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Abstract. Modelling debris flow propagation requires numerical models able to describe the main characteristics of the flow,
like velocity or inundation extent. Due to the complex physics involved, every numerical model is dependent from a set of
parameters whose influence on the results is often not evident. In this contribution we propose simple analytical solutions
based on the monophasic Shallow Water Equations for some of the most used rheological models (O’Brien & Julien, Voellmy,
Bingham and Bagnold) implemented in monophasic (FLO-2D, RAMMS, HEC-RAS, TELEMAC-2D) and biphasic
commercial software (TRENT2D). These simplified solutions and their asymptotic uniform-flow like relationship are useful
on one hand to speed up the calibration process, limiting the need to perform multiple simulations with unrealistic set of
parameters and, on the other hand, as a benchmark for existing numerical methods. To further guide the calibration, a Sobol’s
sensitivity analysis has been performed to highlight which parameters of the considered equations influence the flow velocity
the most. Finally, as an example of application, the proposed methodology is validated on a real debris flow event occurred in

Italy.

1 Introduction

The computation of hydraulic hazard related to debris flow is of paramount importance for risk mapping in mountain areas. In
spite of their limitations with respect to models which better respect the physics of the process like the two-phase models (e.g.
Pitman and Le, 2005; Armanini et al., 2009; Pudasaini and Fischer, 2020) and multi-phase models (Pudasaini and Mergili,
2019), monophasic ones, based on Shallow Water Equations, are still widely used in practice and can be effective (e.g.
Rickenmann et al., 2006) when suitably calibrated (e.g. Stancanelli and Foti, 2015). However, apart from theoretical
limitations, when the adopted rheological relation is multiparametric, its calibration is not straightforward. In the following,
dealing only with depth-averaged models, we will use the term “rheology” as a synonym for friction law. In the widely used
FLO-2D (O’Brien & Julien, 1988) model and also inside HEC-RAS Mud and Debris Flow (US Army Corps of Engineers,
2023), an empirical quadratic rheological relation is used, as a function of several parameters and of the sediment concentration.
Simpler relations are the one proposed by Voellmy (Voellmy, 1955), implemented in the RAMMS model (Christen et al.,
2010) and in HEC-RAS or the Bingham-like rheology (Malet et al., 2005; Begueria et al., 2009; Sauthier et al., 2015). The
calibration of the rheological parameters is typically done, for past events, either by using experimental measurements or, more

commonly, by reproducing the extension of mapped inundated areas, the distribution of the debris flow volume and the timing
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of the propagation, all of which information may not be available. However, over the last 10 years debris-flow monitoring
techniques have greatly improved (e.g. Hiirlimann et al., 2019) and many monitoring systems have been installed worldwide
that can provide observations on debris flow velocity and the corresponding stage along a channel reach. The same information
can also be provided by occasional recording and we believe that it can be extremely valuable in constraining the calibration
process. In this paper we propose to use a simple analytical solution for the uniform motion of a monophasic debris-flow with
a general quadratic equation rheology along a channel of constant slope, to obtain the following results: 1) simplify the
calibration by providing a priori insights on the role of the different rheological parameters on the modelled debris flow
velocity, 2) identify a characteristic time of the model, to be used to evaluate the distance needed to reach the theoretical normal
flow condition, and, in more general terms, to adapt the flow to bed-slope changes, 3) identify possible parameter combinations
that lead to flow slow-down, 4) investigate the different parameters sensitivity on the process. We believe that these
observations can be used to simplify the calibration process when field data are scarce. As an example, we applied the described

methodology to a real debris flow event occurred in Ono San Pietro, Italy, where footage of the debris flow was available.

2 Governing equations
The 1D Shallow Water Equations

1 (1
(hu), + (hu2 + Eghz) = gh(Sp, — Sf)

X

where h [m] is the fluid depth, u [m s™1] is the depth-averaged flow velocity along the x direction, g [m s~2] is the
acceleration of gravity, S, [—] is the bed slope and Sy [—] is the friction slope, can be used to model the propagation of a
monophasic non-newtonian debris flow on a rigid bed if a suitable model is selected for the friction slope. Although a steady
state condition is rare in natural debris flows, some field and laboratory measurements of debris flow velocity in a confined
channel (e.g. Takahashi, 1991; Hungr, 2000; Lanzoni et al., 2017) have shown that, where the flow is fully developed (Bernard
et al., 2023) velocity records can show limited variations in terms of depth and velocity over distance. This constant velocity
can be reproduced by a simple physically-based relationship of the asymptotic velocity of a debris layer with constant depth h
(measured normally with respect to the bottom), destabilized along an incline of constant slope. To account for cross-sections
of limited width in a channel, it is possible to replace h with the hydraulic radius (Perla et al., 1980). This analogy also provides
a characteristic time for fluid acceleration. Using a Voellmy rheology, this approach was originally proposed for snow
avalanches (Voellmy, 1955; Perla et al., 1980; Pudasaini and Hutter, 2007) and, more recently, for debris flow (Christen et al.,
2010; Kelfoun et al., 2011; Hergarten and Robl, 2015). The transient velocity u of the debris layer can be obtained by

simplifying system (1) for a layer of infinite length (or alternatively, by adopting a Lagrangian framework) as

u'(t) = g(S, —Sy) (2)
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Equation (2) can be solved analytically if the equation of the friction slope Sy make it possible. A rather general rheology

model is the quadratic one, according to which S can be written as a function of velocity as

