
1 

 

Exploring the processes controlling secondary inorganic 

aerosol: Evaluating the global GEOS-Chem simulation using a 

suite of aircraft campaigns 
 

Olivia G. Norman1, Colette L. Heald1,2,a, Solomon Bililign3, Pedro Campuzano-Jost34, Hugh 5 

Coe4,5,6, Marc N. Fiddler67, Jaime R. Green78, Jose L. Jimenez34, Katharina Kaiser89, Jin 

Liao9,10,11, Ann M. Middlebrook112, Benjamin A. Nault43,132,143, John B. Nowak145, Johannes 

Schneider89, André Welti165 

 
1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 10 

Cambridge, MA, USA 
2 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, 

MA, USA 
3 Department of Physics, North Carolina Agricultural and Technical State University, Greensboro, North 

Carolina 15 
4 Department of Chemistry and Cooperative Institute for Research in Environmental Science (CIRES), 

University of Colorado, Boulder, CO, USA 
45 University of Manchester, Oxford Road, Manchester, M13 1QD, UK 
56 National Centre for Atmospheric Sciences, University of Manchester, Oxford Road, Manchester, M13 

1QD, UK 20 
67 Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, NC, 

USA 
78 Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC, 

USA 
89 Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany 25 
910 NASA Goddard Space Flight Center, Greenbelt, MD, USA 
1011 Goddard Earth Sciences Technology and Research (GESTAR) II, University of Maryland, College 

Park, MD, USA 
1112 NOAA Chemical Sciences Laboratory, Boulder, Colorado, United States 
1213 Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA 30 
1314 Center for Aerosol and Cloud Chemistry, Aerodyne Research, Inc., Billerica, MA, USA 
1415 NASA Langley Research Center, Hampton, Virginia, United States 
1516 Finnish Meteorological Institute, Helsinki, Finland 
a Now at: Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland 

 35 

Correspondence to: Olivia G. Norman (onorman@mit.edu), Colette L. Heald (colette.heald@env.ethz.ch)  

Abstract. Secondary inorganic aerosols (sulfate, nitrate, and ammonium; SNA) are major contributors to fine 

particulate matter. Predicting concentrations of these species is complicated by the cascade of processes that control 

their abundance, including emissions, chemistry, thermodynamic partitioning, and removal. In this study, we use 11 

flight campaigns to evaluate the GEOS-Chem model performance for SNA. Across all the campaigns, the model 40 

performance is best for sulfate (R2 = 0.51, NMB = 0.11) and worst for nitrate (R2 = 0.22, NMB = 1.76), indicating 

substantive model deficiencies in the nitrate simulation. Thermodynamic partitioning reproduces the total particulate 

nitrate well (R2 = 0.79 and NMB = 0.09), but actual partitioning (i.e., εNO3=ε(NO3
-)= NO3

-/TNO3) is challenging to 

assess given the limited sets of full gas and particle phase observations needed for ISORROPIA II. In particular 
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ammonia observations are not often included in aircraft campaigns and more routine measurements would help 45 

constrain sources of SNA model bias. Model performance is sensitive to changes in emissions and dry and wet 

deposition, with modest improvements associated with the inclusion of different chemical loss and production 

pathways (i.e., acid uptake on dust, N2O5 uptake, and NO3
- photolysis). However, these sensitivity tests show only 

modest reduction in the nitrate bias, with no improvement to the model skill (i.e., R2) implying that more work is 

needed to improve the description of loss and production of nitrate and SNA as a whole. 50 

1 Introduction 

Aerosols (also known as particulate matter, PM) in our atmosphere are associated with poor air quality (Malm 

et al., 2000) and the attendant elevated risk of human premature mortality (Pope and Dockery, 2006; Huang et al., 

2012), as well as changes in our climate (Lohmann and Feichter, 2005; Myhre et al., 2013). A major component of 

fine particulate matter (PM2.5) is secondary inorganic aerosols, which include sulfate (SO4
2-), nitrate (NO3

-), and 55 

ammonium (NH4
+). While other inorganic species, such as chloride (Cl-) can be locally important (Haskins et al., 

2018; Gani et al., 2019), sulfate, nitrate, and ammonium (hereafter SNA) are the dominant contributors to secondary 

inorganic fine aerosol worldwide, contributing between ⅓ and ¾ to measured fine non-refractory PM (Zhang et al., 

2007). These inorganic aerosols have been the major aerosol constituent responsible for the degradation of air quality 

associated with industrialization (e.g., in the United States and Europe in the 1970s and 1980s, and China in the early 60 

2000s), as well as subsequent improvements with the implementation of emissions control technology (Leibensperger 

et al., 2012; Geng et al., 2017). SNA are also the principal agents of historical aerosol climate forcing (IPCC, 2021). 

SNA themselves are not directly emitted, but instead are formed in the atmosphere from precursor gases that have a 

range of natural and anthropogenic sources. However, connecting the response of SNA concentrations to changes in 

the emissions can be challenging because many non-emission-related processes affect these aerosols (e.g., chemical 65 

oxidation, thermodynamic partitioning, wet and dry deposition; Pye et al., 2009; Paulot et al., 2017; Shah et al., 2018; 

Li et al., 2021; Zhai et al., 2021a). Understanding these formation and loss processes is key to characterizing aerosol 

trends and impacts on a global scale. 

Emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), and ammonia (NH3) provide the source for sulfate, 

nitrate, and ammonium aerosols. SO2 and NOx emissions are dominated by fossil fuel combustion; whereas, NH3 70 

emissions are mainly associated with agriculture, originating from livestock and fertilizer use.. The major sources of 

NH3 are agricultural emissions, originating from livestock and fertilizer use, and, in urban areas, from vehicular 

emissions (e.g., Phan et al., 2013; Sun et al., 2017). Other important sources include volcanoes and the oxidation of 

oceanic dimethyl sulfide (for SO2), soils and biomass burning (for NH3 and NOx), and lightning (for NOx). Upon 

emission, SO2 is oxidized in both the gas- and aqueous-phase to form acidic sulfate aerosols. Similarly, the formation 75 

of inorganic nitrate is mainly through the oxidation of NOx into nitric acid (HNO3; Alexander et al., 2009). The very 

low saturation vapor pressure of sulfuric acid implies that this species is primarily found in the particle phase (Seinfeld 

and Pandis, 2016). In contrast, thermodynamic partitioning controls the amount of nitrate and ammonium in the gas 

and particle phase (i.e., between HNO3 and NO3
- for nitrate and NH3 and NH4

+ for ammonium). This partitioning is 
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dependent on relative humidity, temperature, and pH, where higher relative humidity, lower temperature, and higher 80 

aerosol pH favors nitrate partitioning into the particle phase (Fountoukis and Nenes, 2007; Guo et al., 2016). Ammonia 

generally preferentially neutralizesreacts with both acidic sulfate aerosols (to form different salts (, e.g., ammonium 

bisulfate, ammonium sulfate) before neutralizingand nitrate (to form particulate ammonium nitrate; Seinfeld and 

Pandis, 2016). VOCs can also act as a local control on SNA concentrations since they are directly connected to 

oxidation capacity and also are involved in alternative loss pathways for nitrate radicals (Aksoyoglu et al., 2017; 85 

Womack et al., 2019). Therefore, nitrate formation depends not only on the amount of NOx emitted but also on the 

amount of ammonia and sulfate, ambient conditions (RH and temperature), and VOC and oxidant concentrations. Also 

relevant are the loss processes, which include dry and wet deposition (affecting both SNA and its precursors) and 

chemical losses (e.g., uptake by dust, nitrate photolysis). These formation and loss processes, and in turn SNA 

concentrations, are expected to respond to future changes in precursor emissions and climate (Dawson et al., 2007; 90 

Pye et al., 2009; Vasilakos et al., 2018; Aksoyoglu et al., 2020), but predicting the magnitude and direction of the 

response depends on how well models capture the complex, non-linear system that describes the lifecycle of 

atmospheric SNA. 

Global atmospheric chemistry models incorporate these mechanisms of SNA production and loss. Past 

studies have evaluated the SNA simulation in a range of models using surface observations and aircraft campaigns; 95 

the results across models can vary substantially, particularly for nitrate (Mezuman et al., 2016; Bian et al., 2017; Chen 

et al., 2019; Nault et al., 2021; Reifenberg et al., 2022)(Mezuman et al., 2016; Bian et al., 2017; Nault et al., 2021; 

Reifenberg et al., 2022). Large variations in how nitrate production, partitioning, and loss is described drives 

differences in simulated nitrate, which can result in modelled total nitrate burden (fine + coarse PM) varying by a 

factor of 13 (Bian et al., 2017), with some models underestimating nitrate and others overestimating nitrate. We also 100 

note that many global models neglect the formation of ammonium nitrate entirely (Gliß et al., 2021; Thornhill et al., 

2021). Generally, the sulfate simulation is more consistent and reliable across the different models (Bian et al., 2017; 

Nault et al., 2021). 

