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Abstract. Plastic pollution is an emerging entity threatening freshwater and marine ecosystems. Rivers play an important

role in the transport and retention of plastic from land to sea. Tropical rivers are among the most polluted globally, and are

assumed to emit substantial amounts of plastic into the marine environment. Concurrently, tropical rivers are invaded by

water hyacinths, a free-floating vegetation species native to the Amazon. Water hyacinths grow rapidly, forming dense mats

of plants and other material including plastic pollution. With only limited anecdotal and scientific evidence of plastic-water5

hyacinth trapping, its full spatial extent along river systems remain unknown. Here, we demonstrate the consistent role of water

hyacinths as carriers of plastic pollution along a river. Over 69k plastic items and 57k water hyacinth patches were identified

along the 42 km most downstream section of the Saigon river, Vietnam. More than 73% of all floating plastics were carried

by water hyacinths, ranging between 58-82% per specific location. The highest trapping ratio was found at the most upstream

locations. Although water hyacinths only covered 1.3% of the total river surface, the plastic concentration in water hyacinths10

was 197 times higher than in open water. Most downstream, the lowest water hyacinth coverage (0.2%) corresponded to the

largest difference between surface plastic concentration in water hyacinths and at the open water (factor 781). Previous work

demonstrated the effective trapping of plastic pollution by water hyacinths at individual sites. Here, we show that plastic-water

hyacinth aggregates consistently occur at the river scale. We quantified plastic and water hyacinths at five locations along the

Saigon river, Vietnam, using drones and fixed cameras, in combination with a custom-trained YOLOv8 deep learning model.15

With our paper, we support the theory that water hyacinths effectively concentrate and carry plastic pollution along rivers.

Further work on plastic-water hyacinth interactions is needed to better understand the transport, fate and impact of plastic

in the world’s most polluted rivers. Our results also support the idea of plastic monitoring from space using well-detectable

floating vegetation as a proxy. Finally, our work suggests that current removal practices of water hyacinths may be optimized

to also recover plastic pollution from rivers.20
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1 Introduction

Rivers in the world’s tropical regions are main contributors to global river plastic pollution and emissions into the ocean (Meijer

et al., 2021; Roebroek et al., 2021). Despite the large uncertainties in global model based estimates, rivers in South(east) Asia,

Central and South America, and Sub-Sahara Africa consistently rank among the most polluted (González-Fernández et al.,25

2023). In light of global efforts to end plastic pollution, such hotspots are important focus regions for prevention and reduction

measures (Simon et al., 2021; Tasseron et al., 2024). Tropical rivers are also excellent habitats for the invasive water hyacinths.

Originating from the Amazon, water hyacinths have spread rapidly around the world (Penfound and Earle, 1948; Madikizela,

2021). Water hyacinths are free-floating aquatic plants with freely hanging roots, making them very mobile in response to

water flow and wind forcing. Their rapid growth is mainly driven by nutrient load, forming large interwoven mats (May30

et al., 2022). Due to their negative impacts, including clogging water infrastructure, deteriorating water quality, and blocking

waterways, water hyacinths are considered an invasive pest and actively removed from water bodies (Jirawattanasomkul et al.,

2021; García-de Lomas et al., 2022). Several anecdotal and scientific reports have described the trapping of plastic within

water hyacinths plants and mats (van Emmerik et al., 2019; Schreyers et al., 2021a; Pritasari Arumdati, 2021; Pajai, 2022; van

Emmerik et al., 2022). Disentangling the interactions between plastic and water hyacinths is necessary to better understand35

transport and fate of plastic pollution along river systems.

Interactions between water hyacinths and plastic pollution have been reported for rivers globally, including in Thailand, In-

donesia, the Dominican Republic, and Vietnam. Most work on describing plastic-water hyacinth interactions has been done on

the Saigon river, Vietnam. In an effort to explain the seasonality in floating plastic transport in the Saigon, (van Emmerik et al.,

2019) found the strongest correlation between plastic transport and organic material concentration rather than river discharge40

or tidal dynamics. The organic material mainly consisted of water hyacinths and parts thereof, leading to the hypothesis that

water hyacinths play an important role in river plastic transport dynamics. To test this hypothesis, (Schreyers et al., 2021b)

developed several measurement methods to quantify the accumulation of plastic water hyacinths, ranging from physical sam-

pling to visual counting and image-based techniques. Two field-based studies showed that for two different cross-sections,

between 54-78% of the total floating plastic items were transported within water hyacinth (Schreyers et al., 2021a, 2024a).45

These results fueled the hypothesis that the plastic trapping mechanisms are consistent along the Saigon river. A follow-up

study released GPS trackers to mimic floating plastic items, and found that over 80% of retrieved items got stuck in water

hyacinths along the 40 km river reach studied (Lotcheris et al., 2024). Although this work showed the spatial extent of the

plastic-water hyacinth interactions, no additional data on hyacinth coverage and plastic surface concentrations were collected.

Although there is increased evidence of the consistent interactions between plastic pollution and water hyacinths, the spatial50

extent of the plastic trapping effect of water hyacinths remains unclear. In this paper, we therefore present a first assessment of

plastic-water hyacinth interactions along the downstream 42 km reach of the Saigon river.

Building on previous assessments, we further explore the role of water hyacinths as plastic carriers at the river scale. To

this aim, data was collected from multiple sensors, including fixed cameras and Uncrewed Aerial Vehicles (UAV). A total of

14,925 images were collected to detect plastic and water hyacinths, making it one of the largest river plastic image datasets to55
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date. Only for the marine environment larger image datasets have been used, covering much larger areas (Jia et al., 2023). We

used a custom-trained You Only Look Once v8 (YOLOv8) deep learning model to identify plastic items and water hyacinths,

and quantify water hyacinth patch size. We quantified water hyacinth coverage, plastic surface concentrations within water

hyacinths and at the open water surface, and the size distribution of water hyacinths at five locations along the Saigon river.

