Supplement of

Historical trends and controlling factors of isoprene emissions in

CMIP6 Earth system models 3

- Ngoc Thi Nhu Do¹, Kengo Sudo^{1,3}, Akihiko Ito^{2,3,4}, Louisa K. Emmons⁵, Vaishali Naik⁶, Kostas Tsigaridis^{7,8}, Øyvind Seland⁹, Gerd A. Folberth¹⁰, Douglas I. Kelley¹¹
- ¹Graduate School of Environment Studies, Nagoya University, Nagoya, 464-8601, Japan
- ²Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ³Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 237-0061, Japan
 - ⁴National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki, 305-8506, Japan
- ⁵NSF National Center for Atmospheric Research, Boulder, CO, USA
- ⁶NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA 11
- ⁷Center for Climate Systems Research, Columbia University, 2880 Broadway, New York, 10025 NY, USA 12
 - ⁸NASA Goddard Institute for Space Studies, 2880 Broadway, New York, 10025 NY, USA
- ⁹Norwegian Meteorological Institute, Oslo, Norway
- ¹⁰UK Met Office Hadley Centre, Exeter, UK
- $^{11} UK$ Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK 16
- 17 Correspondence to: Ngoc Thi Nhu Do (ngocdtn19@gmail.com)

Deleted: T		
Deleted: C		
Deleted: F		
Deleted: I		
Deleted: E		
Deleted: S		
Deleted: M		

25 Table S1. Descriptions of symbols and parameters in isoprene emission schemes.

Model (Scheme)	$\gamma_{\scriptscriptstyle TMP}$	$\gamma_{_{PPFD}}$	$\gamma_{\scriptscriptstyle A}$	$\gamma_{_{SM}}$	$\gamma_{co_{2_inhi}}$	$\gamma_{\scriptscriptstyle CE}$
CESM2-WACCM/ NorESM2-LM(G2012)				$\begin{split} \gamma_{SM} &= 1 \ (\theta > \theta_1) \\ \gamma_{SM} &= \frac{\theta - \theta_W}{\Delta \theta_1} (\theta_W < \theta < \theta_1) \\ \gamma_{SM} &= 0 \ (\theta < \theta_W) \end{split}$ $Note: \gamma_{SM} = 1 \ \text{for CESM2-} \\ WACCM(G2012) \ \text{in this study} \end{split}$	$C_{CO_2} < 365 \ ppm: \ \gamma_{CO_2.inhi} = 1$ $C_{CO_2} \ge 365 \ ppm:$ $\gamma_{CO_2.inhi} = I_{Smax} - \frac{I_{Smax} \cdot (C_l)^h}{(C^*)^h + (C_l)^h}$	0.57
GFDL-ESM4 (G2006)	$E_{opt} \cdot \frac{C_{T2} \cdot exp \left(C_{T1} \cdot x\right)}{C_{T2} - C_{T1}\left(1 - exp \left(C_{T2} \cdot x\right)\right)}$	$C_p \cdot \frac{\alpha PPFD}{\sqrt{1 + \alpha^2 PPFD^2}}$	$F_{new}A_{new} + F_{grow}A_{grow} + F_{mat}A_{mat} + F_{old}A_{old}$	-	-	$\frac{0.49 LAI_C}{[(1+0.2LAI_C^2)^{0.5}]}$
VISIT(G1997)	$\frac{exp\left(\frac{c_{T1}(T_{l}-T_{s})}{RT_{s}T_{l}}\right)}{0.961 + exp\left(\frac{c_{T2}(T_{l}-T_{M})}{RT_{s}T_{l}}\right))}$	$\alpha_{\scriptscriptstyle 1} c_{\scriptscriptstyle L} Q$	1) Evergreen: $\begin{aligned} \gamma_A &= 0.05 \text{ (leaf age} < 1 \text{ month)} \sim 1.2 \\ (3 &< \text{leaf age} < 24 \text{ months)} \end{aligned}$ 2) Deciduous $\begin{aligned} \gamma_A &= 0.05 \text{ (leaf age} < 1 \text{ month)} \sim 1.2 \\ (2 &< \text{leaf age} < 10 \text{ months)} \end{aligned}$	-	-	0.5
GISS-E2.1-G(G1995)	$\frac{exp\left(\frac{c_{T1}(T_l - T_s)}{RT_sT_l}\right)}{1 + exp\left(\frac{c_{T2}(T_l - T_M)}{RT_sT_l}\right))}$	$\frac{\alpha_1 c_L Q}{\sqrt{1 + \alpha_1^2 Q^2}}$	-	-	-	-
UKESM1-0-LL(P2011)	$\left(e^{0.1(T_a-T_{st})}; 2.3\right)$	$\frac{A_J + R_D}{(A_{J)_{st}} + (R_{D)_{st}}}$	-	-	$\frac{C_{i_{st}}}{C_{i}}$	-

