Medio Tiberino and Terni basins, and, in no case, have faults been observed cutting through deposits younger than the Upper Pliocene/Lower Pleistocene. In the rare cases where the relationships between continental deposits and fault planes can be clearly observed, the former appear to suture the faults. This is clearly visible at two sites located along the eastern part of the ESE trending segment of the slopes of the MMR in the Fontana della Madonna and Rocca San Zenone areas (sites 13 and 14 in Fig. 3). There, Upper Pleistocene slope debris deposits suture NW-SE striking normal to oblique faults cutting limestones of the Meso-Cenozoic ~~basement~~ (Fig. 13a). In particular, in the Fontana della Madonna area (site n° 13 in Fig. 3), a dark brown paleosol developed at the ~~tran~~ between the brecciated Mesozoic carbonate bedrock and the overlying Upper Pleistocene (?) slope debris (Fig. 13b). This paleosol is locally capped by a carbonate duricrust (calcrete) that sutures SW-dipping normal faults cutting through the brecciated Mesozoic carbonate substratum (Fig. 13c-d). Moreover, in an abandoned quarry to the east of Cesi, a paleo-karstic network is ~~presently~~ exposed in ~~outcrop~~ (Fig. 11a). The orientation of the paleo-karstic system seems structurally controlled by NW-SE trending normal to oblique faults. However, we observed neither deformation on the exposed speleothems or in the karst-filling sediments (Fig. 11b, c) nor displacement within the overlying poorly consolidated, Upper Pleistocene reddish slope debris (Fig. 11d). No deformation has been observed affecting the speleothems of the Grotta Eolia either (structural site n° 8 in Fig. 3).

Although extensional fault systems cutting through the oldest deposits of the Plio-Quaternary series and compatible with a NE-SW direction of extension are reported in the literature (Brozzetti & Lavecchia, 1995; Brozzetti & Stoppa, 1995; Basilici, 1997), very little evidence of deformation ~~have~~ been found in the continental deposits of the Medio Tiberino and Terni basins, mainly due to the general lack of informative ~~out~~ ops. Most of the sites reported in the literature are actually located in ancient or still active quarries. The only clear field evidence of Quaternary deformation is in the southern part of San Gemini (structural sites 15 and 16 in Fig. 3). There, E-W trending subvertical joints cut through Upper Pliocene/Lower Pleistocene well consolidated yellowish conglomerates (Fig. 15a-b; stereonet n° 15 in Fig. 6). These discontinuities are in turn sutured by Upper Pleistocene (?) poorly consolidated reddish alluvial conglomerates (Fig. 15a). Moreover, in an abandoned quarry right to the south of San Gemini, NW-SE trending normal faults cut through the Upper Pliocene/Lower Pleistocene conglomerate (stereonet n° 16 in Fig. 6; Fig. 15c-d). Some of these faults are characterized by a progressive upward reduction of the vertical throw, thus suggesting a syn-sedimentary fault activity (Fig. 15c).

5. Discussion

5.1. Discrepancy between the morphostructural trends and the strike of single fault segments

395 After compiling the structural data along the trace of the MMFS, a striking observation is that there is no evident correlation between the morphostructural trend of the western and southern margins of the MMR and the strike of the measured meso-scale structures. In fact, in only very few cases the strike of the measured extensional faults correlates with the ~N-S or WNW-ESE trends of the main inferred segments of the MMFS. The dominant measured fault strike is NW-SE (Fig. 5a). Moreover, ~E-W striking faults exist along the ~N-S segment of the fault system (as in the case of the Poggio Azzuano area; structural 400 site n°4 in Fig. 3). Also, ~N-S striking faults occur along the WNW-ESE segment (as in the case of the Cesi or Rocca San Zenone areas; structural sites n°8, 12 and 13 in Fig. 3). This suggests, therefore, that the morphostructural trend of the western and southern margins of the MMR does not correspond to continuous and several kilometer-long fault traces aligned along the ~N-S or WNW-ESE directions. Rather, the MMFS appears to be formed of several disconnected fault segments with different orientations, most of which are aligned with the main structural trend of the Plio-Quaternary extensional structures of the 405 Northern and Central Apennines (i.e. NW-SE; e.g., Galadini & Galli 2000; Barchi, 2010). Thus, our results show that the contact between the Upper Pleistocene-Holocene deposits of the Medio Tiberino and Terni basins and the Meso-Cenozoic carbonate and siliciclastic rocks of the MMR is an unconformable stratigraphic contact and not an extensional tectonic contact as proposed by earlier studies (e.g., Ambrosetti et al., 1987; Bonini et al., 2003).

In addition to the geometric misfit between the morphostructure at the large scale and the faults observed in the field as per 410 discussion above, also the distribution of the epicenters of the major historical and instrumental earthquakes from the area corroborates this apparent misfit, as they seem to align along NW-SE to WNW-ESE directions, that is, at high angle to the trend of the regional linear morphostructure (ISIDe Working Group, 2007; Rovida et al., 2020, 2022). At least two clusters of epicenters along such directions can be identified in the Massa Martana and Terni areas (Fig. 2). Moreover, the focal mechanisms of the 2006 San Gemini and 2014 Acquasparta earthquakes yield fault plane solutions that are misoriented to the 415 main structural trend of the western boundary of the MMR (Scognamiglio et al., 2006; Fig. 2). In any case, the clustering of the instrumental epicenters in the study area is clearly not coherent with the supposed L-shaped geometry commonly attributed in the literature to the MMFS.

5.2. What does control the orientation of faults in the Monti Martani Ridge? The role of structural inheritance

If not governed by the active seismotectonics, the orientation of the main structural trends affecting the MMR and its L-shaped 420 geometry may instead be possibly considered as the long-lived expression of the inherited pre-orogenic structural grain. In particular, we refer to the regional scale, ~E-W and ~N-S trending tectonic lineaments that are thought to have controlled the Jurassic paleogeography in the Monti Martani, Sabina and Monti Reatini area, after the dismembering of the Calcare Massiccio carbonate platform during the Lower Jurassic rifting phase (e.g. Coltorti & Bosellini, 1980; Calamita et al., 1991; Cipriani et al., 2020). These structural trends match those of the Jurassic extensional faults described within the MMR (Bruni et al., 1995;

425

Coltorti et al., 1995). Several studies have suggested that such structural inheritance may have influenced the nucleation and geometry of the main orogenic fronts during the Apennines nappe-stacking phase (e.g. Decandia & Tavarnelli, 1991; Tavarnelli, 1996; Butler et al., 2006; Tavarnelli et al., 2019), including in the Monti Martani area (Bruni et al., 1995; Bonini, 1998). Remarkably, these studies have not reported any significant changes in the orientation of the pre-orogenic features that could be attributed to the syn-orogenic phase.

