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Abstract. Rapid flood assessment is essential for effective relief, rehabilitation, and flood mitigation strategies. Developing 

and implementing automated, rapid methods for flood depth and inundation estimation are necessary for near real-time 

information dissemination. This paper presents an end-to-end, automated process for floodwater delineation and depth 

estimation using EOS-04 (RISAT-1A) Synthetic Aperture Radar (SAR) images and a Digital Elevation Model (DEM). Flood 10 

inundation is estimated using an Automated Tile-based Segmentation technique. Flood depth is estimated by the Trend 

Surface Analysis (TSA) method, a novel technique that requires only the inundated water layer and DEM, unlike various 

hydrodynamic models that require extensive data. This method is applied to the most flood-prone areas in the states of 

Andhra Pradesh, Assam, Bihar, and Uttar Pradesh in India. Water levels estimated at river gauge stations using the TSA 

technique are validated with real-time field measurements and compared with Floodwater Depth Estimation Tool (FwDET)-15 

derived results. The TSA technique outperforms FwDET, showing lower RMSE values. 
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1 Introduction 

Floods are frequent natural disasters that can have devastating consequences, including loss of life, destruction of property, 30 
and disruption of livelihoods. According to the National Disaster Management Authority (NDMA), India is highly 
susceptible to floods, with over 40 million hectares out of a total geographical area of 329 million hectares prone to flooding 
(https://ndma.gov.in/Natural-Hazards/Floods). A satellite-derived flood-affected area atlas (1998-2022) indicates that the 
flood-affected area in India is 15.8 million hectares, reflecting the impact of significant flood events and cyclones 
(https://ndma.gov.in/flood-hazard-atlases). However, satellite data may have limitations in capturing other flood-affected 35 
regions, such as flash floods of short duration and areas lacking satellite coverage during the flooding period. Certain rivers 
are critical, including the Brahmaputra and Barak in Assam, the Kosi and Ganga in Bihar, the Ganga and Yamuna in Uttar 
Pradesh, and the Godavari in Andhra Pradesh. Additionally, states frequently affected by cyclones, such as Odisha, Andhra 
Pradesh, West Bengal, and Gujarat, have necessitated the preparation of Flood Hazard Zonation Atlases for these states, 
which account for 10 million hectares of flood-affected areas within these six states alone. This highlights the necessity for 40 
real-time flood mapping and monitoring, the adoption of automated techniques for flood mapping, and the generation of 
spatial flood depth information in these areas. 
 
The use of satellite data and derived flood inundation information is popular for addressing the near real-time mapping and 
monitoring of flood events (Rizwan Sadiq et al., 2022). and this needs to be performed with a reasonable level of confidence 45 
in respect of flood inundation areas, flood depth which are essential in near real-time for enabling efficient relief & 
rehabilitation activities in the field as the spatial information is aimed in this process In this context, both Optical and 
Microwave satellite data sets are utilized, with the latter being more frequently used due to its advantage of satellite data 
acquisition under all weather conditions including rain, clouds, and sunlight, unlike sun-synchronous Optical satellite sensors 
(Felix Greifeneder et al., 2013). Therefore, space-borne Synthetic Aperture Radar (SAR) systems are preferred for flood 50 
monitoring. The techniques for discussing satellite-derived flood inundation mapping, flood depth estimation, and case 
studies are examined from the literature survey. Further, the review underscores the highlights of these studies, and the 
present research focuses on using newly launched EOS-4 satellite data to develop methodology and implementation for 
automated rapid estimation of Flood Inundation Mapping and Flood Depth estimation using the Digital Elevation Model. 
 55 
SAR data uses unique properties of water to detect water covered areas. Generally, low backscatter measurements are 
possible in calm, open water surfaces with SAR data (Schlaffer et al., 2014). This property of SAR images makes 
distinguishing water from surrounding surfaces more effectively, even though visual interpretation helps flood mapping 
(Pierdicca et al. 2008). A literature survey revealed several articles on using SAR images for flood detection using various 
methods viz. (i) backscatter value-based thresholding (Boni et al., 2016, Chini et al., 2017, Greifeneder et al., 2014, 60 
Manjusree et al., 2012, Marti-Cardona et al., 2013, Martinis et al., 2015a, Martinis et al., 2013, Martinis et al., 2009, Twele 
et al., 2016), (ii) Interferometric coherence calculation (Chini et al., 2019), (iii) region growing and active contour model 
(Giustarini et al., 2013, Li et al., 2014, Matgen et al., 2011, Tong et al., 2018), (iv) object-oriented classification (Horritt et 
al., 2001, Kuenzer et al., 2013b, Mason et al., 2010, Pulvirenti et al., 2011), (iv) fuzzy classification (Martinis et al., 2015a, 
Twele et al., 2016), and (vi) change detection (Bazi et al., 2005, Giustarini et al., 2013, Martinis et al., 2011, Schlaffer et al., 65 
2015, Shen et al., 2018). Among these methods, thresholding-based methods have been most widely used in the literature in 
part because they are computationally less time-consuming and meanwhile could yield comparable accuracy to the more 
complex segmentation approaches (Gstaiger et al., 2012; Kuenzer et al., 2013b). Among backscatter histogram thresholding 
algorithms, the OTSU method has been widely applied in image segmentation (Otsu 1979; Kittler and Illingworth 1986)). 
This method can automatically calculate the global threshold based on the criterion of maximum between-class variance and 70 
has high classification accuracy for images with a uniform bimodal distribution of gray histogram. However, suppose the 
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histogram is unimodal or has non-uniform illumination, the traditional OTSU algorithm will fail and favour the class with a 
significant variance to improve the classification accuracy (Xu, X et al., 2011; Yuan et al., 2015). If the object size is less 
than 10% of the whole area, the performance of OTSU degrades significantly, and it will not be helpful for water detection 
methods (Cao et al., 2019). 75 
 