In this study, we use a single model (GEOS-Chem) to systemically evaluate SNA performance. Previous 

assessments of the global chemical transport model GEOS-Chem have focused on one region or used one specific 105 

field campaign. These model evaluation studies have found sulfate is well-captured and that ammonium and nitrate 

are overestimated in Europe (Park et al., 2004), the US (Park et al., 2004; Heald et al., 2012; Zhang et al., 2012), and 

over South Korea (Travis et al., 2022; Zhai et al., 2023). More localized analyses in the US have shown exceptions to 

this trend, with underestimates in simulated nitrate in California (Heald et al., 2012; Schiferl et al., 2014) and an 

unbiased nitrate simulation in the Northeastern US in wintertime (Shah et al., 2018). Various theories have been 110 

suggested to explain these model biases, including: deficient emissions inventories (Park et al., 2004; Schiferl et al., 

2014), underestimated deposition of HNO3 (Heald et al., 2012; Travis et al., 2022), overestimated N2O5 hydrolysis 

(Zhang et al., 2012; Heald et al., 2012), and uptake of acidic gases on coarse dust (Heald et al., 2012; Zhai et al., 

2023). These studies provide insight into some of the key processes that may be misrepresented or missing from 

models such as GEOS-Chem which are adversely affecting simulated SNA concentrations. However, their local focus 115 
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with various model versions (including changing descriptions of the chemistry and meteorology), make it challenging 

to generalize these results. Here, we use a suite of 11 aircraft campaigns spanning multiple regions of the world to 

provide a more comprehensive and consistent global evaluation of GEOS-Chem SNA performance. We also explore 

the key processes controlling SNA concentrations, identifying those that may contribute to model bias. 

2 Description of Observations 120 

This study explores observations from 11 airborne campaigns that span different regions of the world and 

almost two decades (2004–2019). As a result, these campaigns represent a wide range of chemical regimes and 

emissions scenarios. The campaigns are listed in Table 1, including the dates, locations, and primary references. These 

campaigns were selected because they all 1) share a common measurement technique for SNA concentrations and 2) 

are not representative of remote conditions, and thus generally have higher concentrations of SNA that are well above 125 

detection limits. The campaigns all took place in the Northern Hemisphere in one of three general regions: North 

America (NA), Europe (EU), or Asia (AS). There are at least two campaigns in each area, but with a large geographical 

sampling bias (>50% of the campaigns) towards campaigns in the NA region, particularly over the US. Figure 1 shows 

the campaign flight tracks. Also in Fig. 1 are panels for each campaign with a pie chart representing the fractional 

contribution of all three SNA species to the total measured SNA (measurements described below). Below each pie 130 

chart is the mean observed total SNA. Units are reported in µg/sm3, standardized at STP (P = 1013.25 hPa; T = 273.15 

K). To make a more direct comparison across campaigns with varying aircraft ceilings, only points below 5 km are 

included in Fig 1. The total SNA concentrations are highest for KORUS-AQ, EUCAARI, MILAGRO, ADRIEX, and 

SENEX, indicative of the more significant influence of anthropogenic outflow during these campaigns. Generally, 

sulfate is the largest contributor to total SNA across all 11 campaigns. The nitrate fraction is higher for the three 135 

campaigns with the highest SNA concentrations (KORUS-AQ, EUCARRI, and MILAGRO), as well as for CalNex 

(associated with higher agricultural emissions) and WINTER (associated with colder temperature favouring particle 

phase nitrate).  

While we focus on campaigns influenced by anthropogenic sources, biomass burning also impacted some of 

the campaigns (i.e., FIREX-AQ, DC3, and MILAGRO). For FIREX-AQ, the main objective was to improve 140 

understanding of the impact of fires on air quality and climate, so both wildfires and prescribed agricultural burning 

in the US were intentionally sampled. The EMeRGe-EU and EMeRGe-AS campaigns were explicitly interested in air 

quality downwind of megacities in Western Europe and Southeast Asia, respectively. We do not include the transit 

flights for the EMeRGe-AS campaign (corresponding to the flights on the first and last days between Germany and 

the United Arab Emirates). Other transit flights during EMeRGe-AS between megacity centers in Southeast Asia are 145 

included, which involved the sampling of cleaner, ocean air. Similarly, some flights for WINTER measured cleaner 

air over the Atlantic Ocean.  

Across all the campaigns, Aerodyne aerosol mass spectrometers (AMS,; Canagaratna et al., 2007) measured 

sulfate, nitrate, and ammonium concentrations. An AMS measures sub-micron, non-refractory particles with 

approximately 30% uncertainty for SNA species (Bahreini et al., 2009). Use of a single measurement technique is 150 
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expected to reduce potential measurement bias between campaigns, though differences in instrument operation and 

models (Q-AMS, C-ToF-AMS, HR-ToF-AMS; see Supplementary Table 1 for AMS used in each campaign) may 

generate some variation.  

The nitrate concentrations from the AMS include inorganic and organic nitrate; we use total nitrate in our 

analysis since the split between inorganic and organic nitrate is not available for all the campaigns. Previous work has 155 

shown that the percentage of total nitrate that is organic is highly dependent on total nitrate concentrations, ranging 

from 0% at highest urban influence to 100% at the cleanest conditions (Day et al., 2022). Given our selection of 

campaigns that are anthropogenically influenced, we expect inorganic nitrate to dominate total nitrate. We comment 

further on this in Sect. 3.1 and 4. Similarly, small fractions of the AMS sulfate may be due to organosulfates 

(Schueneman et al., 2021), and very small fractions of the AMS ammonium may be due to amines (Ge et al., 2023), 160 

but these apportionments are not typically reported and possible contributions are neglected here. 

We retain only the data points that have valid measurements for sulfate, nitrate, and ammonium. 

Observational data is filtered to remove plumes (sulfate, nitrate, ammonium concentrations > their respective 95th 

percentile) since the model is unable to capture these sub-grid processes successfully (Rastigejev et al., 2010). 

Observations are then averaged from their original resolution (using 1 minute merge files when they are available) to 165 

the temporal and spatial resolution of the model. The majority of sampling occurred during the day, but some 

campaigns had more nighttime flights (e.g., 55% of the valid points for WINTER are at nighttime). After filtering and 

averaging, there remain 22,616 unique data points that are used in our model-observation comparison. 

 

Figure 1. Flight tracks for the airborne campaigns used in this analysis. Pie charts show mean relative contributions 170 

of sulfate (red), nitrate (blue), and ammonium (yellow) to total SNA for each individual campaign. The area of the pie 
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charts are scaled based on the mean total SNA for each campaign, which is also reported below the pie chart. Only 

points below 5km are included. Information about the year and season for each campaign are included in Table 1.
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3 Model description 175 

3.1 General Description 

We use the GEOS-Chem chemical transport model version 13.3.4 (DOI: 10.5281/zenodo.5764874). Full-

year simulations are performed at 2° × 2.5° horizontal resolution while the campaign simulations make use of a finer 

resolution of 0.5° × 0.625° nested grid driven by boundary conditions from global 2° × 2.5° simulations. The model 

vertical domain is resolved into 47 hybrid-sigma layers extending from the surface to approximately 80 km altitude. 180 

All of the simulations are driven by the MERRA-2 assimilated meteorological data product from the NASA Goddard 

Global Modeling and Assimilation Office (GMAO). Boundary layer mixing is described using a non-local mixing 

scheme (Lin and McElroy, 2010). Following recommendations from Philip et al. (2016), timesteps are 20 minutes for 

chemistry and 10 minutes for transport for the global simulations and 10 minutes for chemistry and 5 minutes for 

transport for the nested simulations. 185 

GEOS-Chem includes a detailed gas-phase chemistry coupled with the sulfate-nitrate-ammonium aerosol 

system (Park et al., 2004; Pye et al., 2009), with updates to HO2 uptake (Mao et al., 2013) and the reactive uptake of 

NO2, NO3, and N2O5 by aerosols and clouds (Holmes et al., 2019; McDuffie et al., 2018). Dust and sea salt aerosols 

are separated into different size bins (4 bins for dust: 0.1–1.0 μm, 1.0–1.8 μm, 1.8–3.0 μm, 3.0–6.0 μm; 2 bins for sea 

salt: 0.01 – 0.5 μm, 0.5 – 8 μm). Sodium is calculated as a fraction of fine sea salt aerosol in GEOS-Chem (39.7% by 190 

weight of sea salt). The model uses a bulk aerosol scheme with fixed log-normal modes to describe the size distribution 

of aerosols (Martin et al., 2003). A resistors-in-series scheme is used to describe gas dry deposition (Wesely, 1989; 

Wang et al., 1998) and size-dependent aerosol dry deposition (Zhang et al., 2001; Emerson et al., 2020). The wet 

deposition scheme includes rainout, washout, and scavenging in moist convective updrafts for aerosols and gases 

(Amos et al., 2012; Liu et al., 2001; Wang et al., 2011, 2014). Thermodynamic partitioning between the gas and 195 

particle phase is described by the thermodynamic equilibrium aerosol model ISORROPIA II (Fountoukis and Nenes, 

2007; Pye et al., 2009). ISORROPIA II is run using the default, metastable mode, which assumes that all inorganic 

salts exist on the upper branch of the hygroscopic hysteresis curve. Acid uptake on dust (Fairlie et al., 2010) and nitrate 

photolysis (Shah et al., 2023) are optional processes in GEOS-Chem version 13.3.4 which we do not include in our 

model evaluation; however, we explore the effect of both of these processes on SNA in Section 5.5. When examining 200 

the impact of acid update on dust, we include nitrate and sulfate on dust in the smallest size bin (≤1 μm) in our model-

observation comparisons. 