1	Deleted: exp
$\left(\right)$	Deleted: x
1	Deleted: exp
Ý	Deleted:

```
E_{opt}: the maximum normalized emission capacity (mol km<sup>-2</sup> h<sup>-1</sup>)
x : Function of leaf temperature
C_{T1}, C_{T2}: empirical coefficient (95, 230)
|c_{T1}, c_{T2}|: empirical coefficient; 95000, 230000 J mol<sup>-1</sup>)
T_M: empirical coefficient (314 K)
R: Constant (8.314 J K<sup>-1</sup> mol<sup>-1</sup>)
T_a: air temperature
|T_{st}|: temperature at a standard condition (303.15 K)
C_p: function related to past PPFD
\alpha: empirical coefficients associated with past PPFD
PPFD: instantaneous photosynthesis photo flux density
\alpha_1, c_L: empirical coefficient (0.0027, 1.066)
Q: flux of PAR (µmol m<sup>-2</sup> s<sup>-1</sup>)
A_I: leaf level net photosynthesis when RuBP is limiting
R_D: Leaf level dark respiration
"st" indicates that the variables are measured at standard conditions
Fraction for four growth stages: new foliage (F<sub>new</sub>), growing foliage (F<sub>grow</sub>), mature foliage (F<sub>mat</sub>), and old foliage (F<sub>old</sub>).
A_{\text{new}}, A_{\text{grow}}, A_{\text{mat}}, and A_{\text{old}} are the relative emission rates assigned to each canopy fraction depending on PFTs.
The only update of equation parameters from G2006 is the relative emission rates assigned to each compound class in G2012.
\theta: soil moisture (m<sup>3</sup> m<sup>-3</sup>)
\theta_w: soil moisture threshold below which plants cannot extract water from soil (wilting point, m<sup>3</sup> m<sup>-3</sup>)
\Delta\theta_1 (=0.06): parameter from Pegoraro et al. (2004) for G2006 and \Delta\theta_1 (=0.04) for G2012.
|I_{Smax}|: empirically coefficient (1.344)
|C_i|: Leaf internal CO<sub>2</sub> concentration, which is estimated as 70% of the ambient CO<sub>2</sub> concentration (C_{CO_2})
C*: empirically coefficient (585)
h: empirically coefficient (1.4614)
Ciet: Leaf internal CO2 concentration at standard conditions
```

 $Table~S2.~Summary~of~emulated~sensitivity~simulations~using~random~forest~regressors~for~CESM2-WACCM(G2012),\\NorESM2-LM(G2012)~and~UKESM1-0-LL(P2011).$

Simulation No.	CO ₂ conc.	LULGG	Climate					
Simulation No.	CO ₂ conc.	LULCC -	Temperature	Temperature Shortwave radiation				
S0	Fixed in 1850	Fixed in 1850		CII				
S1	-	Fixed in 1850		Climate fixed in 1850				
S2	-	Fixed in 1850	-	-	-			
S3	-	-	-	-	-			
S4	-	-	Fixed in 1850	-	-			
S5	-	-	-	Fixed in 1850	-			
S6	-	-	-	-	Fixed in 1850			

[&]quot;-" denotes the variable that varied annually during the simulation period.

Table~S3.~Summary~of~emulated~sensitivity~simulations~using~random~forest~regressors~for~GFDL-ESM4 (G2006)~and~GISS-E2.1-G (G1995).