Francesca et al., (2007) have used the method of dividing the SAR image into an unsupervised split-based approach (SBA) 
for change detection. This method automatically splits the image into a set of non-overlapping sub-images of user-defined 
size. Then, the sub-images are sorted according to their probability of containing many changed pixels. Afterward, a subset 
of splits with a high likelihood of containing changes is selected and analysed. This same change detection technique is 80 
applied for flood detection by Bovolo and Bruzzone (2007) to identify tsunami-induced changes in multi-temporal imagery. 
In view of the above limitation in the OTSU method and with the merits of the change detection method, the present study 
proposed automated delineation of the flood mapping techniques using a Tile-based Segmentation technique i.e., Otsu’s 
thresholding method along with a change detection approach. 

 85 
However, there is a limitation to this technique when mapping in hilly areas. In very steep slopes, the hillside may appear 
completely dark, as no radar signal is returned at all, potentially leading to a false interpretation of water pixels. In 
addressing this issue, Giacomelli et al., (1995) integrated a SAR image with a digital terrain model and employed a simple 
technique to exclude this false interpretation by utilizing slope, slope direction, and drainage information. Additionally, the 
Height Above the Nearest Drainage (HAND) tool has been used to exclude hilly areas, enhancing the efficiency of the 90 
extracted water layer output, as demonstrated by Nobre et al., (2011). In this approach, HAND raster values are 
appropriately classified to eliminate false interpretations in the water layer. 
 
In addition to the availability of flood inundation information in near real-time, it is crucial to have access to spatial flood 
depth maps for directing rescue and relief operations, pooling necessary resources, determining road closures and 95 
accessibility, and conducting post-event analysis (Islam et al., 2001). Flood depth identification during or after flood events 
is critical for assessing hazard levels and creating risk zone maps, which are essential for post-disaster flood mitigation 
planning. While direct surveying methods used to determine floodwater depth can be highly accurate, they are often 
influenced by weather conditions, costly, and may require field crews to obtain authorization to access sensitive flooded 
areas. In light of this, remote sensing-based techniques and digital elevation models (DEMs) are valuable for estimating 100 
flood depth (Ismail Elkhrachy et al., 2022). Various hydrodynamic models such as HEC-RAS, Delft-3D, and LISFLOOD-FP 
have been developed to simulate water levels and flood depths (Yalcin, 2018; Costabile et al., 2021). However, these models 
require extensive data inputs, such as rainfall, soil moisture, flood maps, gauge discharge, cross-sections, and other 
hydrological inputs, which result in significant computational time and resource requirements. 
 105 
Cohen et al. (2007) developed a floodwater depth calculation model based on high-resolution flood extent and DEM layers, 
known as the FwDET (Flood Water Depth Estimation Tool). The FwDET model identifies the floodwater elevation for each 
cell within the flooded domain based on its nearest flood boundary grid cell. While FwDET has been evaluated as one of the 
more effective tools for estimating flood depth from remote sensing-derived water extent and DEM (Teng et al., 2022), it has 
inherent limitations. One critical limitation is that FwDET's floodwater depth maps are not continuous, often showing sharp 110 
transitions in values, which leads to linear stripes across the flooded domain. Additionally, FwDET's floodwater depth 
accuracy is poor in the case of active channels (Cohen et al., 2018). To overcome these limitations, this paper introduces a 
novel method called Trend Surface Analysis (TSA) to improve the accuracy of flood depth estimation. This method requires 
only a flood extent polygon and a DEM as input. Trend surface analysis has long been used by geographers, geologists, and 
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ecologists to fit surfaces to data recorded at sample points scattered across a two-dimensional sample space (Chorley et al., 115 
1965). 

