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Abstract. The mass conservation equation in the presence of boundary fluxes and chemical reactions from non-

equilibrium thermodynamics is used to derive a modified dynamic energy budget (mDEB) model. Compared to the standard 

dynamic energy budget (sDEB) model (Kooijman, 2009), this modified formulation does not place the dilution effect in the 10 

mobilization kinetics of reserve biomass, and it maintains the partition principle for reserve mobilization dynamics for both 

linear and non-linear kinetics. Overall, the mDEB model shares most features with the sDEB model. However, for biological 

growth that requires multiple nutrients, the mDEB model is computationally much more efficient by not requiring numerical 

iterations for obtaining the specific growth rate. In an example of modelling the growth of Thalassiosira weissfloggi in a 

nitrogen-limiting chemostat, the mDEB model was found to have almost the same accuracy as the sDEB model, while requiring 15 

almost half of the computing time of the sDEB model. Since the sDEB model has been successfully applied in numerous 

studies, we believe that the mDEB model can help improve the modelling of biological growth and the associated ecosystem 

processes in various contexts.  

1 Introduction 

By aid of membranes (and cell walls), biological cells create an intracellular environment where substrates taken up 20 

from the environment are concentrated and converted into new biomass and new cells (Lodish et al., 1999). The similarity 

between the role played by the (membrane-confined) intracellular environment and the (container-held) aqueous solution that 

supports chemical reaction experiments (in the lab) has motivated the development of variable-internal-store models to model 

biological growth ( Nev and Van Den Berg, 2017;  Grover, 1991;  Droop, 1974; Williams, 1967). Among the many 

formulations, the dynamic energy budget (DEB) model has been a very successful example (Kooijman, 2009; Tolla et al., 25 

2007; Sousa et al., 2010; Matyja and Lech, 2024; Tang and Riley, 2015).  

The key idea of variable-internal-store models is to represent a biological organism with one structural compartment, 

which holds one or multiple storage compartments (Nev and Van Den Berg, 2017; Kooijman, 2009). The production of new 

cells is modelled as the growth of structural biomass, as driven by the transformation dynamics of storage compartments. 
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These models vary in their formulation of storage dynamics, and how the turnover of storage drives structural growth. In the 30 

DEB framework, storage is termed “reserve”, whereas in the Droop model, storage is termed “quota”. Since here we are 

proposing a modified DEB model (mDEB), we use the term “reserve” hereafter. Moreover, in the DEB textbook (Kooijman, 

2009), we note that standard DEB model refers to the simplest non-degenerated DEB model. In this study, we use sDEB simply 

to semantically contrast the formulation in Kooijman (2009) with the mDEB proposed here. 

The sDEB model adopts the following three key assumptions: (1) The strong homeostasis assumption that is 35 

abstracted from observations that almost every biological organism is made up by several groups of macromolecules, e.g., 

carbohydrates, proteins, lipids, and nucleic acids (Lodish et al., 1999). This assumption states that the chemical composition 

of reserve(s) and structure(s) are constant, but their amounts can vary. (2) The weak homeostasis that is abstracted from 

observed stable whole organism elemental stoichiometry, such as the Redfield ratio (Redfield, 1934), which is the foundation 

for the application of ecological stoichiometry theory (Sterner and Elser, 2002). This assumption states that if food density 40 

does not change, then reserve density, defined as the ratio between the amounts of reserve and structure, becomes constant 

while growth continues. That is, reserve and structure grow in harmony and the chemical composition of biomass does not 

change. (3) The principle of merging and partitioning of reserves, which is abstracted from the evolution from unicellular to 

multicellular life forms. These assumptions combined with Euler’s theorem on homogeneous function are used to infer that 

the reserve turnover dynamics must be a linear function of reserve density (see chapter 2 of Kooijman (2009) for details). 45 

Recently, Tang and Riley (2023) suggested that the linear reserve dynamics in the sDEB model can be replaced with 

a more generic nonlinear enzyme kinetics (derived from law of mass action) without violating the principle of merging and 

partitioning of reserves, so that a closer link can be built between the DEB model and models that consider intracellular 

biochemistry using explicit enzyme kinetics (Etienne et al., 2020; Tadmor and Tlusty, 2008). Tang and Riley (2023) 

demonstrated that their revised DEB (rDEB) model outperformed the sDEB model for a measured time series of degradation 50 

of the herbicide 2,4-dichlorophenoxyacetic acid, and both DEB models resulted in better explanation than the popular 

compromise model for the empirically observed relationships (1) between specific respiration and specific growth rate for the 