S; =Pu*+Qu+R (3)

where P, Q and R are functions of the flow depth or fluid properties. Combining Eq. (2) and (3) leads to a Riccati equation

u@®)=Aul@)+Bu(t)+C

. 4
A=—-gP; B=-gQ; C=gsind—gR

in which 9 [°] is the local inclination. Pudasaini and Krautblatter (2022) proposed a series of analytical solutions to estimate
landslide velocity as a function of rather general rheologies where the linear term in the velocity is not included (B = 0)
because this term is negligible compared to the quadratic one when extremely fast flows are considered (Perla et al., 1980).
Models in which B # 0 were considered by Salm (1966) and Nishimura and Maeno (1989) but only for snow avalanches.
However, the linear term B may be important considering debris flows. Eq. (4) has some interesting properties. For instance,
it is clear that C must be # 0 if the motion starts from rest, as assumed in the following. The asymptotical velocity u,, is
provided by solving the quadratic equation obtained by setting u'(t) = 0 in Eq. (4). Accordingly, the discriminant B? — 4AC
must be positive for a uniform velocity to exist, which is always the case provided that all terms are different than zero and
C > 0, which happens when the slope is steep enough for the motion to occur. Degenerate cases, i.e. when either A = 0 or
B = 0, will be discussed separately. When A # 0, the solution u(t) of Eq. (4) can then be obtained analytically with a standard

integration of Riccati’s equation, leading to

B t
u(t) = ot || tanh [(%g)]

1 B
=— atanh( )
Alpl 24|l (5
2 _4AC - B?

VBZ—aac 4A?

where € is a constant of integration computed using the condition that the initial velocity is zero, u(0) =0, T is the
characteristic time of the flow, which measures how quickly the velocity reaches its asymptotic value and ¢ is a short-hand
for a more compact notation. The solution for the Voellmy model, investigated by Herganten and Robl (2015) as well as
Pudasaini and Krautblatter (2022), implemented in the widely used RAMMS software (Christen et al., 2010), can be obtained
using Eq. (5) when B = 0. When A = 0 and B # 0 (a case corresponding to a Bingham’s rheology) another simple solution

can be obtained from (4) by separation of variables as

u(t) = %(em -1
- 1 (0)
1Bl
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Finally, if A = B = 0 (a case corresponding to a pure velocity-independent Coulomb’s friction) then the straightforward

solution is

u(t)=Ct (7

where the characteristic time does not exist anymore, reflecting the property that the flow will infinitely accelerate.

3 Application to different rheological models

The quadratic model (3) is used to describe the rheology of debris flows according to a monophasic approximation in some
widely used numerical models. In the following sections the analytical solutions (5) and (6) will be used to show how the
parameters of (3) affect the flow asymptotic velocity u,, and the characteristic time T, showing how field observations can
constrain the parameters identification. Furthermore, a sensitivity analysis will provide additional insights on the rheological

parameters which most impact the uniform velocity theoretically reached by the flow.

3.1 Sobol’s global sensitivity analysis

In the following, in order to shed light on the relevance of each parameter on the model output and its interaction with other
parameters, a Sobol’s global sensitivity analysis is performed (Sobol, 1993) which has been frequently used in environmental
(Saltelli and Annoni, 2010; Estrada and Diaz, 2010) and hydrological modelling (Pappenberger et al., 2008). Assuming a
single scalar output denoted y = f(x), function of a vector of scalar variables x = (x4, x5, ..., X, ) possibly grouped into two

complementary vectors (u, v), the first order and total order indices are respectively defined as (Azzini et al., 2021)

_ VIE[y|ul]
YV ®
o _ VIEDIV]]
“ Viy]

where, V/[.] stands for the unconditional variance operator (respectively VI. |.] the conditional variance) and E [. ] stands for
the mathematical expectation (respectively E [.|.] the conditional expectation). The amount of variance relative to the total
variance, called Sobol’ sensitivity index, can be attributed either to a single parameter (first order index, S,,) or to the interaction
of a single parameter with respect to the others (total order index, ST;). The Sobol’s indices may vary between 0 and 1.
Furthermore, the difference between S,, and ST,, is that the total order index accounts not only for the amount of variance of y
explained by the input variables inside u (like S,,) but it also contains contributions arising due to the interactions between the
variables in u with those in v (Azzini et al., 2021). It can be shown that ST,, > S, and S,, + ST,, = 1, see Azzini et al. (2021)
and Saltelli (2002) for further details. The computation of Sobol’ indices could be easily accomplished by a Monte Carlo
method, checking all possible parameter combinations, if the function to evaluate is not excessively complicated. However,
from the computational point of view, it can be better to evaluate the first and total order indices according to the estimators
recently proposed by Azzini et al. (2021), due to their simplicity in implementation. These estimators provide a better
performance with respect to the ones originally introduced by Saltelli (2002). For each rheological model evaluation, the set
of parameters has been selected using the latin hypercube sampler (Azzini et al., 2021). Each parameter is assumed to vary
uniformly inside the range obtained considering typical values from the literature for each considered rheology. The uniform
probability distribution reflects the absence of information about the flow being modelled but, if laboratory or field
measurements are available, other parameter distributions can be used. For each model a conservative random sample size of

50 000 parameter sets has been used, repeating the analysis 100 times to ensure the robustness of the Sobol’ indices.



110 3.2 O’Brien and Julien’s rheology

One of the most used commercial software for the assessment of debris flow hazard is FLO-2D (O’Brien et al., 1993). To

model debris flows, FLO-2D uses an ad-hoc rheology proposed by O’Brien and Julien (1988), as

PR N Knu n?u?
S Ymh  8ymh? R

)

where 7, [N m™2] is the yield stress of the granular material, y,, [N m~3] is the equivalent fluid specific weight, K [—] is a
resistance parameter for laminar flow, 17 [Pa s] is the viscosity and n, [s m~/3] is the turbulent Manning’s coefficient.
115 Specific weight, viscosity, yield stress and turbulent Manning’s coefficient are functions of the volumetric sediment

concentration C, [—] according to the relations (O’Brien and Julien, 1988)