430

In light of these considerations, we suggest that, in this area, the pre-orogenic Jurassic tectonic grain might have exerted a fundamental structural influence not only on the Apenninic convergent phase, but also on the Plio-Quaternary post-orogenic extensional phase, as suggested by recent studies in other portions of the Apennines belt (e.g. Tavani et al., 2021; Mercuri et al., 2024). This would agree with previous studies suggesting that the area of the Plio-Quaternary Terni Basin represented an early ~E-W trending structural low between the Monti Martani and the Sabina Plateau pelagic carbonate platforms already in

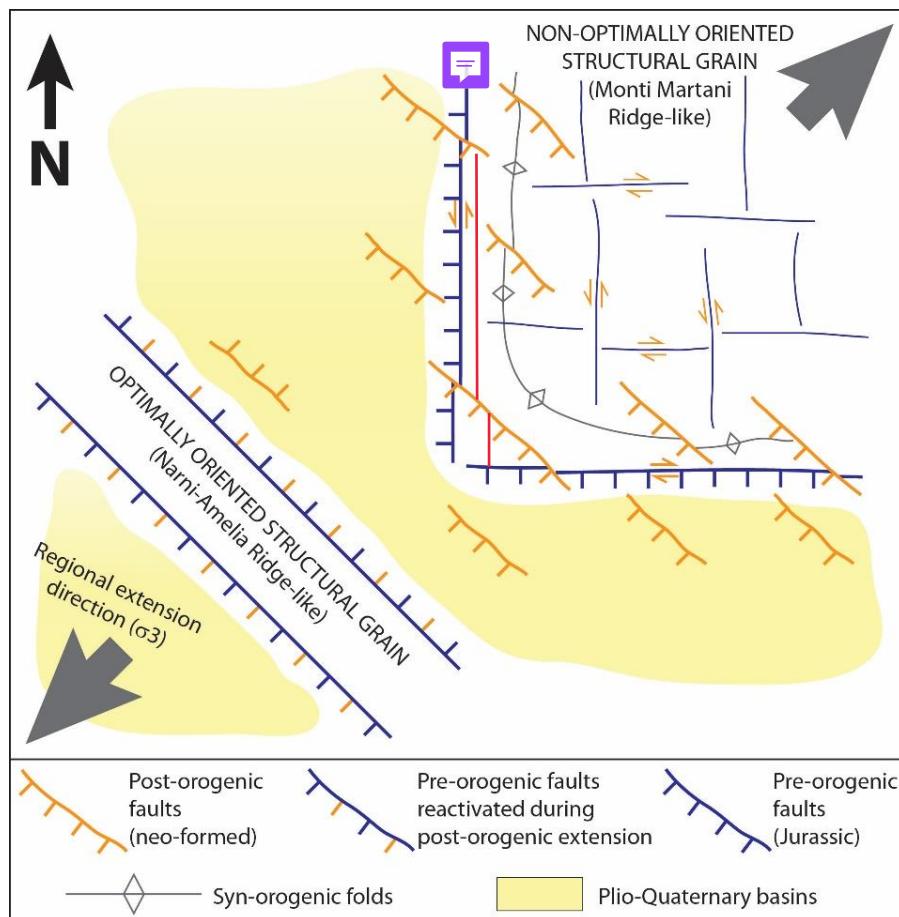
435

the Jurassic (Cipriani et al., 2020). This depression may have been reactivated during the post-orogenic phase.

440

Numerical and analogue models of oblique rifting have shown that, in the presence of inherited structural features oriented at a substantial obliquity to the regional extension direction (i.e. ~45°), the bulk large-scale morphostructural trend of the rift system is indeed governed by the orientation of the inherited structural grain, rather than by the regional tectonic trends (e.g. McClay & White, 1995; Keep & McClay, 1997; Brune, 2014). These studies have also shown that the strike of the neo-formed normal faults tends to be almost orthogonal to the regional σ_3 direction (~15° of deviation; see Brune, 2014). However, analogue models have also documented that, in the case of multiphase extension with different stretching direction, the impact of the inherited structures on the strike of the neoformed faults depends on the amount of extension during the first rifting phase (Wang et al., 2021). Numerical models have suggested that, in such cases, in the absence of variations in the orientation of the regional stress field during rifting, fault kinematics may evolve from a first stage dominated by normal faulting to a second stage where normal, oblique/normal and strike-slip faulting coexist and the strike of the faults may vary from almost orthogonal to the regional σ_3 direction to broadly parallel to the direction of the inherited structural features (Brune, 2014, 2016). This implies that the orientation of locally derived paleo-stress tensors computed from limited fault-slip data may deviate during rift evolution from the first-order regional stress field that determined the overall tectonic regime.

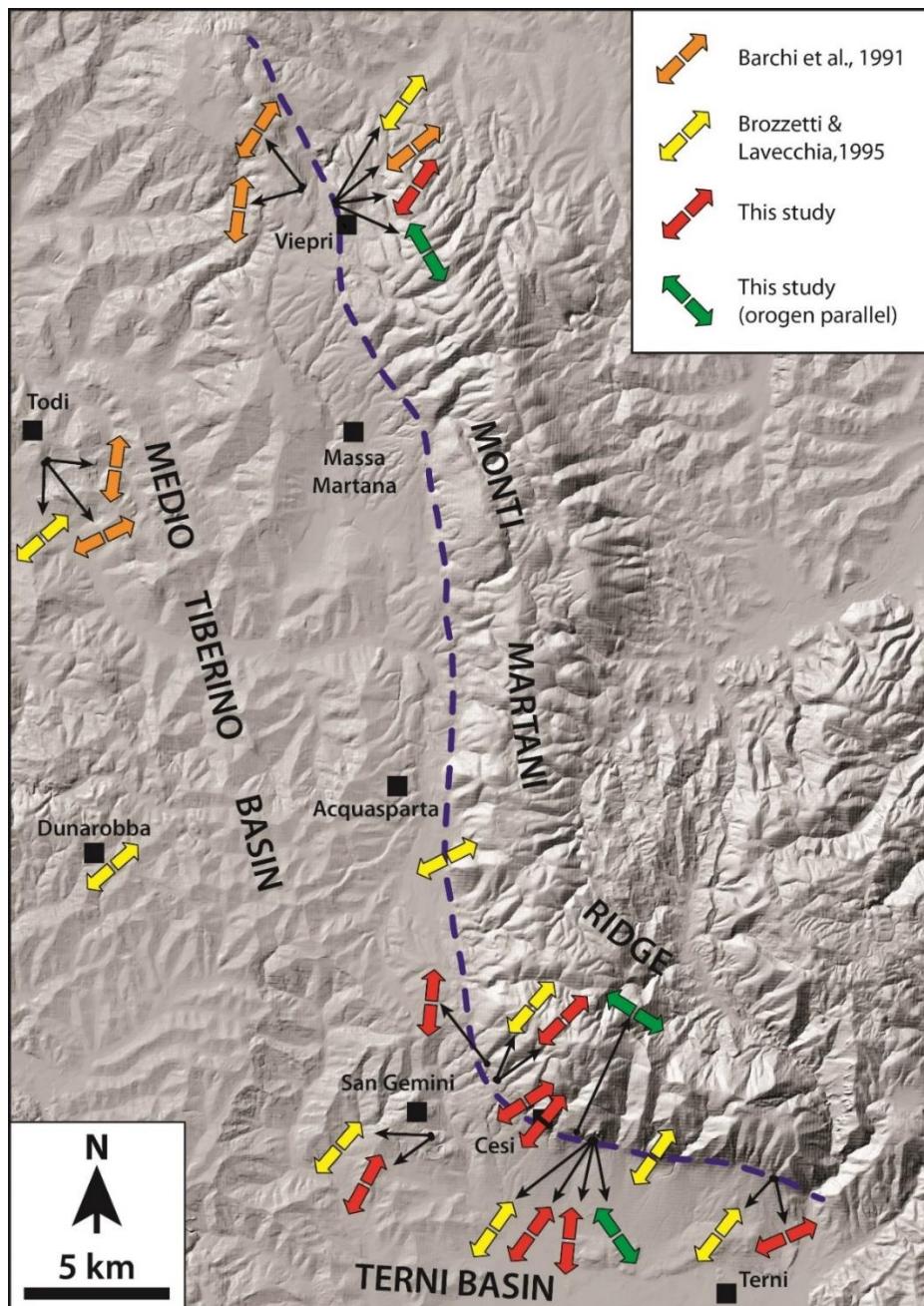
445


The setting described by these models is comparable to the context of the MMFS in the general tectonic framework of the transition between the Northern and Central Apennines. In fact, as discussed above, the MMR is characterized by significant structural inheritance due to the Jurassic rifting-related ~E-W and ~N-S striking faults. These structures have a moderate obliquity to the Quaternary and present-day regional σ_3 direction related to post-orogenic extension in the internal part of the orogen that is NE-SW (e.g., Piccardi et al., 1997; Montone et al., 2012; Mariucci & Montone, 2024 and references therein).