To match the observations, organic nitrate from the model (from isoprene and monoterpene precursors) is 

also included in nitrate. We use the complex scheme for organic aerosols described by Pai et al. (2020). However, we 

note that for the campaigns in this work, organic nitrate is a minor constituent of simulated total nitrate (median 205 

organic nitrate contribution is 0.1% of total nitrate). The largest median organic nitrate fraction is simulated during 

SENEX (7.4% of total nitrate), which was heavily influenced by biogenic sources in the Southeast US. 

Each GEOS-Chem simulation is matched to the specific time and location of each airborne campaign. The 

majority of the emissions inventories used in this work are year specific. This includes the global anthropogenic 

emissions (comprising fossil fuel and agricultural sources) from the Community Emissions Database System (CEDS) 210 
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v2 inventory, which also provides ship emissions (year-specific up to 2017); (Hoesly et al., 2018)Hoesly et al., 2018), 

biomass burning emissions from GFED4s (van der Werf et al., 2017), volcanic SO2 emissions (Carn et al., 2017), 

lightning emissions (Murray et al., 2012), sea salt emissions (Jaeglé et al., 2011), offline dust emissions (Meng et al., 

2021), and offline soil NOx emissions (Hudman et al., 2012). Also included are DMS emissions (Lana et al., 2011; 

Breider et al., 2017), aircraft emissions from AEIC 2009 (Stettler et al., 2011), and natural (soil, ocean, vegetation, 215 

wild animals) emissions of NH3 from GEIA (Bouwman et al., 1997). Anthropogenic emissions for the United States 

are superseded by the EPA’s National Emissions Inventory for 2016 (NEI 2016; Henderson and Freese, 2021). These 

emissions are also year-specific for all our campaign runs, which are based on annual scale factors derived from 

emissions trends from 2002–2020. By default, the NEI 2016 emissions inventory has weekday/weekend scale factors 

applied to the NOx and SOx emissions. Time-of-day scaling factors are applied to all anthropogenic NOx and other 220 

fossil-burning emissions globally. 

3.2 SNA Budget in GEOS-Chem 

Figure 2 shows the average global simulated distribution of sulfate, total (organic + inorganic) nitrate, and 

ammonium at the surface and in the mid-troposphere for the year 2018. Only fine sulfate and nitrate (not associated 

with sea salt or dust) are included to correspond to the fine mode sampling by the AMS. Concentrations peak at the 225 

surface for all SNA species over India, East Asia, and Europe (annual mean concentrations > 8µg/sm3), corresponding 

to regions with large anthropogenic precursor emissions. Smaller enhancements are visible over the US associated 

with lower emissions (e.g., stricter regulation; Leibensperger et al., 2012). Other identifiable sources include biomass 

burning, volcanic emissions, and ocean sources (for sulfate). At the surface, SNA dominates (>50%) simulated PM2.5 

concentrations across large swaths of the globe (Fig. 3), including near large population centers in the Eastern US, 230 

Europe, and Eastern Asia. Surface PM2.5 has been evaluated in GEOS-Chem previously and it is generally within 50% 

of the observations (Lee et al., 2017; Weagle et al., 2018; Zhai et al., 2021b). At the 600mb level (Fig. 2), the same 

regions stand out as at the surface, but concentrations are generally low (~1µg/sm3). At the 600mb level (Fig. 2), the 

same regions stand out as at the surface, but concentrations are generally low (~1µg/sm3). In the mid-troposphere, 

SO4
2- concentrations are higher and more uniform than NH4

+ and NO3
- reflecting the significant contributions of ocean 235 

sources to background SO4
2- and thermodynamics of ammonium and nitrate aerosols compared with sulfate aerosols. 

Table 2 summarizes the budget for each speciesSNA and their precursors based on a 2018 simulation. All 

species have a similar lifetime of around 4–5 days. A significant amount of the emitted SOx (58 TgS/yr) and DMS (19 

TgS/yr) is converted to sulfate and then lost to wet deposition (36 TgS/yr). The precursor emissions for NO3
- and NH4

+ 

are 50 TgN/yr for NOx and 68 TgN/yr for NH3. The budgets for sulfate, nitrate, and ammonium are generally within 240 

the range reported by Bian et al. (2017). The notable exceptions are that dry deposition of sulfate is lower in GEOS-

Chem compared to all the other reported models (2.5 – 7.3 TgS) and that ammonia emissions exceed the range reported 

for the AeroCom III models in 2008 (47 – 58 TgN/yr) (Bian et al., 2017). Dry deposition of ammonium (see Table 2) 

is also at the low end of the range reported in Bian et al. (2017; ) (1.3 – 16.3 TgN). However, across these models (and 

GEOS-Chem) dry deposition loss generally makes up less than 20% of the total loss due to deposition (Bian et al., 245 

2017). In comparison, dry deposition of the precursor species (i.e., SO2, HNO3, NH3) is more important, contributing 



10 

 

>50% of the total deposition loss of these precursors in GEOS-Chem. Other studies have shown that changes to the 

dry deposition of these precursors impacts SNA concentrations (Travis et al., 2022); this is discussed further in Section 

5.3. 

 250 

Figure 2. Average annual concentrations of sulfate, nitrate, and ammonium at the surface and in the mid-troposphere 

(600mb) for 2018. 

 

Figure 3. Percent contribution of SNA to annual mean surface PM2.5
 concentration based on a global simulation for 

2018. 255 

Table 2. Summary of the 2018 global, tropospheric SNA budget in GEOS-Chem. for SNA and their precursors. Note 

NO3
- corresponds to fine, inorganic + organic nitrate. The lifetime is to dry and wet deposition only. 

 SO2 SO4
2- HNO3 NO3

- NH3 NH4
+ 

Burden 

(TgS or TgN) 

 0.3 0.4 0.3 0.09 0.2 0.3 

Wet Dep 

(TgS/yr or TgN/yr) 

10.2 36.4 15.8 5.9 18.0 23.3 

Dry Dep 24.2 2.1 16.7 0.7 23.9 2.2 
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(TgS/yr or TgN/yr) 

Lifetime (days) 3.1 4.1 3.1 5.1 1.7 4.6 

 

4 Model Evaluation 

We summarize the model evaluation of inorganic aerosol using two different statistical metrics: the 260 

coefficient of determination (R2) and the normalized mean bias (NMB). The ability of the model to capture variability 

is indicated by R2. NMB is the sum of the differences between each model and observation data point normalized by 

the sum of all the observations, where a positive (negative) NMB implies the model is overestimating 

(underestimating) the observations. It provides an idea of the relative bias irrespective of total concentration, which 

varies across these different campaigns. These statistics are calculated for the point-by-point comparison between the 265 

observations and model or, only where explicitly mentioned, using the vertical profiles. R values (not presented here) 

are all positive except for those corresponding to the NO3
- vertical profiles (discussed in detail below) of two 

campaigns (CalNex and SENEX), where the model and observations show opposite trends with height. Figure 4 shows 

the R2 and NMB values for all the campaigns and the three SNA species. R2 values range from 0.01 (very poor) to 

0.65 (variability in observations reasonably well captured). For all the campaigns, the model performance is best for 270 

sulfate (R2 = 0.51, NMB = 0.11) and notably worst for nitrate (R2 = 0.22, NMB = 1.76). Model performance for 

ammonium generally lies between that for nitrate and sulfate (R2 and NMB are 0.43 and 0.66 for all campaigns 

combined), reflecting the strong role that these acidic species play in the amount of ammonium formed. Better 

performance is expected for sulfate because the formation rates (under typical atmospheric conditions) are well-

understood and concentrations are not controlled by variable gas-particle partitioning. Figure 4 also demonstrates 275 

spatial variation in performance, with consistent high biases across all three species for the campaigns in Asia and 

Europe. In contrast, there is more variability by campaign and by species for the North American campaigns, with no 

apparent relationship in bias for these campaigns with year, season, or source influence. However, the high nitrate 

bias is more consistent with extreme overestimates (NMB > 200%) seen across all three regions. When nitrate is scaled 

down based on the NMB across all the campaigns (NMB = 1.76), average PM2.5 concentrations across Northern 280 

Hemisphere land decrease by 3.4%, with maximum reductions of 25% in Eastern US, Europe, and East Asia decrease 

by 10–12%. and 33% in Europe (Fig. S1 in the Supplement). 