C' La N	LILLOC	Climate				
Simulation No.	LULCC -	Temperature	Shortwave radiation	Precipitation		
S1'	Fixed in 1850		Climate fixed in 1850			
S2'	Fixed in 1850	-	-	-		
S3'	-	-	-	-		
S4	-	Fixed in 1850	-	-		
S5	-	-	Fixed in 1850	-		
S6	-	-	-	Fixed in 1850		

[&]quot;-" denotes the variable that varied annually during the simulation period.

Region	Abbr.	CESM2- WACCM (G2012)	NorESM2 -LM (G2012)	GFDL- ESM4 (G2006)	GISS- E2.1-G (G1995)	UKESM1- 0-LL (P2011)	VISIT-S3 (G1997)	Ensemble mean	Inter- model spreads	Relative inter- model spreads (%)
Alaska/N.W.Canada Canada/	ALA	0.44	0.29	0.38	1.54	1.10	1.39	0.85	0.51	59%
Greenl./Icel.	CGI	0.61	0.62	1.12	2.73	2.55	2.20	1.64	0.88	54%
W. North America	WNA	1.83	1.85	2.17	8.34	9.34	3.32	4.48	3.14	70%
C. North America	CNA	3.04	3.57	9.46	18.07	10.83	5.72	8.45	5.16	61%
E. North America Central America/	ENA	5.41	5.40	5.05	6.66	5.82	5.26	5.60	0.53	9%
Mexico	CAM	18.49	22.84	22.39	12.15	13.94	26.59	19.40	5.09	26%
Amazon	AMZ	175.13	175.74	107.26	98.98	116.55	132.90	134.43	30.77	23%
N.E. Brazil Coast South	NEB	13.22	8.65	19.94	19.61	27.67	30.86	19.99	7.66	38%
America	WSA	4.97	6.41	2.91	2.45	7.34	5.33	4.90	1.75	36%
S.E. South America	SSA	12.29	10.97	18.22	23.51	22.25	16.82	17.34	4.64	27%
N. Europe	NEU	0.51	0.39	0.77	1.32	1.04	1.80	0.97	0.48	50%
C. Europe S. Europe/	CEU	1.59	1.55	5.03	6.16	2.63	3.23	3.36	1.71	51%
Mediterranean	MED	1.40	1.07	5.12	2.53	3.66	4.62	3.07	1.53	50%
Sahara	SAH	0.10	0.08	0.34	24.89	0.16	0.47	4.34	9.19	212%
W. Africa	WAF	58.40	58.86	45.53	56.15	59.83	68.61	57.90	6.78	12%
E. Africa	EAF	17.04	14.57	20.01	37.82	32.61	32.24	25.71	8.84	34%
S. Africa	SAF	14.69	13.14	14.45	23.55	36.18	23.88	20.98	8.06	38%
N. Asia	NAS	3.13	2.75	5.22	9.92	7.64	6.98	5.94	2.53	43%
W. Asia	WAS	0.87	0.43	2.76	6.12	3.53	1.66	2.56	1.91	75%
C. Asia	CAS	0.71	0.47	2.68	3.36	4.50	1.86	2.26	1.42	63%
Tibetan Plateau	TIB	1.16	1.12	1.29	3.06	5.31	1.83	2.30	1.51	66%
E. Asia	EAS	15.15	16.79	15.17	19.85	21.65	17.50	17.69	2.38	13%
S. Asia	SAS	15.20	14.84	29.41	23.55	15.33	17.82	19.36	5.40	28%
S.E. Asia	SEA	71.68	87.83	79.53	14.69	43.16	64.78	60.28	24.67	41%
N. Australia	NAU	9.71	6.41	12.95	49.75	20.86	27.53	21.20	14.57	69%
S. Australia	SAU	5.27	5.18	5.24	5.55	2.12	4.39	4.63	1.18	25%
	Global	452	462	434	482	478	510	470	24	5%

Global 452 462 434 482 478 510 470 24 5% Note: The ensemble mean is calculated by averaging the isoprene emissions values from the historical simulation of CMIP6 models and VISIT-S3(G1997). For each region, inter-model spread is defined as the standard deviation of the values across these models. The relative inter-model spread is then calculated by dividing the standard deviation by the ensemble mean and multiplying by 100%, expressed as a percentage.