marine bacterial data collected by Vikström and Wikner (2019), and (2) between specific substrate uptake rate and biomass 

yield for the microbial data synthesis by Smeaton and Van Cappellen (2018). However, in further exploration of the rDEB 

model, Tang and Riley (2023) noticed (in their section 4.2) that the sDEB model is paradoxically recovered from the rDEB 55 

only when the ribosome effort allocated to growth is zero. Thus, in the following, we derive the reserve dynamics using an 

alternative approach that combines the first law of thermodynamics and law of mass action, which then leads to the mDEB 

model. As we show below, the mDEB model remains compatible with all key assumptions of the sDEB model, and can be 

easily extended to non-linear enzyme kinetics-based model of intracellular metabolism. Moreover, the mDEB model extension 

to multiple-substate-limited biological growth is computationally much more efficient, while maintaining the theoretical 60 

elegance of the DEB theory. We note that this gained computational efficiency by the mDEB model will be very helpful to 

apply the DEB theory to the modelling of a large number of concurrently growing organism (or organs for plants and animals). 
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Below we first provide a detailed derivation of the mDEB model. Then the mDEB model is compared to the sDEB 

model for general behaviours. Following this, an application to the chemostat experiment by Pawlowski (2004) is presented. 

Finally, we conclude by discussing how the mDEB model can be applied to growth problems in ecosystem biogeochemistry.  65 

 
2. Theory 

2.1. The mDEB model 

We start with the mass (or energy) conservation equation from the non-equilibrium thermodynamics (De Groor and 

Mazur, 1984),  70 
!
!"
∫#(")𝜌&𝑑𝑉 = −∫𝛀(")𝑱& ∙ 𝑑𝛀 + ∫#(")∑ 𝜎(&𝑟((𝜌()( 𝑑𝑉, (1) 

where subscript i refers to pools internal to the time dependent volume 𝑉(𝑡); 𝜌! is the mass (or energy) density of the  𝑖-th 

internal pool that is enclosed by the volume 𝑉(𝑡), whose surface is 𝛀(𝑡) (and its normal direction is pointing outward); 𝑱𝑖 is 

the outgoing flux of 𝜌! through the surface 𝛀(𝑡); and 𝑟𝑙0𝜌𝑙1 is the l-th chemical reaction rate that occurs inside the volume 

𝑉(𝑡) contributing to the change of total mass (or energy) ∫𝑉(𝑡)𝜌𝑖𝑑𝑉 according to the stoichiometric parameter 𝜎𝑙𝑖. We define 

all the symbols in the Nomenclature table in the appendix, and unless specified otherwise, all variables have ISO units. 75 

 When applied to a biological cell, 𝑉(𝑡) is its physical volume, and 𝛀(𝑡) is the corresponding exterior surface. The 𝑖-

th internal reserve is 𝜌!, whose dynamics are governed by substrate uptake (−𝑱!), and intracellular chemical transformations 

(by the last term of equation (1)). Since equation (1) imposes no size restriction on the spatial domain of the integral terms a 

priori, as the sDEB model has attempted to achieve, the mDEB model is applicable to unicellular, multicellular, and a 

(sub)population of organisms, as long as some average is properly taken in the application. Moreover, as in the sDEB model, 80 

the volume 𝑉(𝑡) and surface 𝛀(𝑡) here are assumed to be scaled based on structural biomass (through mass density, which is 

constant by the strong homeostasis assumption). 

 When applying equation (1) to a reserve component of a biological organism or a population of cells, we ignore the 

location dependence within the intracellular volume. That is, 𝜌! is the average value within the volume 𝑉(𝑡). Applying Gauss’s 

law to the first term of equation (1) (e.g., Feynman et al., 2011) leads to 85 
!
!"
0�̅�&(𝑡)𝑉(𝑡)1 = −∫#(")𝛁 ∙ 𝑱&𝑑𝑉 + ∑ 𝜎(&𝑟(&(�̅�()( 𝑉(𝑡), (2) 

where “⬚/ ” signifies a spatial average for the variable. Equation (2) will be used to formulate the reserve dynamics for the 

mDEB model. Additionally, for simplicity, we henceforth remove the explicit designation of time dependence in 𝑉(𝑡). 

 In the following, we consider the simplest, one reserve mDEB model. However, in order to show that the mDEB 

model satisfies the merging and partitioning principle of the reserve dynamics, we partition the reserve (density) as 

𝑥 = ∑ 𝑥&& . (3) 
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With equation (3), by taking 𝑥! = �̅�!(𝑡), equation (2) implies that, while all reserve molecules are chemically the same, in the 90 

model, they can be tagged with subscript 𝑖, so that one can differentiate them and model them separately. To some extent, this 

tagging is equivalent to isotope labelling, if the isotopes are not metabolically differentiated by the organism.  