2. Study Area  

The research focused on four significantly flood-affected regions in India's river plains: the Godavari, Brahmaputra, Kosi, 

and Ganga River basins. Table 1 provides detailed characteristics of flood proneness in these regions, while Figure 1 

illustrates a location map and the input EOS-04 satellite images of the study areas. 120 

Table 1: Study Area Locations and its characteristics 

S.No 
Location 

(Lat/Lon) -decimal degrees 

State -Districts 

Covered, 

River Basin 

Study Area 

(Sq.Km) 
Characteristics of study area 

1 
17.4008°N to 17.8592°N and 

80.9720°E to 81.6582°E 

Andhra Pradesh-

Alluri Sitaram Raju 

district 

72km × 50km 

Receives maximum rainfall 

during South West Monsoon. 

84% of annual rainfall falls 

during the period starting in 

mid-June and ending by mid-

October 

2 
25.9885°N to 26.7132°N and 

90.6755°E to91.8661°E 

Guwahati and 

Barpeta areas of 

Assam State 

120km x 80km 

The Brahmaputra River, known 

as, the lifeline of Assam, is one 

of the largest rivers in the world 

in terms of discharge 

3 
25.0975°N to 25.7142°N and 

86.2874°E to 87.6618°E 

Bhagalpur of Bihar 

State 
138km x 68km 

Floods frequently occur in Bihar 

over the Kosi river basin, hence 

the Kosi river is known as the 

“Sorrow of Bihar”. Floods are 

generally caused by the breach 

of embankment along the Kosi 

river owing to intense rainfall 

during the monsoon season 

4 
27.0138°N to27.6943°N and 

79.1919°E to80.1584°E 

Farrukhabad area of 

Uttar Pradesh 
95km x 75km 

Vast majority of state lies within 

the Gangetic Plain. The weather 

is of tropical monsoon type 
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Figure.1.  Map showing Four Study Area Locations: Andhra Pradesh, Assam, Bihar and Uttar Pradesh 
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3. Data used 125 

Table 2 details the information on Satellite data and Digital Elevation Model (DEM) used for deriving Flood inundation and 

depth estimation. Figure 2 provide the Spatial locations of River gauge stations where field measured water levels are 

provided by Central Water Commission (CWC) of India. 

 

S.No Area Satellite Sensor  

Satellite data 

Spatial 

Resolution(meters) 

Satellite date 

and Time 
DEM 

DEM spatial  

Resolution 

(meters) 

1. 
Andhra 

Pradesh 

EOS-04, CRS 

Mode 
36 

28th July 2023 

at 18:00 

 

LIDAR DEM 5 

2. Assam 
EOS-04, CRS 

Mode 
36 

20thJune 2023 

at 18:00 

FAB - DEM 

COPERNICUS 
30 

3. Bihar 
EOS-04, MRS 

Mode 
18 

3rdSeptember 

2023 at 06:00 

FAB (Forest and 

Buildings removed) 

DEM 

COPERNICUS 

30 

4. 
Uttar 

Pradesh 

EOS-04, MRS 

Mode 
18 

15thAugust 

2023 at 06:00 

FAB-DEM 

COPERNICUS 
30 

 130 

Table.2. Satellite data, DEMs used for the study 

3.1. Satellite Data digital elevation models  

The Earth Observation Satellite-04 (EOS-04) is a synthetic aperture radar (SAR) satellite operating in the C-band frequency 

range of 5.4 GHz. Positioned in a sun-synchronous orbit at an altitude of 524.87 km, it offers various imaging modes, 

including Fine Resolution Strip Map Mode-1 (FRS-1), Fine Resolution Strip Map Mode-2 (FRS-2), Medium Resolution 135 

ScanSAR Mode (MRS), Coarse Resolution ScanSAR Mode (CRS), and High-Resolution Spotlight Mode (HRS). These 

modes allow the satellite to capture data with different levels of detail and coverage. The resolution capability of the EOS-04 

satellite ranges from 1 m to 50 m, enabling data acquisition at various spatial resolutions. 
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Figure.2. River gauge station locations at Andhra Pradesh, Assam, Bihar and Uttar Pradesh 140 

3.2. Field Measurements: 

Typically, water levels are measured using gauge stations installed along rivers. The Central Water Commission (CWC) of 

India provides hourly field measurements from these gauge stations, as illustrated in Figure 2, for various sites, and makes 

the information available on their website (https://ffs.india-water.gov.in/). Water levels recorded at the times corresponding 

to satellite acquisitions across all study areas are compared with the interpolated levels derived from the Trend Surface 145 

Analysis (TSA). 

