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Abstract. Modelling debris flow propagation requires numerical models able to describe the main characteristics of the flow, 

like velocity or inundation extent. Due to the complex physics involved, every numerical model is dependent from a set of 

parameters whose influence on the results is often not evident. In this contribution we propose simple analytical solutions 

based on the monophasic Shallow Water Equations for some of the most used rheological models (O’Brien & Julien, 

Voellmy, Bingham and Bagnold) implemented in monophasic (FLO-2D, RAMMS, HEC-RAS, TELEMAC-2D) and 10 

biphasic commercial software (TRENT2D). These simplified solutions and their asymptotic uniform-flow like relationship 

are useful on one hand to speed up the calibration process, limiting the need to perform multiple simulations with unrealistic 

set of parameters and on the other hand as a benchmark for existing numerical methods. To further guide the calibration, a 

Sobol’s sensitivity analysis has been performed to highlight which parameters of the considered equations have the most 

influence on the flow velocity. Finally, as an example of application, the proposed methodology is validated on a real debris 15 

flow event occurred in Italy. 

1 Introduction 

The computation of hydraulic hazard related to debris flow is of paramount importance for risk mapping in mountain areas. 

In spite of their limitations with respect to models which better respect the physics of the process like the two-phase models 

(e.g. Pitman and Le, 2005; Armanini et al., 2009; Pudasaini and Fischer, 2020) and multi-phase models (Pudasaini and 20 

Mergili, 2019), monophasic ones, based on Shallow Water Equations, are still widely used in the practice and they can be 

effective (e.g. Rickenmann et al., 2006) when suitably calibrated (e.g. Stancanelli and Foti, 2015). However, apart from 

theoretical limitations, when the adopted rheological relation is multiparametric, its calibration is not straightforward. In the 

following, dealing only with depth-averaged models, we will use the term “rheology” as a synonym for friction law or 

bottom stress. In the widely used FLO-2D model, an empirical quadratic rheological relation (O’Brien & Julien, 1988) is 25 

used, as a function of several parameters and of the sediment concentration. Simpler relations are the one proposed by 

Voellmy (Voellmy, 1955), implemented in the RAMMS model (Christen et al., 2010) and in HEC-RAS Mud and Debris 

Flow (US Army Corps of Engineers, 2023) or the Bingham-like rheology (Malet et al., 2005; Begueria et al., 2009; Sauthier 

et al., 2015). The calibration of the rheological parameters is typically done, for past events, either by using experimental 

measurements or, more commonly, by reproducing the extension of mapped inundated areas, the distribution of the debris 30 
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flow volume and the timing of the propagation, all of which information may not be available. Moreover, the calibration is 

typically done empirically, by exploring the multiparametric space without a precise insight on the impact of a specific 

parameter set until the whole simulation has been accomplished. However, over the last 10 years debris-flow monitoring 

techniques have greatly improved (e.g. Hürlimann et al., 2019) and many monitoring systems have been installed worldwide 

that can provide observations on debris flow velocity and the corresponding stage along a channel reach. The same 35 

information can also be provided by occasional recording and we believe that can be extremely valuable in constraining the 

calibration process. In this paper we propose to use a simple analytical solution for the uniform motion of a monophasic 

debris-flow with a general quadratic equation rheology along a channel of constant slope, to obtain the following results: 1) 

simplify the calibration by providing a priori insights on the role of the different rheological parameters on the modelled 

debris-flow velocity, 2) identify a characteristic time of the model, to be used to evaluate the distance needed to reach the 40 

theoretical normal flow condition, and, in more general terms, to adapt the flow to bed-slope changes, 3) identify possible 

parameter combinations that lead to flow slow-down, 4) investigate the different parameters sensitivity on the process. As a 

final fall-out of this research, we show that two parameters of the widely used FLO-2D model are not observable, i.e. their 

value can’t be separately estimated from observations, (e.g. Sorooshian & Gupta, 1983), so leading to a 20% reduction of the 

number of parameters to be identified for this widely used model. We believe that these observations can be used to simplify 45 

the calibration process when field data are scarce. As an example, we applied the described results to a real debris flow event 

occurred in Ono San Pietro, Italy, where footage of the debris flow was available. 

2 Governing equations 

The 1D Shallow Water Equations 

ℎ௧ + (ℎݑ)௫ = 0 

(ℎݑ)௧ + ൬ℎݑଶ +
1
2

݃ℎଶ൰
௫

= ݃ℎ(ܵ௕ − ௙ܵ) 
(1) 

where ℎ [݉] is the fluid depth, ݑ [݉ ିݏଵ] is the flow velocity along the ݔ direction, ݃ [݉ ିݏଶ] is the acceleration of gravity, 50 

ܵ௕ [−] is the bed slope and ௙ܵ [−] is the friction slope, can be used to model the propagation of a monophasic non-newtonian 

debris flow on a rigid bed if a suitable model is selected for the friction slope. Although a steady state condition is rare in 

natural debris flows, some field and laboratory measurements of debris flow velocity in a confined channel (e.g. Takahashi, 

1991; Hungr, 2000; Lanzoni et al., 2017) have shown that, where the flow is fully developed (Bernard et al., 2023) velocity 

records can show limited variations in terms of depth and velocity over distance. This constant velocity can be reproduced by 55 

a simple physically-based relationship of the asymptotic velocity of a debris layer with constant depth ℎ (measured normally 

with respect to the bottom), destabilized along an incline of constant slope. To account for cross-sections of limited width in 

a channel, it is possible to replace ℎ with the hydraulic radius (Perla et al., 1980). This analogy also provides a characteristic 

time for fluid acceleration. Using a Voellmy’s rheology, this approach was originally proposed for a snow avalanches 
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(Voellmy, 1955; Perla et al., 1980; Pudasaini and Hutter, 2007) and, more recently, for a debris flow (Hergarten & Robl, 60 