‘r’ — aleﬁlcv; Ty — azeBZCV

(10)
ne = 0.0538n e®%8%%; ¥ =C,y,+(1—-C) Y

where a, [Pa s], a,[Pal, B;[—] and B, [—] are empirical coefficients that could be defined by laboratory experiments
(O’Brien and Julien, 1988), n [s m~/3] is the Manning’s coefficient while y; [N m~3] and y,, [N m~3] are the sediment and
water specific weight (the latter assumed fixed in this work) respectively. Accordingly, apart from Manning’s coefficient and
120 sediment specific weight, that can be more easily identified, the model is a function of the six parameters a;, f;, &,, B2, K and
C,. The solution (5) can be used with the following meaning of the coefficients
gni . gKn gty

—W, ——W; C=gSil’ll9—— (11)

A=
Ymh

and the asymptotic velocity u,, is given by

~ Kn_ (Kn >2+4n?(.19 Ty) /3 1)
Yo =178y n2 T [\8y k2 PEANEY i PR,

whereas the characteristic time is

2
T =
Kng)z g*ng (. o Ty 13)
\/(8ymh2 +4h4/3 (smﬁ th)

By inspection of Eq. (12) and (13) one can obtain some interesting insights that can be useful for the calibration of a FLO-2D
125 based model:

e K always appears multiplied by  and thus K and a; are not observable, i.e. their value can’t be separately estimated
from observations, (e.g. Sorooshian & Gupta, 1983). Accordingly they can be considered as a single parameter.
e The asymptotic velocity is positive if and only if
Ty

Sin19—ym—h>0 (14)
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that is, among others, a non-linear function of the concentration C,,, since 7, and y;, depend on the concentration. This

condition can also be regarded as one controlling the progressive flow deceleration of the modelled equivalent fluid.

We believe that Eq. (12) and (13) can be useful for the calibration of the numerical model. As an example, Fig. 1 shows the
dimensionless analytical solution for the “Aspen Pit 1” parameters set (O’Brien and Julien, 1988), considering typical values
h=1m and 9 = 20°. For this set of values, U, = 4.85ms™! and T = 2.89 s. Accordingly, u(T)/us, = 0.86. The
maximum sediment concentration for the flow to develop a uniform velocity is computed by solving Eq. (14), i.e. C, = 0.49;

by exceeding this limiting concentration, the flow will slow down and stop.

u/u

—— O'Brien ,
Voellmy
Bagnold ]
Bingham

2.5
t/T

Figure 1. Dimensionless analytical solution for 4 different rheological models. The solution (5) using the O’Brien rheology is shown
in blue using the “Aspen Pit 1” parameters set with y,, = 9 810 N m~3 (water specific weight), ¥, = 26 500 N m~3 (specific weight
of sediments), n = 0.033 s m~1/3 and K = 2285. The solid red line is the analytical solution (17) for the Voellmy rheology using
1n=0.1and £ =1000m s~ 2. The solid green line shows the solution computed using Bingham frictional law (21) with 7, =
200 Pa,y,, = 15000 N m~3 and p = 90 Pa s. Finally the black line is the numerical solution using Bagnold frictional law with
ps =2300kgm3,p, =1000kgm3,¢;=35°Y =140, =1and c, = 0.65. In this case, being a numerical solution, there is
no formula for the characteristic time, and the time at which the flow reaches 63% of the uniform velocity has been arbitrarily

selected as the characteristic time for the normalization. In all cases the debris flow layer h is equal to 1 m and the channel slope is
20°.

T[s] | ue [ms™'] | u(T)/ue [-]
O’Brien | 2.89 4.85 0.86
Voellmy | 6.47 15.74 0.76
Bagnold | 0.52 2.77 0.63
Bingham | 5.32 16.74 0.63

Table 1. Numerical summary of the characteristic time T, terminal velocity u,, and ratio between the velocity for t = T, u(T), and
the terminal one u,, for all rheological models described.

Despite the large number of parameters to be calibrated, the O’Brien rheology is widely used in monophasic numerical models
(FLO-2D and HEC RAS) to replicate past debris flow events (e.g. Cesca and D’ Agostino, 2008; Lin et al., 2011; Wu et al.,
2013; Stancanelli and Foti, 2015; Wang et al., 2024). Calibration of parameters is performed either a posteriori, i.e. using
observations of depositional height or maximum velocity, or using rheological investigations (Boniello et al., 2010). In this
process one may wonder which parameters have the greatest impact on the simulation results, a type of information that is
difficult to know a priori, even when they appear explicitly like in Eq. (12). Although this information can be obtained by
performing multiple simulations that encompass the range of variation of each parameter of the friction law, this way remains
impractical if one does not use parallelization techniques as done by Zegers et al. (2020). On the other hand, Sobol’s analysis

quantifies the amount of variance that each parameter contributes to the unconditional variance of the model output,
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highlighting which of the parameters have a greater impact on the results. The velocity distributions obtained from random
parameter sets used to perform the Sobol’s analysis corresponding to each rheological model are reported in Fig. 2. The

variation range of the parameters has been obtained by considering typical values from in the literature, as shown in Table 2.
35r
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Figure 2. Uniform velocity boxplot distribution for the 4 rheological models used to perform Sobol sensitivity analysis (h = 1 m,
9 = 20°). For each graph the solid line represents the median value across the whole distribution, the rectangular box covers the
range from the lower quartile (25%) to the upper quartile (75%) and the whiskers show the non-outlier maximum (the maximum
data value which is not an outlier) and minimum (the minimum data value which is not an outlier). Here a point is classified as an
outlier if it lies more than 1.5 times the interquartile range away from the top or bottom of the red-shaded rectangle.

Parameter | Minimum | Maximum | Units Reference
a, 3:107° | 6.4-1073 | Pas Sosio et al., (2007)
B1 6.2 33.1 — Zegers et al., (2020)
a, 7.1-107° | 0.0181 Pa Zegers et al., (2020)
B, 16.9 29.8 - O’Brien and Julien, (1988)
C, 0.2 0.55 — Zegers et al., (2020)
n 0.01 0.2 sm™1/3 Zegers et al., (2020)
K 24 2285 — O’Brien and Garcia, (2009)
a 7.2-107* 14.62 Pas O’Brien & Garcia, (2009); Sosio et al., (2007)
s 18 25 kN m™3 Iverson, (1997)

Table 2. Variation range for the parameters tested in the Sobol analysis.