We thus suggest that the observed complex structural pattern of the MMFS might result from the interaction between inherited pre-orogenic structural features and post-orogenic regional stress tensor oriented obliquely to the pre-to-syn-orogenic structural grain.

As mentioned above, Mercuri et al. (2024) documented the reactivation of Jurassic normal faults belonging to a ~10 km long fault system (Celano-Ovindoli-Pezza Fault System) in an internal portion of the Central Apennines again as extensional faults

during post-orogenic extension. In that case, the strike of the inherited normal fault(s) (i.e., NNW-SSE) is very little oblique to the ideal strike of normal faults formed as optimally oriented in the framework of the post-orogenic extensional stress field, that is, NW-SE. This might have mechanically favored reactivation of pre-existing structures over the formation of neo-formed optimally oriented faults. By contrast, in the case of the MMR, the strike of the inherited Jurassic faults (i.e., ~N-S and ~E-W; Bruni et al., 1995; Coltorti et al., 1995) exhibits moderate- to high obliquity to the NW-SE direction, which would be the optimal direction for neo-formed normal faults in the present-day extensional stress field. Thus, this might have favored 460 neoformation of optimally oriented faults over reactivation of pre-existing misoriented faults (Fig. 16). This would agree with the observation that most of the faults documented in this study strike NW-SE (Fig. 5a) and, accordingly, most of them have 465 dip-slip slickenlines with oblique to strike-slip striae being clearly subordinate in our dataset (Fig. 5b). Also, the presence of a non-optimally oriented inherited structural grain seems to have favored the formation of a very segmented fault system, composed of a patchwork of relatively short (a few kilometers long?), optimally oriented normal faults, rather than the 470 formation of long extensional faults such as those known in other parts of the internal domain of the Apennines (Fig. 16). This interpretation might have relevant implications on seismic hazard assessments, since the length of seismogenic sources correlates linearly to the maximum potential magnitude of earthquakes (e.g., Wells & Coppersmith, 1994).


475 **Figure 16:** conceptual model for the development of post-orogenic extensional faults in the Monti Martani area. Optimally oriented structures are preferentially reactivated during post-orogenic extension and favor the formation of longer seismogenic normal faults. By contrast, a non-optimally oriented inherited structural grain with respect to the regional extensional stress field favors the activation of shorter, neo-formed normal faults which are ca. perpendicular to the regional extension direction.

5.3. Paleostress evolution

485 Paleostress analyses on the acquired fault-slip data revealed three distinct reduced extensional tensors, with a sub-horizontal σ_3 oriented NE-SW, NNE-SSW or NW-SE (Figs. 7 and 17). Despite field observations did not allow us to establish the relative chronology between the two first extensional phases, the latter clearly postdates the first two. In fact, the extensional paleostress tensor with a sub-horizontal σ_3 oriented NW-SE has been reconstructed in the Cesi quarry based on sub-horizontal slickenlines that postdate normal to oblique/normal slickenlines on NW-SE striking polyphase fault surfaces. The same relative chronology between normal/oblique and sinistral strike-slip striae on ~N-S striking faults has been also previously reported from other sites along the Martani Fault System (Bonini et al., 2003). Moreover, in the Viepri area sub-vertical calcite veins formed under NW-SE trending extension clearly postdate the formation of cataclasite related to normal faults formed under a NE-SW extensional regime (Fig. 8). Thus, compared to previous structural studies on the MMFS (Fig. 17), our work allowed us to better define the evolution of the local paleostress tensor as belonging to a transition from orogen-orthogonal extension (from NE-SW to NNE-SSW directions of extension) to a previously unknown local phase of orogen-parallel extension (NW-SE direction of extension).

490 The paleostress tensors with a sub-horizontal NE-SW and NNE-SSW σ_3 do not necessarily relate to two distinct tectonic phases. In fact, as discussed above, numerical models have shown that in the case of oblique rifting, with the regional extension direction oblique ($\sim 45^\circ$) to inherited structures, the orientation of the local extensional stress tensor may evolve through time and pass from slightly oblique to the regional extension direction, to almost perpendicular to the inherited structures (Brune, 2014, 2016). Thus, both local paleostress tensors might relate to the same phase of extension with a regional sub-horizontal minimum stress axis oriented NE-SW and compatible with the overall post-orogenic tectonic regime of the internal part of the Northern and Central Apennines (Mariucci et al., 2024).

495 Irrespective of whether this interpretation is correct, this mechanism cannot be used to explain the extensional paleostress tensor with a sub-horizontal σ_3 oriented NW-SE, which is orthogonal to the NE-SW regional extension direction. This paleostress tensor refers to an extensional tectonic event that postdates the formation of the main NW-SE striking faults that developed under overall NE-SW extension. Moreover, all the measured faults are sutured by Upper Pleistocene deposits (Figs. 11, 13 and 15) and no fault has been observed to dislocate this latter sedimentary unit. Thus, the paleostress tensor constraining NW-SE extension is likely related to a short-lived tectonic pulse of orogen-parallel extension that took place at some point between the Early and the Late Pleistocene. The geodynamic causes of this orogen-parallel extensional event remain unclear. However, this event may possibly correlate chronologically with a regional phase of increased uplift rate and increased normal fault activity affecting the Northern Apennines during the latest Early Pleistocene – Middle Pleistocene (Dramis, 1992).

Figure 17: Extension directions calculated after paleostress analyses of Plio-Quaternary faults of the Martani Fault System represented on a DTM of the study area. Orange arrows are from Barchi et al. (1991); yellow arrows are from Brozzetti & Lavecchia (1995); red arrows are orogen-orthogonal directions from this study; green arrows are orogen-parallel directions from this study. Dashed blue line marks the morphological boundary between the Monti Martani Ridge and the Medio Tiberino and Terni Plio-Quaternary basins.

510

The co-existence of orogen-parallel and orogen-orthogonal extensional structures has been already documented in several parts of the Southern Apennines. There, some authors proposed that orogen-parallel extension preceded orogen-orthogonal

extension and developed in response to the progressive thrust-belt bending after the opening of the Southern Tyrrenian Sea
515 during Early Miocene – Pliocene times (Oldow et al., 1993; Ferranti et al., 1996; Ferranti & Oldow, 1999). A similar interpretation cannot be applied to the orogen-parallel extensional event of our study, because oroclinal bending in the internal Umbria-Marche portion of the Northern Apennines that caused arcuation of the orogen occurred during the Late Miocene –
520 Pliocene (Caricchi et al., 2014), and is thus older than the timing we frame the orogen-parallel extensional event in the MMR documented in this study. However, studies on recent seismic sequences along the N-S trending Ortona-Roccamontefina tectonic line, at the boundary between the Central and Southern Apennines (Fig. 1a), have shown that orogen-parallel and orogen orthogonal extension can locally coexist in an overall tectonic context of orogen-orthogonal extension (Milano et al., 2002, 2008). This geological context has much affinity with the tectonic setting of the Monti Martani area in terms of orientation of the post-orogenic extensional stress tensor and of the structural inheritance. In fact, they document seismic sequences in the area of the Ortona-Roccamontefina lineament, which represents a structural inheritance oriented N-S and subject to a NE-SW
525 oriented post-orogenic extensional stress field. Similarly, the area of the Monti Martani is located in the vicinity of the Olevano-Antrodoco lineament, which represents the boundary between the Northern and Central Apennines (Parotto & Praturlon, 1975; Castellarin et al., 1978; Cosentino et al., 2010; Fig. 1a) and also represents a strong N-S oriented structural inheritance and subject to a NE-SW oriented post-orogenic extensional stress field.