Analyzing these variables in parallel also allowed to develop a more holistic understanding of the interactions between plastic60

and water hyacinths along rivers.

The goal of this paper is to explore the variability of plastic-water hyacinth trapping along the Saigon river. Our findings

emphasize that plastic-water hyacinth interactions are an integral component of the plastic transport and retention dynamics

in tropical rivers. We argue that this is relevant for three reasons. First, to better understand the fate, transport and impact of

plastic in (tropical) rivers, the interactions between water hyacinths (or other species) and plastic is crucial (van Emmerik and65

Schwarz, 2020). Second, the consistent co-occurrence of plastic pollution and water hyacinths can be used to develop plastic

detection methods from space using water hyacinths as a proxy (Schreyers et al., 2022). Finally, the ability to effectively

concentrate plastic paves the way to explore the use of water hyacinths in developing plastic pollution reduction strategies. We

encourage future work to focus on assessing the interactions between water hyacinths and plastic in other river systems, and

between different floating vegetation species in rivers globally.70

2 Methods

We used image-based techniques to quantify water hyacinth coverage, plastic concentration, and plastic-hyacinth aggregations

along the Saigon river, Vietnam, during the dry season of 2023 (Section 2.1). Images were collected using bridge mounted

cameras and UAVs at five locations along a 42 km-long river section that flows through Ho Chi Minh City (Section 2.2). We

used the YOLOv8 (Jocher et al., 2023) deep learning algorithm to detect water hyacinth patches and plastic items in each75

image, trained on a subset with annotated images from the collected database (Section 2.3). Note that we used "plastic" for all

anthropogenic macrolitter items larger than 2.5 cm, as the vast majority ( 85%) of the litter items and mass are plastic in the

Saigon (van Emmerik et al., 2019). We assumed a minimum detectable item size of around 2.5 cm, based on the height and

specifications of the UAV and cameras (Section 2.2). We used the image-based data to assess the role of water hyacinths as

carriers of plastic along the Saigon.80

2.1 Study area

The Saigon river is approximately 225 km long and drains an area of around 4,800 km2. It traverses Ho Chi Minh City (over

10 million inhabitants), and joins the Dong Nai river before flowing into the ocean. The climate is characterized by a wet

(May to November) and dry season (December to April). The river flow is influenced by the upstream Dau Tieng reservoir

management, freshwater inflow, and tidal dynamics causing flow reversal. The discharge varies between -1500 and 2000 m3/s,85

and the tidal amplitude reaches 4 m during spring tide (Camenen et al., 2021; Rodrigues do Amaral et al., 2024). The tidal
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Figure 1. A. Overview of the study area, including the five measurement locations ranging from Phu Long to Quy Kien, which are 46.9 to 4.9

km upstream of the Saigon-Don Nai confluence, respectively. The triangles indicate the camera locations, and the crosses the UAV locations

(base map: ESRI). B. The fixed camera setup, including the five locations and Field of View (FOV). C. The UAV setup, including flight path,

the FOV, and landing zone (H). D. The side-view of the camera setup, including FOV. E. The side-view of the UAV setup, including FOV.

regime is asymmetrical, mixed semi-diurnal, resulting in flow reversal twice per day (Schreyers et al., 2024b). The Saigon is

affected by invasive floating water hyacinths, typically peaking between December and May (Janssens et al., 2022).

2.2 Field data collection

The measurements were done during the dry season, between 6 February and 1 April 2023 at five locations along the Saigon90

river (Table 1). The most upstream (Phu Long) and downstream (Quy Kien) locations were 41.9 km and 5.5 km upstream of

the Dong Nai confluence, respectively. We used bridge mounted fixed cameras and UAVs to estimate water hyacinth coverage

and patch size, plastic concentrations at the water surface and plastic concentrations within water hyacinths. Three locations

were measured using bridge mounted cameras (Phu Long, Binh Loi, Thu Thiem), and two were measured using UAVs (Thanh

Ho, Quy Kien) as no suitable bridges were available. We defined four measurement periods with a duration of two weeks. The95

camera measurements were done in all four measurement periods, and the UAV measurements in period 1, 3 and 4.

2.2.1 Bridge mounted cameras

We used a GoPro Hero 11 (GoPro, Inc., San Mateo, USA) RGB camera to collect images at Phu Long, Binh Loi, and Thu

Thiem (Tabl2 ). The camera was attached to an extendable 0.40 m arm, which was mounted pointed downwards to the railing

of the bridge. We used the linear 8:7 camera mode to mitigate the camera barrel distortion effect (spherizing of the image) (Lee100
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Table 1. Overview of the measurement locations, including distance to the Saigon-Dong Nai confluence, the measurement method, and the

number of observations per round.

Observations per round

Location
Distance to

Dong Nai

River

width
Method 1 2 3 4

Name Lat Lon [km] [m] 6-19 Feb 20 Feb-5 Mar 6-19 Mar 20 Mar - 1 Apr

Phu Long 10.890382 106.69196 41.9 185 Camera 6 6 6 6

Thanh Ho 10.853241 106.71632 35.9 210 UAV 6 0 21 12

Binh Loi 10.825805 106.70908 30.4 225 Camera 6 4 7 6

Thu Thiem 10.785911 106.71836 14.8 305 Camera 4 2 8 6

Quy Kien 10.770056 106.75085 5.5 480 UAV 1 0 10 10

et al., 2019). To reduce the obstruction of the bridge structure on the Field-of-View (FOV), the camera angle deviated slightly

from nadir (standard at 10◦, 30◦ for Thu Thiem during period 1). We selected five measurement points across each bridge.