4. Methodology 

The process of quickly estimating flood depth using the Digital Elevation Model and EOS-04 satellite involves several steps. 

These include generating a radar backscatter coefficient image from the raw satellite image, extracting the flood inundation 

layer using an automated tile-based segmentation method, obtaining terrain information prior to the flood event using digital 150 

elevation model, interpolating floodwater surface levels through Trend Surface Analysis, and determining the spatial flood 

depth. The methodology is illustrated in the flow chart as shown in Figure 3.A customized Python code has been developed 

specifically for automated flood mapping and depth estimation using ArcGIS and GDAL libraries. 
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Figure.3. Flow chart for Methodology 155 
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4.1 Generation of radar back scatter coefficient image  

Indian Space Research Organisation (ISRO) 's Bhoonidhi portal is a web interface that hosts multi-sensor satellite data. 

Images acquired from the EOS-04 satellite are directly downloaded from the Bhoonidhi portal. It is necessary to apply 

radiometric correction to Level 2 product SAR images to truly enable the original Digital Numbers (DN) pixel values to 

represent the radar backscatter of the reflecting surface. Radiometric correction is essential if one has to compare SAR 160 

images acquired with different sensors or acquired from the same sensor at different times, in different modes. Radar 

backscatter coefficient values, i.e., Sigma Nought (𝜎௢), are computed as per the following equation: 

𝜎௢(𝑑𝐵) = 20 ∗ logଵ଴(𝐷𝑁) + 10 ∗ logଵ଴ sin 𝜃௜௡௖ − 𝐶𝐹                                                                                                                              

where DN represents digital number (amplitude in Level-2 products), 𝜃௜௡௖is the per pixel local incidence angle and CF is the 

Calibration Factor. 165 

4.2 Methodology for Extraction of Flood Layer 

The extraction process for the Flood Layer from the Sigma naught calibrated image involves four main steps. These include 

using an Automatic tile-based segmentation method, obtaining a global threshold value, calculating HAND (Height above 

the Nearest Drainage Area) mask and extracting the Flood layer.  

4.2.1 Automatic Tile Based Classification Method for extraction of Water layer 170 

The Automatic tile-based segmentation method analyses the image in sections called image tiles. This approach divides the 

entire SAR image into non-overlapping tiles of equal n x n pixels, known as parent tiles. If an equal size partitioning of the 

image is not feasible, adjustments can be made to the last column and row tiles to ensure that the remaining tiles have equal 

n x n pixel size. These n-sized parent tiles are further subdivided into 4 equal-sized child tiles. For threshold calculation, 

certain tiles are selected based on two conditions: (i) the mean individual radar backscatter value of the parent tile should be 175 

less than the mean radar backscatter value of the entire SAR image to ensure that the selected tiles are within the SAR image 

and are located on the boundary between water and non-water areas; and (ii) the standard deviation of the parent tile is 

greater than 95%, indicating significant variation within the data and leading to a better classification of water and non-water 

areas. This process is illustrated in Figure 4. 

Andrew Twele et al., (2016) analysis shows that if fewer than five percent of parent tiles meet the specified conditions, the 180 

SAR image is divided into n/2 x n/2-sized parent tiles. The standard deviation condition for selecting parent tiles can be 

lowered to 90%, and the process is repeated until the desired condition is met. All the parent tiles that satisfy the above two 

conditions are subjected to the OTSU threshold technique. The mean of the thresholds is used to calculate the global 

threshold value for classifying the SAR image. This threshold value helps to distinguish between water and non-water areas. 
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 185 

Figure.4. Automatic Tile based segmentation of SAR image (a)Division of SAR image into n parent tiles (b)Division of 

parent tile to 4 child tiles (c)Histogram of one child tile 

4.2.2. Delineation of Flood layer 

It is crucial to ensure that false water areas, such as shadows in steep terrain, are excluded from flood detection. In this 

context, the filtering process aims to enhance the accuracy of water detection using the Height Above Nearest Drainage 190 

(HAND) tool. HAND is a terrain model that standardizes topography relative to the drainage network and is used to 

characterize local drainage potentials. In a HAND raster, each pixel value represents the vertical distance (in meters) to the 

nearest drainage channel. 