5.4. Active seismotectonics and fault displacement hazard

530 The distribution of active seismicity suggests that the MMR is a seismically active region that responds to the extensional tectonic regime currently shaping the internal domain of the Apennines. However, whether this ridge contains active and capable faults remains a matter of debate. This debate has practical implications on the estimate of fault displacement hazard and related seismic risk since several settlements and civil infrastructures are built along and across the fault system.

535 The IAEA (2010) guidelines propose that, in interplate settings, a fault should be considered as active and capable if it has produced permanent surface deformation in the Upper Pleistocene-Holocene time interval. Machette (2000) recommend that the reliable definition of the state of activity of a fault for seismic hazard assessment should consider a time interval that includes several earthquake cycles. By applying this concept to the extensional domain of the Apennines, Galadini et al. (2012) proposed that a normal fault can be considered as active and capable if it contains evidence of activation since the Middle Pleistocene, unless it is sealed by landforms or deposits older than the Last Glacial Maximum (i.e. ca. 20 ka). The guidelines
540 of the Italian Department for Civil Protection consider a shorter time interval for the definition of active and capable faults, which should be considered such if they display evidence of surface rupture in the last 40 kyr (Technical Commission on Seismic Microzonation, 2015).

545 The ITHACA catalogue, which applies the definition of active and capable faults proposed by the IAEA (2010) guidelines, considers the Martani Fault System as active and capable by attributing a generic Pleistocene age to its activity (ITHACA Working Group, 2019). However, the supporting evidence to this statement is very dubious since it is based on a large scale neotectonic map of Italy (Ambrosetti et al., 1987), which impacts its reliability. Based on the interpretation of geomorphic

features such as tectonically displaced geomorphic markers, Bonini et al. (2003) suggested that some segments of the MMFS cut through Upper Pleistocene slope debris deposits and displace the Holocene topography, with reactivated N-NNW striking fault segments showing an oblique normal/sinistral kinematics and neoformed NW-SE striking fault segments having normal kinematics, both affecting the Meso-Cenozoic carbonate bedrock. The same study supports these inferences by interpreting ruptures on the **Decumanus** (i.e., a Roman road) in the archeological site of Carsulae as the result of surface faulting during an historical earthquake (around the fifth century AC). If these interpretations are correct, the MMFS should be considered as active and capable. However, subsequent archeological and geophysical studies have confuted this hypothesis by showing that the surface deformation in the Carsulae site is related to the collapse of a doline in the Lower Pleistocene travertine during 555 Roman times, rather than to a seismic event (Aringoli et al., 2009; Bottari & Sepe, 2013; Bottari et al., 2017).

 Our field observations document no faulting in deposits younger than the Lower Pleistocene. Where direct relationships between faults and the most recent sedimentary units were observed, faults always appear to be sutured by Upper Pleistocene sediments (Figs. 11, 13 and 15). This implies that the MMFS does not meet the requirements to be considered as active and capable, and such a definition in the public catalogues should, therefore, be reconsidered. This is supported by the fact that the 560 only unquestionable extensional faults cutting the Plio-Quaternary fill of the Medio Tiberino and Terni basins only affect the Upper Pliocene (?) – Lower Pleistocene units (Brozzetti & Lavecchia, 1995; Brozzetti & Stoppa, 1995; Basilici, 1997; this study).

6. Concluding remarks

We have shown that the structural template inherited from the Jurassic pre-orogenic rifting still represents a major controlling 565 factor for the tectonic evolution of this portion of the Northern Apennines. In fact, although we did not document a reactivation of the western and southern boundaries of the Monti Martani paleo-structural high, the present-day morphostructure of the study area seems to be controlled by the structural framework formed during the **Lower Triassic** rifting event. This structural inheritance also influenced the structural pattern of the Apennine orogeny in this sector. Most of the post-orogenic extensional faults that we have documented in this study are broadly orthogonal to the regional extension direction. By contrast, the 570 inherited ~N-S and ~E-W trends of the pre-orogenic structural grain have a substantial obliquity (~45°) to the regional post-orogenic direction of extension (i.e. NE-SW) (Fig. 16). This might suggest that for high obliquity between the inherited structures and the regional stress field, the activation of neoformed structures with an optimal orientation with respect to the stress field is mechanically preferred over the reactivation of non-optimally oriented pre-existing faults, as suggested by previous studies, even though the dominant morphostructural trends can still reflect the inherited structural template. This non- 575 optimal orientation between the local structural grain and the far-field stress seems to also favor the formation of fault systems composed of short (few kilometers long) second-order or en echelon faults, rather than the formation of kilometer-long faults (Fig. 16). This might have important implications on seismic hazard estimates in this kind of context, since fault length is linearly correlated with the maximum potential magnitude of a seismogenic source.

This work also confirms the importance of field-based structural geology approaches to determine the surface displacement

580 hazard related to complex active fault systems. In fact, a detailed and careful field analysis on single fault segments can confirm or disprove indications that can derive from larger scale studies or geomorphological inferences, which often have a much lower resolution and/or more controversial interpretations. This also makes it possible to gain a better understanding of the evolution of the local stress field through-time, when a long-lasting stable tectonic regime interacts with a non-optimally oriented inherited structural template.

585 Author contribution

Riccardo Asti: Conceptualization, Fieldwork, Data collection, Data analysis, Visualization, Writing - original draft. *Selina*

Bonini: Fieldwork, Data collection, Writing - review & editing. *Giulio Viola*: Data analysis, Writing - review & editing.

Gianluca Vignaroli: Conceptualization, Fieldwork, Data analysis, Writing - review & editing, Funding acquisition.

Competing interests

590 The authors declare that they have no conflict of interest.

Acknowledgements

This work was supported by the PE3 RETURN Project (CUP J33C22002840002). We thank Fabrizio Fioroni for providing

access to the Grotta Eolia site in Cesi and for his kind and precious assistance during the cave exploration. Valerio Chiaraluce

is thanked for stimulating discussions in the archeological site of Carsulae. Simone Fabbi, Stefano Tavani and Costantino

595 Zuccari are thanked for helpful discussions about the pre-orogenic inheritance in the Apennine system. We thank Gianluca

Benedetti, Massimo Comedini, Stefano Rodani and Giulia Tartaglia for stimulating discussions in the field and for encouraging

us throughout the realization of this study.

References

600 Accordi, G.: Il reticolo dei Monti Martani. *Bollettino della Società Geologica Italiana*, 95, 3-26, 1966.

Ambrosetti, P., Bosi, C., Carraro, F., Ciaranfi, N., Panizza, M., Papani, G., Vezzani, L. and Zanferrari, A.: Neotectonic Map of Italy: Scale 1:500000. Consiglio Nazionale delle Ricerche, Progetto Finalizzato Geodinamica, Sottoprogetto Neotettonica. Litografia Artistica Cartografica, Florence (Italy), 1987.

Angelier, J., and Mechler, P.: Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en sismologie : la méthode des dièdres droits. *Bulletin de la société géologique de France* 7/19, 1309-1318, 1977.

605 Aringoli, D., Farabollini, P., Gentili, B., Materazzi, M., and Pambianchi, G.: Geomorphological evidence of natural disasters in the Roman archaeological site of Carsulae (Tiber basin, central Italy). *Belgeo: Revue Belge de Géographie*, 5-20, 2009.