The application of equation (2) to 𝑥𝑖 leads to  

!(#)&)
!"

= 𝑗*,&𝑉 − 𝑉𝑗,,)& = 𝑗*,&𝑉 − 𝑉
-')& .&⁄
01∑ )( .(⁄(

= 𝑗*,&𝑉 − 𝑉
-')& .&⁄
01) .⁄

. (4) 

where 𝑗),!  is the specific assimilation rate from substrates contributing to 𝑥𝑖 , and 𝑣+  is the maximum specific reserve 

mobilization rate (as signified by subscript 𝐸). Since all reserve compartments 𝑥! are metabolically the same, their specific 95 

affinities are also the same: 𝐾! = 𝐾, = 𝐾.  

In equation (4), we have formulated the intracellular biochemical reaction (i.e., 𝑗𝐸,𝑥𝑖 for the turnover of 𝑥!) using the 

equilibrium chemistry approximation (ECA) kinetics (which is a first order approximation to law of mass action; Tang (2015); 

Tang and Riley (2013, 2017)) and ignored the size contrast effect between intracellular substrates and enzymes (Tang and 

Riley, 2019).  100 

By summing up all parts with equation (4), we then obtain 
!(#))
!"

= 𝑗*𝑉 − 𝑗,,)𝑉 = 𝑗*𝑉 −
-') .⁄
01) .⁄

𝑉, (5) 

which (by the chain rule of differentiation) can be written as 
!)
!"
= 𝑗* − 𝑗,,) − 𝜇𝑥 = 𝑗* −

-') .⁄
01) .⁄

− 𝜇𝑥, (6) 

which describes the reserve dynamics of the single-reserve mDEB model. 

The specific growth rate 𝜇 is computed from the dynamic energy budget as 

𝜇 = 0
#
!#
!"
= 𝑌#𝑗,,) −𝑚# = 𝑌#

-') .⁄
01) .⁄

−𝑚#, (7) 

where 𝑌/ is the mass yield of converting reserve into structural biomass when considering the coupling between catabolism 105 

and anabolism, and 𝑚/ is the specific maintenance rate. Equation (7) suggests that when reserve mobilization is too low, 

growth rate will become negative. Further, if mortality from various causes is to be included, equation (7) can be modified by 

adding the specific mortality rate.  

In short, the single-reserve mDEB model is formulated by equations (6) and (7). When needed, the 𝜅-rule for 

allocation to soma expense (section 2.4 in Kooijman (2009)) can be incorporated by multiplying 𝑌/ with 𝜅 (see Table 1). 110 

Moreover, the compatibility with ECA kinetics suggests that the reserve dynamics can be replaced with nonlinear kinetics-

based models of intracellular metabolism (Tadmor and Tlusty, 2008; Etienne et al., 2020), such that the link with flux-balance 

models can also be naturally established (which is one major motivation for developing the rDEB model). 

 

2.2 Growth under weak homeostasis 115 
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 Under weak homeostasis, as food density is constant, specific reserve assimilation from external substrates 𝑗)  is 

constant, leading to 01
02
= 0. When these conditions are applied to equation (6), one obtains 

𝑗,,) =
-')
.1)

= 𝑗* − 𝜇𝑥. (8) 

which, when substituted into the dynamic energy budget equation (7), leads to 

𝜇 = 𝑌#(𝑗* − 𝜇𝑥) − 𝑚#, (9) 
such that 

𝜇 = 3344563
0133)

. (10) 

Equation (10) states that under constant food density, the mDEB model predicts that growth continues with constant reserve 120 

density, just as predicted by the sDEB theory and required by the observed weak homeostasis.   