Table S5. Global trends and interannual variation of climate variables over three periods (1850–2014), (1850–1979) and (1980–2014). Bold values represent that a trend is significant, with p < 0.05.

	Trend			Interannual Variability			
	1850-2014	1850–1979	1980–2014	1850-2014	1850–1979	1980–2014	
Temperature							
		$^{\circ}C$ yr^{-1}			$^{\circ}C$		
VISIT-S3(G1997)	+0.005	+0.002	+0.024	0.357	0.177	0.294	
CESM2-WACCM(G2012)	+0.005	+0.002	+0.041	0.388	0.218	0.449	
NorESM2-LM(G2012)	+0.002	0.000	+0.037	0.322	0.217	0.427	
GFDL-ESM4(G2006)	+0.003	+0.002	+0.031	0.293	0.208	0.396	
GISS-E2.1-G(G1995)	+0.005	+0.002	+0.026	0.406	0.316	0.396	
UKESM1-0-LL(P2011)	+0.002	0.000	+0.034	0.333	0.224	0.395	
Radiation							
		$W m^{-2} yr^{-1}$			$W m^{-2}$		
VISIT-S3(G1997)	-0.002	-0.001	+0.161	1.281	0.974	1.870	
CESM2-WACCM(G2012)	-0.043	-0.037	-0.012	2.238	1.602	0.821	
NorESM2-LM(G2012)	-0.034	-0.029	+0.004	1.836	1.366	0.613	
GFDL-ESM4(G2006)	-0.034	-0.022	-0.042	1.908	1.107	0.774	
GISS-E2.1-G(G1995)	-0.044	-0.033	-0.041	2.323	1.511	0.938	
UKESM1-0-LL(P2011)	-0.030	-0.026	+0.006	1.651	1.245	0.713	
Precipitation							
		$mm \ day^{-1} \ yr^{-1}$			$mm \ day^{-1}$		
VISIT-S3(G1997)	+0.001	+0.001	0.001	0.046	0.044	0.046	
CESM2-WACCM(G2012)	0.000	0.000	0.001	0.077	0.076	0.084	
NorESM2-LM(G2012)	0.000	0.000	0.000	0.065	0.064	0.069	
GFDL-ESM4(G2006)	-0.001	-0.001	0.000	0.076	0.068	0.068	
GISS-E2.1-G(G1995)	0.000	0.000	0.000	0.047	0.047	0.047	
UKESM1-0-LL(P2011)	-0.001	-0.001	+0.002	0.056	0.054	0.054	

Note: Interannual variation is defined as the standard deviation calculated from the global annual mean values over the given period.

Table S6. Plant functional types (PFTs) are estimated in CMIP6 models and VISIT(G1997).

Abbreviation	CESM2-WACCM, NorESM2-LM (G2012)	GFDL-ESM4 (G2006)	GISS-E2.1-G (G1995)	UKESM1-0-LL (P2011)	VISIT (G1997)
	Needleleaf deciduous	Needleleaf deciduous	Needleleaf deciduous	Needleleaf deciduous	Boreal deciduous
NeDeBo	boreal trees	trees	trees	trees	forest
	Needleleaf evergreen				Temperate needleleaf
NeEvTe	temperate trees	_			evergreen forest
	Needleleaf evergreen	Needleleaf evergreen	Needleleaf evergreen	Needleleaf evergreen	Boreal evergreen
NeEvBo	boreal trees	trees	trees	trees	forest
	Broadleaf evergreen			Broadleaf evergreen	Tropical evergreen
BrEvTr	tropical trees	_		tropical trees	forest
	Broadleaf evergreen	Broadleaf evergreen	Broadleaf evergreen	Broadleaf evergreen	Temperate broadleaf
BrEvTe	temperate trees	trees	trees	temperate trees	evergreen forest
	Broadleaf deciduous				Tropical deciduous
BrDeTr	tropical trees	_			forest
	Broadleaf deciduous				Temperate deciduous
BrDeTe	temperate trees	_	Cold/Drought		forest
	Broadleaf deciduous	Broadleaf deciduous	broadleaf deciduous	Broadleaf deciduous	Evergreen/Deciduous
BrDeBo	boreal trees	trees	trees	trees	mixed forest a
	Broadleaf evergreen				
EvTeSb	temperate shrub	_		Evergreen shrub	Dense shrubland
	Broadleaf deciduous				
DeTeSb	temperate shrub	_			Open shrubland
	Broadleaf deciduous		Cold/Arid adapted		
DeBoSb	boreal shrub	Shrubs	shrubs	Deciduous shrub	Tundra
C4Gr	Warm C4 grass	-	C4 grass	C4 grass	Desert/Savanna
C3Gr	Cool C3 grass	_	C3 grass	C3 grass	Grassland/Steppe
					Polar
ArcticC3Gr	Arctic C3 grass	Grass and others	Arctic C3 grass		Desert/Rock/Ice
				C3 crop, C3 pasture,	
Crop	Crops	Crops	C3 crops	C4 crop, C4 pasture	Crops