Autin, J., Bellahsen, N., Leroy, S., Husson, L., Beslier, M.O., and d'Acremont, E.: The role of structural inheritance in oblique 610 rifting: Insights from analogue models and application to the Gulf of Aden. *Tectonophysics* 607, 51-64, <https://doi.org/10.1016/j.tecto.2013.05.041>, 2013.

Barchi, M.: Una sezione geologica bilanciata attraverso il settore meridionale dell'Appennino umbro-marchigiano: l'Acquasparta-Spoleto-Accumuli. *Studi Geologici Camerti*, Vol. Spec. 1991/1, CROP 03, 347-362, 1991.

615 Barchi, M.: The Neogene-Quaternary evolution of the Northern Apennines: Crustal structure, style of deformation and seismicity. *J. Virtual Explor.*, 36, 1-24, 2010.

Barchi, M., Brozzetti, F., and Lavecchia, G.: Analisi strutturale e geometria dei bacini della media valle del Tevere e della Valle Umbra. *Bollettino della Società Geologica Italiana*, 110, 65-76, 1991.

Barchi, M., Carboni, F., Michele, M., Ercoli, M., Giorgetti, C., Porreca, M., Azzaro, S., and Chiaraluce, L.: The influence of 620 subsurface geology on the distribution of earthquakes during the 2016-2017 Central Italy seismic sequence. *Tectonophysics*, 807, 228797, 2021.

Bernoulli, D., Kälin, O., and Patacca, E.: A sunken continental margin of the Mesozoic Tethys: The northern and central Apennines. In B. Beaudoin & B. H. Purser (Eds.), Symposium: "Sédimentation Jurassique W européen" (Vol. 1, pp. 197-210). Publication Spécial Association Sédimentologique Française, 1979.

Basilici, G.: Il Bacino continentale Tiberino (Plio-Pleistocene, Umbria): analisi sedimentologica e stratigrafica. Ph.D. thesis, 625 University of Bologna, 323 pp, 1992.

Basilici, G.: Evoluzione deposizionale del ramo sud-occidentale del Bacino Tiberino (Plio-Pleistocene, Umbria): da un sistema lacustre profondo as una piana alluvionale. Abstract for the conference: Le Conche Intermontane, Rome, 13-15 september 1993, 11-13, 1993.

Basilici, G.: Sedimentary facies in an extensional and deep-lacustrine depositional system: the Pliocene Tiberino Basin, Central 630 Italy. *Sedimentary Geology*, 109, 73-94, 1997.

Berthé, D., Choukroune, P., and Jegouzo, P.: Orthogneiss, mylonite and non coaxial deformation of granites: the example of the South Armoric Shear Zone. *Journal of Structural Geology*, 1, 31–42, 1979.

Boccaletti, M., and Guazzone, G.: Remnant arcs and marginal basins in the Cainozoic development of the Mediterranean. *Nature*, 252, 18–21, 1974.

635 Boccaletti, M., Elter, P., and Guazzone, G.: Plate tectonic models for the development of the Western Alps and Northern Apennines. *Nature*, 234, 108–111, 1971.

Boccaletti, M., Coli, M., Eva, C., Ferrari, G., Giglia, G., Lazzarotto, A., Merlanti, F., Nicolich, R., Papani, G., and Postpischl, D.: Considerations on the seismotectonics of the Northern Apennines. *Tectonophysics*, 117 (1–2), 7–38, 1985.

640 Boncio, P., Brozzetti, F., and Lavecchia, G.: Architecture and seismotectonics of a regional low-angle normal fault zone in Central Italy. *Tectonics*, 19 (6), 1038–1055, 2000.

Bonini, M.: Chronology of deformation and analogue modelling of the Plio-Pleistocene ‘Tiber Basin’: implications for the evolution of the Northern Apennines (Italy). *Tectonophysics*, 285, 147–165, 1998.

Bonini, M., Tanini, C., Moratti, G., Piccardi, L., and Sani, F.: Geological and archaeological evidence of active faulting on the Martana Fault (Umbria-Marche Apennines, Italy) and its geodynamic implications. *J. Quat. Sci.*, 18, 695–708, 2003.

645 Bottari, C., and Sepe, V.: The role of earthquakes, landslides and climate changes in the abandonment of the Roman Carsulae site (Tevere basin e Central Italy). *Quat. Int.*, 308–309, 105–111, 2013.

Bottari, C., Aringoli, D., Carluccio, R., Castellano, C., Caracciolo, F.A., Gasperini, M., Materazzi, M., Nicolosi, I., Pambianchi, G., Pieruccini, P., and Sepe, V.: Geomorphological and geophysical investigations for the characterization of the Roman Carsulae site (Tiber basin, Central Italy). *J. Appl. Geophys.*, 143, 74–85,

650 <https://doi.org/10.1016/j.jappgeo.2017.03.021>, 2017.

Brozzetti, F., and Lavecchia, G.: Evoluzione del campo degli sforzi e storia deformativa nell’area dei Monti Martani (Umbria). *Bollettino della Società Geologica Italiana*, 114, 155–176, 1995.

Brozzetti, F., and Stoppa, F.: Le piroclastiti medio-pleistoceniche di Massa Martana-Acquasparta (Umbria): caratteri strutturali e vulcanologici. *Il Quaternario*, 8, 95–110, 1995.

655 Brune, S.: Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup, *Geochem. Geophys. Geosyst.*, 15(8), 3392–3415, doi:10.1002/2014GC005446, 2014.

Brune, S.: Rifts and rifted margins: a review of geodynamic processes and natural hazards. In: Duarte, J.C., Schellart, W.P. (Eds.), *Plate Boundaries and Natural Hazards*, vol. 219 AGU Geophysical Monograph, 2016.

660 Bruni, F., Calamita, F., Maranci, M., and Pierantoni, P. P.: Il controllo della tettonica giurassica sulla strutturazione neogenica dei Monti Martani meridionali (Preappennino umbro). *Studi Geologici Camerti*, Vol. Spec. 1995/1, 121–135, 1995.

Butler, H. R. W., Mazzoli, S., Corrado, S., Donatis, M. D., Bucci, D. D., Gambini, R., Naso, G., Nicolai, C., Scrocca, D., Shiner, P., and Zucconi, V.: Applying thick-skinned tectonic models to the Apennine thrust belt of Italy—Limitations and implications. In M. C. R. McClay (Ed.), *Thrust tectonics and hydrocarbon systems*, <https://doi.org/10.1306/m82813c34>, 2004

Butler, R.W.H., Tavarnelli, E., and Grasso, M.: Structural inheritance in mountain belts: an Alpine-Apennine perspective. 665 *Journal of Structural Geology*, 28, 1893–908, 2006.

Buttinelli, M., Pezzo, G., Valoroso, L., De Gori, P., and Chiarabba, C.: Tectonics inversions, fault segmentation, and triggering mechanisms in the central Apennines normal fault system: Insights from high-resolution velocity models. *Tectonics*, 37, 4135–4149, <https://doi.org/10.1029/2018TC005053>, 2018.

670 Calamita, F., Cello, G., Centamore, E., Deiana, G., Micarelli, A., Paltrinieri, W., and Ridolfi, M.: Stile deformativo e cronologia della deformazione lungo tre sezioni bilanciate dall'Appennino umbro-marchigiano alla costa adriatica. *Studi Geologici Camerti*, Volume speciale 1991/1, 295–314, 1991.