2015). The transient velocity ݑ of the debris layer can be obtained by simplifying system (1) for a layer of infinite length (or 

alternatively, by adopting a Lagrangian framework) as 

(ݐ)′ݑ = ݃൫ܵ௕ − ௙ܵ൯ (2) 

Equation (2) can be solved analytically if the equation of the friction’s slope ௙ܵ make it possible. A rather general rheology 

model is the quadratic one, according to which ௙ܵ can be written as a function of velocity as 

௙ܵ = ଶݑܲ + ݑܳ + ܴ (3) 

where ܲ, ܳ and ܴ are functions of the flow depth or fluid properties. Combining Eq. (2) and (3) leads to a Riccati equation 65 

(ݐ)′ݑ = (ݐ)ଶݑ ܣ + (ݐ)ݑ ܤ +  ܥ

ܣ = −݃ ܲ; ܤ     = −݃ ܳ; ܥ     = ݃ sin ߴ − ܴ݃ 
(4) 

Pudasaini & Krautblatter (2022) proposed a series of analytical solutions to estimate landslide velocity as a function of rather 

general rheologies where the linear term in the velocity is not included (ܤ = 0) because this term is negligible compared to 

the quadratic one when extremely fast flows are considered (Perla et al., 1980). Models in which ܤ ≠ 0 were considered by 

Salm (1966) and Nishimura and Maeno (1989) but only for snow avalanches. However, the linear term ܤ may be important 

considering debris flows. Eq. (4) has some interesting properties. For instance, it is clear that ܥ must be ≠ 0 if the motion 70 

starts from rest, as assumed in the following. The asymptotical velocity ݑஶ is provided by solving the quadratic equation 

obtained by setting (ݐ)′ݑ = 0 in Eq. (4). Accordingly, the discriminant ܤଶ −  must be positive for a uniform velocity to ܥܣ4

exist. When ܣ ≠ 0, the solution (ݐ)ݑ of Eq. (4) can then be obtained analytically with a standard integration of Riccati’s 

equation, leading to 

(ݐ)ݑ = − ஻
ଶ஺

+ ඥ|߮| tanh ቂ(௧ାఌ)
்

ቃ  

ߝ = −
1

|߮|ඥ ܣ
atanh ቆ

ܤ
|߮|ඥܣ2

ቇ 

ܶ =
2

ଶܤ√ − ܥܣ4
;     ߮ =

ܥܣ4 − ଶܤ

ଶܣ4  

(5) 

where ߝ is a constant of integration computed using the condition that the initial velocity is zero, (0)ݑ = 0, and ܶ is the 75 

characteristic time of the flow, which measures how quickly the velocity reaches its asymptotic value. The solution for the 

Voellmy model, investigated by Herganten and Robl (2015) and Pudasaini and Krautblatter (2022), implemented in the 

widely used RAMMS software (Christen et al., 2010), can be obtained by Eq. (5) when  ܤ = 0. When ܣ = 0 and ܤ ≠ 0 (a 

case corresponding to a Bingham’s rheology) another simple solution can be obtained from (4) by separation of variables as 
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(ݐ)ݑ = ஼
஻

(݁஻௧ − 1)  

ܶ =
1

|ܤ|
 

(6) 

Finally, if ܣ = ܤ = 0 (a case corresponding to a pure velocity-independent Coulomb’s friction) then the straightforward 80 

solution is 

(ݐ)ݑ =  (7)  ݐ ܥ

where the characteristic time does not exist anymore, reflecting the property that the flow will infinitely accelerate. 

3 Application to different rheological models 

The quadratic model (3) is used to describe the rheology of debris flows according to a monophasic approximation in some 

widely used numerical models. In the following sections the analytical solutions (5) and (6) will be used to show how the 85 

parameters of (3) affect the flow asymptotic velocity ݑஶ and the characteristic time ܶ, showing how field observations can 

constrain the parameters identification. Furthermore, a sensitivity analysis will provide additional insights on the rheological 

parameters which most impact the uniform velocity theoretically reached by the flow. 

3.1 O’Brien and Julien’s rheology 

One of the most used commercial software for the assessment of debris flow hazard is FLO-2D (O’Brien et al., 1993). To 90 

model debris flows, FLO-2D uses an ad-hoc rheology proposed by O’Brien and Julien (1988), as 

௙ܵ =
߬௬

௠ ℎߛ
+

ݑ ߟ ܭ
௠ ℎଶߛ 8 +

݊௧
ଶݑଶ

ℎସ/ଷ  (8) 

where ߬௬ [ܰ ݉ିଶ] is the yield stress of the granular material, ߛ௠ [ܰ ݉ିଷ] is the equivalent fluid specific weight, ܭ [−] is a 

resistance parameter for laminar flow, ߟ [ܲܽ s] is the viscosity and ݊௧ [ݏ ݉ିଵ/ଷ] is the turbulent Manning’s coefficient. 

Specific weight, viscosity, yield stress and turbulent Manning’s coefficient are functions of the volumetric sediment 

concentration ܥ௩ [−] according to the relations (O’Brien and Julien, 1988) 95 

ߟ = ;ଵ݁ఉభ஼ೡߙ     ߬௬ =  ଶ݁ఉమ஼ೡߙ

݊௧ = 0.0538 ݊ ݁଺.଴଼ଽ଺ ஼ೡ; ௦ߛ    = ௠ߛ ௩ܥ + (1 −    ௪ߛ (௩ܥ
(9) 

where ߙଵ [ܲܽ ݏ], ,[ܽܲ]ଶߙ [−]ଵߚ  and ߚଶ [−]  are empirical coefficient that could be defined by laboratory experiments 