We examine if there is a connection between nitrate bias and the model gas ratio (Fig. S2), which is the ratio 

of free ammonia ([NHx]-2[SO4
2-]) to total gas + particle nitrate (Ansari and Pandis, 1998). A GR > 1 indicates that the 

system is HNO3 limited, 0 < GR < 1 the system is NH3 limited, and GR < 0 the system is extremely NH3 limited and 285 

indicates that sulfate is not fully neutralized. When NH3 is extremely limited, NO3
- concentrations are lower and there 

is consistent negative bias in the simulated NO3
-. This suggests that GEOS-Chem has an excessively strong NH3 

limitation that is inhibiting some nitrate formation in these relatively clean (low SNA concentration) regions. 

However, these comparisons are also subject to measurement detection limits. The majority of the observations are 

characterized by GR > 0, which includes both ammonia limitation (0 < GR < 1) and HNO3 limitation (GR > 1); the 290 
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simulated nitrate is positively biased in both cases, which indicates that the model bias is not the result of one specific 

precursor limitation. 

Figures 5 and 6 show the vertical profile of median sulfate and nitrate (respectively) for each campaign. For 

sulfate, there are some modest under- and overestimates in magnitude across the campaigns. However, the model 

captures the generally consistent sulfate vertical profile shape, with most showing a peak at the surface and decreasing 295 

concentrations with altitude. The vertical profile of SO2 (Fig. S1 in SupplementS3) is also well captured by the model 

(NMB = -0.13),, but there is limited model skill for this species on a point-to-point basis (R2 = 0.31) which may 

degrade the sulfate simulation. The ratio SO4
2-/SOx (for campaigns that have SO2 data) is well-captured for 4 of the 9 

campaigns, but it is substantially overestimated for the remaining campaigns (CalNex, WINTER, MILAGRO, 

EMeRGe-EU, and EMeRGe-EU), particularly above the boundary layer (Fig. S4). For CalNex and MILAGRO, SO2 300 

is underestimated and SO4
2- is overestimated (while total SOx is well-captured), suggesting that oxidation may be 

overly rapid; for the other campaigns there is no evident relationship in the bias. 

The shape of the observed vertical profile is less consistent for nitrate. For most campaigns, the model 

generally captures the vertical profile, albeit often with high biases both near the surface and aloft, especially for the 

European and Asian campaigns. However, in the case of the CalNex and DC3 campaigns, the model predicts peak 305 

nitrate concentrations aloft, which is not seen in the observations. The simulated nitrate also shows higher variability 

(larger IQR) compared to the observations and modelled sulfate. As indicated by the NO3
- vertical profile for CalNex, 

this campaign measured many negative NO3
- concentrations (25% of all points), especially at higher altitudes (greater 

than 3km all altitude bins have > 60% negative points). While we do not remove these points for any of our model-

observation comparisons, we note that the bias would remain but be modestly decreased if points below the detection 310 

limit were removed from our analysis. Observed and modelled ammonium profiles (Fig. S7) exhibit similar trends to 

nitrate including the high-altitude peaks in simulated nitrate seen for CalNex and DC3, but generally exhibit less bias 

than nitrate.  

The campaigns are influenced by a range of conditions which dictate the relative importance of particular 

processes. For example, some campaigns like EUCAARI and ADRIEX had strong inversions at the top of the BL 315 

which led to increasing concentration of nitrate with height within the BL. Restricting the focus to points above the 

model-defined planetary boundary layer height (71% of points) shows an improvement in R2 for NO3
- across all 

campaigns and for (NH4
+ across most campaigns. R2 for NO3

- increases by <0.01 to 0.13 relative to when all points 

are used,), which implies that there is more model skill at capturing NO3
- aloft. However, there is also an increase in 

the bias (NMB for NO3
- increases to 2.91 across all the campaigns). Some campaigns (e.g., ADRIEX and EUCAARI) 320 

are less likely to be influenced by any deficiencies in the description of wet deposition in GEOS-Chem due to the lack 

of rainfall during the campaign (Crosier et al., 2007; Morgan et al., 2010). Others (e.g. DC3 and FIREX-AQ) may 

have biases associated with the challenges in capturing convective events. The observations for DC3 show a small 

peak in nitrate around 4–6 km which is due to horizontal entrainment of NH3 and HNO3 into a storm, associated with 

the campaign’s mission to sample deep convection events. The exaggerated peak in simulated nitrate for DC3 could 325 

be associated with missing deposition because the storms are small compared to the spatial resolution of the model 

(Li et al., 2018). Consistent biases in vertical transport or precipitation are unlikely to explain the nitrate bias across 
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these campaigns given that the model reproduces the expected vertical profiles for soluble species such as sulfate (Fig. 

5) and for insoluble species such as CO (Fig. S4 in SupplementS8). In what follows, we use the merged dataset to 

focus on the universal response to processes, however, it is important to acknowledge that local biases in emissions 330 

and meteorology may degrade the model performance for individual campaigns, as explored in greater detail in 

campaign-specific studies.  

As described in Sects. 2 and 3.1, the model and observed values for nitrate also include organic nitrate. 

Median observed nitrate concentrations are generally mid-range (0.05 – 0.7 µg/sm3) across most campaigns and at all 

altitudes, which implies these are, generally, environments where the relative contribution of organic nitrate could be 335 

significant (~20–80%) (Day et al., 2022). However, we find that the model organic nitrate contributes very little to 

total simulated nitrate concentrations across almost all the campaigns (Sect. 3.1). While this suggests that 

improvements to the organic nitrate description in GEOS-Chem are needed (Pai et al., 2020), it also indicates that the 

large positive bias in simulated nitrate is indicative of even greater deficiencies in the description of inorganic nitrate 

in GEOS-Chem. Furthermore, measurements of nitrate might be biased high for campaigns that used a C-ToF-AMS 340 

(CalNex, EMeRGe-AS, EMeRGe-EU, EUCAARI, SENEX) where the bias in observational nitrate is proportional to 

the organic mass concentrations (e.g., corrected nitrate measurements were 30% lower than the measured values due 

to organics for one SENEX flight; Fry et al., 2018). Correcting for any overestimates in observed nitrate for these 

campaigns would worsen the model bias in nitrate. 

In what follows, we examine potential causes of SNA model bias, with a focus on the nitrate bias, specifically 345 

the role that deposition, thermodynamic partitioning, chemistry, and/or emissions biases may play. 

 

Figure 4.  GEOS-Chem model performance evaluated against each airborne campaign for sulfate (red), nitrate (blue), 

and ammonium (yellow) reported as R2 and NMB. Campaigns are grouped by the three general regions examined in 

this study. Model performance for all the campaigns merged into one dataset is shown under ‘All’. 350 
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Figure 5. Median vertical profile of observed (black) and simulated (red) sulfate concentrations. Points are binned 

to the nearest 0.5 km. Error bars represent the interquartile range (IQR). Altitude bins with less than 10 points per 

bin are not shown. R2 and NMB for the vertical variability is also reported for each campaign. 355 
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Figure 6. Median vertical profile of observed (black) and simulated (red) nitrate concentrations. Points are binned 

to the nearest 0.5 km. Error bars represent the interquartile range (IQR). Altitude bins with less than 10 points per 

bin are not shown. R2 and NMB for the vertical variability is also reported for each campaign. 360 
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5 Investigating Model Bias 

5.1 Evaluating Thermodynamic Partitioning 

5.1.1 Evaluating Thermodynamic Partitioning in ISORROPIA II 

First, we examine whether errors in the thermodynamic partitioning, represented via the ISORROPIA II scheme 

could contribute to some of the model bias. ISORROPIA II, as implemented in GEOS-Chem, partitions the total (gas- 365 

+ particle-phase) nitrate (TNO3
-), ammonium (NHx = NH3 + NH4

+),Issues with partitioning, which can also act as a 

strong control on dry deposition and lifetime of total (gas- + particle-phase) nitrate (TNO3
-) and ammonium (NHx = 

NH3 + NH4
+; Nenes et al., 2021), could contribute to the model SNA bias. ISORROPIA II, as implemented in GEOS-

Chem and in forward mode, partitions TNO3
-, (NHx), and chloride (TCl- = HCl + Cl-), based on the total concentrations 

of these species, temperature (T), relatively humidity (RH), and sodium and sulfate concentrations. It does not include 370 

cations associated with mineral dust (K+, Ca2+, and Mg2+), which are included in other implementations of 

ISORROPIA II.  