The two outer points (East, West) were chosen such that the camera FOV bordered the riverbank. The middle point (Center)

was selected in the center of the river. The remaining two points (Mid-East, Mid-West) were chosen in between the Center and

East/West points. We used a single camera for all measurements, which was only mounted to the bridge for the duration of105

a single measurement. On each measurement day, up to eight measurements rounds were done, distributed between morning

and afternoon as equally as possible. For each round, we moved from the West point towards the East. At each observation

point we took 31 images with an interval of 10 seconds. A single round took between 45 to 60 minutes. The distance to the

water surface varied between 7.4-18.6 m, depending on the location and the tidal phase. In total, 11,297 camera images were

collected.110

The Ground Sampling Distance (dg) [cm/pixel] (Geraeds et al., 2019) of every image was calculated using the distance from

the camera to the water surface H [m], the sensor width ws [mm], the image size Si [pixels] and the camera focal length Lf

[mm]:

dg =
H ·ws

Si ·Lf
(1)

Table 2 presents an overview of all minimum and maximum dg for each measurement location.115

2.2.2 Uncrewed Aerial Vehicles

We used a DJI Phantom 4 Pro (SZ DJI Technology Co., Ltd., Shenzhen, China) to take RGB images at Thanh Ho and Quy Kien

(Table 2). For a single flight, the UAV crossed the entire river width back and forth following a U-shape flight path (Geraeds

et al., 2019). Images were taken along the entire river width in both flight directions. The images on the back and forth crossing

had 30% overlap, and adjacent images taken at each crossing had 20% overlap. Images were taken during the flight/while120
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Table 2. Details of the camera height, resolution (dg), total and annotated images, and annotated items per location.

Location Camera height [m] dg [cm/pixel] FOV [m2] Total images Annotated images Annotated items

Name min max min max min max

Phu Long 9.5 12.9 0.35 0.48 569 1049 3613 65 2024

Thanh Ho 11 12.0 0.3 0.46 181 266.5 1851 24 775

Binh Loi 7.4 9.9 0.28 0.37 345 618 3691 65 1559

Thu Thiem 11 18.6 0.41 0.69 763 4802 3941 93 4741

Quy Kien 11 14.0 0.3 0.46 181 294 2399 11 266

hovering, and the velocity was 2 m/s. Images were taken at nadir with a distance of 11-14 m to the water surface, depending

on the tidal phase. The deployment and landing locations were kept constant for all flights. We conducted one to nine flights

per measurement day, depending on weather conditions and battery status. The mean number of images per flight varied per

location (Thanh Ho: 51; Quy Kien: 130), mainly due to the variation in river width (Thanh Ho: 210 m; Quy Kien: 480 m). In

total, 4,306 UAV images were collected.125

2.2.3 Image processing

The camera images were corrected for the keystone effect, i.e., the distortion of the dimensions caused by not taking the images

at nadir. The keystone effect increasingly reduced the dg towards the far edges of the field-of-view (upper left and right). Along

the horizontal plane the distortion is constant. We corrected for the keystone effect by calculating a correction factors for the

off-nadir angles (10◦, and 30◦). For the image annotation and deep learning model (Section 2.3) purposes, each image was130

divided into 8x8 tiles. We therefore calculated the correction factor for each of the eight vertical rows. First, we calculated the

true coordinates of the four image corners based on the aspect ratio (8:7), the vertical (100◦) and horizontal (133◦) lens angle,

and the deployment angle, using trigonometry. Second, the images were stretched using open source photo editing program

GNU Image Manipulation Program (GIMP). Finally, we calculated the corrected number of pixels and surface area per tile

from the stretched images. The UAV images were taken at nadir and did not need keystone correction.135

2.3 Image-based plastic and hyacinth detection

2.3.1 Deep learning model architecture description

We used the state-of-the-art YOLOv8 deep learning model architecture to detect water hyacinths and plastic items in camera

and UAV images. The YOLO series networks, especially the new YOLOv8 network released in 2023, are popular architectures

for object detection thanks to their high accuracy and fast inference speed (Terven and Cordova-Esparza, 2023).140

YOLOv8 is a fully convolutional neural networks that consists of two main modules: (1) the backbone, and (2) the head.

The backbone extracts relevant features at various resolution levels from the input images. These features are then processed
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by the head module which detects object locations with bounding boxes and classifies each object independently. In the output

layer of the architecture, YOLOv8 uses a softmax activation function to output the probabilities of a detected object belonging

to every possible class in the training dataset. The most significant advancement in YOLOv8 compared to its predecessors145

is its anchor-free design. Instead of predicting offsets from predefined anchor boxes, YOLOv8 directly predicts the center of

objects before constructing the related bounding boxes. This approach leads to better efficiency and improves generalization

by allowing the model to adapt more effectively to a wide range of object sizes (Terven and Cordova-Esparza, 2023).

2.3.2 Image subsets for model development

We annotated objects with bounding boxes using the Roboflow platform (Dwyer et al., 2022). We labeled 272 images from the150

total of 15,495 images (72.9% camera, 27.4% UAV), with 9,352 object annotations. We identified three object categories: (1)

water hyacinths, (2) free-floating plastic item, and (3) trapped plastic item within water hyacinths. The water hyacinth class

objects include water hyacinths with and without entrapped plastic items. Free-floating plastic items are defined as plastic items

freely floating at the water surface, and not trapped or in contact with water hyacinths. The trapped plastic items are defined as

items clearly inside or in contact with water hyacinth. Of the total 9,352 annotated objects, 3,017 are water hyacinths, 2,036155

are free-floating plastic items, and 4,299 are trapped plastic items, as reported in Table 3.

Table 3. The subsets used for model development. The model "resize" was used for water hyacinths, and "tiles" was used for plastic items.