(O’Brien and Julien, 1988), ݊ [ݏ ݉ିଵ/ଷ] is the Manning’s coefficient while ߛ௠ [ܰ ݉ିଷ] and ߛ௪ [ܰ ݉ିଷ] are the sediment 

and water specific weight respectively. Accordingly, apart from Manning’s coefficient and sediment specific weight, that can 

be more easily identified, the model is a function of the six parameters ߙଵ, ,ଵߚ ,ଶߙ ,ଶߚ  ௩. The solution (5) can be usedܥ and ܭ

with the following meaning of the coefficients 100 

ܣ = −
݃ ݊௧

ଶ

ℎସ/ଷ ; ܤ     = −
ߟ ܭ ݃

௠ ℎଶߛ 8 ; ܥ     = ݃ sin ߴ −
݃߬௬

௠ℎߛ
 (10) 

and the asymptotic velocity ݑஶ is given by  
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ஶݑ = ቎−
ߟ ܭ

௠ ℎଶߛ 8 + ඨ൬
ߟ ܭ

௠ℎଶ൰ߛ 8
ଶ

+ 4
݊௧

ଶ

ℎସ/ଷ ൬sin ߴ −
߬௬

௠ℎߛ
൰  ቏

ℎସ/ଷ

2݊௧
ଶ   (11) 

whereas the characteristic time is  

ܶ =
2

ඨ൬ ݃ ߟ ܭ
௠ℎଶ൰ߛ 8

ଶ
+ 4 ݃ ݊௧

ଶ

ℎସ/ଷ ቀsin ߴ −
߬௬

 ௠ℎቁߛ

 
(12) 

By inspection of Eq. (11) and (12) one can obtain some interesting insights that can be useful for the calibration of a FLO-

2D  based model:  

 ܭ always appears multiplied by ߟ and thus ܭ and ߙଵ are not indipendent and can be considered as a single parameter. 105 

Accordingly, the number of degrees of freedom of the O’Brien parametrization during calibration is reduced by 20%. 

 The asymptotic velocity is positive if and only if 

sin ߴ −
߬௬

௠ℎߛ
> 0  (13) 

that is, among others, a non-linear function of the concentration ܥ௩, since ߬௬ and ߛ௠ depend on the concentration. This 

condition can also be regarded as one controlling the progressive flow deceleration of the modelled equivalent fluid.  

We believe that Eq. (11) and (12) can be useful for the calibration of the numerical model. As an example, Fig. 1 shows the 110 

dimensionless analytical solution for the “Aspen Pit 1” parameters set (O’Brien and Julien, 1988), considering typical values 

ℎ = 1 ݉  and ߴ = 20° . For this set of values, ݑஶ = ଵିݏ ݉ 4.85  and  ܶ = ݏ 2.89 . Accordingly, ݑ/(ܶ)ݑஶ = 0.86 . The 

maximum sediment concentration for the flow to develop a uniform velocity is computed by solving Eq. (13), i.e. ܥ௩ = 0.49; 

by exceeding this limiting concentration, the flow will slow down and stop.  

 115 
Figure 1. Dimensionless analytical solution for 4 different rheological models. The solution (5) using the O’Brien rheology is shown 
in blue using the “Aspen Pit 1” parameters set with  ࢝ࢽ = ૢ ૡ૚૙ ି࢓ ࡺ૜ (water specific weight), ࢙ࢽ = ૛૟ ૞૙૙ ି࢓ ࡺ૜ (specific 
weight of sediments), ࢔ = ૙. ૙૜૜ ି࢓ ࢙૚/૜ and ࡷ = ૛૛ૡ૞. The solid red line is the analytical solution (16) for the Voellmy rheology 
using ࣆ = ૙. ૚ and ࣈ = ૚૙૙૙ ି࢙ ࢓૛ . The solid green line shows the solution computed using Bingham frictional law (20) with ࢉ࣎ =
૛૙૙ ࢇࡼ, ࢓ࢽ = ૚૞ ૙૙૙ ି࢓ ࡺ૜ and ࣁ = ૢ૙ ࢙ ࢇࡼ.  Finally the black line is the numerical solution using Bagnold frictional law with 120 
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࢙࣋ = ૛ ૜૙૙ ࢓ ࢍ࢑૜, ࢝࣋ = ૚ ૙૙૙ ି࢓ ࢍ࢑૜, ࢊࣘ = ૜૞°, ࢅ = ૝૙, ࢼ = ૚ and ࢈ࢉ = ૙. ૟૞. In this case, being a numerical solution, there is 
no formula for the characteristic time, and the time at which the flow reaches ૟૜% of the uniform velocity has been arbitrarily 
selected as the characteristic time for the normalization. In all cases the debris flow layer ࢎ is equal to 1 ࢓ and the channel slope is 
૛૙°. 

 [−] ஶݑ/(ܶ)ݑ [ଵିݏ ݉] ஶݑ [ݏ] ܶ 
O’Brien 2.89 4.85 0.86 
Voellmy 6.47 15.74 0.76 
Bagnold 0.52 2.77 0.63 
Bingham 5.32 16.74 0.63 

Table 1. Numerical summary of the characteristic time ࢀ, terminal velocity ࢛ஶ and ratio between the velocity for ࢚ = ,ࢀ  and 125 ,(ࢀ)࢛
the terminal one ࢛ஶ for all rheological models described. 