a temperate/boreal broadleaf and needleleaf trees

Table S7. Emission factors ($\mu g C \; g_{mass}^{-1} \; h^{-1}$) for each of the plant functional types described in Table S6.

Abbreviation	CESM2-WACCM, NorESM2-LM (G2012)	GFDL-ESM4 (G2006)	GISS-E2.1-G (G1995)	UKESM1-0-LL (P2011)	VISIT (G1997)
NeDeBo	0.003	0.0	8.0	8.0	8.0
NeEvTe	1.2	2.0	8.0	8.0	8.0
NeEvBo	4.6	4.0			8.0
BrEvTr	20.6		24.0	24.0	24.0
BrEvTe	29.4	_		16.0	16.0
BrDeTr	33.3	_			24.0
BrDeTe	47.6	_			45.0
BrDeBo	52.4	24.0	24.0/45.0	35.0	8.0
EvTeSb	5.6	_		20.0	16.0
DeTeSb	19.0	_			24.0
DeBoSb	19.0	24.0	16.0/24.0	10.0	16.0
C4Gr	1.2	_	24.0	24.0	24.0
C3Gr	5.0	_	16.0		16.0
ArcticC3Gr	9.9	0.0	16.0	16.0	16.0
Crop	0.01	0.0	5.0	5.0	5.0

64

65

67

68


EFs in CESM2-WACCM(G2012), NorESM2-LM(G2012) are given in units of mass of species per unit area of land surface per unit time (e.g. $\mu g_{isoprene} \ m^{-2} \ h^{-1}$), as opposed to $\mu g C \ g_{mass}^{-1} \ h^{-1}$ used in other models and are denoted hereafter as EF_{area} . Therefore, a conversion must be applied to make these values comparable to the EFs used by other models, which are denoted as EF_{mass} ($\mu g C g_{mass}^{-1} h^{-1}$). To convert EF_{area} to EF_{mass} , we applied Eq. (1) of Weber et al. (2023) as shown below:

$$EF_{mass} = EF_{area} \times \frac{1}{LAI_{ref}} \times \frac{1}{SLW} \times \frac{m_{Carbon}}{m_{species}} \times \frac{1}{\gamma_{CE}}$$
 (S1)

In that equation, LAI_{ref} is the reference leaf area index used by G2012 scheme (5 $m_{leaf}^2 m_{surface}^{-2}$), SLW is the specific leaf weight ($g_{mass}m_{surface}^{-2}$), the factor $\frac{m_{carbon}}{m_{species}}$ accounts for the fact that G2012 scheme considers the mass flux of a given species and other land models (e.g., P2011 and VISIT) use the mass flux of carbon, and γ_{ce} is the G2012 canopy environment

As CLM5 land model is incorporated in CESM2-WACCM(G2012), NorESM2-LM(G2012), we use SLW dataset with the CLM5. SLW is inverse from specific leaf area (SLA; $gC m_{leaf}^{-2}$) (Ali et al., 2016), and apply a scaling of 2 to convert the mass of carbon to foliar mass.