The ability of ISORROPIA II to partition successfully can be evaluated by providing the observations as an 

input to a standalone version of ISORROPIA II (in forward mode) and comparing the predicted partitioning to the 

observedexpected partitioning. (i.e., the observations). However, none of the campaigns explored here included a 375 

complete set of measurements for the relevant species to fully evaluate partitioning. In particular, NH3, HCl, and Na+ 

were only measured for 2, 3, and 4 of the campaigns, respectively. We do not use the NH3 data collected for WINTER 

due to issues with the sample collection, as discussed in Guo et al. (2016), nor the NH3 data collected for FIREX-AQ 

because it only reports enhancements in plumes which are not captured well by the model. Therefore, we undertake 

our evaluation of partitioning by substituting GEOS-Chem simulated values for these three species for all campaigns. 380 

In addition, we only consider the subset of campaigns where HNO3 and Cl-
 are measured, which leaves 7 campaigns 

for our evaluation of ISORROPIA II. We filter the data as described in Sect. 2 and remove any points with missing or 

negative SNA, T, RH, HNO3, or Cl- to use as an input to ISORROPIA II. The resulting ISORROPIA II predicted 

nitrate and ammonium concentrations do not agree perfectly with observations, though the overall NMB is small (Fig. 

7). There are three input factors that may contribute to the imperfect performance in Figure 7: the meteorology, the 385 

substituted model values, and measurement uncertainties. 
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Figure 7. Comparison of the expected (x-axis) to ISORROPIA II-predicted (y-axis) aerosol concentrations. 

Observations of T, RH, SO4
2-, NO3

-, NH4
+, HNO3, and Cl- are used as inputs into ISORROPIA II. Only the campaigns 

that include these measurements are represented. 390 

 

Figure 8. R2 (black) and NMB (pink) for ISORROPIA II predicted nitrate concentrations (with observations given as 

input) versus a) temperature and b) RH. Points are binned to the nearest 5K and 5% for the temperature and RH 

plots, respectively. Dark gray bars indicate the number of points in each bin. Light gray sections of the plot show 

which ranges of temperature and relative humidity result in worsened performance 395 

Figure 8 shows the relationship between ISORROPIA II performance (R2 and NMB) and temperature and 

RH specifically for NO3
-. Performance degrades when RH < 15% or RH > 90% and T > 300 K. Previous work supports 

these observed limitations of ISORROPIA II’s performance at very low humidity where under these conditions the 

aerosols are less likely to be in a completely liquid state (Ansari and Pandis, 2000; Malm and Day, 2001; Fountoukis 

and Nenes, 2007; Bertram et al., 2011). Also at very high humidity, there is exponential growth in the particle liquid 400 

water, which can lead to large uncertainties in the pH (Malm and Day, 2001; Guo et al., 2015). We therefore filter out 

these points (retaining only points where T < 300 K and 15 ≤ RH < 90%) in all subsequent analysis; however, we find 

that doing so only moderately improves the performance (R2 and NMB) of ISORROPIA II exhibited in Fig. 7 (impact 

on GEOS-Chem performance discussed in Section 5.1.2). 

A more critical, but difficult to assess factor is the use of model substituted values for NH3, HCl, and Na+ 405 

concentrations. Figure 9 shows that for the limited campaigns where these species are measured, the model does not 

capture the observed variability (low R2), and in the case of sodium and ammonia exhibits significant biases. 

Observations of sodium are limited, and the only available measurements are for bulk aerosol (<4μm), which does not 

align with the definition of sodium in GEOS-Chem (fraction of fine mode sea salt); these differences in size cut explain 

at least some of the discrepancy in Fig. 9. Observations for NH3 are only available for two of the campaigns (SENEX 410 

and CalNex). The high model biasnear zero NMB for NH3 in Fig. 9 is driven by large model overestimates for SENEX, 

with both over and underestimates for CalNex. The variation in model performance could indicate that regional 

processes (e.g., emissions) dominate ammonia model bias. 

For the two campaigns where NH3 measurements are available, we find that using these as inputs to 

ISORROPIA II, rather than model values, impacts the comparison between predicted and observed nitrate, with 415 

particularly large improvements in the R2 for CalNex. (Figs. S9 and S10). Similar tests for Na+ and HCl had negligible 
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impact on bias and R2
, despite the clear inability of GEOS-Chem to capture the observed concentrations of these 

species (Fig. 9). We note that non-volatile cations, which other than Na+ are not accounted for this implementation of 

ISORROPIA II, have been shown to shift partitioning, producing an average fine nitrate aerosol surface concentration 

that is 21% higher than in a simulation with chemically inert dust (Karydis et al., 2016). This increase in nitrate is seen 420 

despite also introducing a loss pathway for HNO3 that reduces nitrate formation (discussed in more detail in Sect. 5.5). 

Figure 7 does not exhibit a systematic low bias in nitrate, suggesting that for the campaigns considered in this study, 

neglecting non-volatile cations does not produce noticeable partitioning bias.  

Our evaluation of ISORROPIA II in Figure 7 focuses on the aerosol nitrate and ammonium concentrations 

since these are the target species for our GEOS-Chem model simulation. A more explicit evaluation of the partitioning 425 

would explore the performance of ε(NO3
-) (=NO3

-/TNO3
-) and ε(NH4

+) (=NH4
+/TNHx). However, the rarity of 

observed NH3 limits the dataset for which the observed partitioning can be fully assessed. For completeness we 

evaluate ε(NO3
-) and ε(NH4

+) using model substituted ammonia concentrations as used in Figure 7. The resulting 

ISORROPIA II-predicted ε(NO3
-) demonstrates little skill (R2 = 0.25), whereas ε(NH4

+) is better captured (R2 = 0.78; 

Fig. S5S11 in Supplement). We identify no consistent relationship between the low R2 and other variables (e.g. other 430 

species, pH, concentrations) across the campaigns.  

For the two campaigns with NH3 observations, replacing the GEOS-Chem sourced-NH3 values with the 

observed NH3 improves R2 for ε(NO3
-), but at the cost of worsening R2 for ε(NH4

+). (Figs. S9 and S10). We also 

explore the possibility of using estimated NH3 values for all campaigns. Following Guo et al. (2016), we iteratively 

solve for NH3 by cycling through different input TNHx values for ISORROPIA II until the expected concentration of 435 

NH4
+ is returned (or it fails to reach a solution). Using these new NH3

 values improves agreement between observed 

and ISORROPIA II-predicted ε(NO3
-) (R2 = 0.59). In particular, we note that we get a similar comparison between 

model and observed ε(NO3
-) for WINTER as in Guo et al. (2016) (R2 = 0.61, NMB = -0.41, and performance is best 

when RH > 50%). However, these estimated NH3 values greatly, and unrealistically, overestimate the observed NH3 

from CalNex and SENEX (NMB = 0.48 and 11.39 respectively).  440 

The limited evaluation of ε(NO3
-) and ε(NH4

+) possible here suggests that there may be some unresolved 

issues with partitioning as represented by ISORROPIA II. We note that our analysis assumes that the measurements 

are unbiased, there are no missing bases, and that the system is in thermodynamic equilibrium. Representation of non-

equilibrium thermodynamics can introduce some improvement in model bias for SNA but can also worsen model 

performance (Rosanka et al., 2024), suggesting that the missing non-equilibrium process in this work is unlikely a 445 

large contributor to the model bias shown here. More work is needed to fully evaluate ISORROPIA II performance 

for ammonium nitrate across a range of conditions, including using a full suite of gas and aerosol phase measurements. 

However, for the purposes of this broader investigation into ammonium nitrate performance within GEOS-Chem, we 

conclude that partitioning is not a dominant source of bias in the NO3
- concentration comparisons (Fig. 7) and 

restricting the RH and T range can improve agreement between observations and model (Fig. 8). 450 
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Figure 9. Distribution of the observed and model values for NH3, HCl, and Na+ with reported R2 and NMB. 

5.1.2 Evaluating Thermodynamic Partitioning in GEOS-Chem 

In addition to the comparisons shown in Fig. 9, here we explore whether there are biases in other model 

parameters that control thermodynamic partitioning and to what extent this may contribute to the GEOS-Chem biases 455 

in nitrate. Figure 10 shows the spread in these ISORROPIA II inputs for both the observations and the model. Where 

measured, HNO3 is generally overestimated by the model (NMB = 0.44). This could result from overestimated 

precursor emissions, excessive chemical production, or alternatively, underestimated loss of HNO3 that could generate 

a high bias in HNO3 and, in turn, NO3
- (discussed later). We also note that there is no systematic bias in the simulated 

NO3
-/TNO3

 (Fig. S6). The over and underestimates in this ratio are consistent with the NO3
- bias seen in Figure 6, and 460 

thus are not indicative of a partitioning bias, further supporting the analysis of the previous section. The model 

underestimates Cl- and does not capture the observed variability (low R2). Temperature is very well captured by the 

model (high R2, low NMB). The distribution of RH is similar between model and observations in Fig. 10, but the 

lower R2 value indicates that there are differences in RH on a point-by-point basis. Some of the disagreement between 

observed and model RH can be explained by the observed RH being defined with respect to water, while the model 465 

RH is defined with respect to the relevant phase (ice, water, or a combination of the two) depending on temperature. 

This leads to greater discrepancies in RH aloft (Fig. S6 in SupplementS12). However, converting model RH to be 

with respect to water does not significantly alter ISORROPIA II predicted partitioning and therefore does not 

contribute to the model bias.  
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 470 

Figure 10. Distribution of the observed and model values for the different variables needed as input to ISORROPIA 

II with reported R2 and NMB. 