Despite the large number of parameters to be calibrated, the O’Brien rheology is widely used in monophasic numerical 

models to replicate past debris flow events (e.g. Cesca and D’Agostino, 2008; Lin et al., 2011; Wu et al., 2013; Stancanelli 

and Foti, 2015; Wang et al., 2024). Calibration of parameters is performed either a posteriori, i.e. using observations of 

depositional height or maximum velocity, or using rheological investigations (Boniello et al., 2010). In this process one may 130 

wonder which parameters have the greatest impact on the simulation results, a type of information that is difficult to know a 

priori, even when they appear explicitly like in Eq. (11). Although this information can be obtained by performing multiple 

simulations that encompass the range of variation of each parameter of the friction law, this way remains impractical if one 

does not use parallelization techniques as done by Zegers et al. (2020). In the following, in order to shed light on the 

relevance of each parameter on the model output and its interaction with other parameters, a Sobol’s global sensitivity 135 

analysis is performed (Sobol, 1993). After assuming the value of ߴ and ℎ, Sobol’s analysis quantifies the amount of variance 

that each parameter contributed to the unconditional variance of the model output (Nossent et al., 2011) and has been 

frequently used in environmental (Saltelli and Annoni, 2010; Estrada and Diaz, 2010) and hydrological modelling 

(Pappenberger et al., 2008). The amount of variance relative to the total variance, called Sobol’s sensitivity index, can be 

attributed either to a single parameter (so-called, first order index) or to the interaction of a single parameter with respect to 140 

the others (total order index). For instance, in the case of Eq. (11), being the model a function of seven parameters, i.e. ߙ௞ 

(given by the product of ߙଵ and ܭ, as observed above), ߚଵ, ,ଶߙ ,ଶߚ ݊,  ௦, the computation of Sobol’s indexes could beߛ ௩ andܥ

accomplished by a Monte Carlo method. However, from the computational point of view, it can be better to evaluate the first 

and total order indexes according to the estimators recently proposed by Azzini et al. (2021), due to their simplicity in 

implementation. These estimators provide a better performance with respect to the ones originally introduced by Saltelli 145 

(2002). For each model evaluation, the set of parameters has been selected using the latin hypercube sampler (Azzini et al., 

2021). Each parameter is assumed to vary uniformly inside the range shown in Table 2, obtained considering typical values 

from the literature. The uniform probability distribution reflects the absence of information about the flow being modelled 

but, if laboratory or field measurements are available, other parameter distributions can be used. The velocity distributions 

obtained from random parameter sets used to perform the Sobol analysis corresponding to each rheological model are 150 

reported in Fig. 2. A conservative random sample size of 50 000 parameter sets has been used, repeating the analysis 100 

times to ensure the robustness of the Sobol indices shown in Fig. 3, where ℎ = 1 ݉ and ߴ = 20°. 
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Figure 2. Uniform velocity boxplot distribution for the 4 rheological models used to perform Sobol sensitivity analysis (ࢎ = ૚ ࢓, 
ࣖ = ૛૙°). For each graph the solid line represents the median value across the whole distribution, the rectangular box covers the 155 
range from the lower quartile (૛૞%) to the upper quartile (ૠ૞%) and the whiskers show the non-outlier maximum (the maximum 
data value which is not an outlier) and minimum (the minimum data value which is not an outlier). Here a point is classified as an 
outlier if it lies more than ૚. ૞ times the interquartile range away from the top or bottom of the red-shaded rectangle. 

 

Parameter Minimum Maximum Units Reference 

ଵ 3ߙ ∙ 10ିହ 6.4 ∙ 10ିଷ ܲܽ ݏ Sosio et al., (2007) 

 ଵ 6.2 33.1 − Zegers et al., (2020)ߚ

ଶ 7.1ߙ ∙ 10ିହ 0.0181 ܲܽ Zegers et al., (2020) 

 ଶ 16.9 29.8 − O’Brien and Julien, (1988)ߚ

 - − ௩ 0.2 0.55ܥ

 ଵ/ଷ Zegers et al., (2020)ି݉ ݏ 0.2 0.01 ݊

 O’Brien and Garcia, (2009) − 2285 24 ܭ

௞ 7.2ߙ ∙ 10ିସ 14.62 ܲܽ ݏ O’Brien & Garcia, (2009); Sosio et al., (2007) 

 - ௦ 18 25 ݇ܰ ݉ିଷߛ
Table 2. Variation range for the parameters tested in the Sobol analysis. 160 

As shown in Fig. 3, the first-order Sobol index highlights that the most influential parameters are ܥ௩,  ଵ and ݊, in order ofߚ

importance. ܥ௩  is able, by itself, to explain around 35% of the variance of the terminal velocity, as one could expect 

considering that ܥ௩  influences all the terms in Eq. (11) whereas the other parameters affect just a single term of the 

equations. High model sensitivity to ߚଵ  (almost 20%) confirms other findings in literature (Zegers et al., 2020). The 

sensitivity on the Manning’s coefficient (around 13%) reflects the importance of surface roughness and associated turbulent 165 

friction. This is not in line with the findings of Zegers et al. (2020), in which model results are insensitive to Manning’s 

roughness coefficient. This can be explained considering that the reference velocity considered by Zegers et al. (2020), that 

appears quadratically in the term where the Manning’s coefficient appears, is around 1 ݉ ିݏଵ, in contrast with the wider 

range of velocities considered in this study (see Fig. 2). Parameters ߙ௞, ,ଶߙ  ௦ appear to be less important in terms ofߛ ଶ andߚ

the terminal velocity.  170 
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Figure 3. Boxplot of the first-order Sobol index (a) and total order index (b) for the parameters of the O’Brien rheology, ordered 
in terms of importance. 

 
Figure 4. First-order (left) and total-order (right) Sobol index for the parameters ࢜࡯,  as a function of different values of ࣖ 175 ࢔ ૚ andࢼ
and ࢎ. Each entry of the matrix represents the first- (total-) order Sobol index computed using the corresponding (ࢎ, ࣖ) couple, 
then divided by the average index over the whole matrix. The average first-order (total-order) Sobol indexes for ࢼ ,࢜࡯૚ and ࢔ are 
૙. ૜૝ (૙. ૟), ૙. ૚ૢ (૙. ૝૚) and ૙. ૚૜ (૙. ૜ૡ) respectively.  
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Globally, the sum of the first order Sobol indexes can explain 68% of the variance of the model meaning that the remainder 

of the variance is due to the nonlinearity of the model, i.e. the variance generated by a combination of parameters. Total-180 

order indexes reveals the importance of the interactions between ܥ௩, ଵߚ  and ݊ . As observed above, the results of the 

sensitivity analysis are valid for a given couple of the fluid depth ℎ and channel slope ߴ: therefore the following analysis has 

been repeated to explore the variation of the Sobol indexes as a function of (ℎ, ,௩ܥ Fig. 4 shows the Sobol indexes for .(ߴ  ଵߚ

and ݊, normalized by dividing each index by its average value across the whole matrix. The colour shading shows the 

growing direction for each index. As one can observe, the first-order Sobol index of ܥ௩ and ݊ is a growing function of ℎ and 185 

 ଵ, both the first-order and total-orderߚ Considering .ߴ whereas their total-order index is mostly a growing function of ߴ

Sobol indexes show that for growing values of ℎ and ߴ the sensitivity of the uniform velocity decreases, suggesting the 

growing importance of viscosity for small fluid depths or channel slope. 