By performing the computations, the first-order Sobol’ indices (shown in Fig. 3) highlight that the most influential parameters
are C,, B, and n, in order of importance. C, is able, by itself, to explain around 35% of the variance of the terminal velocity,
as one could expect considering that C,, influences all the terms in Eq. (12) whereas the other parameters affect just a single
term of the equations. High model sensitivity to ; (almost 20%) confirms other findings in literature (Zegers et al., 2020).
The sensitivity on the Manning’s coefficient (around 13%) reflects the importance of surface roughness and associated
turbulent friction. This is not in line with the findings of Zegers et al. (2020), in which model results are insensitive to
Manning’s roughness coefficient. This can be explained considering that the reference velocity considered by Zegers et al.
(2020), which appears quadratically in the term where the Manning’s coefficient appears, is around 1 m s~1, in contrast with
the wider range of velocities considered in this study (see Fig. 2). Parameters ay, a,, 8, and y; appear to be less important in

terms of the terminal velocity.
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Figure 3. Boxplot of the first-order Sobol’ index (a) and total order index (b) for the parameters of the O’Brien rheology, ordered
in terms of importance.

Normalized Cv First-order Sobol Index Normalized Cv Total-order Sobol Index

¥ =10° ¥ =10° 0.95 0.95 0.96

9 =20°

9 =20°

¥ =30° ¥ =30°

h=0.5m h=1m h=2m h=0.5m h=1m h=2m

Normalized ﬁl First-order Sobol Index Normalized ﬁl Total-order Sobol Index

¥ =10° ¥ =10°

9 =20° ¥ =20°

9 =30° 0.80 0.70 0.64 ¥ =30° 0.81 0.69 0.63
h=0.5m h=1m h=2m h=05m h=1m h=2m
Normalized n First-order Sobol Index Normalized n Total-order Sobol Index

9 =10° 0.61 0.71 0.76 ¥ =10° 0.89 091 091

¥ =20° ¥ =20°

¥ =30° ¥ =30°

h=0.5m h=1m h=2m h=0.5m h=1m h=2m

Figure 4. First-order (left) and total-order (right) Sobol index for the parameters C,, #; and n as a function of different values of 9
and h. Each entry of the matrix represents the first- (total-) order Sobol index computed using the corresponding (h,J) couple, then
divided by the average index over the whole matrix. The average first-order (total-order) Sobol indices for C,, #; and n are
0.34(0.6),0.19 (0.41) and 0.13 (0. 38) respectively.
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Globally, the sum of the first-order Sobol’ indices can explain 68% of the variance of the model meaning that the remainder
of the variance is due to the nonlinearity of the model, i.e. the variance generated by a combination of parameters. Total-order
indices reveals the importance of the interactions between C,, f; and n. As observed above, the results of the sensitivity
analysis are valid for a given couple of the fluid depth h and channel slope : therefore the following analysis has been repeated
to explore the variation of the Sobol’ indices as a function of (h,9). Fig. 4 shows the Sobol’ indices for C,, ; and n,
normalized by dividing each index by its average value across the whole matrix. The colour shading shows the growing
direction for each index. As one can observe, the first-order Sobol’ index of C,, and n is a growing function of h and ¥ whereas
their total-order index is mostly a growing function of 9. Considering [5;, both the first-order and total-order Sobol’ indices
show that for growing values of h and 9 the sensitivity of the uniform velocity decreases, suggesting the growing importance

of viscosity for small fluid depths or channel slope.

3.3 Voellmy’s rheology

The Voellmy’s rheology (Voellmy, 1955) splits the total basal friction into a velocity independent dry-Coulomb term
proportional to the normal stress at the flow bottom and a velocity dependent friction (Salm, 1993). This simple friction law
is implemented in several numerical software, e.g. RAMMS (Christen et al., 2010), HEC-RAS Mud and Debris Flow (US
Army Corps of Engineers, 2023) and FLATModel (Medina et al., 2007). The Voellmy’s friction law is given by

u?

S, = 9+ — 15
¢ = [ COS +§h (15)

where p [—] is a Coulomb friction coefficient and & [m s~2] is a turbulent friction coefficient. The analytical solution to Eq.
(2) is given by Eq. (5) using the following coefficients

9

A=_Eh;

B=0; C=gsind—gucosd (16)

obtaining the solution suggested by Voellmy (1955) and Hergarten and Robl (2015)

u(t) = u, tanh (%)
17)

U = \/ER(sINY — pcosI); T = ;Thw
Eq. (17) is a simple and interesting piece of information to evaluate the appropriateness of the parameters used to propagate
the debris flow being modelled. Once again by inspection of the terminal velocity of Eq. (17) one can conclude that the flow
can approach a uniform condition only when tan 9 > p, meaning that the slope of the channel must be higher than the friction
coefficient. Assuming invariance of the parameters during the motion, this condition can be used to calibrate the friction
parameter y that must be upper limited by the local slope angle in the inception area and lower limited by the local slope angle
where the debris flow has stopped its propagation. The analytical solution (17) is shown in Fig. 1 in correspondence of the
parameters set £ = 0.1, = 1000m s~2,h = 1 mand 9 = 20°. After a characteristic time (6.47 s) the flow approaches a
velocity which is 76% of the terminal one (15.74 m s~1). Performing the Sobol sensitivity analysis described above yields
the results reported in Table 3, where the first line is the variation range explored in the analysis and h = 1 m and 9 = 20°.
The indices highlight a balanced sensitivity of the uniform velocity to both parameters, with u scoring slightly higher both in

terms of the first- and total-order indices.
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Range 50—-2000 ms™2 | 0.01—0.4
First-order index 0.40 0.55
Total-order index 0.44 0.60

Table 3. Summary of the Sobol sensitivity analysis obtained with a fluid depth of 1 m and a channel slope of 20°. The parameter’s
range is taken from RAMMS user manual.