Calamita, F., Satolli, S., Scisciani, V., Esestime, P., and Pace, P.: Contrasting styles of fault reactivation in curved orogenic belts: Examples from the central Apennines (Italy). *GSA Bulletin*, 123(5–6), 1097–1111, 2011.

675 Cardello, G. L., and Doglioni, C.: From Mesozoic rifting to Apennine orogeny: The Gran Sasso range (Italy). *Gondwana Research*, 27(4), 1307–1334, <https://doi.org/10.1016/j.gr.2014.09.009>, 2015.

Caricchi, C., Cifelli, F., Sagnotti, L., Sani, F., Speranza, F., and Mattei M.: Paleomagnetic evidence for a post-Eocene 90° CCW rotation of internal Apennine units: A linkage with Corsica-Sardinia rotation? *Tectonics*, 33, 374–392, doi:10.1002/2013TC003364, 2014.

680 Carminati, E., Lustrino, M., and Doglioni, C.: Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. *Tectonophysics*, 579, 173–192, 2012.

Castellarin, A., Colacicchi, R., and Praturlon, A.: Fasi distensive, trascorrenze e sovrascorimenti lungo la 'linea Ancona-Anzio', dal Lias medio al Pliocene. *Geologica Romana*, 17, 161–189, 1978.

685 Cattuto, C., Gregori, L., Melelli, L., Taramelli, A., and Troiani, C.: Paleogeographic evolution of the Terni basin (Umbria, Italy). Proceedings of the Scientific Meeting 'Geological and geodynamic evolution of the Apennines' in memory of Giampaolo Pialli, Foligno (PG) 16–17 February 2000. *Bollettino della Società Geologica Italiana*, Special Volume 1, 865–872, 2002.

Cavinato, G.P., and De Celles, P.G.: Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. *Geology*, 27, 955–958, 1999.

690 Cello, G., Mazzoli, S., Tondi, E., and Turco, E.: Active tectonics in the Central Apennines and possible implications for seismic hazard analysis in peninsular Italy. *Tectonophysics*, 272, 43–68, 1997.

Centamore, E., Deiana, G., Micarelli, A., and Potetti, M.: Il Trias-Paleogene delle Marche. *Studi Geologici Camerti*, Volume speciale "La Geologia delle Marche", 9–27, 1986.

Chiarabba, C., and Amato, A.: Vp and Vp/Vs images in the Mw 6.0 Colfiorito fault region (central Italy): A contribution to the understanding of seismotectonic and seismogenic processes. *Journal of Geophysical Research*, 108(B5), 2248, 695 <https://doi.org/10.1029/2001JB001665>, 2003.

Cipriani, A., Caratelli, M., and Santantonio, M.: Geological mapping reveals the role of Early Jurassic rift architecture in the dispersal of calciturbidites: New insights from the Central and Northern Apennines. *Basin Research*, 2020; 00:1–25. DOI: 10.1111/bre.12438, 2020.

700 Coltorti, M., and Bosellini, A.: Sedimentazione e tettonica nel Giurassico della dorsale marchigiana. *Studi Geologici Camerti*, 6, 13–21, 1980.

Coltorti, M., Pierantoni, P. P., and Pieruccini, P.: I depositi fluvio-lacustri di Montebibico (Monti Martani meridionali) ed il loro significato nell’evoluzione tettonico-sedimentaria del Bacino Tiberino. *Studi Geologici Camerti*, Vol. Spec. 1995/1, 305–314, 1995.

705 Conti, P., Cornamusini, G., Carmignani, L., Motti, A., Natali, N., Bettucci, C., Lavorini, G., Pirro, A., Pizzoli, M., and Daniele, G.: An outline of the geology of the Northern Apennines (Italy), with geological map at 1 : 250, 000 scale. *Italian Journal of Geosciences*, 139, 146–164, 10.3301/IJG.2019.25, 2020.

Cosentino, D., Cipollari, P., Marsili, P., and Scrocca, D.: Geology of the Central Apennines: A regional review, in Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S., and Doglioni, C., eds., *The Geology of Italy: Journal of the Virtual Explorer* (Electronic Edition), 36, paper 11, 2010.

710 Cowie, P. A., Roberts, G. P., Bull, J. M., and Visini, F.: Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings. *Geophysical Journal International*, 189(1), 143–160, <https://doi.org/10.1111/j.1365-246X.2012.05378.x>, 2012.

715 Curzi, M., Aldega, L., Bernasconi, S. M., Berra, F., Billi, A., Boschi, C., Franchini, S., van der Lelij, R., Viola, G., and Carminati, E.: Architecture and evolution of an extensionally-inverted thrust (Mt. Tancia Thrust, Central Apennines): Geological, structural, geochemical, and K–Ar geochronological constraints. *Journal of Structural Geology*, 136, 104059, 2020.

Decandia, F.A., and Tavarnelli, E.: Cronologia delle deformazioni nell’area di Spoleto (Umbria sud-orientale). *Studi Geologici Cam.*, vol. spec. 1991/1, 329–331, 1991.

720 Del Ventisette, C., Bonini, M., Maestrelli, D., Sani, F., Iavarone, E., and Montanari, D.: 3D-thrust fault pattern control on negative inversion: An analogue modelling perspective on central Italy. *Journal of Structural Geology*, 143, 104254, 2021.

Delvaux, D.: The TENSOR program for paleostress reconstruction: exemples from the east African and the Baikal rift zones. EUG VII Strasbourg, France, 4–8 April 1993. Abstract supplement N°1 to *Terra Nova*, 5, 216, 1993.

725 Delvaux, D., and Sperner, B.: Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In: *New Insights into Structural Interpretation and Modelling* (D. Nieuwland Ed.). Geological Society, London, Special Publications 212, 75–100, 2003.

Di Domenica, A., Turtù, A., Satolli, S., and Calamita, F.: Relationships between thrusts and normal faults in curved belts: New insight in the inversion tectonics of the central-northern Apennines (Italy). *Journal of Structural Geology*, 42, 104–117, <https://doi.org/10.1016/j.jsg.2012.06.008>, 2012.

Doglioni, C., Gueguen, E., Harabaglia, P., and Mongelli, F.: On the origin of west-directed subduction zones and applications to the western Mediterranean, in Durand, B., et al., eds., *The Mediterranean basins: Tertiary ex-tension within the Alpine orogen: Geological Society of London Special Publication 156*, 541–561, 1999.

Dramis, F.: Il ruolo dei sollevamenti tettonici a largo raggio nella genesi del rilievo appenninico. *Studi Geologici Camerti* (special issue), 9–15, 1992.

Elter, P. : L'ensemble ligure. *Bulletin de la Société Géologique de France*, 17, 984—997, 1975.

Faccenna, C., Mattei, M., Funiciello, D., and Jolivet, L.: Styles of back-arc extension in the Central Mediterranean. *Terra Nova* 9, 126–130, <https://doi.org/10.1046/j.1365-3121.1997.d01-12.x>, 1997.

Faccenna, C., Becker, T. W., Lucente, F. P., Jolivet, L., and Rossetti, F.: History of subduction and back arc extension in the Central Mediterranean. *Geophysical Journal International*, 145(3), 809–820, <https://doi.org/10.1046/j.0956-540x.2001.01435.x>, 2001.

Ferranti, L., and Oldow, J. S.: History and tectonic implications of low-angle detachment faults and orogen parallel extension, Picentini Mountains, Southern Apennines fold and thrust belt, Italy. *Tectonics*, 18(3), 498–526, 1999.

Ferranti, L., Oldow, J. S., and Sacchi, M.: Pre-Quaternary orogen-parallel extension in the Southern Apennine belt, Italy, *Tectonophysics*, 260, 325– 347, 1996.