3.2 Voellmy’s rheology 

The Voellmy rheology (Voellmy, 1955) splits the total basal friction into a velocity independent dry-Coulomb term 190 

proportional to the normal stress at the flow bottom and a velocity dependent friction (Salm, 1993). This simple friction law 

is implemented in several numerical software, e.g. RAMMS (Christen et al., 2010), HEC-RAS Mud and Debris Flow (US 

Army Corps of Engineers, 2023) and FLATModel (Medina et al., 2007). The Voellmy’s friction law is given by 

௙ܵ = ߤ cos ߴ +
ଶݑ

ℎ ߦ
  (14) 

where ߤ [−] is a Coulomb friction coefficient and ߦ [݉ ିݏଶ] is a turbulent friction coefficient. The analytical solution to eq. 

(2) is given by Eq. (5) using the following coefficients 195 

ܣ = −
݃

ℎ ߦ
; ܤ    = 0; ܥ    = ݃ sin ߴ − ߤ ݃ cos  (15) ߴ

obtaining the solution suggested by Voellmy (1955) and Hergarten and Robl (2015) 

(ݐ)ݑ = ஶݑ tanh ൬
ݐ
ܶ

൰ 

ஶݑ = ඥߦℎ(sin ߴ − ߤ cos ;(ߴ     ܶ =
ℎ ߦ

ஶݑ ݃
 

(16) 

Eq. (16) is a simple and interesting piece of information to evaluate the appropriateness of the parameters used to propagate 

the debris flow being modelled. Once again by inspection of the terminal velocity of Eq. (16) one can conclude that the flow 

can approach a uniform condition only when tan ߴ >  meaning that the slope of the channel must be higher than the ,ߤ

friction coefficient. This reflects the simple observation that the friction force is larger than the gravity component and 200 

therefore a balance between the two, i.e. the steady state velocity, is impossible. Assuming invariance of the parameters  

during the motion, this condition can be used to calibrate the friction parameters ߤ that must be upper limited by the local 

slope angle in the inception area and lower limited by the local slope angle where the debris flow has stopped its 

propagation. The analytical solution (16) is shown in Fig. 1 in correspondence of the parameters set ߤ = 0.1, ߦ  =

,ଶିݏ ݉ 000 1 ℎ = 1 ݉ and ߴ = 20°.  After a characteristic time (6.47 ݏ) the flow approaches a velocity which is 76% of the 205 

terminal one (15.74 ݉ ିݏଵ). Performing the Sobol sensitivity analysis described above yields the results reported in Table 3, 

where the first line is the variation range explored in the analysis and ℎ = 1 ݉  and ߴ = 20° . The indices highlight a 

balanced sensitivity of the uniform velocity to both parameters, with ߤ scoring slightly higher both in terms of the first- and 

total-order indices. 
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 ߤ ߦ 

Range 50 − ଶ 0.01ିݏ ݉  000 2 − 0.36 

First-order index 0.40 0.55 

Total-order index 0.44 0.60 
Table 3. Summary of the Sobol sensitivity analysis obtained with a fluid depth of ૚ ࢓ and a channel slope of ૛૙°. The parameter’s 210 
range is taken from RAMMS user manual. 

Repeating the analysis for different values of ℎ and ߴ shows little variation in terms of the computed sensitivity indices (both 

first- and total-order ones); therefore the indices reported in Table 3 are representative of the whole spectrum of variation of 

ℎ and ߴ. 

3.3 Bagnold’s rheology 215 

Bagnold’s rheology (1954) modified by Takahashi (1978) on the basis of experimental data and valid for stony-type debris 

flow is used, for instance, inside the TRENT2D software (Rosatti and Begnudelli, 2013): 

௙ܵ =
25
4

௦ߩ

௪ߩ
sin ߶ௗ

ଶߣ

ܻଶ(1 + ௩ Δ௦) ݃ ℎܥ
  ଶݑ

ߣ = ൣ(ܿ௕/ܥ௩)ଵ/ଷ − 1൧ିଵ;     Δ௦ =
௦ߩ − ௪ߩ

௪ߩ
; ௩ܥ     = ܿ௕ߚ

ଶݑ

݃ℎ
 

(17) 

where ߩ௦ [݇݃ ݉ିଷ] is the density of the sediments, ߩ௪ [݇݃ ݉ିଷ] is the density of water, ߶ௗ  [°] is the friction angle of the 

sediments, ܻ [−]  is the submergence parameter, Δ௦  is the submerged relative density of the sediments, ܿ௕ [−]  is the 

maximum concentration of the mixture in static conditions, ܥ௩ [−] is the concentration of the mixture and ߚ is a transport 220 

parameter to be calibrated. Although the submergence parameter depends on other factors, following Rosatti and Begnudelli 

(2013) we kept it as a calibration parameter. Due to the function ߣ, which depends non-linearly on the velocity, a simple 

analytical expression of the solution of (2) is no longer obtainable. Similarly, a simple closed-form expression for the 

uniform velocity can’t be obtained, due to the non-integer exponents present inside Eq. (17). Accordingly, to compare the 

results with previous models, we solved Eq. (2) numerically, by using a finite difference method. The solution is shown in 225 