Model Subsets
No. images

or image tiles

No. annotated items for each class No. total

annotated itemsWater hyacinth Free-floating plastic Trapped plastic

Modelresize

Trainresize 218 2,040 1,437 3,453 6,930

Validationresize 27 451 219 392 1,062

Testresize 27 526 380 454 1,360

Total 272 3,017 2,036 4,299 9,352

Modeltiles

Traintiles 11,408 3,094 1,512 3,683 8,289

Validationtiles 1,416 687 237 413 1,337

Testtiles 1,440 732 398 436 1,566

Total 14,264 4,513 2,147 4,532 11,192

2.3.3 Model development

Due to the input image size limitation of 640x640 pixels for YOLOv8, we used two common image processing methods: (1)

resizing the original images into 640x640 pixels, and (2) cutting images into tiles of 640x640 pixels before feeding them into
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the model (Jia et al., 2023). Compared with image resizing, tiling retains higher resolutions, potentially enhancing the model’s160

performance in detecting plastic items, especially of low dimensions (Wolf et al., 2020; Kylili et al., 2020). However, cutting

images into small tiles results in water hyacinths being being divided over several tiles, since they are typically larger than the

tile dimensions. This can significantly impact the quantification of the number of water hyacinth patches.

Considering the benefits of each processing method, we developed two models in this study: (1) Modelresize and (2) Modeltiles,

using one of the two processing methods, respectively. First, we resized the 272 labeled input images into 640x640 pixels, and165

divided them into Trainresize, Validationresize, and Testresize subsets, following the 80/10/10 split detailed in Table 3. These three

subsets are used for the Modelresize training, validation and testing, respectively. To develop Modeltiles, we sliced the 272 images

into tiles of 640×640 pixels. Each camera image was cut into 56 tiles, and each UAV image was cut into 32 tiles. This yielded

14,264 image tiles with annotated object items of interest (see Table 3). We divided these tiles into Traintiles, Validationtiles, and

Testtiles subsets, following the 80/10/10 split. These three subsets are used for the Modeltiles development. The implementation170

of YOLOv8 is shown in Appendix A.

2.3.4 Evaluation metrics

We evaluated the models performance using three commonly employed metrics: (1) (m)AP50, (2) precision P , and (3) recall

R (Jia et al., 2023; Padilla et al., 2020). AP50 is the mean Average Precision (AP) of one class with an Intersection over Union

(IoU) threshold of 50%. The IoU quantifies the prediction accuracy by dividing the overlapping area of the predicted and175

ground-truth bounding boxes AI , by their total covered area AU . mAP50 is the average of AP50 across all classes. Precision

is an accuracy measure of positive detections, denoted by the portion of correctly detected positive cases (i.e., true positives)

out of the total number of cases detected as positive. Recall represents the ratio of correctly detected positive cases to the

total number of ground-truth cases. We used the precision and recall computed with an IoU threshold of 0.5 to evaluate model

performance. The equations of these performance metrics can be found in Appendix B.180

2.3.5 Model performance evaluation

We selected the developed Modelresize to detect and quantify the number of hyacinths, and the Modeltiles to accurately detect

and quantify the number of plastic items on the entire dataset. Appendix C shows precision, recall, and (m)AP50 of (1) the

Modelresize on the Testresize subset, and (2) the Modeltiles on the Testtiles subset. While the Modelresize obtains high precision for

all classes (P = 0.72-0.89) and high recall and AP50 for water hyacinth (R = 0.54, and AP50 = 70%), it achieves significantly185

low recall for free-floating plastic (R = 0.05) and trapped plastic (R = 0.06). The results show that the Modelresize performs

well in detecting water hyacinth, but does not identify a large number of plastic items. This result is also shown in Fig C1 in

Appendix C. Compared to the Modelresize, the Modeltiles achieves relatively higher performance in detecting free-floating plastic

(P = 0.72, R = 0.25, and AP50 = 48%), and trapped plastic (P = 0.69, R = 0.39, and AP50 = 52%). However, the Modeltiles

may count many hyacinth patches in image tiles as individual hyacinths, leading to an overestimation of their abundance.190
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2.3.6 Model output and metrics of interest

Two models were run on the entire dataset. Note that this is not common practice in machine learning, but our aim was to

maximize data availability for the phenomenological analyses. The model runs yielded the (1) number of objects per class per

image, and (2) coordinates and sizes of the object bounding boxes in pixels. We converted bounding box sizes from pixels

to actual length using the dg (section 2.2.1) of each image [cm/pixel]. For each bounding box the surface area was reported195

in squared meters [m2]. We applied the keystone correction to the camera images (section 2.2.3). For the water hyacinths we

fitted ellipses inside each hyacinth bounding box using an ellipse factor of 0.79, to account for the predominant shape of water

hyacinths (Schreyers et al., 2024a). We used the size of the retrieved bounding boxes as size for the free-floating and trapped

plastic items in the rest of this study. For each image, we calculated the trapping ratio rent [-], the water hyacinth river surface

coverage fwh [-], the total river plastic surface concentration Cr [#/km2], the water hyacinth plastic surface concentration Cwh200

[#/km2], and the open water plastic surface concentration Co [#/km2] (see Appendix D).

2.3.7 Statistical analysis

We used the Anderson-Darling test to test all relevant variables (section 2.3.6) for normality. We compared the mean and

median values per site, measurement period, and flow direction using the Kruskall-Wallance (mean) and Wilcoxon (median)

tests. We used p = 0.05 for the significance level.205

3 Results and discussion

3.1 River plastic density varies along the river course

Water hyacinths consistently carried the majority (73%) of all floating plastics across locations and measurement periods. The

site specific averages vary from 58% at Quy Kien (most downstream) to 82% at Phu Long and Tanh Ho (most upstream),

with temporal variations per location up to 26% (Quy Kien) (Fig. 2). The highest trapping ratios were found in period 4, with210

the exception of Thu Thiem (period 3). The lowest trapping ratio was found for period 3 for the two upstream locations, and

periods 1 and 2 for the three downstream locations. The highest trapping ratio (90%) was found in period 4 at Thanh Ho.