From equations (8) and (9), the reserve density 𝑥 can be found as 

𝑥 = (7163).
33-'57563

. (11) 

When equation (11) is entered into equation (9), one finds 

𝑗* =
7163
33

+ 𝜇𝑥 = 7163
33

33-'56357(05.33)
33-'56357

. (12) 

Equation (12) can be used to derive the yield of structural biomass (or population) under weak homeostasis: 

𝑌7 =
7
44
𝑌8 = : 7

7163
; : 33-'56357

33-'56357133.7
;𝑌#𝑌8, (13) 

where 𝑌𝑋 is the reserve biomass yield for assimilating substrate from the environment. 125 

 Accordingly, the yield for total biomass is 

𝑌9 = 𝑌7(1 + 𝑥) = : 7
7163

; :33-'1(6317)(.50)
33-'56357133.7

; 𝑌#𝑌8, (14) 

 Since the mDEB model is compatible with the weak homeostasis assumption, like the sDEB model, it is naturally 

compatible with the Von Bertalanffy growth model that relates the size of an organism to its age at constant specific food 

supply (see section 2.6.1 in Kooijman (2009)). The Von Bertalanffy growth model states that, under constant food supply, an 

organism grows exponentially over time to reach its maximum size. Moreover, under this condition, since 𝑗) is constant, the 130 

specific growth rate 𝜇 can be solved from the equation of 𝑌6 for the mDEB model in Table 1 (which can be verified to be a 

quadratic equation of 𝜇; see its special case in equation (21)).  

2.3. mDEB model for 𝐾 ≫ 𝑥  

 Under the condition 𝐾 ≫ 𝑥 (i.e. the high enzyme condition that is usually satisfised inside biological cells; Tang and 

Riley (2023); Phillips et al. (2012)), we may define 𝑣=+ = 𝑣+/𝐾, so that equation (6) becomes 135 
!)
!"
= 𝑗* − 𝑣>,𝑥 − 𝜇𝑥, (15) 
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and equation (7) becomes 

𝜇 = 𝑌#𝑣>,𝑥 − 𝑚#. (16) 
 For growth under weak homeostasis (aka constant specific food supply and therefore constant reserve density), one 

then has 

𝑥 = 7163
33-:'

, (17) 

and 

𝑗* = (𝑣>, + 𝜇)𝑥 = :-:'17
-:'

; :7163
33

;, (18) 

and, accordingly, the structural biomass yield is 140 

𝑌7 =
7
44
𝑌8 = : 7

7163
; : -:'

-:'17
; 𝑌𝑉𝑌8, (19) 

and the total biomass yield is 

𝑌9 = 𝑌7(1 + 𝑥) = : 7
7163

; :33-:'17163
-:'17

; 𝑌8. (20) 

 Additionally, from equation (18), one can obtain 

𝜇 = 631-:'
;

?−1 + @1 + <-:'(4433563)
(631-:')7

A. (21) 

 

3. Comparisons with the sDEB model 

3.1 Biological growth on single reserve. 145 

The mDEB model is compared to the sDEB model for growth from a single reserve pool in Table 1. That comparison 

shows that the two models have the same equation for specific growth rate (𝜇 vs 𝜇8) only under weak homeostasis (when the 

reserve density reaches steady state and thus the whole organism is of fixed elemental stoichiometry), and, mathematically, 

the two models are structurally very similar.  

Under the weak homeostasis condition, because reserve density is time invariant and depends algebraically on reserve 150 

assimilate rate (𝑗)), the mDEB and sDEB models predict the specific structural biomass growth rate as a function of substrate 

concentration in a pattern very similar to predicted using Monod kinetics (Figure 1; Monod (1949)). When the specific reserve 

turnover rate is much greater than the specific maintenance rate, the mDEB model for 𝐾 ≫ 𝑥 and the sDEB model predict 

almost identical growth rates as a function of substrate availability (lines with 𝑣+ = 100𝑚/ in Figure 1).  

Moreover, the two models predict very similar relationships between specific growth rate and both structural biomass 155 

yield and total biomass yield under weak homeostasis (Figure 2). Specifically, under weak homeostasis conditions, both the 

mDEB and sDEB models predict that the structural biomass yield first increases, then plateaus, and then decreases with specific 

growth rate (Figure 2a, c), with the sDEB model predicting a faster decrease at higher growth rate. The total biomass yield 
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increases almost hyperbolically with specific growth rate (Figure 2b, d), with the sDEB model predicting a faster increase at 

higher growth rate. We note that the relationship between total biomass yield and specific growth rate is consistent with that 160 

predicted by the empirical compromise model (Beeftink et al., 1990; Wang and Post, 2012). The qualitative difference between 

structural biomass yield and total biomass yield suggests that more analysis is needed on how they may affect simulated 

biogeochemistry.  