Fig. 1, for ߩ௦ = 2 300 ݇݃ ݉ଷ, ௪ߩ = 1 000 ݇݃ ݉ିଷ, ߶ௗ = 35°, ܻ = 40, ߚ = 1 , ܿ௕ = 0.65, ℎ = 1 ݉ and ߴ = 20°. For this 

combination, it is characterized by a uniform velocity of 2.77 ݉ ିݏଵ and a characteristic time of 0.52 ݏ. Being a numerical 

solution, no expression for the characteristic time is available, and the time when the flow reaches 63% of the uniform 

velocity has been arbitrarily regarded as the characteristic time, in analogy with an exponential decay. Contrary to the 

rheological models studied so far, Bagnold’s model provides a uniform velocity for every choice of the parameters, when 230 

ߴ > 0 . The Sobol has been repeated for the Bagnold’s rheology exploring the parameters range shown in Table 4, taken 

from literature (e.g. Stancanelli and Foti, 2015). 

 ௦ ܿ௕ߩ ௗ߶ ܻ ߚ 

Range 0.1 − 100 1 − 50 20 − 45° 1 800 − 2 500 ݇݃ ݉ିଷ 0.4 − 0.65 

First-order index 0.95 0.01 9 ∙ 10ିହ 3 ∙ 10ି଺ 3 ∙ 10ି଺ 

Total-order index 0.98 0.04 5 ∙ 10ିସ 3 ∙ 10ିହ 10ିହ 
Table 4. Summary of the Sobol sensitivity analysis obtained with a fluid depth of ૚ ࢓ and a channel slope of ૛૙°.  

The indexes of Table 4 show that the most important parameter is ߚ, which by itself is able to explain more than 90% of the 

variance, while the others show limited influence on the uniform velocity. Repeating the analysis for different values of ℎ 235 

and ߴ shows little to no variation in terms of the computed sensitivity indices (both first- and total-order ones); therefore the 

indices shown in Table 4 are representative for the whole spectrum of variation of ℎ and ߴ. Furthermore, considering the 
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uniform velocity distributions showed in Fig. 2 for the different rheological models it is possible to notice that the Bagnold 

rheology is characterized by a narrow field of variation of the velocity (0 −  .ଵ) with respect to the other rheologiesିݏ ݉ 3

This finding is in line with other comparative works in literature (e.g. Stancanelli & Foti, 2015) where it is observed that 240 

FLO-2D (O’Brien rheology) can predict velocities during a general simulation which are considerably higher (1.5 −

ଵ) compared with the TRENT2D (Bagnold rheology) ones (1ିݏ ݉ 20 −    .ଵ) on the same simulationିݏ ݉ 2

3.4 Bingham’s rheology 

The Bingham (1922) rheology is another commonly adopted model for debris flow propagation (Malet et al. 2005; Begueria 

et al., 2009), implemented, for instance, inside the TELEMAC-2D software (TELEMAC-2D User Manual, 2017). The main 245 

assumption in the Bingham model of laminar flow regime of viscoplastic materials with a constant value of yield strength 

and viscosity is especially valid in flows with high fine fraction (Abraham et al., 2022). Using the shear stress equation 

reported in Coussot (1997), a simplified Bingham expression of shear stress has been used to derive the value of the friction 

slope term, as proposed by (Abraham et al., 2022): 

௙ܵ =
3 ߬௖

௠ ℎߛ 2 cos ߴ
+

ݑ ߟ 3
௠ℎଶߛ  cos ߴ

 (18) 

where ߬௖ [ܲܽ] is the constant yield strength due to cohesion of soil in the static case, [ݏ ܽܲ] ߟ  is the viscosity parameter and 250 

 ௠ [ܰ ݉ିଷ] is the specific weight of the mixture. Using the following coefficientsߛ

ܣ = 0; ܤ     = −
݃ ߟ 3

௠ℎଶߛ  cos ߴ
; ܥ     = ݃ sin ߴ −

3 ߬௖ ݃
௠ ℎߛ 2 cos ߴ

 (19) 

from Eq. (6) one can obtain the analytical solution  

(ݐ)ݑ = ஶݑ ቆ݁
ି ଷ ఎ ௚

 ఊ೘௛మ ୡ୭ୱ ణ ௧
− 1ቇ 

ஶݑ =
௠ℎଶߛ cos ߴ

ߟ 3
൬sin ߴ −

3 ߬௖

௠ ℎߛ 2 cos ߴ
൰ 

ܶ =
௠ℎଶߛ cos ߴ

݃ ߟ 3
 

(20) 

Finally, the flow will approach a terminal velocity if the quantity inside the brackets of Eq. (20) is positive, i.e. if 

sin ߴ cos ߴ >
3 ߬௖

௠ ℎߛ 2
 (21) 

providing a simple criterion which may be useful during the calibration process of numerical models. Fig. 1 plots the 

analytical solution Eq. (20) using ߬௖ = 200 ܲܽ, ߟ = ,ݏ ܽܲ 90 ௠ߛ = 15 000 ܰ ݉ିଷ, ℎ = 1 ݉  and ߴ = 20° . After a 255 

characteristic time of 5.32 ݏ the flow reaches a velocity of 16.74 ݉ ିݏଵ which is 63% of the terminal velocity. Interestingly, 

the parameter ߬௖ does not influence the characteristic time of the flow, but only the terminal velocity. Table 5 shows the 

results obtained by performing Sobol sensitivity analysis in the range taken from Phillips and Davies (1991) and using ℎ =

1 ݉  and ߴ = 20° . The indices highlight a high sensitivity of the uniform velocity to the viscosity ߟ , while the other 

parameters show negligible influence on the model’s output. This finding is consistent with what already found using the 260 

O’Brien rheology, i.e. that parameters that control viscosity strongly influences the uniform velocity. 
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 ௠ߛ ߬ ߟ 

Range 1 − 10ଷ ܲܽ 0.1 ݏ − 10ଷ ܰ ݉ିଶ 16 − 23 ݇ܰ ݉ିଷ 

First-order index 0.83 6 ∙ 10ିଷ 10ିଷ 

Total-order index 0.99 0.14 0.018 
Table 5. Summary of the Sobol sensitivity analysis, assuming a fluid depth of ૚ ࢓ and a channel slope of ૛૙°.  