Repeating the analysis for different values of h and ¥ shows little variation in terms of the computed sensitivity indices (both
first- and total-order ones); therefore the indices reported in Table 3 are representative of the whole spectrum of variation of h

and 9.

3.4 Bagnold’s rheology

Bagnold’s rheology (1954) modified by Takahashi (1978) on the basis of experimental data and valid for stony-type debris
flow is used, for instance, inside the TRENT2D software (Rosatti and Begnudelli, 2013):
_ 25 pg A2

= ——gqj 2
1=, AT, Ay g h "

(18)
2

-1 ps—p u
A= [(cr/CHP=1]"; B = SPWW; Cﬁ%ﬁﬁ

where ps [kg m™3] is the density of the sediments, p,, [kg m~3] is the density of water, ¢4 [°] is the friction angle of the
sediments, Y [—] is the submergence parameter, A; is the submerged relative density of the sediments, ¢, [—] is the maximum
concentration of the mixture in static conditions, C, [—] is the concentration of the mixture and £ is a transport parameter to
be calibrated. Although the submergence parameter depends on other factors, following Rosatti and Begnudelli (2013) we kept
it as a calibration parameter. Due to the function A, which depends non-linearly on the velocity, a simple analytical expression
of the solution of (2) is no longer obtainable. Similarly, a simple closed-form expression for the uniform velocity can’t be
obtained, due to the non-integer exponents present inside Eq. (18). Accordingly, to compare the results with previous models,
we solved Eq. (2) numerically, by using a finite difference method. The solution is shown in Fig. 1, for pg =
2300kgm=3,p, =1000kgm=3,¢, =35°Y =40, =1,c, = 0.65, h =1mandd = 20° For this combination, the

uniform velocity is 2.77 m s™!

and the characteristic time is 0.52 s. Being a numerical solution, no expression for the
characteristic time is available, and the time when the flow reaches 63% of the uniform velocity has been arbitrarily regarded
as the characteristic time, in analogy with an exponential decay. Contrary to the rheological models studied so far, Bagnold’s
model provides a uniform velocity for every choice of the parameters, when 9 > 0 . The Sobol’s analysis has been repeated
for the Bagnold’s rheology exploring the parameters range shown in Table 4, taken from literature (e.g. Stancanelli and Foti,

2015).

B Y $a Ps Cp
Range 0.1—-100 | 1—50 | 20 —45° | 1800 —2500kgm™3 | 0.4 — 0.65
First-order index 0.95 0.01 | 9-107° 3-10°° 3-10°°
Total-order index 0.98 0.04 | 5-107* 3:107° 1075

Table 4. Summary of the Sobol sensitivity analysis obtained with a fluid depth of 1 m and a channel slope of 20°.

The indices of Table 4 show that the most important parameter is 5, which by itself is able to explain more than 90% of the
variance, while the others show limited influence on the uniform velocity. Repeating the analysis for different values of h and
9 shows little to no variation in terms of the computed sensitivity indices (both first- and total-order ones); therefore the indices

shown in Table 4 are representative for the whole spectrum of variation of h and 9. Furthermore, considering the uniform

10
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velocity distributions showed in Fig. 2 for the different rheological models it is possible to notice that the Bagnold rheology is
characterized by a narrow field of variation of the velocity (0 — 3 m s™1) with respect to the other rheologies. This finding is
in line with other comparative works in literature (e.g. Stancanelli & Foti, 2015) where it is observed that FLO-2D (O’Brien
rheology) can predict velocities during a general simulation which are considerably higher (1.5 — 20 m s™1) compared with

the TRENT2D (Bagnold rheology) ones (1 — 2 m s™1) on the same simulation.

3.5 Bingham’s rheology

The Bingham’s (1922) rheology is another commonly adopted model for debris flow propagation (Malet et al. 2005; Begueria
et al., 2009), implemented, for instance, inside the TELEMAC-2D software (TELEMAC-2D User Manual, 2017). The main
assumption in the Bingham model of laminar flow regime of viscoplastic materials with a constant value of yield strength and
viscosity is especially valid in flows with high fine fraction (Abraham et al., 2022). Using the shear stress equation reported in
Coussot (1997), a simplified Bingham expression of shear stress has been used to derive the value of the friction slope term,

as proposed by (Abraham et al., 2022):

R 3nu

Sp = 1
S = 2yn hcosd ' yn,h?cosd (19)

where 7, [Pa] is the constant yield strength due to cohesion of soil in the static case, 1 [Pa s] is the viscosity parameter and
Ym [N m™3] is the specific weight of the mixture. Using the following coefficients

3ng 37. 9

A=0; B=———2 _; C=gsind—— "
Yimh? cos 9 gsin 2 Ym hcos¥

(20)

from Eq. (6) one can obtain the analytical solution

__3ng9 ,
u(t) = uy, (e ymh?cosd ™ —1

h? cos 3t
U = ym—(sim? ——C> (21)
3n 2 Y hcos?

_ Ymh®cos¥
3ng

Finally, the flow will approach a terminal velocity if the quantity inside the brackets of Eq. (21) is positive, i.e. if

Tc

2ym h

sind cos I > (22)

providing a simple criterion to understand flow deceleration. Fig. 1 plots the analytical solution Eq. (21) using 7, =
200 Pa,n =90 Pas,y,, = 15000 N m=3,h=1mand 9 = 20°. After a characteristic time of 5.32 s the flow reaches a
velocity of 16.74 m s~ which is 63% of the terminal velocity. Interestingly, the parameter 7. does not influence the
characteristic time of the flow, but only the terminal velocity. Table 5 shows the results obtained by performing Sobol’s
sensitivity analysis in the range taken from Phillips and Davies (1991), properly extended due to lack of specific information
regarding the simplified formulation adopted and using h = 1 m and 9 = 20°. The indices highlight a high sensitivity of the
uniform velocity to the viscosity 7, while the other parameters show negligible influence on the model’s output. This finding
is consistent with what already found using the O’Brien rheologys, i.e. that parameters that control viscosity strongly influences

the uniform velocity.
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n T VYm
Range 1-4-102Pas | 01—-5-10* Nm™2 | 16 — 23 kN m™3
First-order index 0.82 3-1073 107
Total-order index 0.99 0.16 0.014

Table 5. Summary of the Sobol sensitivity analysis, assuming a fluid depth of 1 m and a channel slope of 20°.