 

Table 1. Mathematical comparison of the mDEB and the sDEB models, with sDEB symbols annotated by subscript “s”. For 165 
both models, the 𝜅-rule for allocation to soma is applied (Kooijman, 2009). Also, it is assumed that structural biomass is 
proportional to the cellular population. Additionally, 𝑗)  and 𝑗),8  have incorporated the reserve yield 𝑌9  from substrate 
assimilation. 

mDEB model sDEB model 

Reserve dynamics: 
01
02
= 𝑗) −

:"1 ;⁄
=>1 ;⁄

− 𝜇𝑥		

Reserve dynamics: 
01#
02
= 𝑗),8 − 𝑣+,8𝑥8  

Structural biomass dynamics: 
0/
02
= 𝜇𝑉  

Structural biomass dynamics: 
0/#
02
= 𝜇8𝑉8		

Specific structural biomass growth rate: 

𝜇 = 𝑌/𝜅
:"1 ;⁄
=>1 ;⁄

−𝑚/  

Specific structural biomass growth rate: 

𝜇8 =
?#@$,#:",#1#AB$,#

=>?#@$,#9#
  

Weak homeostasis condition  

Specific growth rate: 

𝜇 = @$?C&AB$
=>@$?1

  

Specific growth rate: 

𝜇8 =
@$,#?#C&,#AB$,#
=>@$,#?#1#

  

Structural biomass yield vs growth rate: 

𝑌6 =
6
C&
𝑌9 = A 6

6>B$
B A ?@$:"AB$A6

?@$:"AB$>6(?@$;A=)
B𝜅𝑌/𝑌9  

Structural biomass yield vs growth rate: 

𝑌6,8 =
6#
C&,#

𝑌9 = C 6#
6#>B$,#

D C1 − 6#
:",#
D 𝜅8𝑌/,8𝑌9  

Total biomass yield vs growth rate: 

𝑌F = 𝑌6(1 + 𝑥) = A 6
6>B$

B A ?@$:">(B$>6)(;A=)
?@$:"AB$A6(=A?@$;)

B𝜅𝑌/𝑌9  

Total biomass yield vs growth rate: 

𝑌F,8 = 𝑌6,8(1 + 𝑥8) =

C 6#
6#>B$,#

D C?#@$,#:",#>B$,#>G=A?#@$,#H6#
:",#

D𝑌9  
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Figure 1. Comparison of predicted specific structural biomass growth rate as a function of normalized substrate availability 
under weak homeostasis conditions. For cases with 𝑣+ = 10𝑚/, specific reserve turnover rate is 10 times the specific structural 175 
biomass maintenance rate. For cases with 𝑣+ = 100𝑚/, specific reserve turnover rate is 100 times the specific structural 

biomass maintenance rate. The mDEB model is based on equation (21), while the sDEB model is based on 𝜇𝑠 =
𝑌𝑉,𝑠𝑗𝐴,𝑠−𝑚𝑉,𝑠

1+𝑌𝑉,𝑠𝑗𝐴,𝑠 𝑣𝐸,𝑠⁄ . 

In producing the above results, for both 𝑗)  and 𝑗),8 , the Michaelis-Menten kinetics  𝑓(𝑆) = 𝑗),BQ1 𝑆 (𝑆 + 𝐾R)⁄ 	is used for 
substrate uptake.  
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 180 
Figure 2. Comparison of predicted biomass yield as a function of normalized specific growth rate under weak homeostasis 
conditions. Left panels (a) and (c): predicted relationship between structural biomass yield and specific growth rate. Right 
panels (b) and (d): predicted relationship between total biomass yield and specific growth rate. 𝑌9 is the reserve biomass yield 
for substrate assimilation from the environment. For both models, it is assumed that the structural biomass yield from reserve 
biomass is 0.6. For upper panels (a) and (b), the maximum specific reserve turnover rate is 15 times the specific structural 185 
biomass maintenance rate. For lower panels (c) and (d), the maximum specific reserve turnover rate is 100 times the specific 
structural biomass maintenance rate. 

3.2 Biological growth on two reserves 

 When an organism is growing on two complementary reserves (from assimilation two complementary substrates, 

e.g., carbon and nitrogen), the growth rate may be computed using the synthesizing unit kinetics (Kooijman, 2009), such that 190 

𝜇 = :𝑗=,)S
50 + 𝑗=,)7

50 − 0𝑗=,)S + 𝑗=,)71
50;

50
. (22) 

For simplicity, in equation (22) we assumed that the specific growth rate 𝜇 is positive. Negative growth when reserve fluxes 

fall short of maintenance requirements can be considered separately (Tolla et al., 2007; Kooijman, 2009). 