As in the previous section, we filter by RH and temperature (retaining points with T < 300K and 15 ≤ RH < 

90%) since Fig. 8 confirms that ISORROPIA II may not appropriately capture thermodynamic partitioning at these 

extremes of the observed T and RH. Twenty percent of the data points are eliminated by this filtering, with most of 475 

the points lost (72%) from low altitudes (< 4km). This filtering has a small effect on the model performance shown in 

Figs. 4–6. Sulfate performance is relatively unchanged (new R2 and NMB of 0.54 and 0.13 for all campaigns 

combined). R2 for all campaigns combined is decreased very minimally for NO3
- (0.22 to 0.21) and NH4

+ (<0.01 

difference). The largest change after filtering is the reduction in NO3
- NMB from 1.76 to 1.70. A small fraction of the 

model high nitrate bias can therefore be explained by the temperature and RH range limitations, specifically for the 480 

partitioning by ISORROPIA II in GEOS-Chem. The comparison of ISORROPIA II-predicted pH using the 

observations and using the model values is also improved after filtering by T and RH (R2 goes from 0.28 to 0.32 and 

NMB from 0.32 to 0.19, see Fig. S7 in SupplementS13). For the remainder of this study, we remove points in these 

temperature and RH extremes and explore what processes might be responsible for the remaining nitrate bias. 

We now test how the model values for T, RH, HNO3, Cl-, SO4
2-, NO3

-, and NH4
+ impact the partitioning and 485 

contribute to the high NO3
- bias in GEOS-Chem. Figure 11 shows a series of sensitivity tests where different 

combinations of modelled and observed values were given as an input to standalone ISORROPIA II. The bias of each 

sensitivity test, relative to the “true”, observed NO3
- and NH4

+, are represented by the x and y axes respectively. 

The ‘Obs’ sensitivity case refers to when all the possible observations available for each campaign are used 

as input to ISORROPIA II. As in the previous section, we only use the campaigns that have HNO3 and Cl- 490 

measurements. We see that the ISORROPIA II-predicted nitrate and ammonium are only slightly high biased 

compared to observations when ISORROPIA II is driven by the entire (but incomplete) set of observed concentrations 

and meteorology (also seen in Fig. 7). We attribute this slight bias to the unmeasured species across the dataset in 
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Sect. 5.1.1. The ‘Model’ test case refers to using only the output from GEOS-Chem along the flight tracks as input to 

ISORROPIA II. The model is biased high compared to the observations, consistent with the results of the model 495 

evaluation in Sect. 4.  

To identify whether any specific parameter drives the model bias, we substitute model values with observed 

values one at a time. When we replace the model temperature with the observed temperature, as in the ‘Obs T’ run, 

we see a negligible impact on the partitioning, as expected given the match in observed and MERRA-2 temperature 

(Fig. 10). Similarly, substituting the observed HNO3, Cl-, and RH for model values (in three separate tests) produces 500 

little change in the thermodynamic partitioning, despite the biases seen between the model and observations in Fig. 

10. As expected, the high bias in model HNO3 shifts the partitioning towards more particle phase. Despite an apparent 

high bias in model RH (NMB = 0.09, see Fig. 10), substituting observed RH for model RH results in less particle 

phase, which is associated with a low bias in model RH at higher NO3
- and NH4

+ concentrations. 

Using observed sulfate, which is generally lower than the model, as an input to ISORROPIA II produces less 505 

ammonium, but more nitrate, as expected. However, the changes are relatively modest and do not suggest that sulfate 

model biases are responsible for the substantial biases in ammonium nitrate seen in GEOS-Chem. Greater 

improvements in predicted nitrate and ammonium concentrations result from using the observed ammonium or, more 

noticeably, the observed nitrate. The least biased ISORROPIA II prediction results from substituting in the observed 

sulfate, nitrate, and ammonium (‘Obs SNA’), which nearly removes all bias for both nitrate and ammonium. This 510 

indicates that the GEOS-Chem model bias in nitrate and ammonium is largely a result of model SNA itself, rather 

than partitioning biases driven by meteorology, other aerosol constituents, or gas-phase precursors. However, we note 

that without a complete set of observed NH3 measurements, we cannot fully assess how biases in this species and the 

associated emissions may play a role in this model bias. We also note that while the magnitude of the NMB in NO3
- 

and NH4
+ shown in Fig. 11 are sensitive to the subset of campaigns used, the general trends remain the same (i.e., 515 

changes in T, RH, Cl-, and HNO3 have low impact, change in SNA has the largest).  
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Figure 11. Bias in NO3
- and NH4

+ associated with different sensitivity tests with ISORROPIA II using all the available 

observed values (‘Obs’), all modelled values (‘Model’), and when different observed values are substituted in for 

model values. Data is filtered to retain points where model T < 300 K and 15 ≤ model RH < 90%. 520 

The analyses above suggest that the GEOS-Chem model overestimate of nitrate (and ammonium) is likely 

the result of an excessive source or an underestimated or missing loss process for nitrate itself. We leverage the fast-

run time of standalone ISORROPIA II to run a multitude of sensitivity tests to explore how much TNO3
- and NHx 

would need to change in GEOS-Chem to improve model performance. Figure 12 shows the model performance, using 

NMB as the metric, for NH4
+ and NO3

- when the simulated values of TNO3
- and NHx are scaled. All campaigns are 525 

included and are grouped by region to capture how changes on a regional scale could improve model performance. 

The cumulative absolute NMB for the sum of ammonium and nitrate is also shown, where the swaths of dark bluegray 

(where NMB is near zero) indicate that there are different scalings of TNO3
- and NHx that would all result in a similarly 

“most improved” simulation for both ammonium and nitrate. All three regions exhibit the same pattern, but the scaling 

factors are shifted up/down depending on regional model biases. For example, the North American campaigns, which 530 

are generally less biased (Fig. 4), require the least change (a 25% reduction of TNO3
- and/or NHx) to eliminate the 

bias. In contrast, the simulation would be most improved for the European and Asian campaigns with significant cuts 

(up to 50–75%) to TNO3
-, NHx, or both. In the coming sections, we explore how different production and loss 

processes in GEOS-Chem could reduce TNO3
- and NHx in GEOS-Chem and, in turn, produce an improved simulation 

for ammonium nitrate. 535 
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Figure 12. ISORROPIA II performance across different sensitivity runs conducted by scaling NHx and TNO3 input 

from the baseline model values. Performance is reported as NMB for NH4
+ (first column) and), NO3

- (middle column), 

and the sum of the absolute values of the NMB for NH4
+ and NO3

-
 (last column). Campaigns are grouped by region. 540 

Data is filtered to retain points where model T < 300 K and 15 ≤ model RH < 90%. White boxes in the last column 

indicate the scaling factors for NHx and TNO3 used in the full GEOS-Chem sensitivity test run (discussed in Sect. 5.2). 

5.2 Response of SNA to Changes in Emissions 

Overestimated precursor emissions in the model could drive the high bias in ammonium nitrate in GEOS-

Chem. We conduct a sensitivity test where we assume that the entirety of the ammonium nitrate model bias is 545 

associated with emissions uncertainties and use the concentration scalings for TNO3
- and NHx from the previous 

section as a proxy for NOx and NH3 emissions in a GEOS-Chem sensitivity simulation. We cut both NOx and NH3 

anthropogenic emissions by 50% for the EU and AS regions and we cut anthropogenic emissions of NO by 25% for 

the NA region (scalings for each region are highlighted by the white outlined boxes in Fig. 12). Agricultural emissions, 

which are included in the anthropogenic emission inventories in GEOS-Chem, are also scaled down. The cutreduction 550 

to anthropogenic emissions is performed as a simple sensitivity to the dominant source and does not imply that other 
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smaller NOx sources (e.g. soil and lightning) are unbiased. The resulting GEOS-Chem model bias in nitrate and 

ammonium are both significantly reduced (Fig. 13). This confirms that our offline ISORROPIA II sensitivity tests 

shown in Fig. 12 are a reasonable proxy for precursor emissions scaling. However, reductions in bias come without 

any significant improvement to the model’s ability to capture the shape of the observed distribution or model skill (see 555 

R2 values). In addition, for those campaigns where NOx was measured, the model is almost consistently biased low in 

NOx (NMB ~ -0.29) and overestimates the HNO3:NOx concentration ratio, which suggests that, rather than NOx 

emissions, formation (and loss) of HNO3 may instead be overestimated (underestimated) in the model.In particular, 

despite the significant improvement at high NO3
- concentrations, the lower NO3

- concentrations (0.01 – 1μg/sm3) are 

still significantly underestimated suggesting that the biases at high and low concentrations may be driven by different 560 

factors. Furthermore, there is good agreement (within 10%) between the current NH3 emissions from CEDS and a 

top-down satellite-based emission estimate for North America, Europe, and East China (Luo et al., 2022). In addition., 

Also, a regional emissions inventory for Asia is within ±25% of NOx and NH3 emissions estimates from CEDS 

(Kurokawa and Ohara, 2020). Thus, while reductions to the emissions in GEOS-Chem can eliminate the bias in the 

model simulation, the poor (and worsening) model skill is not ameliorated, suggesting that regional scale emissions 565 

biases alone are not responsible for the poor model performance for SNA. 