Repeating the analysis for different values of h and 9 shows little to no variation in terms of the computed sensitivity indices
(both first- and total-order ones). Accordingly the indices reported in Table 5 are representative of the whole spectrum of

variation of h and 9.

4 Application and discussion

The proposed analytical solutions can be applied to simplify the calibration of parameters when some insights on the expected
debris flow velocity are available, as shown in the following with reference to the debris flow that occurred in the B1¢ basin in
Valle Camonica valley, in the Central Italian Alps (Lombardia Region). On August 16, 2021, a debris flow was triggered by
an intense rainfall of 40 mm in 1 hour, caused by a localized storm cell moving west to east (Berti et al., 2023). The event
mobilized a total volume of about 60 000 m? and travelled along the channel for about 2 kilometres before covering a local
road with debris and boulders. A monitoring station (Berti et al., 2023) provided video footage of the debris flow through a

known cross-section.

Figure 5. Map view of the study area. The yellow dashed line highlights the computational domain used in this numerical simulation,
the red dot illustrates the position of the recording station while the dashed blue line shows an enlargement of the inlet cross section
(depicted in green) as well as the unstructured mesh adopted for the simulation. Locations A and B indicate the main areas where
the debris flow deposited, (© Google Earth 2019).

Using video footage and cross-section geometry, Berti et al. (2023) combined two free Matlab tools (PIVIab, Thielicke and
René, 2021 and RiveR, Patalano et al., 2017) in order to estimate the peak flow velocity and discharge. The obtained peak
flow velocity and discharge are 4.4 m s~ and 224 m3 s~ respectively during the first surge and 5.4 m s~* and 227 m3 s~}
during the second one (Berti et al., 2023). Based on the volume of the event and peak discharge, the reconstructed solid
hydrograph shown in Fig. 6 was adopted as a boundary condition. The two-peak structure of the hydrograph was obtained by
fixing the peaks (both assumed of 227 m3 s~ for simplicity) as well as the time lag between the first surge and the second
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one (about 2 minutes), with the constrain on the overall duration of the event of about 10 minutes. The Finite Volume SWE-
based numerical scheme presented in Bonomelli et al. (2023), adapted for mountain area applications (Bonomelli and Pilotti,
2023; Bonomelli, 2024) was used to propagate the debris flow along the main channel of the catchment, with an unstructured
triangular mesh consisting of 194 151 elements with an average distance of 1.63 m. The resolution of the available Digital
Elevation Model (DEM) was 2 m. To show how the proposed methodology can be used to guide the calibration process, in
the following we will use the two most used rheological models, i.e. Voellmy and O’Brien, to replicate the debris flow occurred

in the BIé catchment.
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Figure 6. Solid discharge hydrograph used as a boundary condition for the Blé event. Two discharge peaks were observed during
the event, approximately two minutes apart. This information, together with the total volume estimate provided, allowed to fix the
shape of the hydrograph. A base flow of 30 m3 s~! was assumed after the analysis of the available video footage.

4.1 Calibration of the Voellmy model

The Voellmy rheological model uses only two parameters: ¢ and &: the first one is usually estimated using the local average
slope in the main deposition area of the debris flow (locations A and B of Fig. 5), which has been evaluated to be around 14°
based on the available DEM: accordingly, u = 0.249. Eq. (17) provides a first guess estimate for &, using the cross section
geometry where the velocity was measured. Setting u,, = 5.4 ms~1, haverage = 2 m (Berti et al., 2023), u = 0.249 and

computing the average slope at the measuring station, i.e. 9 = 30°, one can obtain a first guess for &

u?,

fzh@mﬁ—ymmﬂ 3)

of about 52 m s~2. The corresponding characteristic time, Eq. (17), is about 2 s, confirming that the debris flow rapidly adjusts
itself to the local slope and the idea of using a normal flow equation is reasonably grounded. Having determined two first-
guess values for the rheological parameters, the numerical simulation can be performed to assess whether the depositional
depths and extent reasonably match the observed ones. The stopping criteria for propagation adopted by RAMMS (RAMMS
manual, 2022) was implemented, which happened after 17 minutes of simulated time. Fig. 7 shows the simulated deposition
map compared to the extent surveyed after the event (see the supplementary material for some photos of the event). The
observed qualitative match is good and could be further improved to better reproduce the main characteristics of the event by

exploring a neighbourhood of the two identified parameters.
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Figure 7. Deposition map at the end of the simulation using the Voellmy model with u = 0.249 and § = 52 m s~ (© Google Earth
2019).

Fig. 8 shows the computed velocity profile at the measuring station in correspondence of the peak during the simulation. Quite
interestingly, the identified & value, although obtained by a steady state formula, provides velocity during the transient process
which are in the order of 5 — 6 m s~1, confirming the role of the small characteristic time and the effectiveness of the simple
analytical law adopted. The same figure also shows the higher velocity profile that would be obtained if the same input
hydrograph were routed with the same y but with a blind initial guess of £, selected in the middle of its documented range of

variation.
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Figure 8. Peak flow velocity module at the measuring cross-section. The two profiles are obtained with the same u value but different
§. For blue squares, § was selected in the middle of its range of admissible values, while for red squares, the value of { was obtained

using the proposed approach exploiting the available velocity measurement.