Repeating the analysis for different values of ℎ and ߴ shows little to no variation in terms of the computed sensitivity indices 

(both first- and total-order ones). Accordingly the indices reported in Table 5 are representative of the whole spectrum of 265 

variation of ℎ and ߴ. 

4 Application and discussion 

The proposed analytical solutions can be applied to simplify the calibration of parameters when some insights on the 

expected debris flow velocity are available, as shown in the following with reference to the debris flow that occurred in the 

Blè basin in Valle Camonica valley, in the Central Italian Alps (Lombardia Region). On August 16, 2021, a debris flow was 270 

triggered by an intense rainfall of 40 mm in 1 hour, caused by a localized storm cell moving west to east (Berti et al., 2023). 

The event mobilized a total volume of about 60 000 ݉ଷ and travelled along the channel for about 2 kilometres before 

covering a local road with debris and boulders. A monitoring station (Berti et al., 2023) provided video footage of the debris 

flow through a known cross-section. 

 275 
Figure 5. Map view of the study area. The yellow dashed line highlights the computational domain used in this numerical 
simulation, the red dot illustrates the position of the recording station while the dashed blue line shows an enlargement of the inlet 
cross section (depicted in green) as well as the unstructured mesh adopted for the simulation. Locations A and B indicate the main 
areas where the debris flow deposited, (© Google Earth 2019). 

Using video footage and cross-section geometry, Berti et al. (2023) combined two free Matlab tools (PIVlab, Thielicke and 280 

René, 2021 and RiveR, Patalano et al., 2017) in order to estimate the peak flow velocity and discharge. The obtained peak 

flow velocity and discharge are 4.4 ݉ ିݏଵ  and 224 ݉ଷ ିݏଵ  respectively during the first surge and 5.4 ݉ ିݏଵ  and 

227 ݉ଷ ିݏଵ  during the second one (Berti et al., 2023). Based on the volume of the event and peak discharge, the 

reconstructed solid hydrograph shown in Fig. 6 was adopted as a boundary condition. The two-peak structure of the 

hydrograph was obtained by fixing the peaks (both assumed of 227 ݉ଷ ିݏଵ for simplicity) as well as the time lag between 285 

the first surge and the second one (about 2 minutes), with the constrain on the overall duration of the event of about 10 
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minutes. Considering the inertial nature of the debris flows in the Blè watershed, in the following the Voellmy model was 

used in the calibration process. 

 

Figure 6. Solid discharge hydrograph used as a boundary condition for the Blè event. Two discharge peaks were observed during 290 
the event, approximately two minutes apart. This information, together with the total volume estimate provided, allowed to fix the 
shape of the hydrograph. A base flow of ૜૙ ࢓૜ ି࢙૚ was assumed after the analysis of the available video footage. 

The Voellmy rheological model uses only two parameters: ߤ and ߦ: the first one can be estimated using the local average 

slope in the main deposition area of the debris flow (locations A and B of Fig. 5), which has been evaluated to be around 14° 

based on the available DEM: accordingly, ߤ = 0.249. Eq. (16) provides a first guess estimate for ߦ, using the cross section 295 

geometry where the velocity was measured. Setting ݑஶ = ଵ, ℎିݏ ݉ 5.4 = 2 ݉ (Berti et al., 2023), ߤ = 0.249 and computing 

the average slope at the measuring station, i.e. ߴ ≈ 30°, one can obtain a first guess for ߦ  

ߦ =
ஶݑ

2

ℎ (sin ߴ − ߤ cos  (22) (ߴ

of about 52 ݉ ିݏଶ. The corresponding characteristic time, Eq. (16), is about 2 ݏ, confirming that the debris flow rapidly 

adjusts itself to the local slope. Having determined two first-guess values for the rheological parameters, the numerical 

simulation can be performed to assess whether the depositional depths and extent reasonably match the observed ones. The 300 

Finite Volume SWE-based numerical scheme presented in Bonomelli et al. (2023), adapted for mountain area applications 

(Bonomelli and Pilotti, 2023; Bonomelli, 2024) was used to propagate the debris flow along the main channel of the 

catchment, with an unstructured triangular mesh consisting of 194 151 elements with an average distance of 1.63 ݉. The 

stopping criteria for propagation adopted by RAMMS (RAMMS manual, 2022) was implemented, which happened after 17 

minutes of simulated time. Fig. 7 shows the simulated deposition map compared to the extent surveyed after the event (see 305 

the supplementary material for some photos of the event). The observed qualitative match is good and could be further 

improved to better reproduce the main characteristics of the event.  
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Figure 7. Deposition map at the end of the simulation using the Voellmy model with ࣆ = ૙. ૛૝ૢ and ࣈ = ૞૛ ି࢙ ࢓૛ (© Google 
Earth 2019). 310 

Fig. 8 shows the computed velocity profile at the measuring station in correspondence of the peak during the simulation. 

Quite interestingly, the identified ߦ value, although obtained by a steady state formula, provides velocity during the transient 

process which are in the order of 5 −  ଵ, confirming the role of the small characteristic time and the effectiveness ofିݏ ݉ 6

the simple analytical law adopted. The  same figure also shows the higher velocity profile that would be obtained if the same 

input hydrograph were routed with the same ߤ but with a blind initial guess of ߦ, selected in the middle of its documented 315 

range of variation.  