Our results support the hypothesis that water hyacinths act as important carriers of floating macroplastics in tropical rivers

(van Emmerik et al., 2019). Previous work found trapping ratios between 54-78% based on observations taken between April

2020 and January 2022 (Schreyers et al., 2021a, 2024a). These studies focus only on Thu Thiem, which now showed the lowest215

mean trapping ratio. These findings therefore suggests that water hyacinths are not only relevant locally, but play an important

role in plastic transport and retention dynamics at along a larger part of the river.

The overall mean plastic surface concentration is nearly 200 times larger within water hyacinths (2.7·105 #/km2) than in the

open water (1.4·103 #/km2) . The water hyacinth plastic surface concentration Cwh [#/km2] is one (Binh Loi) to two (Quy Kien)

orders of magnitude larger than the total river plastic surface concentration Cr [#/km2], and an additional order of magnitude220

larger than the open water plastic surface concentration Co [#/km2] (Fig. 3). Cwh shows an increasing trend in downstream
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Figure 2. A. Plastic trapping ratio was on average 73%. The mean trapping ratio per location varied between 58 and 82%. Overall the highest

trapping ratio were found at the most upstream locations, and the lowest at the most downstream location closest to the confluence. B. The

surface plastic concentration [#/km2] in water hyacinths increased towards the river mouth. In contrast, the total river plastic concentration

[#/km2] and open water surface plastic concentration [#/km2] decreased towards the river mouth. C. The water hyacinth coverage of the river

surface decreased towards the river mouth. The ratio between the surface plastic concentration in water hyacinths and at the total river plastic

surface concentration.

10

https://doi.org/10.5194/egusphere-2024-2270
Preprint. Discussion started: 2 September 2024
c© Author(s) 2024. CC BY 4.0 License.



direction, from 1.5·105 #/km2 at Phu Long to 1.5·106 #/km2 and Quy Kien. Cr and Co decrease from the upstream locations

(Phu Long to Binh Loi) towards the downstream locations (Thu Thiem and Quy Kien).

Schreyers et al. (2022) used a constant Cwh of 2.1·105 #/km2, which is in line with the values found at the three upstream

locations. Quy Kien however had a Cwh of one order of magnitude larger. For specific river systems, a constant Cwh may225

yield a reasonable first estimate, but may result in large uncertainties for individual locations. Understanding the spatial and

temporal variation in Cwh are therefore crucial for plastic detection methods that use water hyacinths as a proxy.

These results emphasize the important role of water hyacinths as carriers of floating macroplastics at the river scale. Along

the entire studied river reach, the surface concentrations were 1 to 3 orders of magnitude higher in water hyacinths compared

to the total or open water surface concentrations. Water hyacinths seem to effectively entrap and concentrate floating plastic,230

leading to the much higher concentrations than when plastic items remain freely floating. The river width increases towards the

confluence, which explains the decrease in Cr and Co. Interestingly, the Cwh is the highest in the most downstream regions.

This is explained by decrease in hyacinth coverage in combination with only a low decrease in trapping ratio. Downstream,

a similar amount of plastic is trapped by a smaller water hyacinth area compared to upstream. As these are also the least

accessible areas for conventional plastic monitoring, this emphasizes the potential of using water hyacinths as a proxy for plastic235

pollution. Furthermore, it suggests that the water hyacinths that travel all the way down to the confluence have accumulated the

most plastics. Removing water hyacinths in the downstream regions may therefore also lead to capturing the largest amount of

plastics.

3.2 Hyacinth coverage decreases downstream

The water hyacinth coverage ranged between 3.5% (Phu Long, most upstream) and 0.2 % (Quy Kien, most downstream). At240

the three upstream locations the coverage varied between 1.0% and 5.3%, and at the two downstream locations between 0.1%

and 0.8%. The overall mean coverage was 1.3%. There was no clear increase or decrease over time (Fig. 2C).

The mean surface area per water hyacinth was the highest at Tanh Ho (5.3 m2), and the lowest at Quy Kien (1.6 m2). The

spatial trend of the mean water hyacinth area per patch follows the same overall decreasing trend towards the confluence. The

combined water hyacinth area statistics shows a strongly skewed distribution, with an overall mean of 3.3 m2 and median of245

0.5 m2.

The one hundred largest water hyacinth patches varied from 140 to 401 m2, 42-122 times the mean. Most of these extremely

large water hyacinths were found at Phu Long (74) and Thanh Ho (5). The remaining ones were found at Binh Loi (5) and Thu

Thiem (6). At the downstream location Quy Kien none were found.

The decreasing trend towards the confluence in water hyacinth coverage and mean surface area per water hyacinth patch is250

in line with the findings of Janssens et al. (2022). They used three years of Sentinel-2 data to look at the spatial and temporal

trends of water hyacinth coverage. Here, the mean coverage was found between 3-24% for the river section similar to our

study. The values between 5-24% were however only found for the sections upstream of Phu Long. The section close to the

confluence, which comprises Thu Thiem and Quy Kien, had a long-term average coverage below 1.0%.
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The low coverage in the downstream section may caused by both the increase in width, and the break-down of the water255

hyacinth patches (Petrell and Bagnall, 1991; Janssens et al., 2022). The river width increases from 185 m at Phu Long to 480 m

at Quy Kien. With no changes in the water hyacinth area, this would already result in a factor 2.6 coverage decrease. However,

our results show the decrease in mean water hyacinth surface area per patch from 5.3 to 1.6 m2. These findings corroborate the

suggestion that water hyacinths may disintegrate in the downstream sections due to higher flow velocity (variations).