The HAND model leverages DEM inputs to rapidly assess non-flooded areas. Creating a HAND raster image from a DEM 

involves several steps, as illustrated in Figure 3. These steps include generating a seamless, hydrologically corrected DEM 195 

by filling holes, defining flow paths with Flow Direction, identifying the drainage network using Flow Accumulation, and 

calculating the Height Above Nearest Drainage (HAND) using the D8 flow distance function. The HAND raster provides 

spatially distributed values that represent the elevation difference between a given point (pixel) and the nearest stream, 

following the local drainage direction toward the channel where the flow enters 

According to Nobre et al. (2015), regions with HAND values greater than 15 exhibit reduced vulnerability to flooding. 200 

Consequently, an exclusion mask based on these HAND values is generated for this study. After applying the HAND mask, 

a suitable water layer is derived using data from the EOS-04 satellite. This water layer undergoes further processing to create 

a flood map, which overlays the derived water layer with a mask delineating permanent water bodies, such as rivers and 

lakes. 

4.3. Methodology for Flood depth Estimation using Trend Surface Analysis (TSA) Technique 205 

The flood depth in this methodology is estimated by using the inundated water layer and DEM as inputs. First, a water layer 

is generated polygon using the Automatic Tile-based segmentation method and then converted to polygon. Then, a polyline 

(a) (b) (c) 
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is created from the polygon to form the outer boundary segments. This polyline is then converted to a raster. Subsequently, 

the corresponding outer boundary elevation values from the DEM are assigned to this raster. An interpolation technique is 

then utilized to estimate water surface elevation values for all the pixels inside the flood boundary. In this paper, we 210 

employed the Trend Surface Analysis (TSA) technique for interpolating the elevation values for the entire inundated surface. 

TSA belongs to the Global Fit interpolation technique, which calculates a single function describing a surface covering the 

entire map area, as opposed to the Local Fit method which estimates the surface at interpolation points by selecting the 

nearest data/reference points. 

Trend surface analysis is a powerful method that uses global polynomial interpolation to create a smooth surface defined by 215 

a mathematical function based on input sample points. This method captures gradual changes and coarse-scale patterns 

within the data, producing a smooth surface representing the gradual trend across the area of interest. Trend surface analysis 

involves fitting a polynomial function to known data points and using this function to make predictions for locations where 

data is not available. The accuracy of the interpolated surface is indicated by the root mean square (RMS) error, with a lower 

error value signifying a closer representation of the input points. Mathematically, this technique is represented as below: 220 

Observed elevation value at a point on the surface = Predicted Elevation value using TSA method at that point+ residual at 

that point which is illustrated in following equation  

𝑍௢௕௦௘௥௩௘ௗ = 𝑓(𝑥௜ , 𝑦௜) + 𝑟௜(2) 

𝑍௢௕௦௘௥௩௘ௗ= The observed elevation value at the ith point 

𝑥௜= The coordinate on the X-axis ie Latitude at the ith point 225 

𝑦௜=The coordinate on the Y-axis ie Longitude at the ith point 

𝑟௜=residual at the ith point 

𝑓(𝑥௜ , 𝑦௜)denote a polynomial function. 

Based on the findings of Cohen et al. (2007), Huang et al. (2014), Brown et al. (2016), and Cian et al. (2018), it is assumed 

that the water surface in flooded areas is flat when calculating flood depth. Since the elevation variations in all four case 230 

studies are gradual, this paper utilizes the linear trend interpolation technique for estimating flood depth. The linear trend 

surface interpolator uses polynomial regression to create a least-squares surface from the input points. This approach allows 

for customization and flexibility in the analysis process by providing control over the polynomial order used to fit the 

surface.i.e. 

𝑓(𝑥௜ , 𝑦௜) = 𝑎𝑥௜ + 𝑏𝑦௜ + 𝑐 235 

where a, b and c are constants 

The aim of Trend Surface Analysis (TSA) is to determine the most suitable surface based on outer boundary elevation 

values, thereby uncovering the fundamental patterns of gradients and contours within the sample space (Morton et al., 1974). 