Galadini, F., and Galli, P.: Active tectonics in the Central Apennines (Italy) – input data for seismic hazard assessment. *Nat. Hazards*, 22, 225–270, 2000.

Galadini, F., Falcucci, E., Galli, P., Giaccio, B., Gori, S., Messina, P., Moro, M., Saroli, M., Scardia, G., and Sposato, A.: Time intervals to assess active and capable faults for engineering practices in Italy. *Eng. Geol.* 139–140, 50–65, 2012.

Galderisi, A., and Galli, P.: Coulomb stress transfer between parallel faults. The case of Norcia and Mt Vettore normal faults (Italy, 2016 Mw 6.6 earthquake). *Results in Geophysical Sciences* 1–4, 100003, <https://doi.org/10.1016/j.ringps.2020.100003>, 2020.

Gasparini, C., Iannaccone, G., and Scarpa, R.: Fault-plane solutions and seismicity of the Italian peninsula. *Tectonophysics*, 117, 59–78, 1985.

Hodge, M. S., Venvik, G., Knies, J., van der Lelij, R., Schönenberger, J., Nordgulen, Ø., Brönner, M., Nasuti, A., and Viola, G.: Multiscalar 3D temporal structural characterisation of Smøla island, mid-Norwegian passive margin: an analogue for unravelling the tectonic history of offshore basement highs. *Solid Earth*, 15(5), 589–615, 2024.

IAEA: Seismic hazards in site evaluation for nuclear installations, Safety Standards Series No. SSG-9, 60, <https://www.iaea.org/resources/safety-standards>, 2010.

ISIDE Working Group: Italian Seismological Instrumental and Parametric Database (ISIDE). Istituto Nazionale di Geofisica e Vulcanologia (INGV). <https://doi.org/10.13127/ISIDE>, 2007.

ITHACA Working Group: ITHACA (Italy HAzard from CApable faulting), A database of active capable faults of the Italian territory. Version December 2019. ISPRA Geological Survey of Italy. Web Portal: <http://sg12.isprambiente.it/ithacaweb/Mappatura.aspx>, 2019.

Keep, M., and McClay, K.R.: Analogue modelling of multiphase rift systems. *Tectonophysics*, 273, 239–270, 1997.

Keller, J. V. A., Minelli, G., and Pialli, G.: Anatomy of late orogenic extension: The Northern Apennines case. *Tectonophysics*, 238(1-4), 275–294, doi:10.1016/0040-1951(94)90060-4, 1994.

Laurenzi, M., Stoppa, F., and Villa, I.: Eventi ignei monogenici e depositi piroclastici nel distretto Ultra-Alcalino Umbro-Laziale (ULUD): revisione, aggiornamento e comparazione dei dati cronologici. *Plinius*, 12, 61–65, 1994.

Lavecchia, G., Boncio, P., Brozzetti, F., Stucchi, M., and Leschiutta, I.: New criteria for seismotectonic zoning in Central Italy: insights from the Umbria–Marche Apennines. *Proceedings of the Scientific Meeting ‘Geological and geodynamic evolution of the Apennines’ in memory of Giampaolo Pialli, Foligno (PG) 16–17 February 2000. Bollettino della Società Geologica Italiana, Special Volume 1*, 881–890, 2002.

Machette, M.N.: Active, capable, and potentially active faults - a paleoseismic perspective, *Journal of Geodynamics*, 29, 387–392, 2000.

Malinverno, A., and Ryan, W.B.F.: Extension in the Tyrrhenian sea and shortening in the Apennines as results of arc migration driven by sinking of the lithosphere. *Tectonics*, 5, 227–245, 1986.

Mantovani, E., Babbucci, D., Tamburelli, C., and Viti, M.: A review on the driving mechanism of the Tyrrhenian-Apennines system: implications for the present seismotectonic setting in the Central-Northern Apennines. *Tectonophysics*, 476, 22–40, <https://doi.org/10.1016/j.tecto.2008.10.032>, 2009.

Mariucci, M.T., Amato, A., and Montone, P.: Recent tectonic evolution and present stress in the Northern Apennines. *Tectonics*, 18 (1), 108–118, 1999.

Mariucci, M.T., and Montone, P.: IPSI 1.6, Database of Italian Present-day Stress Indicators, Istituto Nazionale di Geofisica e Vulcanologia (INGV). <https://doi.org/10.13127/IPSI.1.6>, 2024.

Mattila, J., and Viola, G.: New constraints on 1.7 Gyr of brittle tectonic evolution in southwestern Finland derived from a structural study at the site of a potential nuclear waste repository (Olkiluoto Island). *Journal of Structural Geology*, 67, 50–74, 2014.

McClay, K. R., and White, M. J.: Analogue modelling of orthogonal and oblique rifting. *Marine and Petroleum Geology*, 12(2), 137–151, doi:10.1016/0264-8172(95)92835-K, 1995.

Mercuri, M., Tavani, S., Fabbi, S., Lavosi, G., and Carminati, E.: Long live the fault! Double inversion of a Mesozoic rift-related fault system in the central Apennines. *Terra Nova*, 00, 1–11, <https://doi.org/10.1111/ter.12718>, 2024.

Milano, G., Ventura, G., and Di Giovambattista, R.: Seismic evidence of longitudinal extension in the Southern Apennines chain (Italy): the 1997–1998 Sannio-Matese seismic sequence. *Geophys. Res. Lett.*, 29 (20), <https://doi.org/10.1029/2002GL015188>, 2002.

Milano, G., Di Giovambattista, R., and Ventura, G.: Seismic activity in the transition zone between Southern and Central Apennines (Italy): evidences of longitudinal extension inside the Ortona-Roccamontfina tectonic line. *Tectonophysics*, 457 (1–2), 102–110, 2008.

Mildon, Z. K., Roberts, G. P., Faure Walker, J. P., and Iezzi, F.: Coulomb stress transfer and fault interaction over millennia on non-planar active normal faults: the Mw 6.5–5.0 seismic sequence of 2016–2017, central Italy. *Geophys. J. Int.*, 210, 1206–1218, 2017.

Molli, G.: Northern Apennine–Corsica orogenic system: an updated overview. *Geol. Soc. Lond. Spec. Publ.*, 298 (1), 413–442, 2008.

Montone, P., Mariucci, M.T. and Pierdominici, S.: The Italian present-day stress map. *Geophys. J. Int.*, 189, 705–716, doi:10.1111/j.1365-246X.2012.05391.x, 2012.

Oldow, J.S., D'Argenio, B., Ferranti, L., Pappone, G., Marsella, E., and Sacchi, M.: Large-scale longitudinal extension in the southern Apennines contractional belt, Italy. *Geology*, 21, 1123–1126, 1993.

Pace, P., and Calamita, F.: Push-up inversion structures vs. fault-bend reactivation anticlines along oblique thrust ramps: examples from the Apennines fold-and-thrust belt (Italy). *J Geol Soc Lond*, 171, 227–238, <https://doi.org/10.1144/jgs2013-053>, 2014.

Parotto, M., and Praturlon, A.: Geological summary of the Central Apennines. *Quaderni de 'La Ricerca Scientifica'*, 90, 257–311, 1975.

Patacca, E., Scandone, P., Di Luzio, E., Cavinato, G.P., and Parotto, M.: Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. *Tectonics*, 27, TC3006, 2008.

Piccardi, L., Sani, F., Bonini, M., Boccaletti, M., Moratti, G., and Gualtierotti, A.: Deformazioni quaternarie nell'Appennino centro-settentrionale: evidenze ed implicazioni. Proceedings of the A.I.Q.UA. Congress 'Tettonica quaternaria del territorio italiano: conoscenze, problemi ed applicazioni', Parma, 25–27 February 1997. *Il Quaternario*, 10, 273–280, 1997.