In addition, for those campaigns where NOx was measured, the model is almost consistently biased low in 

NOx (NMB ~ -0.29) and overestimates the HNO3:NOx concentration ratio, which suggests that, rather than NOx 

emissions, formation (and loss) of HNO3 may instead be overestimated (underestimated) in the model. Low NOx and 

high HNO3 biases could also indicate that oxidation is too fast in the model. Overly rapid oxidation could also 570 

contribute to the high SO4
2-/SOx ratios seen across some campaigns (Fig. S4). While we do not explicitly investigate 

the potential role of oxidation on SNA model bias, we note that the mean tropospheric OH burden in GEOS-Chem is 

on the higher end of what is suggested by the literature (based on both observations and models; Bloss et al., 2005; 

Hu et al., 2018). Direct comparisons of GEOS-Chem to observations made at surface sites and during aircraft 

campaigns show that modelled OH (including its uncertainty) generally falls within the uncertainty range of measured 575 

OH, but is generally higher in the model than the observations (Bloss et al., 2005; Christian et al., 2018; Kim et al., 

2022). However, inconsistent biases in HNO3 across the campaigns suggest that model OH is not exclusively driving 

model bias. As mentioned above, changes to VOC emissions can also affect SNA concentrations, leading to possible 

reductions in concentration and the model bias presented here (e.g., Aksoyoglu et al., 2017), however this effect is 

likely limited to near-surface regions with a higher potential for missing VOC reactivity and is unlikely to be an 580 

important driver of the high, consistent NO3
- bias seen here in the free troposphere. 

Thus, wWhile reductions to the emissions in GEOS-Chem can eliminate the bias in the model simulation, 

the poor (and worsening) model skill is not ameliorated, suggesting that regional scale emissions biases alone are not 

responsible for the poor model performance for SNA. 
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Figure 13. Distribution plots of sulfate, nitrate, and ammonium mass concentrations across the all campaigns as in 

the observations (black), the standard GEOS-Chem model run (red, solid), and the GEOS-Chem run with NOx and 

NH3 emissions reduced (“Emis”; red, dashed). R2 and NMB are reported for both the standard and reduced emissions 

simulations. Shaded regions indicate concentrations below the detection limit of the AMS (shown is minimummedian 590 

DL across all campaigns). Extreme T and RH values have been filtered as described in Sect. 5.1.2. 

5.3 Sensitivity of SNA to Dry Deposition Changes 

Dry deposition of SNA and its precursors is not well constrained. Evaluation of current model 

parameterizations for dry deposition are limited by a relatively small number of direct global measurements available 

for dry deposition fluxes and large uncertainties in calculated deposition velocity (vd; Emerson et al., 2020). Travis et 595 

al. (2022) suggest some of the high bias in GEOS-Chem’s nitrate and HNO3 during KORUS-AQ could be attributed 

to insufficient dry deposition nearon urban areassurfaces and see improvements in the model bias when vd for HNO3 

is increased by a factor of 5. Heald et al. (2012), saw weak responses of global surface nitrate concentrations (decreased 

by <10%) when HNO3 dry deposition velocity was doubled. 

 Here we test how simulated global SNA responds to changes in vd using two sensitivity tests: one for changes 600 

in vd for all precursor gases (SO2, HNO3, and NH3) and the other for changes in vd for all the SNA species. In both 

simulations, we increase vd by a factor of 2. We conduct these sensitivity tests for one year of simulation and not for 

all the campaigns (i.e. we do not provide comparisons of R2 and NMB). Figure 14 shows that relative changes in 
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surface concentrations are minimal across all species and the two different sensitivity tests. Over land, surface NO3
- 

is the most sensitive to the scaling of vd,prec and vd,SNA. Scaling vd,prec has a larger effect on SNA concentrations than 605 

scaling vd,SNA, demonstrating the more important role of dry deposition for the gas-phase precursors. However, while 

dry deposition of SNA in GEOS-Chem is on the lower end of other global models, dry deposition of precursors is on 

the higher end of these same models (Bian et al., 2017). Changing dry deposition velocities has a lessened impact 

aloft, especially for the sensitivity test where vd,SNA was doubled (e.g., at the 800mb level the maximum decrease for 

NO3
- is 20%), which confirms that the simulation of airborne measurements shown here is largely unaffected by 610 

uncertainties in dry deposition. 

 

Figure 14. Impact of doubling dry depositional velocity of precursor species (SO2, HNO3, and NH3; top row) and SNA 

(bottom row) on annual mean surface concentrations of sulfate, nitrate, and ammonium for 2018. Concentrations < 

0.105 μg/sm3 are filtered out. 615 

5.4 Sensitivity of SNA to Wet Deposition Changes 

 The wet deposition scheme in GEOS-Chem accounts for rainout and washout in both large-scale stratiform and 

convective precipitation as well as scavenging in convective updrafts (Jacob et al., 2000; Liu et al., 2001). These are 

highly parameterized processes that are empirically derived and remain uncertain. A recent update to the wet 

deposition scheme in GEOS-Chem was developed by Luo et al. (2019, 2020), including changes that are relevant to 620 

SNA concentrations. The Luo et al. scheme updated the value for in-cloud condensed water (ICCW) to vary temporally 

and spatially based on MERRA-2 cloud and rainwater, as opposed to being a constant value. It also includes updated 

empirical washout coefficients for HNO3 and aerosols and rainout efficiencies for HNO3 and SO2 (Luo et al., 2019, 

2020). Calculation of the effective Henry’s law constant (H*) was also updated to use a varying rain water pH (for 

washout) and cloud water pH (for rainout and scavenging in convective updrafts), as opposed to a constant value of 625 

4.5. Calculations of H* were also updated for SO2 and NH3, specifically, with impacts on both wet and dry deposition 

(e.g., for the dry deposition scheme, the average vd is 0.8–1 times the value from the standard simulation). The global 

annual mean burden for sulfate, nitrate, and ammonium are reduced by 32%, 53%, and 37% under these changes in 

our 2018 simulation. SO2 and HNO3 global annual mean burdens decrease by 15% and 56%, respectively, in the 

simulation with the Luo et al. scheme. In contrast, the ammonia burden increases by 55% as a result of partitioning 630 
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favoring gas-phase TNHx when SO4
2- and TNO3 are reduced. We use the Luo et al. scheme to explore some of the 

sensitivity surrounding wet removal uncertainties through the lens of model performance for SNA. 

Figure 15 shows the mass concentration distributions for all three SNA species across all campaigns for the 

observations and the two different wet deposition schemes. Despite the addition of a geographically varying ICCW, 

which we might expect to better represent the regional variability in wet removal, there is no significant improvement 635 

in the R2. However, the new wet deposition scheme substantially reduces the nitrate NMB from 1.70 to 1.02. The 

comparison suggests that the shifted nitrate distribution overestimates the lower concentrations, however many of 

these concentrations may lie below the detection limit of the AMS and cannot be evaluated. The vertical profiles for 

nitrate show similar trends with shifts to lower concentrations at all altitudes, but no noticeable improvement in model 

performance compared to the profiles shown in Fig. 6 for the default model. The ammonium mass concentration 640 

distribution is also significantly shifted to lower concentrations which improves the NMB. A similar reduction is seen 

for the sulfate mass concentration distribution, but the displacement to lower concentrations (not seen in the 

observations) slightly worsens the overall NMB (from 0.13 to -0.16). This suggests that the Luo et al. scheme may 

overestimate wet removal of SNA. Dutta and Heald (2023) also show that the Luo et al. deposition scheme results in 

a substantial overestimate of observed nitrate wet deposition fluxes. This suggests that additional work is needed to 645 

optimize the removal efficiencies in GEOS-Chem considering the use of a physically varying ICCW. We note that 

smaller storms, which impacted some of the campaigns, may not be resolved at the resolution of the model, and 

therefore even with updates to the wet deposition scheme there is a limitation to how well the variability in wet removal 

can be captured. Finally, these comparisons emphasize that wet removal plays a major role in controlling the lifetime 

and abundance of SNA; biases in the representation of these processes may explain some of the deficiencies in the 650 

simulation of model SNA concentrations. 
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Figure 15. Distribution plots of sulfate, nitrate, and ammonium mass concentrations across all the campaigns as 

observed (black), simulated in the standard GEOS-Chem model (red, solid), and simulated in GEOS-Chem with the 655 

Luo et al. (2019, 2020) wet deposition scheme (red, dashed). R2 and NMB are reported for both the standard (black 

text) and Luo et al. (grey text) simulations. Shaded regions indicate concentrations below the detection limit of the 

AMS (shown is minimummedian DL across all campaigns). Extreme T and RH values have been filtered as described 

in Sect. 5.1.2. 