Emission factors for UKESM1-0-LL(P2011) are derived from Weber et al. (2023), while for G2006 they are derived from the technical description of CLM3 (Oleson et al., 2004). Emission factors in GISS-E2.1-G(G1995) are assigned from Guenther et al. (1995) for corresponding PFTs, while values for VISIT(G1997) were derived from Lathiere et al. (2006).

 $Figure~S1.~Three-fold~cross-validation~of~random~forest~regressor~applied~for~each~CMIP6~model's~data.~R^2~is~coefficient~of~determination, RMSE~is~Root~Mean~Squared~Error,~and~MAE~is~Mean~Absolute~Error.$

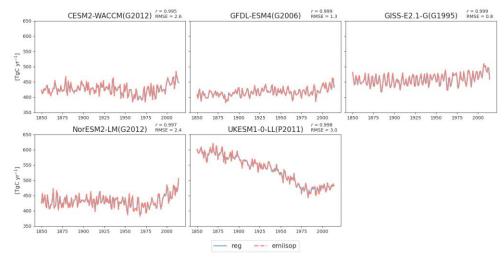
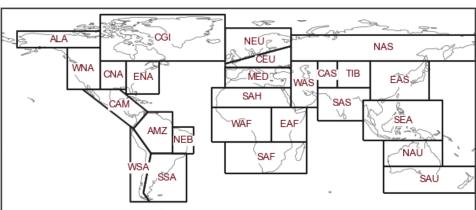



Figure S2. Global annual isoprene emission comparison between historical simulation from each CMIP6 model (emiisop) and estimation from its random forest regressor (reg). r is Pearson correlation and RMSE is Root Mean Square Error.

	Alaska/Northwest Canada Eastern		North-East Brazil West Coast South America		Western Africa Eastern Africa		East Asia South Asia
	Canada/Greenland/Iceland Western North America Central North America		South-eastern South America Northern Europe	D	Southern Africa Northern Asia		Southeast Asia Northern
	Eastern North America		Central Europe		Western Asia	IVAO.	Australia
CAM:	Central America/ Mexico		Southern Europe/ the Mediterranean	CAS:	Central Asia	SAU:	Southern Australia/ New Zealand
AMZ:	Amazon	SAH:	Sahara	TIB:	Tibetan Plateau		Tien Zemana

Figure S3. The 26 SREX regions are defined by the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Seneviratne et al., 2012).

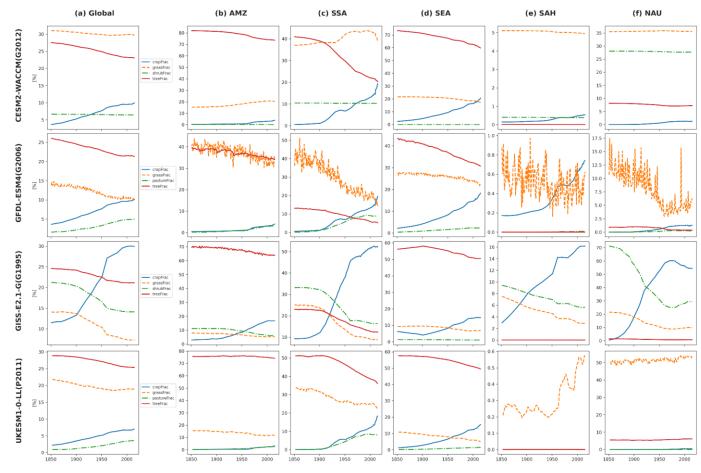
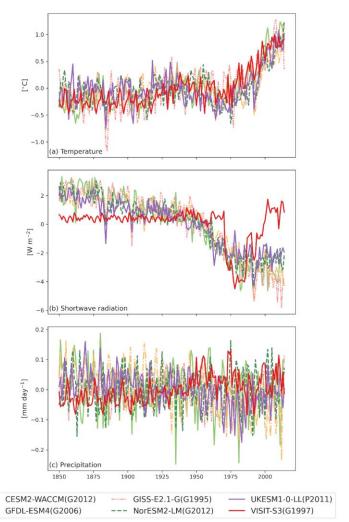
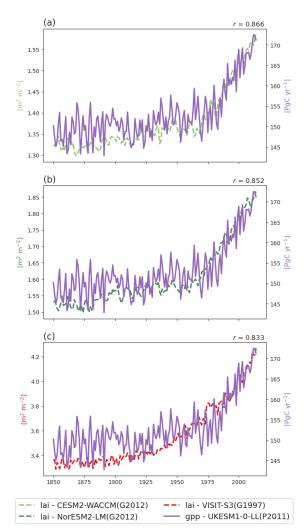