Pizzi, A., and Galadini, F.: Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy). *Tectonophysics*, 476(1-2), 304–319, 2009.

Pondrelli, S., Salimbeni, S., Ekström, G., Morelli, A., Gasperini, P., and Vannucci, G.: The Italian CMT dataset from 1977 to the present, *Phys. Earth Planet. Int.*, 159(3-4), 286–303, doi:10.1016/j.pepi.2006.07.008, 2006.

Principi, G., and Treves, B.: Il sistema corso-appenninico come prisma d'accrescione. Riflessi sul problema generale del limite Alpi–Appennini. *Mem Soc Geol It*, 28, 549–576, 1984.

Rosenbaum, G., and Lister, G.S.: Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. *Tectonics*, 23, TC1013, doi:10.1029/2003TC001518, 2004.

Rosenbaum, G., Lister, G.S., and Duboz, C.: The Mesozoic and Cenozoic motion of Adria (central Mediterranean): constraints and limitations. *Geodin. Acta*, 17, 125–139, 2004.

Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: The Italian earthquake catalogue CPTI15. *Bulletin of Earthquake Engineering*, 18(7), 2953–2984, <https://doi.org/10.1007/s10518-020-00818-y>, 2020.

Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., and Antonucci A.: Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). <https://doi.org/10.13127/CPTI/CPTI15.4>, 2022.

830 Salvini, F.: Daisy 3, the Structural Data Integrated Analyser. Dipartimento di Scienze Geologiche, Università di “Roma Tre”, Roma, <http://host.uniroma3.it/progetti/fralab>, 2002.

Salvini, F., Billi, A., and Wise, D.U.: Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata fault zone, Southern Apennines, Italy. *J. Struct. Geol.* 21, 1731–1749, 1999.

Santantonio, M., and Carminati, E.: The Jurassic rifting evolution of the Apennines and Southern Alps (Italy): Parallels and 835 differences. *GSA Bulletin*, 123, 468-484, 2011.

Santantonio, M.: Facies associations and evolution of pelagic carbonate platform/basin systems: examples from the Italian Jurassic. *Sedimentology*, 40(6), 1039-1067, 1993.

Santantonio, M., Cipriani, A., Fabbi, S., Citton, P., and Romano, M.: PCP-basin settings in the fossil record: state of the art – Guest editorial. *Italian Journal of Geosciences*, 139 (f.1), 5-7, 2020.

840 Scheiber, T., and Viola, G.: Complex Bedrock Fracture Patterns: A Multipronged Approach to Resolve Their Evolution in Space and Time. *Tectonics*, 37, 1030–1062, <https://doi.org/10.1002/2017TC004763>, 2018.

Scisciani, V.: Styles of positive inversion tectonics in the central Apennines and in the Adriatic foreland: Implications for the evolution of the Apennine chain (Italy). *Journal of Structural Geology*, 31(11), 1276–1294, <https://doi.org/10.1016/j.jsg.2009.02.004>, 2009.

845 Scognamiglio, L., Tinti, E., and Quintiliani, M.: Time Domain Moment Tensor (TDMT) [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). <https://doi.org/10.13127/TDMT>, 2006.

Tavani, S., Granado, P., Corradetti, A., Camanni, G., Vignaroli, G., Manatschal, G., Mazzoli, S., Muñoz, J. A., and Parente, M.: Rift inheritance controls the switch from thin-to thick-skinned thrusting and basal décollement re-localization at the subduction-to-collision transition. *GSA Bulletin*, 133(9–10), 2157–2170, 2021.

850 Tavani, S., Smeraglia, L., Fabbi, S., Aldega, L., Sabbatino, M., Cardello, G. L., Maresca, A., Schirripa Spagnolo, G., Kylander-Clark, A., Billi, A., Bernasconi, S. M., and Carminati, E.: Timing, thrusting mode, and negative inversion along the Circeo thrust, Apennines, Italy: How the accretion-to-Extension transition operated during slab rollback. *Tectonics*, 42(6), e2022TC007679, 2023.

Tavarnelli, E.: The effects of pre-existing normal faults on thrust ramp development: an example from the Northern Apennines, 855 Italy. *Geol. Rundsch.*, 85(2), 363-371, 1996.

Tavarnelli, E., Butler, R. W. H., Decandia, F. A., Calamita, F., Grasso, M., Alvarez, W., and Renda, P.: Implications of fault reactivation and structural inheritance in the Cenozoic tectonic evolution of Italy. *The Geology of Italy*, 1, 209–222, 2004.

Tavarnelli, E., Scisciani, V., Patruno, S., Calamita, F., Pace, P., and Iacopini, D.: The role of structural inheritance in the evolution of fold-and-thrust belts: insights from the Umbria-Marche Apennines, Italy. In 250 Million Years of Earth History 860 in Central Italy: Celebrating 25 Years of the Geological Observatory of Coldigioco (eds. C. Koeberl and D.M. Bice), pp. 191–212. Boulder, CO: Geological Society of America, Special Paper no. 542, 2019.

Technical Commission on Seismic Microzonation: Land Use Guidelines for Areas with Active and Capable Faults (ACF), Conference of the Italian Regions and Autonomous Provinces – Civil Protection Department, Rome, 1-26, 2015.

Vai, G.B., and Martini, I.P.: Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. Springer Dordrecht, 865 633 pp. <https://doi.org/10.1007/978-94-015-9829-3>, 2001.

Vezzani, L., Festa, A., and Ghisetti, F.: Geology and Tectonic Evolution of the Central-Southern Apennines, Italy. Geological Society of America: Boulder, CO, USA, Special paper 469, 2010.

Viola, G., Venvik Ganerød, G., and Wahlgren, C.-H.: Unravelling 1.5 Gyr of brittle deformation history in the Laxemar-Simpevarp area, SE Sweden: a contribution to the Swedish site investigation study for the disposal of highly radioactive nuclear 870 waste. *Tectonics*, 28, TC5007, doi:10.1029/2009TC002461, 2009.

Viola, G., Kounov, A., Andreoli, M.A.G., and Mattila, J.: Brittle tectonic evolution along the western margin of South Africa: more than 500 Myr of continued reactivation. *Tectonophysics*, 514-517, 93–114, 2012.

Viola, G., Musumeci, G., Mazzarini, F., Tavazzani, L., Curzi, M., Torgersen, E., van der Lelij, R., and Aldega, L.: Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, 875 Northern Apennines. *Solid Earth*, 13(8), 1327–1351, 2022.

Wang, L., Maestrelli, D., Corti, G., Zou, Y., and Shen, C.: Normal fault reactivation during multiphase extension: analogue models and application to the Turkana depression, East Africa. *Tectonophysics*, 811, 228870, <https://doi.org/10.1016/j.tecto.2021.228870>, 2021.

Wells, D.L., and Coppersmith, K.J.: Empirical relationships among magnitude, rupture length, rupture area, and surface 880 displacement. *Bull. Seis. Soc. Am.*, 84, 974–1002, <https://doi.org/10.1785/BSSA0840040974>, 1994.

Ziegler, P.A.: Evolution of the Arctic-North Atlantic and the Western Tethys. *AAPG Mem.*, 43, 1–198, 1988.

Zuccari, C., Viola, G., Curzi, M., Aldega, L., and Vignaroli, G.: What steers the “folding to faulting” transition in carbonate-dominated seismic fold-and-thrust belts? New insights from the Eastern Southern Alps (Northern Italy). *J. Struct. Geol.* 157, 104560, <https://doi.org/10.1016/j.jsg.2022.104560>, 2022.