Accordingly, the proposed approach provides an effective initial guess for the rheological parameters of the Voellmy’s model
if a velocity measurement is available at a known cross-section, showing how a simple analytical law can speed up the
calibration process. Finally, it is important to observe that another interesting use of Eq. (17) is as a uniform flow relation for

the implementation of the inlet (or outlet) boundary condition (Hou et al., 2015) inside a numerical model. For instance, by
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rearranging Eq. (17) for the Voellmy rheological model one can easily obtain the incoming discharge as a function of the fluid

depth

Q(h) = L h3/? \/E (sin9 — pcos ) (24)
where L is the inlet cross section width and ¥ is the local channel inclination, which must exceed u for the flow to occur.

4.2 Calibration of the O’Brien model

The second model considered is the widely used O’Brien model. Considering its multiparametric nature, Sobol’s analysis
suggests that the most influential parameters in terms of the terminal velocity are C,, §; and n. The Manning’s coefficient is a
parameter frequently used in flood modelling therefore its value can be estimated according to the tabulated values existing in
literature (e.g. Chow, 1959) and finding the best match by visual inspection. On this basis n = 0.1 s m~/3 was selected for
this simulation. The other parameters are less influential in terms of the terminal velocity and can be fixed around their default
values without significantly affecting the computed velocities. Contrary to the Voellmy model, there is no direct way to use
the local average slope of the main deposition areas to fix a particular parameter inside the rheological model. Eq. (14) regulates
flow deceleration, but the presence of the fluid depth inside the relationship states that the flow will slow down depending on
the fluid depth at which it is propagating, thus making it harder to obtain a proper constraint on the rheological parameters that
mostly influence deposition. First of all, in Fig. 9 we show the deposition map obtained by running a numerical simulation in

a “blind” way, by using a standard rheological set, i.e. “Aspen Pit 1” (O’Brien & Julien, 1988), without any information to

guide the calibration process.

|w] - uornsodagy

200 m

Figure 9. Deposition map at the end of the simulation using the O’Brien model with the Aspen pit 1 parameters. C, = 0.313,a, =
0.0036 Pas,a, = 0.0181 Pa, B, = 22.1,8, = 25.7, ¥, = 26.5 kNm3n=0.1sm /3 and K = 2285 (© Google Earth
2019).

As it can be noticed the debris flow is too fluid and flows out of the domain, contrary to field observations. Furthermore, Fig.
12 shows the velocity profile computed at the recording station in correspondence of the second peak discharge, which is
unrealistically high (around 10 m s~1) when compared with the recordings (5.4 m s~1). This is not surprising considering that
no calibration has been performed other than fixing the Manning’s coefficient. As a following step, we propose to calibrate
the remaining parameters suggested by the Sobol’s analysis by setting the terminal velocity showed in Eq. (12) at the
monitoring station equal to the recorded one. Moreover, to make a direct comparison with the previous Voellmy example, we

set the characteristic time in Eq. (13) equal to the characteristic time computed during the calibration of the Voellmy rheology,
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i.e. Tyoeumy = 2 s . This leads to a nonlinear system of two equations showed in Eq. (25) that can be solved numerically to

find the parameter values,

2
TVoellmy =
Kng )2 g2ni . Ty
z) t4553 (51n19——h)
) J 8 ¥mh h Ym (25)

Kn Kn \? n? /. 7, \ |h*?
Ustation = |~ 87, h2 + \](8 thz) + 4W<sm19 _Vm_h) 2_11?
and whose solution is C,, = 0.423 and B; = 20.5, which are then used to propagate the debris flow along the main channel
using the same boundary condition and mesh of the previous simulation. By doing this, a great improvement is obtained on
the velocity profile computed at the station (see Fig. 12, around 6.4 m s~1), that is now much closer to the observed one
(5.4 m s™1) with respect to the previous simulation. However, the computed final deposition (see Fig. 10) shows only a limited
improvement because the occurred debris flow does not flow out of the flooded area. Actually, one can observe that there is
not a compelling reason to impose the same characteristic time obtained for the Voellmy rheology, as we did for comparison’s
sake in the system (25). Considering that deposition is controlled by Eq. (14) in the O’Brien model, one can improve the pattern
of the depositional area by changing the involved parameters, i.e. either a, or ,, which, in turn, do not affect the terminal
velocity significantly according to the Sobol’s analysis. For instance, Fig. 11 shows the deposition obtained by setting a, =
0.001 Pa, which improves the previous simulation without altering significantly the velocity profile computed at the recording
station (see Fig. 12). This example shows how it is possible to get to the neighbourhood of an acceptable and physical set of

parameters in a few trials with the proposed approach.
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Figure 10. Deposition map at the end of the simulation using the O’Brien model with C, = 0.423,a; = 0.0036 Pas,a; =
0.0181 Pa,B; = 20.5,8, = 25.7,Ym = 26.5 kN m3,n = 0.1 s m~1/3 and K = 2285 (© Google Earth 2019).

It may be worthwhile to observe that with the O’Brien model the debris flow propagates out of the domain along the main
channel regardless of the rheological set adopted, contrary to field observations. This behaviour is known and can be explained
on the basis of Eq. (14) that shows that the critical yield stress to stop the motion increases with the flow depth, whereas in the
Voellmy rheology this behaviour is mitigated by the constant friction term (see Eq. 15) which is independent from the fluid
depth. Therefore, in the Voellmy rheology, a debris flow which encounters a slope which is less than its internal friction angle
u will tend to slow down and deposit for any fluid depth. This is not true for the O’Brien rheology, where friction decreases

with the flow depth, contributing to a more fluid-like behaviour.
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0.001 Pa,B; = 20.5,8, = 25.7,¥;n = 26.5 kNm3,n = 0.1sm /3 and K = 2285 (© Google Earth 2019).
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Figure 12. Peak flow velocity module at the measuring cross-section. Aspen pit 1 rheological set is given by C,, = 0.313,a, =
0.0036 Pas,a, = 0.0181 Pa, B, = 22.1,8, = 25.7,¥;m = 26.5 kN m3,n = 0.1 sm/3and K = 2285. Rheological set 1 is
given by C,, = 0.423,a; = 0.0036 Pas,a, = 0.0181 Pa,; = 20.5,8, = 25.7, Y = 26.5kNm 3 n=0.1sm /3 and K =
2285 . Rheological set 2 is given by C,=0.423,a;=0.0036 Pas,a, =0.001Pa,f;=20.5p8,=257,yp=
26.5kNm3n=0.1sm '3 and K = 2285.