 By designating the maintenance flux required for reserve 𝑥= and 𝑥T as 𝑗U,1+ and 𝑗U,1,, one has 

𝑗=,)& = 𝑦=,)&0𝑗,,)& − 𝑗>,)&1, 𝑖 = 1,2, (23) 

where 𝑦𝐺,𝑥𝑖 is the stoichiometric yield of transforming reserve 𝑥! into structural biomass.  
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 When equations (22) and (23) are applied with the mDEB model, according to equation (4),  𝑗+,1- is independent of 195 

specific growth rate 𝜇, so that 𝜇 is an explicit function of fluxes 𝑗+,1- and 𝑗U,1-. In contrast, when the sDEB model is applied,  

𝑗+,1- is a function of 𝜇, that is 

𝑗,,)& = (𝑣, − 𝜇)𝑥&. (24) 

Therefore, for the sDEB model, equations (22)-(24) indicate that 𝜇 is an implicit function, whose solution requires numerical 

iteration for each calculation of growth rate 𝜇 (also see equation of 𝜇W for the sDEB model in  

Table 2). Furthermore, as the sDEB model strives to include more organisms and more complementary reserves, e.g. 200 

biological growth that is concurrently regulated by pools of carbon, nitrogen, and phosphorus (as many existing 

biogeochemical models attempt; e.g., Goll et al. (2012), Yu et al. (2020); Zhu et al. (2019), Mekonnen et al. (2019)), the 

necessity of iteration to explicitly represent many numbers of biological organisms will make the growth rate in the sDEB 

model increasingly more cumbersome to solve. In contrast, the absence of numerical iteration in the mDEB model will 

significantly simplify this aspect of the modelling processes.   205 

To demonstrate the applicability of mDEB model on biological growth over multiple complementary substrates, we 

constructed a mDEB model for the chemostat experiment of the diatom Thalassiosira weissflogii (T. weissflogii) from 

Pawlowski (2004). Like the sDEB model by Lorena et al. (2010), the mDEB model ( 

Table 2) makes the following assumptions: (1) when the mobilized reserve fluxes fall short of the demand from 

maintenance, structural biomass is reduced proportional to the deficit (as the maximum deficit of two reserves), and this 210 

reduced structural biomass is mineralized immediately into substrates; and (2) the fraction of rejected reserve that is not 

returned to reserve is not mineralized to become substrates. The mDEB model adopts almost identical parameter values from 

the sDEB model (compare our Table 3 with their Table 2), except that the mDEB model sets the specific reserve turnover rate 

(𝑣+) to 0.55 d-1, calculated from manual tuning, while the sDEB model in Lorena et al. (2010) used a value of 2.60 d-1. For 

comparison, we also coded a sDEB model that differs from the mDEB model only in the computation of growth rate, which 215 

is achieved through the bisection algorithm (Burden and Faires, 1985). Because we adopted a formulation of negative growth 

rate 𝜇0 different from Lorena et al. (2010) (see their equation (2.11), where they assumed that negative growth rates from 

carbon reserve deficit and nitrogen reserve deficit are additive. However, we used the maximum of the two instead), the sDEB 

model here used 0.95 d-1 for the specific reserve turnover rate. 

By using parameters mostly from the literature, we find that the mDEB model predictions captured the measured time 220 

series of particulate organic carbon and nitrogen reasonably (Figure 3). While better model-data agreement may be obtained 

by optimizing more parameters, the results here suggest that the mDEB model is at least as capable as the sDEB model. 

Interestingly, the sDEB model here produced almost identical model-data agreement. Moreover, for the 30-day simulation 

period, the mDEB model took about 55% of the time of the sDEB model. On an Apple M3 Max machine with 64 GB memory, 

using MatlabR2020b, the typical execution time are 0.037 seconds and 0.068 seconds for the mDEB model and sDEB model, 225 

https://doi.org/10.5194/egusphere-2024-2282
Preprint. Discussion started: 5 August 2024
c© Author(s) 2024. CC BY 4.0 License.



 
 

11 

respectively. (We provide the source code for readers to play with the models.) This significant improvement in computational 

efficiency and good model-data agreement thus suggests mDEB model is a good replacement of the sDEB model. 

 

Table 2. A mDEB model of diatom T. weissflogii growing on CO2 and inorganic nitrogen. For comparison, also given are 

sDEB model equations for growth and reserve dynamics. 230 

mDEB model equations Description 

𝑗),X = 𝑗)B,X
[X]

[X]>;.
  Specific assimilation rate of substrate 

N; molN (mol𝑀!)"# d-1. 
𝑗[\ =

]/01^
= _⁄ >= `⁄ (=>a _⁄ )^>(a `b⁄ )^,

  Photosynthesis.  