In real topographic surfaces, it is unlikely that any observed surface will exactly follow an idealized trend. The observed 

elevation values will either lie above or below the trend surface, resulting in residuals or prediction errors at each point. A 240 

positive residual (above zero) indicates that the trend surface lies below the observed surface at that location, while a 
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negative residual indicates that the observed surface lies below the predicted trend surface. Each combination of a, b, and c 

would generate a different inclined plane. Some of these surfaces would be good if the observed points were close to them, 

resulting in low residual values, whereas other surfaces would be poor if the observed values were distant from them. It 

would be useful to find a method of determining the very best possible combination of a, b, and c. To choose those constants, 245 

the least squares criterion is used, which finds the combination of a, b, and c that minimizes the sum of squares of residuals 

(S). 

S = ෍(𝑟௜
ଶ)

ே

௜ୀଵ

 

Where𝑟௜ = 𝑍௢௕௦௘௥௩௘ௗ − (𝑎𝑥௜ + 𝑏𝑦௜ + 𝑐) 

To estimate flood depth in this paper, the Trend Surface Analysis technique (TSA) is applied to the Water Layer obtained 250 

from Automatic flood mapping output. The water layer is converted into a polygon, then into a polyline and a raster. Using 

the respective DEM, outer boundary elevation values for the water layer are extracted and assigned to the raster. As the TSA 

technique works only on point data, this raster is converted to point form. Subsequently, the surface is interpolated using the 

TSA technique based on the flood outer boundary point data. The TSA Interpolated surface provides estimated water levels 

in meters. Finally, the estimated Flood depth is determined by subtracting the Digital Elevation Model (DEM) from the 255 

interpolated water levels. This methodology is further explained in the figure 5.  

 

Figure 5: Methodology for flood depth estimation using TSA technique: (a) Water layer created using the Automatic Tile-

based segmentation technique. (b) Elevation values extracted from the Digital Elevation Model (DEM) as points. 
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(c)Interpolated surface is generated using these elevation points through Trend Surface Analysis (TSA).(d)Flood depth is 260 

estimated by subtracting DEM values from the interpolated water levels (above mean sea level). 

4. Results and Discussion 

This research estimates flood inundation areas from SAR image, derives flood boundaries, and simulates flood contours and 

surfaces based on digital elevation models. The spatial resolution and accuracy of the digital elevation models are crucial for 

extracting floodwater depth. In this study, a high-resolution LIDAR DEM is used for one case study, the Godavari River 265 

reach, while simultaneously using Copernicus FAB 30m DEM to assess the sensitivity of the DEM in determining flood 

depth. The results from three other study areas Ganga, Brahmaputra, and Kosi rivers are also presented. Additionally, the 

accuracy of the flood depth values derived from Trend Surface Analysis (TSA) is evaluated by comparing them with field 

based measured river water levels provided by CWC on that particular day and time. It is also being compared with FWDET 

Tool. 270 

4.1. Flood Inundation Area Estimation 

The flood inundation layer is delineated using the Automatic Tile Based Classification Method on SAR data, with the 

HAND (Height Above Nearest Drainage) tool applied to eliminate false water areas and accurately identify actual flood 

water. During the flood disaster, it is challenging to conduct fieldwork for flood map validation. Hence, the accuracy of this 

delineated flood layer is evaluated using optical satellite cloud freeLandsat-8 image acquired on the same date i.e., 275 

15thAugust 2023 similar to EOS-04 date in the Uttar Pradesh study area. The delineation of water spread in Landsat-8 image 

is carried out using unsupervised classification techniques using ERDAS imaging software. The results are shown in figure 

6.  
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 280 

Figure 6: Optical satellite data and EOS-04 data comparison (a) shows the optical Landsat-8 data of Resolution 15m in Uttar 

Pradesh study area. (b)Water layer extracted from optical data using unsupervised classification. (c) EOS-04 data in the same 

study area of Landsat-8 data. (d) Water layer extracted from EOS-04 data using Automatic Tile based segmentation 

algorithm  

 285 

Area computed 
Optical data SAR data 

446 Ha 455 Ha 
Table:3: Statistical area covered under water 

As a part of accuracy test, statistical area covered under water delineated from Landsat-8 and EOS-04 image is computed 

and tabulated in table 3. It is observed that the flood delineation accuracy using Automatic tile-based classification method 

on SAR data is approximately 94% when compared to optical data. It is also understood from the above figures, that the 

variation of mismatch is because, in the shallow water areas of flowing waters, microwave data showing as no water which 290 

is not true from optical data.  

From these results, it is observed that the Automatic Tile Based Segmentation Method is deemed appropriate for deriving 

flood maps in rapid mode using SAR data. As Flood depth result depends on the delineated flood extent from SAR image, 

this method is useful for automatic detection of water layer in the SAR image. 