5.5 The role of additional chemical sources and sinks in SNA bias 660 

A missing chemical sink is another potential source of fine-mode SNA bias. Uptake of acidic gases (e.g., 

HNO3, SO2, H2SO4) by dust is one possible pathway. We find that for the two campaigns with the highest dust load 

(KORUS-AQ and EMeRGe-AS) acid uptake on dust, as implemented by Fairlie et al. (2010), improved the model’s 

ability to capture SNA, but the impact was minimal. The largest impact was on nitrate where NMB was reduced by 

4%0.04 and there was no change in model skill (R2), consistent with previous results (Fairlie et al., 2010). Zhai et al. 665 

(2023) show that including anthropogenic coarse dust in GEOS-Chem eliminated much of the nitrate overestimate for 

the KORUS-AQ campaign observations made in the Seoul Metropolitan Area (SMA). In the SMA, the average coarse 

PM concentration at the surface was 23 µg/m3
 for 2015 (Zhai et al., 2023), which is at the upper limit of what has been 

observed in Los Angeles and across European cities (range 5 – 23 µg/m3; Pakbin et al., 2010; Eeftens et al., 2012). 

Coarse anthropogenic PM is expected to be considerably less abundant outside of urban areas and aloft, and thus the 670 

campaigns explored here (including some individual flights during KORUS-AQ) would be relatively unaffected by 

this process, indicating that this is not a universal remedy for the GEOS-Chem nitrate simulation deficiencies. 

Nitrate photolysis is another potential and uncertain pathway for nitrate loss. Studies generally relate the 

photolysis of nitrate to the photolysis of nitric acid by an enhancement factor (EF), with previous estimates for the EF 

ranging from 1 – 1000 (Romer et al., 2018; Shi et al., 2021; Ye et al., 2016). Shah et al. (2023) implemented a 675 

parameterization of NO3
- photolysis in GEOS-Chem to address an observed underestimate in NO, where the EF scales 

from 10 to 100 depending on the concentration of NO3
-sea salt aerosols relative to the concentration of sea salt 

aerosols.NO3
-. For the two campaigns which are characterized by the highesthigh calculated EFs (CalNex and FIREX-

AQNO3
- concentrations (MILAGRO and WINTER, with median EFs of 0.3947 and 0.7129 respectively), adding the 
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Shah et al. scheme leaves R2 unchanged and NMB negligibly altered (≤ 0.0302) for all species. Therefore, nitrate 680 

photolysis, unless substantially more efficient than currently parameterized, cannot explain the large nitrate biases in 

the GEOS-Chem simulation.  

We also consider the potential for an overestimated HNO3
- source to explain the SNA bias, specifically N2O5 

uptake by aerosols. N2O5 hydrolysis represents a significant pathway for inorganic nitrate formation, estimated to 

contribute 41% of the inorganic nitrate source near the surface (Alexander et al., 2020) and 18% of the tropospheric 685 

inorganic nitrate burden (Alexander et al., 2009). The N2O5 uptake coefficient (γN2O5) indicates the probability that 

N2O5 will be lost on an aerosol surface, leading to the formation of HNO3. The uptake parameter is dependent on 

numerous factors (e.g., aerosol composition, temperature, RH) and there remains uncertainty in the model 

parameterization of this process, with estimated values ranging over several orders of magnitude (Holmes et al., 2019; 

Macintyre and Evans, 2010; McDuffie et al., 2018). In a sensitivity test, we reduced the uptake coefficient of N2O5 in 690 

GEOS-Chem by one order of magnitude across all aerosol types for the WINTER and KORUS-AQ campaigns, which 

have the highest concentrations of N2O5. There was no significant impact on R2 (≤ 0.01) while the NMB for nitrate 

for these campaigns was reduced from 190%1.90 to 172%;1.72; this suggests that the uncertainty in this pathway has 

a limited, but non-negligible effect on the model’s ability to capture SNA. 

We explore the combined effect of all these updates to the chemical pathways (acid uptake by dust, reduced 695 

γN2O5, and NO3
- photolysis) on annual mean SNA. The global burden of both SO4

2- and NH4
+ are negligibly impacted 

(~1% decrease), but there is a 11% reduction in the burden of NO3
-. Fig. 16 shows that the largest impact on SNA 

surface concentrations is for NO3
- over Eastern US, Europe, India, and East China. Sulfate concentrations show modest 

increases downwind of regions where NO3
- is decreased. A more damped effect on SNA concentrations is seen in the 

mid-troposphere.  Collectively, known uncertainties in the chemical formation and loss processes (in the limits tested 700 

here) do not substantially perturb nitrate concentrations and cannot explain the model biases seen in our simulation.  

 

Figure 16. Impact of updates to chemical pathways in GEOS-Chem (i.e. including acid uptake on dust, NO3
- 

photolysis, and reducing γN2O5) on annual mean surface and mid-troposphere (600mb) concentrations of sulfate, 

nitrate, and ammonium for 2018. Concentrations < 0.105 μg/sm3 are filtered out. Model nitrate and sulfate include 705 

nitrate and sulfate on dust in the smallest size bin. 
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6 Conclusions 

Our evaluation of the global inorganic aerosol simulation in GEOS-Chem against observations from 11 

airborne campaigns indicates that sulfate is generally well simulated in the model but that there is a systematic high 

bias in nitrate (and ammonium), with worse performance in Europe and Asia. We explore a range of factors that may 710 

contribute to the bias in nitrate. 

We find that the ISORROPIA II model reproduces observed nitrate concentrations and conclude that 

thermodynamic partitioning is not responsible for the model nitrate bias. However, we identify that the variability in 

observed ε(NO3
-) is not well captured with ISORROPIA II, but the evaluation of partitioning is incomplete given the 

limited set of ammonia observations. Extremely dry or saturated conditions, as well as the highest temperatures, are 715 

not well captured by ISORROPIA II, thereby degrading the GEOS-Chem model performance, particularly for nitrate. 

Removing these points modestly reduces the nitrate bias. Sensitivity tests using standalone ISORROPIA II suggest 

that the model bias in other species (HNO3, Cl-, Na+, HCl) are not responsible for the SNA bias. However, we find 

that partitioning is sensitive to NH3 concentrations and, for the two campaigns with ammonia measurements, the 

model evaluation demonstrates little skill and significant biases for this species. Ammonia is not routinely measured; 720 

our results indicate that additional measurements are sorely needed to further explore how ammonia biases may impact 

model simulations of nitrate. With the caveat that the impact of a potentially poor ammonia simulation on nitrate 

cannot be fully assessed, our analysis suggests that excessive sources or underestimated loss of nitrate in the model is 

the cause of the nitrate bias. 

The model is sensitive to adjustments in emissions, deposition, and, very minimally, to different chemical 725 

loss and production updates (i.e., acid uptake on dust, N2O5 uptake, and NO3
- photolysis), but none can explain the 

entirety of the high nitrate bias, or universally improve the model skill. Adjustments to the wet deposition scheme in 

GEOS-Chem show reductions in nitrate bias but worsen the model’s ability to capture sulfate, suggesting that nitrate 

concentrations are very sensitive to wet removal processes, but that these particular updates do not improve the model 

skill. A combination of changes to the emissions, deposition, and chemical production and loss may be able to close 730 

the high bias gap between model and observations, but more work is required to understand how to improve the 

model’s ability to capture the variability in observed nitrate. We note that our comparisons assume that the fine-mode 

SNA is fully captured by the AMS observations. A high model bias in nitrate may result if a substantial fraction of 

fine aerosol nitrate extends beyond the 1 μm size (and is mis-characterized by the model as sub-micron as well). 

Measurements of the aerosol nitrate size distribution extending up to 2.5 μm are needed to explore this further. More 735 

routine geographically distributed measurements of wet deposition of TNO3 and dry deposition of HNO3 may help 

also constrain the nitrate lifecycle. In addition, comprehensive measurements of NOy species (e.g., N2O5, PAN, 

HONO, organic nitrates) would help to evaluate NOy cycling in the model and in turn identify how biases in the 

chemical processes involving NOy impact inorganic particulate nitrate. 

The model deficiencies in SNA highlighted in this paper have broader implications because of the role of 740 

SNA in climate and air quality. Despite numerous updates over the past decade to the description of chemical and 
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physical processes that are relevant to nitrate formation in GEOS-Chem, model predictions of nitrate concentrations 

remain persistently biased high. The factor(s) contributing to the poor model skill and bias in SNA remain elusive. 

The grossly overestimated nitrate in GEOS-Chem implies that any policy-relevant studies for air-quality and climate 

that employ this model will be similarly biased, including an over-emphasis on nitrogen containing PM and a likely 745 

incorrect attribution of sectoral contributions to PM. Comprehensive measurements of particle and gas-phase 

precursors in a range of environments would be invaluable to future efforts to identify the drivers of nitrate bias and 

to improve the fidelity of GEOS-Chem and possibly other models. 
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