3.3 Water hyacinths as consistent macroplastic carriers260

Water hyacinths act as plastic carriers throughout the 42 km downstream section of the Saigon river (Fig. 2). Along this stretch,

the river width increases from 185 m to 480 m, and traverses Ho Chi Minh City. The plastic trapping ratio was found relatively

stable, with values between 63% and 82% along the river. Water hyacinth coverage, and water hyacinth mean area per patch

decrease towards the river mouth. However, our results suggest that the role of water hyacinths as carrier of floating plastics

is increasingly important towards the confluence. This is supported by the ratio in plastic surface concentration between the265

water hyacinths and in total at the river surface, increasing from 21-36 upstream to 306 near the confluence (Fig. 2c).

Although previous work on plastic-water hyacinth interactions has been done on the Saigon river, this is the first study

that investigates these dynamics on the river scale at multiple locations. van Emmerik et al. (2019) hypothesized that water

hyacinth abundance was driving total floating plastic transport at Thu Thiem. This was supported by Schreyers et al. (2024a)

who used a one-year dataset collected at Thu Thiem to show that indeed up to 77% of the total plastic transport occurs through270

plastic items entrapped in water hyacinths. Lotcheris et al. (2024) used GPS-trackers released at Thu Thiem and Binh Loi to

study the transport and retention dynamics. Over 80% of the retrieved items were trapped in water hyacinths. Based on our

results we see that the high trapping ratio and much higher plastic concentrations in water hyacinths than in open water are

spatially consistent. We therefore have increased confidence that water hyacinths play a key role in the river plastic transport

and retention dynamics at larger spatial scales.275

3.4 Uncertainties and limitations

Not all locations were covered equally during data collection. At Phu Long, Binh Loi and Thu Thiem we collected between

3,613 and 3,941 images. At Thanh Ho and Quy Kien only between 1,851 and 2,399 images. The total covered river surface

varies even more, from 0.4 km2 (Thanh Ho), to 8.3 km2 (Thu Thiem). Note that the covered river surface is a function of

both the number of images, and the height above the surface and the incidence angle of the camera. Thu Thiem has a much280

larger coverage due to the largest camera-to-river distance (up to 18.6 m) and a larger initial incidence angle (30◦ instead of

10◦). The distance from the camera to the river surface varied due to water level variations, inaccuracies in the flight altitude,

and variation in bridge height. The variation in image resolution (dg [cm/pixel] is limited to a factor between 1.3 and 1.7 per

specific locations. The variation between the minimum and maximum dg is a factor of 2.5. As a consequence, the minimum

detectable plastic item size varied per image, introducing some uncertainty when comparing results from individual images.285

For the time and space averaged values, we do not expect a large impact on the found results and trends.
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Figure 3. The plastic trapping is stable along the studied 42 km reach of the Saigon river. The water hyacinth coverage and total plastic

surface concentration decreased towards the river mouth. The difference in surface concentration is largest in the most downstream location,

suggesting the increased importance of water hyacinths in concentrating and carrying plastic pollution.

The application of the YOLOv8 deep learning model demonstrated both its strengths and limitations. YOLOv8 can only

process images up to a resolution of 640x640 pixels. Consequently, different image processing methods are necessary based

on the object dimensions of interest. In our case, the water hyacinths had much larger dimensions than the plastic objects. Lit-

erature recommends a DSG of 0.5 to 1.25 cm/pixel for macroplastic detection (Andriolo et al., 2023), and this range cannot be290

reached when the image resolution has to be reduced with a factor 32 (camera) to 56 (UAV). Our initial YOLOv8 configuration

could not deal with this, and therefore we trained two separate models (i.e., Modelresize and Modeltiles) using different image

processing methods: (1) resizing images, and (2) cutting images into tiles. Developing a model with similar architecture for

both plastic items and water hyacinths therefore remains a challenge.

We encourage exploring different deep learning algorithms and image processing strategies. For example, Wolf et al. (2020)295

developed an approach that classifies tiles within an image rather than bounding boxes for each object. They successfully

distinguished between litter, vegetation, and other classes. With a dg of 0.2 cm/pixel, their images had a 2.3-12.3 times higher

resolution than our image database. We therefore do not expect similarly high performance when applied to our dataset.
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Another avenue for improvement is rethinking the classes that the model is trained on. We recommend to use only two

classes, i.e. water hyacinth and plastic. This would make annotation less prone to error, as sometimes it is difficult to distinguish300

between free-floating and entrapped plastic items. As the model also would not have to distinguish between the two, it is

expected that the overall performance would increase. The free-floating and entrapped plastic items could be identified in the

post-processing phase, based on the overlap of the plastic and water hyacinth bounding boxes.

However, the low recall values suggest that we may underestimate the number of open water plastic items (factor 4), trapped

plastic items (factor 2.5), and water hyacinths (factor 2). If we would correct our average statistics for this, the trapping ratio305

would decrease to 63%, and the water hyacinth coverage would double to 2.8%. The overall longitudinal patter would not

change, although the trapping ratio would be lower at each location. The corrected trapping ratio would decrease from 81.9%

to 73.9 % (Phu Long ), 82.0% to 74.0% (Thanh Ho), 63.9 to 52.5% (Binh Loi), 70.2% to 59.0% (Thu Thiem), and 58.1 to

46.4 % (Quy Kien). These values are still in line with previous work in the Saigon river, who found ranges in trapping ratio of

54-77% (Schreyers et al., 2024a) and water hyacinth coverage of 2-4% (Janssens et al., 2022).310

3.5 Outlook

Water hyacinths have invaded rivers globally, mainly in (sub)tropical and even temperate zones (Téllez et al., 2008; VonBank

et al., 2018; Lozano, 2021). The regions where water hyacinths are reported strongly overlap with the global distribution of the

most polluted rivers (Meijer et al., 2021). We therefore expect that the findings in our paper are relevant for many other rivers

around the world. Scientific evidence of similar plastic-water hyacinth interactions are still lacking, although there have been315

reports of similar findings including from the Citarum river, Indonesia (Pritasari Arumdati, 2021), and the Chao Phraya river,

Thailand (Pajai, 2022). To better understand the transport and retention dynamics of river plastics, further work on plastic-water

hyacinth interactions is required, also in other river systems globally.