4.2. Floodwater Depth Estimation  295 

The shape of flood layers varies across different areas, with some regions appearing wide, indicating a gentle slope, and 

others being narrow along rivers, suggesting a steeper gradient, as observed in the aforementioned case studies. There is an 

increasing demand for accurately determining flowing water surfaces to precisely estimate flood depths. Typically, the 

flowing water surface is derived through two steps: firstly, by collecting elevations along the flood inundation boundary, 

which represent varying heights of discrete points, and secondly, by fitting a surface across these elevation points using 300 

commonly used interpolation methods. 

4.2.1. Comparison of DEMs in flood water depth estimation 

The accuracy of floodwater depth measurements depends significantly on the accuracy and spatial resolution of the Digital 

Elevation Model (DEM) as it plays a major role in interpolation of flood water depth. To assess this, an analysis was 

conducted in the Godavari flood plain area, utilizing two different DEM datasets. One DEM was derived from LiDAR data 305 

with a 5-meter spatial resolution and vertical accuracy of 15 cm, while the other was obtained from the public domain, 

specifically the Copernicus FABDEM, with an 8-meter vertical accuracy and 30-meter spatial resolution. This comparative 

study aims to evaluate the impact of public domain DEMs on the accuracy of flood water depth estimation. Here, the flood 

depth is estimated in Godavari Flood plain study area using Trend Surface Analysis (TSA) Technique. The results of this 
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analysis are presented in the figure 7 below. A scatter plot is drawn for comparison of flood depth values estimated using 310 

TSA technique for LIDAR and Copernicus DEMs. 

 
 

Figure 7: Plot between LIDAR DEM and Copernicus DEM derived Flood depths 

The scatter plot above shows that 90% of the flood depth points derived from LiDAR and Copernicus DEMs closely match. 315 

Discrepancies predominantly occur in areas with steep slopes where elevation changes rapidly. Therefore, accurate LiDAR-

derived DEMs are essential for estimating flood depths in steep areas. In contrast, for areas with gentle slopes, the 

Copernicus DEM, with its 30-meter spacing provides sufficiently accurate flood depth estimates, as depths are relative to 

heights. 

4.2.2 Derivation of Flood depths using TSA technique in Study Areas 320 

Given the dynamic nature of river elevations and varying water levels at different locations, employing trend surface analysis 

becomes essential for simulating the flood surface, especially in large flooded areas with gentle slopes. This process involves 

calculating floodwater depths based on DEM Resolution at specific locations, such as pixels. For Andhra Pradesh study area, 

LIDAR DEM derived flood water depth using TSA is illustrated in fig 8. For the remaining three study areas such as Bihar, 

Assam and Uttar Pradesh, publicly available Copernicus DEMs is used to estimate flood water depth using TSA technique. 325 

The figure 8 below illustrates the flood depths in four areas of gentle slope. Figure 8(e) represents the legend followed in the 

flood depth estimation (in meters) in all the four study areas.  

From Figures 8(a), 8(b), 8(c), and 8(d), it is evident that the flood depth is greater in river areas and it is represented in blue 

colour. Flood depths derived from TSA technique are smooth and continuous. 
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 330 

Figure:8: Flood depths calibrated using STA Technique for (a)Andhra Pradesh (b)Assam (c)Bihar and (d) Uttar Pradesh 

States (e)Legend for the Flood depth in meters 

4.2.3 Validation of results  

The water levels that have been derived using Trend Surface Analysis (TSA) technique in four case study areas is compared 

against field-based water level measurements at gauge station provided by CWC on the same particular day and time. The 335 

below figure 9 describes the method of comparison between the field-based measurement and TSA output. At each CWC 

provided River gauge station, TSA interpolated water levels are computed. At that particular location, date and time, field 

measured Water level is taken as reference for comparison study. The below table 4 shows the comparison study. TSA 

interpolated water levels are also compared against Flood Water Depth Estimation (FWDET) method. Water level is 

calculated using FWDET method in Open Source QGIS environment by taking same study area’s inundated water layer and 340 

DEM as input. 