𝑗cd, = 𝑗)B,cd,
[cd,]

[cd,]>;2
  Specific CO2 flux rate for C-reserve 

synthesis; molC (mol𝑀!)"# d-1. 

𝑗),e = C =
C34,

+ =
C56

− =
C56>C34,

D
A=

  Specific carbon-reserve synthesis rate 
from CO2; molC (mol	𝑀!)"# d-1. 

012
02
= 𝑗),e − (𝑣+ + 𝜇)𝑥e + 𝜅+𝑗f,e  Dynamic equation of C-reserve 

density. 
01.
02

= 𝑗),X − (𝑣+ + 𝜇)𝑥X + 𝜅+𝑗f,X  Dynamic equation of N-reserve 
density. 

𝑗g,! = 𝑣+𝑥! − 𝑗U,!, 𝑖 = 𝐶	or	𝑁 Reserve fluxes to support potential 
structural biomass growth.  

𝑗f,! = 𝑗g,! − 𝑦/,!𝜇W, 𝑖 = 𝐶	or	𝑁 Potentially rejected reserve flux in 
intracellular metabolism. 

𝜇W = 𝑚𝑎𝑥 OPCC7,2
h$,2

D
A=
+ CC7,.

h$,.
D
A=
− CC7,2

h$,2
+ C7,.

h$,.
D
A=
Q
A=

, 0S  Synthesizing unit kinetics based 
structural growth rate. 

𝜇0 = 𝑚𝑎𝑥 C− C7,2
h$,2

, − C7,.
h$,.

, 0D  Structural biomass respired due to 
maintenance deficit. 

𝜇 = 𝜇W − 𝜇0  Net specific growth rate of structural 
biomass. 

𝑗9,! = 𝑚𝑖𝑛U𝑣+𝑥! , 𝑗U,!V + U𝑦/,! − 𝑛/,!V𝜇W + 𝑛/,!𝜇0,  𝑖 = 𝐶	or	𝑁 Respiration flux as CO2 and inorganic 
N added to substrate pools. 

0U$
02

= (𝜇 − ℎ)𝑀/  Dynamic equation of structural 
biomass. 

0[cd,]
02

= ℎ([COT]i − [COT]) − U𝑗),e − 𝑗9,eV𝑀/  Dynamic energy of dissolved CO2. 
0[X]
02

= ℎ([𝑁]i − [𝑁]) − U𝑗),X − 𝑗9,XV𝑀/  Dynamic energy of dissolved inorganic 
nitrogen. 

sDEB model equations  
012
02
= 𝑗),e − 𝑣+𝑥e + 𝜅+𝑗f,e  Dynamic equation of C-reserve density. 

01.
02

= 𝑗),X − 𝑣+𝑥X + 𝜅+𝑗f,X  Dynamic equation of N-reserve density. 

𝑗g,! = (𝑣+ − 𝜇)𝑥! − 𝑗U,!, 𝑖 = 𝐶	or	𝑁 Reserve fluxes to support potential 
structural biomass growth. 
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𝜇W = PCC7,2G68H
h$,2

D
A=
+ CC7,.G68H

h$,.
D
A=
− CC7,2G68H

h$,2
+ C7,.G68H

h$,.
D
A=
Q
A=

  Synthesizing unit kinetics based 
structural growth rate. 

 

Table 3. Parameters of the mDEB model. The values of 𝑣+ were found by manual tunning, with the sDEB model value in the 
braces. All other parameters are the same as in Lorena et al. (2010). 

Parameter Description Units  Value Reference  

𝑛/,X N to C ratio of structural 
biomass  

molN (molC)A= 0.04 
Geider et al. (1998); Baklouti 

et al. (2006) 

𝑗)B,X Maximum volume-specific N 
assimilation 

molN (molMj)A=	dA=  1.0 Geider et al. (1998) 

𝑗)B,cd, Maximum volume-specific 
CO2 assimilation 

mol C (molMj)A=	dA= 5.1 Geider et al. (1998) 

𝐾e Half-saturation concentration 
for CO2 uptake 

𝜇M 0.43 Rost et al. (2003) 

𝐾X Half-saturation concentration 
for N uptake 

𝜇M 3.20 Pawlowski et al. (2002) 

𝑗U,e Volume-specific maintenance 
cost paid by C reserve 

molEC (molMj)A=	dA= 0.054 
Faugeras et al. (2004); Quigg 

and Beardall (2003) 

𝑗U,X Volume-specific maintenance 
cost paid by N reserve 

molEN (molMj)A=	dA= 0.012 
Faugeras et al. (2004); Quigg 

and Beardall (2003) 