As a second observation, we mentioned above that in the O’Brien’s rheology the parameter K always appears multiplied by
a, in Eq. (12) and thus K and a; are not indipendent and can be considered as a single parameter. This property, that to our
knowledge has so far passed unnoticed in the vast literature on FLO-2D and that contributes to limit the calibration effort, is
clearly shown by the simple example of Fig. 13, where the 1D profile for a dam break problem on a dry inclined slope for a
debris flow described by the O’Brien rheology is shown. The profile is shown 18 s after starting from rest and is computed
with two different parameters set. The first is the mentioned Aspen Pit 1 set and the second set is obtained from the first by
switching the value of K and a;. As one can observe, there is no detectable difference between the two simulations. It is
interesting to observe that using FLO-2D in similar tests, some differences were observed between the simulations, possibly

due to other numerical features of that code.
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Figure 13. Numerical solution of a dam break problem on a sloping dry bed with O’Brien & Julien friction law. The initial condition
is a constant fluid depth of 1 m in the first 100 m, while completely dry elsewhere. Boundary conditions used are a constant fluid
depth upstream and transmissive boundary conditions downstream. The snapshot depicts the numerical solution 18 s after release
with two rheological sets: 1) Aspen Pit 1 and 2) Aspen Pit 1 with a; = 2285 Pa s and K = 0.0036. The dashed black line in the
bottom panel depicts the transient analytical solution for the flow velocity showed in Eq. (5). In the top panel the fluid depth has
been enlarged for graphical purposes.

5 Conclusions

Although monophasic models like FLO-2D, RAMMS, HEC-RAS or TELEMAC-2D only provide a first-order approximation
of the complex dynamics of debris flow propagation, they are widely used in practice and depend strongly on parameters that
can be difficult to identify. This inevitably leads to a trial-and-error optimization that is computationally demanding. When the
number of parameters grows too large, this calibration may become impossible. To limit these “blind” simulations, it is
practically very useful to have some simple analytical relations like Eq. (12), (13), (17) and (21) that, in presence of field
measurements or other evidence, can be used to evaluate the normal flow velocity for a given parameters set. This velocity is
a physical constraint that can be compared to the one expected or observed in the field. The validity on the assumption of a
normal flow condition can be locally supported by the comparison with the computed value of the characteristic time. This
procedure is shown with reference to the Bl¢ test case, where we tested the two most widely used monophasic models. Using
the Voellmy model, one of the parameters, i.e. u can be estimated knowing the average slope of the main areas where the
debris flow deposited, as suggested in the literature, whereas the parameter ¢ can be fixed according to the terminal velocity
constraint if such information is available. The O’Brien rheological model does not allow to completely fix each of the
parameters on the basis of the information available in the presented test case. To make a comparative test, we fixed both the
terminal velocity and the characteristic time to the same values provided by the calibrated Voellmy model, by focusing on the
most important rheological parameters suggested by the Sobol’s sensitivity analysis. The results of the comparison show that
for the Blé event, the Voellmy model predicts a more realistic deposition map with respect to the O’Brien model. For this
model, we show how, starting from an ineffective standard parameterization, it is possible to significantly improve the
performance of the model. The proposed equations (12), (13), (17) and (21) can also provide additional insights on the physical
interplay between parameters, like the previously undocumented lack of observability of the O’Brien rheology with respect to
K and a;. These two parameters appear only in a multiplicative fashion within the equations and, accordingly, can be
considered as a single parameter (@, = a; K), reducing by one the degrees of freedom during the calibration process. The
Sobol’s sensitivity analysis is performed to highlight which parameters have a greater influence on the uniform velocity for
each rheology, so further helping the calibration effort. Regarding the O’Brien rheology, the most influential parameters turn
out to be C, (silt concentration), 5; (exponential coefficient of the viscosity) and n (Manning’s coefficient). For the Voellmy
rheology each parameter is equally important. In the Bingham rheological model the viscosity parameter, i.e. 7, dominates the

magnitude of the uniform flow velocity. In both O’Brien and Bingham models, the viscosity that appears in the linear term in
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the velocity is very important. Finally, in the case of the Bagnold rheology, the most influential parameter in terms of the
uniform velocity is the transport parameter, which traditionally is calibrated experimentally (Armanini et al., 2009). As stated
by Zegers et al. (2020), “the development of computationally frugal methods to understand parameter interactions in
environmental models emerges as an attractive avenue for future research”. Accordingly, our contribution moves in this
direction: we believe that the proposed analytical solutions, along with the sensitivity analysis of the parameters involved, can
be a significant help to guide the calibration of these numerical models. While our results are limited to the analysis of a stage-
discharge relation and of a characteristic time, so providing a single piece of information of a more complex picture, they are
not confined to a particular case or geometry and accordingly have a wider applicability. Other possible uses of the proposed
solutions (Eq. 12, 17 and 21) can be in the implementation of boundary conditions for numerical solver of monophasic models,
in the computation of stage-discharge equations at a given cross-section (as showed in the Blé application, i.e. Eq. 24) or even,
when coupled with a local mass balance, in the implementation of simplified kinematic routing schemes that could be used to

provide back-of-the-envelope evaluations of the debris flow potential along the drainage network of a watershed.
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