(meters) 
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Figure 9: Pictorial representation of Flood plain and River Gauge station 

 

S.No 
Water Gauge Station 

Name 

Field Measured 

Water Levels 

TSA Interpolated Water 

Levels in meters 

FWDET Interpolated Water 

Levels in meters 

ANDHRA PRADESH 

1. Kunavaram 41.02 40.63 46.62 

2. Koida 39.72 39.68 42.19 

ASSAM 

1. Beki Rd Bridge 44.92 46.4 41 

2. 
Pangladiya NT Road 

Xing 
52.84 51.5 50.5 

3. Pandu 47.25 47.12 41.5 

4. Guwahathi 48.19 48.6 42 

BIHAR 

1. Baltara 34.9 34.08 32.85 

2. Kahalgaon 31.08 31.459 24 

3. Azamabad 30.54 30.16 24 

4. Kursela 29.98 28.98 27 

UTTAR PRADESH 

1. Dabri 137.18 138.6 136.21 

2. Fathegarh 137.78 137.4 136.05 

3. Kannauj 125.67 126 125.82 

4. Bewar 138.32 139.04 150.3 

Table 4: Comparison study of Water levels among between field measurements, TSA and FWDET 345 
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Water levels obtained from Trend Surface Analysis (TSA) Technique can be comparable to measurement at corresponding 

gauge stations as both follows the same ellipsoid for projection ie WGS 84 and for both measurements, water levels are 

measured from Mean sea level (M.S. L). As LIDAR DEM is available in Godavari Flood plain, this DEM is taken as 

reference for calculation of water levels using TSA and FWDET Method. For remaining study areas, COPERNICUS 

FABDEM is taken as input. The results of the flood water surface derived from surface trend analysis and the Flood Water 350 

Depth Estimation Tool (FWDET) indicate that the water surface from the trend analysis closely matches the CWC water 

surface at gauge stations, whereas the surface derived from the FWDET tool shows significant deviations. Around TSA 

estimates deviate from a field level measurements floodwater depth estimation by <65cms on an average of 14 gauge 

stations. Most of interpolated water levels has small difference (<0.5m) with field measurements. The most underestimation 

of water levels by TSA method is due to the presence of real time gauge station in the upstream flood plain. Similarly, 355 

overestimation of water levels is due to presence of gauge station in downstream flood plain. Trend surface methods offer a 

more balanced and accurate representation of the flood surface in such cases. However, it is observed that slope of the flood 

affected area plays a major role in flood depth efficiency. For Gentle slope surfaces, the accuracy of this method is better. 

Graphs are plotted as per figure 10 for the case studies against River gauge station water level and Field measurement, TSA 

and FWDET methods. In all the case studies, Trend Surface Analysis method outperforms FwDET when compare to field 360 

measurements. Root Mean Square Error (RMSE) is calculated for these two techniques. It is observed RMSE for TSA 

technique is 0.805 whereas FwDET is 5.23. Generally sharp transitions are observed in FwDET estimated depth, but here 

TSA provides the smoother distribution of depth map. As the estimated depths from TSA technique also depend on flood 

extent accuracy, from the above results it is understood that flood mapped output from Automatic Tile based segmentation is 

seemed to be accurate. The entire runtime for this automated python code ie Flood mapping and Flood depth has took around 365 

2 min to 5 min depending on the area of case study on a desktop computer 3.2GHz processor and 128 GB RAM 
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Figure:10 Comparison plots for water levels among field measured data, TSA and FWDET on all study areas 

Conclusions 

In summary, the Automatic Tile Based Classification Method applied to EOS-04 data, combined with the HAND (Height 370 

Above Nearest Drainage) tool, is highly effective for delineating flood layers, particularly in addressing hill shadows in SAR 

data to eliminate false water areas. Publicly available DEMs are valuable for plain areas with gentle slopes where high-

resolution DEMs are not available for deriving flood depths, while steep flood-prone areas require fine-resolution DEMs for 

accurate flood depth estimation. 

Adopting trend surface methods for interpolating water levels data allows for more accurate and reliable flood depth 375 

estimations in multi-dimensional river models. These methods capture the spatial trends inherent in river systems, providing 

better fitting and more precise representations of flood surfaces, especially in rapidly changing conditions. The Global Trend 

method is particularly effective for generating flood water surfaces in areas with extensive river flooding. This method fits a 

mathematical surface to the spatial data points, capturing underlying trends and offering a smoother and more accurate 

representation of the flood surface. By accounting for varying elevations and spatial trends present in the data, the global 380 

trend surface approach provides a comprehensive fitting that encompasses the overall spatial trend across the entire study 

area. This approach is especially useful in large river systems with complex flood behaviours. Combination of Automatic 

Tile based Segmentation technique and TSA technique are proven to be robust, accurate when validated against field 

measured data. 
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However, this method is greatly sensitive to DEM resolution and its appropriateness wrt flood layer. Sometimes manual 385 

control is required to align the DEM and corresponding flood layer. This method works well only for gentle slope areas. In 

Steep terrain areas Trend Surface Analysis may behave improperly. 

Future research will focus on testing this tool on other parts of the country and try to improve the methodology based on 

terrain conditions. 
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