It remains unresolved why water hyacinths are so effective in trapping plastics along rivers. Plastic may get stuck when

individual water hyacinths form mats. From anecdotal evidence we also found large amounts of plastic towards the edges of320

the water hyacinths, suggesting the plastics mainly get stuck after the plants and plastics are in contact. Finally, plastics may

also land on top of water hyacinths, especially for those which are mobilized by wind (Mellink et al., 2024). Equally, if not

more, important is to better understand the potential release mechanisms. Plastic items may be released when water hyacinth

patches disintegrate, or when the plastic-water hyacinth aggregates collide with riverbanks or vessels. The time and location

of release are especially relevant for fate and transport modeling, and for optimizing plastic reduction interventions. We call325

for more fundamental work on describing and understanding the trapping and release dynamics of plastics in and from water

hyacinths.

One of the crucial unknowns is how the surface area covered by water hyacinths and the plastic surface concentrations vary

between and within rivers. In the Saigon river we found a rather constant trapping ratio for water hyacinth coverage between

0.1 and 4.0%. Globally, the surface area of river and lakes covered by water hyacinths has been found to vary greatly between330

rivers (10.6-98%) and lakes (30%) (Tobias et al., 2019; Moyo et al., 2013; Thamaga and Dube, 2019; Kleinschroth et al.,

2021; Pádua et al., 2022). Whether water hyacinths still concentrate plastic as effectively at high surface coverage is still to
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be assessed. In our study we looked at a limited river section of 42 km, and we recommend future work to further explore

the distances over which plastic items can be carried by water hyacinths. Such insights are crucial to evaluate whether water

hyacinths are mainly relevant around plastic source or retention areas, or along the full river extent.335

The consistent plastic-water hyacinth interactions also has implication for river plastic pollution management. Despite the

agreement that solutions should focus on upstream prevention, rather than plastic cleanup efforts (Bergmann et al., 2023), there

are still ample global efforts to remove plastic pollution from rivers. Many of these initiatives use surface skimming vessels, or

floating booms to concentrate and guide plastic towards an extraction point (Helinski et al., 2021). Consequently, plastic-water

hyacinth aggregates may also be collected intentionally or unintentionally. As 63-82% of the total floating plastics is carried by340

water hyacinths, excluding those would result in missing a considerable share of the total plastics. However, collection should

take into account the potential additional mass of the water hyacinths. As little as 0.5-3.2 % of the total sampled plastic-water

hyacinth aggregate mass has been found the be plastic (van Emmerik et al., 2019; Schreyers et al., 2021b). The additional

forces exerted by the water hyacinths may also result in damage to collection infrastructure (Cleanup, 2021). The high plastic

concentrations in water hyacinths also offer opportunities. Water hyacinths are considered as a pest globally, and most control345

measures include mechanical and manual removal of plants (May et al., 2022; Karouach et al., 2022). Water hyacinth removal

may therefore be used to also reduce floating plastic as a side effect.

In previous work we have coined the idea of using water hyacinths as proxy for river plastic (Schreyers et al., 2022). In

recent years several methods have been developed to detect and monitoring water hyacinth invasion in rivers and lakes using

optical (Janssens et al., 2022) and radar satellites (Simpson et al., 2022). By now there have been several examples of how350

water hyacinths can be monitored over large areas, for entire river systems lakes, and also using historical images. For example

Mukarugwiro et al. (2021) and Kleinschroth et al. (2021) mapped water hyacinths across rivers and lakes using nearly 30 years

of available imagery, showing relevant temporal changes in surface coverage. With reliable estimates of the water hyacinth

plastic concentration and trapping ratio, the total abundance of floating plastics can be estimated (Schreyers et al., 2022). In our

paper we show that the trapping ratio is rather constant along the river, but the water hyacinth plastic concentration varies around355

one order of magnitude. Field data on the trapping ratio and water hyacinth plastic concentration therefore remain crucial in

further work on using water hyacinths as a proxy for plastic pollution. Note that such field calibration efforts are common

practice in hydrology (stage-discharge relations) and sediment research (acoustic sensor calibration). The key challenge for the

direct transfer of our findings to new rivers is building a reliable database of water hyacinth plastic concentration and trapping

ratio values. Once more data is available, these values may also be estimated a priori by using statistical or conceptual models.360

4 Conclusions

We quantified plastic concentration at the river surface and within water hyacinths at five locations along the 42 km most down-

stream section of the Saigon river, Vietnam, between February and April, 2023. A total of 15,495 images were collected using

UAVs and cameras, and we used a YOLOv8 deep learning model to automatically detect plastic items and water hyacinths,
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and quantify their numbers and measure the size of water hyacinth patches. We identified over 69k plastic items, and 57k water365

hyacinths.