𝑣+ Specific reserve turnover rate dA= 0.55(0.95) Calibrated 

𝑦/,e Yield factor of C-reserve to 
structure 

molEC (molMj)A= 1.25 Baklouti et al. (2006) 

𝑦/,X Yield factor of N-reserve to 
structure 

molEN (molMj)A= 0.04 Lorena et al. (2010) 

𝜅+ 
Fraction of rejection flux 
incorporated into C or N-
reserve 

¾ 0.7 Lorena et al. (2010) 

𝛼 PSU excitement coefficient (mmolPSU	𝜇EmAT)A= 0.0019 Wu and Merchuk (2001) 

𝛽 PSU inhibition coefficient (mmolPSU	𝜇EmAT)A= 5.8E − 7 Wu and Merchuk (2001) 

𝛾 PSU relaxation rate mmolPSUA=	sA= 0.1460 Wu and Merchuk (2001) 

𝛿 PSU recovery rate mmolPSUA=	sA= 4.8E − 4 Wu and Merchuk (2001) 

𝜌kRl PSU density mmolPSU	(mol𝑀/)A= 0.365 Wu and Merchuk (2001) 
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 235 
Figure 3. Model data comparison for the chemostat experiment of T. weissflogii from Pawlowski (2004). (a) Photon flux 
density (PFD) over the measurement period; (b) particulate organic carbon (reserve plus structural biomass carbon; POC) of 
the T. weissflogii population; (c) particulate organic nitrogen (reserve plus structural biomass nitrogen; PON) of the T. 
weissflogii population. All panels only show results over the time period when measurements were available. 
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4. Conclusions 240 

Starting with the mass conservation equation from the nonequilbrium thermodynamics, law of mass action and the 

basic assumptions of the dynamic energy budget theory, we derived a modified formulation of the dynamic energy budget 

(mDEB) model. The mDEB model is mathematically very similar to the standard dynamic energy budget (sDEB) model and 

is able to recover many of the features of the sDEB model. However, because it does not require numerical iterations for the 

computation of growth rate, particularly for biological growth that involves multiple complementary substrates, the mDEB 245 

model is computationally much more efficient. In the example application to a chemostat experiment of T. weissflogii, the 

mDEB and sDEB models are found equally accurate, while the former only required almost half the computing time of the 

latter. Moreover, since the mDEB model is compatible with non-linear kinetics for reserve turnover, it can be extended into 

models that consider ribosome allocation explicitly for microbes (Tadmor and Tlusty, 2008).  

With its strong theoretical foundation and easier numerical implementation, the mDEB model consistently formulates 250 

biological growth of microbes, plants, and animals (which are all in the application domain of the DEB theory; Kooijman 

(2009); Yang et al. (2020); Russo et al. (2022); Matyja and Lech (2024)). Its consistent application to ecosystem 

biogeochemical models will help modelers alleviate structural uncertainty, as advocated in Tang et al. (2024). 

 

Appendix A: Nomenclature 255 

Below only includes symbols not defined in  

Table 2 and Table 3. 

Symbol Unit Description 

𝑗),!, 𝑗) s-1 Specific reserve assimilate rate. 
𝑗+,1 s-1 Specific reserve turnover rate. 

𝑚/ s-1 Specific structural biomass 
maintenance. 

𝑟, kg m-3 s-1 Rate of 𝑙-th reaction. 
𝑣=+ s-1 Specific reserve turnover rate. 
𝑥, 𝑥! kg reserve (kg structure)-1 Reserve density. 
𝑱! kg m-2 Mass flux density. 
𝐾, 𝐾, kg reserve (kg structure)-1 Half saturation parameter 
𝑉(𝑡), 𝑉 m-3 (or kg m-3) Volume (or structural biomass). 

𝑌/ kg structure (kg reserve)-1 Structural biomass yield from reserve 
biomass. 

𝑌6 kg structure (kg substrate)-1 Emergent structural biomass yield 
from substrate assimilation. 

𝑌F kg biomass (kg substrate)-1 Emergent total biomass yield from 
substrate assimilation. 

𝜌!, 𝜌, kg m-3 Mass density. 
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�̅�!, �̅�, kg m-3 Space-averaged mass density. 

𝜎,! kg kg-1 Stoichiometry coefficient for substrate 
𝑖 due to reaction 𝑙. 

𝜇 s-1 Specific growth rate. 

𝜅 kg kg-1 Fraction of reserve turnover for soma 
development. 

𝛀(𝑡) m2 Surface area of volume 𝑉(𝑡). 
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