 
Figure 8. Peak flow velocity module at the measuring cross-section. The two profiles are obtained with the same ࣆ value but 

different ࣈ. For blue squares, ࣈ was selected in the middle of its range of admissible values, while for red squares, the value of ࣈ 

was obtained using the proposed approach exploiting the available velocity measurement.  320 
 

Accordingly, the proposed approach provides an effective initial guess for the rheological parameters of the Voellmy’s 

model if a velocity measurement is available at a known cross-section, showing how a simple analytical law can speed up 

the calibration process. Using the Voellmy rheology, which has only two parameters, both can be constrained: however this 

methodology can be applied to any of the mentioned rheological models to reduce the number of parameters to be explored.  325 

In the case of the multiparametric O’Brien’s rheology adopted in FLO-2D, this reduction acts synergistically with the 

observation that ܭ always appears multiplied by ߙଵ in Eq. (11) and thus ܭ and ߙଵ are not indipendent and can be considered 
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as a single parameter. This property, that to our knowledge has so far passed unnoticed in the vast literature on FLO-2D, is 

clearly shown by the simple example of Fig. 9, where the 1D profile for a dam break problem on a dry inclined slope for a 

debris flow described by the O’Brien & Julien rheology is shown. The profile is shown 30 ݏ after starting from rest and is 330 

computed with two different parameter sets. The first is the mentioned Aspen pit 1 set and the second set is obtained from 

the first by switching the value of ܭ and ߙଵ. The numerical solution is computed solving the complete SWE in bottom-

oriented coordinates, using the Finite Volume SWE-based numerical scheme by Bonomelli et al. (2023). As one can 

observe, there is no detectable difference between the two simulations. It is interesting to observe that using FLO-2D in 

similar tests, some differences were observed between the simulations, possibly due to other numerical features of that code. 335 

 
Figure 9. Numerical solution of a dam break problem on a sloping dry bed with O’Brien & Julien friction law. The initial 
condition is a constant fluid depth of ૚ ࢓ in the first ૚૙૙ ࢓, while completely dry elsewhere. Boundary conditions used are a 
constant fluid depth upstream and transmissive boundary conditions downstream. The snapshot depicts the numerical solution 
૚ૡ ࢙ after release with two rheological sets: 1) Aspen pit 1 and 2) Aspen pit 1 with ࢻ૚ = ૛૛ૡ૞ ࢙ ࢇࡼ and ࡷ = ૙. ૙૙૜૟. The dashed 340 
black line in the bottom panel depicts the transient analytical solution for the flow velocity showed in Eq. (5). In the top panel the 
fluid depth has been enlarged for graphical purposes. 

Finally, another interesting use of Eq. (16) is as a uniform flow relation for the implementation of the inlet (or outlet) 

boundary condition (Hou et al, 2015) inside a numerical model. For instance, by rearranging Eq. (16) for the Voellmy 

rheological model one can easily obtain the incoming discharge as a function of the fluid depth 345 

ܳ(ℎ) = ߦℎଷ/ଶ ට ܮ (sin ߚ − ߤ cos  (23)   (ߚ

where ܮ is the inlet cross section width and ߚ is the local channel inclination, which must exceed ߤ for the flow to occur. 

Similar relations can be obtained for the other rheological models described. 

5 Conclusions 

Although monophasic models like FLO-2D, RAMMS, HEC-RAS or TELEMAC-2D only provide a first-order 

approximation of the complex dynamics of debris flow propagation, they are widely used in the practice and strongly 350 

dependent on parameters that can be difficult to identify. This inevitably leads to a trial-and-error optimization that is 

computationally demanding. To limit this effort of “blind” simulations, it is practically useful to have some simple analytical 

solutions like Eq. (11), (12), (16) and (20) that, in presence of field measurements or other evidence, can be used to evaluate 

the normal flow velocity for a given parameters set. This velocity is a physical constrain that can be compared to the one 

expected or observed in the field. This procedure is shown with reference to the Blé test case where the Voellmy’s model is 355 

used for the simulation. The proposed equations can also provide additional insights on the physical interplay between 

parameters, like the lack of observability of the O’Brien rheology with respect to ܭ and ߙଵ. These two parameters appear 

only in a multiplicative fashion within the equations and, accordingly, can be considered as a single parameter (ߙ௞ =  ,(ܭ ଵߙ
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reducing the degrees of freedom during the calibration process. This property, previously undocumented, is shown clearly in 

this paper with a simple numerical example. The Sobol sensitivity analysis is performed to highlight which parameters have 360 

a greater influence on the uniform velocity for each rheology, so further helping the calibration effort. Regarding O’Brien 

rheology, the most influential parameters are ܥ௩ (silt concentration) , ଵߚ (exponential coefficient of the viscosity) and ݊ 

(Manning’s coefficient). For the Voellmy rheology each parameter is equally important. In the Bingham rheological model 

the viscosity parameter, i.e. ߟ, dominates the magnitude of the uniform flow velocity. In both O’Brien and Bingham models, 

the viscosity that appears in the linear term in the velocity is very important. Finally, in the case of the Bagnold rheology, the 365 

most influential parameter in terms of the uniform velocity is the transport parameter, which traditionally is calibrated 

experimentally (Armanini et al., 2009). Accordingly, we believe that the proposed analytical solutions, together with the 

sensitivity analysis to the parameter involved, can be a significant help to guide the calibration of numerical models. While 

our results are limited to the analysis of a stage-discharge relation and of a characteristic time, so providing a single piece of 

information of a more complex picture, they are not confined to a particular case or geometry and accordingly have a wider 370 

applicability. Other possible uses of the proposed solutions (Eq. 11, 16 and 20) can be in the implementation of boundary 

conditions of numerical solver of monophasic models, in the computation of stage-discharge equations at a given cross-

section (as showed in the Blé application, i.e. Eq. 23) or even, when coupled with a local mass balance, in the 

implementation of simplified kinematic routing schemes that could be used to provide back-of-the-envelope evaluations of 

the debris flow potential along the drainage network of a watershed.  375 
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