Water hyacinths were found to be spatially consistent carriers of macroplastics. In total, 73% of the total detected plastic

items were carried by water hyacinths, ranging between 63-82% for specific locations. The highest trapping ratio values were

found most upstream, and most downstream of the studied river section. These results emphasize that water hyacinths play an

important role in the transport dynamics of plastic transport, both in time and space.370

The studied section of the Saigon river had an average water hyacinth surface coverage of 1.4%, decreasing from 3.5%

upstream to 0.2% in the most downstream section. Despite the low coverage compared to other rivers and lakes globally, the

water hyacinths efficiently concentrate and aggregate floating macroplastics. The surface plastic density in water hyacinths was

on average 109 times higher than at the open water surface, and increased from 24 to 306 in the downstream direction.

Our results emphasize the potential of using deep learning techniques to efficiently increase data availability . In turn,375

this allows to study complex environmental processes at larger spatial and temporal scales, for example for plastic-water

hyacinth interactions. To date, previous research water plastic-water hyacinth interactions was mainly done using physical

sampling, visual counting, or manual image processing methods. Our method combines images taken with off-the-shelf UAVs

and cameras, and openly available software for image annotation and object detection, and can therefore easily be replicated

in other rivers globally.380

With our paper we underscore the important role of water hyacinths in the transport and retention dynamics of macroplastic

in rivers. Further work should focus on unravelling the capture and release dynamics of plastic items within water hyacinth

plants and aggregates. Such insights are crucial to better understand the transport and fate of macroplastics in tropical rivers.

Moreover, we encourage to further explore the potential of (1) using water hyacinths as proxy for plastic detection from space,

and (2) joint removal from rivers for plastic pollution reduction.385

Appendix A: Implementation of YOLOv8

We developed models with Python 3.9.12 and PyTorch 2.0.0 on a local NVIDIA GeForce RTX 3090 GPU (24GB). We firstly

initialed the YOLOv8 with weights pre-trained on COCO dataset (Lin et al., 2014). Then, we fine-tuned the models on train

subsets for 500 epochs and only saved the learning parameters yielding the highest valuation accuracy. We used the SGD

optimizer (Loshchilov and Hutter, 2016), with an initial rate of 0.01, an final value of 0.0001, a momentum of 0.937, weight390

decay of 0.001, and a batch size of 16. We set early stopping during training process when the validation accuracy does not

improve in the last 50 epochs. We performed horizontal flipping augmentation method (Shorten and Khoshgoftaar, 2019) to

improve model performance.
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Appendix B: Evaluation metrics

P =
TP

TP + FP
(B1)395

R =
TP

TP + FN
(B2)

where P is precision; R is recall; TP is true positive, representing the number of correctly detected positive cases; FP is false

positive, representing the number of cases incorrectly identified as positive; FN is false negative, representing the number of

ground-truth cases not detected by the model.

AP =

1∫

0

P (R)dR (B3)400

mAP =
1
n

n∑

i=1

APi (B4)

where APi is the average precision of the i-th category, computed as the area under the precision-recall curve (Padilla et al.,

2020); n is the number of categories.

IoU =
AI

AU
(B5)

where IoU is Intersect over Union; AI and AU are the area of overlap and union between the ground-truth bounding box and405

the detected bounding box, respectively.
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Appendix C: Model detection performance

Table C1. Detection performance of (1) the Modelresize on the Testresize subset, and (2) the Modeltiles on the Testtiles subset

Model Class Precision Recall (m)AP50 (m)AP50-951

Modelresize

Water hyacinth 0.83 0.54 70% 48%

Free-floating plastic 0.72 0.05 39% 24%

Trapped plastic 0.89 0.06 47% 25%

all classes 0.81 0.21 52% 32%

Modeltiles

Water hyacinth 0.74 0.45 60% 44%

Free-floating plastic 0.72 0.25 48% 37%

Trapped plastic 0.69 0.39 52% 38%

all classes 0.72 0.37 53% 40%

1 AP50-95 calculates the average AP at 10 different IoU thresholds varying in a range of 50% to 95%, with steps of 5%.
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Figure C1. Detection results of the Modelresize on the Testresize subset. The model can correctly detect many hyacinths, but it does not identify

many plastic items in camera images ((a) and (b)) and drone images ((c) and (d)). Acronyms used: trapped plastic litter (ent-litter), Free-

floating plastic litter (ff-litter).
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Appendix D: Plastic-water hyacinth interaction variables

The trapping ratio rent [-] expresses the proportion of total plastic items trapped in water hyacinths. The total plastic items

equals the free-floating plastic items in open water Nfree [#], and the trapped plastic items in the water hyacinths Nwh [#]:410

rent =
Nent

Nent + Nfree
(D1)

The water hyacinth river surface coverage fwh [-] is the fraction of the total river surface Ar [m2] covered by water hyacinth

Awh [m2]. For the total river surface area we used the total image FOV, which equals the sum of the open water surface and

water hyacinth surface area. The used the following equation:

fwh =
Awh

Ar
(D2)415

The total river plastic surface concentration Cr [#/m2] normalized the total number of plastic objects (Nent + Nfree) [#]

over the total river surface area Ar, which is equal to the image FOV [m2]:

Cr =
Nent + Nfree

Ar
(D3)

The water hyacinth plastic surface concentration Cwh [#/m2] is the total number of trapped plastic items Nent [#] normalized

over the total water hyacinth area per image Awh [m2]:420

Cwh =
Nent

Awh
(D4)

The open water plastic surface concentration Co [#/m2] is the total number of free-floating plastic items Nfree [#] normal-

ized over the total open water surface area (total FOV minus the water hyacinth area):

Co =
Nfree

(Ar −Awh
(D5)

Finally, to compare the differences between the plastic surface concentrations within water hyacinths, in the open water, and425

in the river in total, we also calculate the ratios Cwf /Cr, and Cwf /Co.
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Code and data availability. All data will be made openly available through the 4.TU repository at https://tinyurl.com/WHY4tu. The code

and the developed models for this study will be made available at https://github.com/TianlongJia/deep_plastic_YoloV8].
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