Figure S4. Annual fraction (%) of four plant functional types (PFTs): tree, grass, shrub/pasture, and crop during 1850–2014. Panels (a–f) show changes at (a) the global scale and in regions: (b) Amazon (AMZ), (c) Southeastern South America (SSA), (d) Southeast Asia (SEA), (e) Sahara (SAH), and (f) North Australia (NAU). Data from CESM2-WACCM(G2012), GFDL-ESM4(G2006), GISS-E2.1-G(G1995), and UKESM1-0-LL(P2011). NorESM2-LM(G2012) uses the same land component as CESM2-WACCM(G2012).

Figure~S5.~Global~annual~anomalies~of~(a)~temperature;~(b)~shortwave~radiation~and~(c)~precipitation~in~CMIP6~models~and~VISIT-S3~during~1850-2014.~Anomalies~are~deviation~from~baseline~(1850-2014~average).

 $\label{eq:Figure S6.Global annual GPP of UKESM1-0-LL(P2011) and LAI of: (a) CESM2-WACM(G2012), (b) NorESM2-LM(G2012), (c) VISIT-S3(G1997) over land areas during 1850–2014. r is Pearson correlation.}$

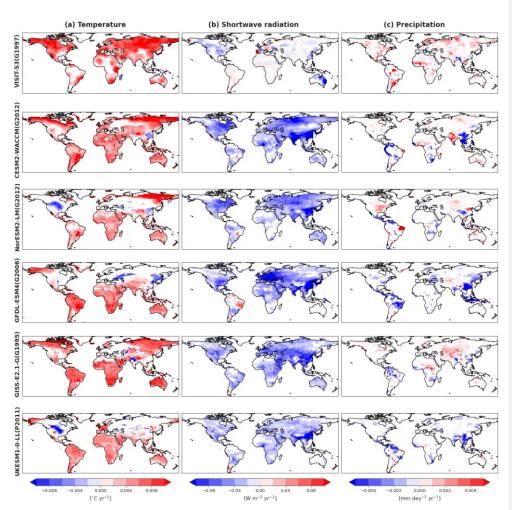
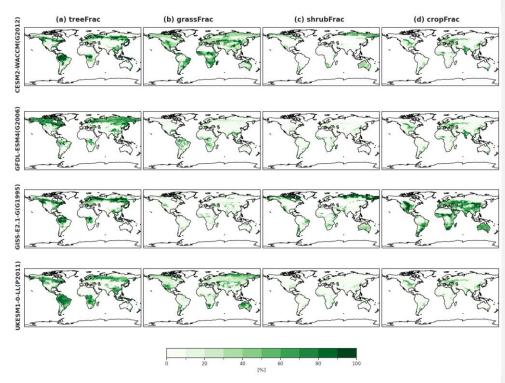



Figure S7. Spatial distribution of annual trends in (a) temperature, (b) shortwave radiation, and (c) precipitation over land areas during 1850–2014. Only significant trends (with p < 0.05) are presented.

Figure~S8.~Mean~annual~fraction~(%)~in~the~present~day~(2000–2014)~of~four~plant~functional~types~(PFTs):~(a)~tree,~(b)~grass,~(c)~shrub,~and~(d)~crop.~Data~from~CESM2-WACCM(G2012),~GFDL-ESM4(G2006),~GISS-E2.1-G(G1995),~and~UKESM1-0-LL(P2011).~NorESM2-LM(G2012)~uses~the~same~land~component~as~CESM2-WACCM~(G2012).