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Abstract. Modelling debris flow propagation requires numerical models able to describe the main characteristics of the flow, 

like velocity or inundation extent. Due to the complex physics involved, every numerical model is dependent from a set of 

parameters whose influence on the results is often not evident. In this contribution we propose simple analytical solutions 

based on the monophasic Shallow Water Equations for some of the most used rheological models (O’Brien & Julien, Voellmy, 

Bingham and Bagnold) implemented in monophasic (FLO-2D, RAMMS, HEC-RAS, TELEMAC-2D) and biphasic 10 

commercial software (TRENT2D). These simplified solutions and their asymptotic uniform-flow like relationship are useful 

on one hand to speed up the calibration process, limiting the need to perform multiple simulations with unrealistic set of 

parameters and, on the other hand, as a benchmark for existing numerical methods. To further guide the calibration, a Sobol’s 

sensitivity analysis has been performed to highlight which parameters of the considered equations influence the flow velocity 

the most. Finally, as an example of application, the proposed methodology is validated on a real debris flow event occurred in 15 

Italy. 

1 Introduction 

The computation of hydraulic hazard related to debris flow is of paramount importance for risk mapping in mountain areas. In 

spite of their limitations with respect to models which better respect the physics of the process like the two-phase models (e.g. 

Pitman and Le, 2005; Armanini et al., 2009; Pudasaini and Fischer, 2020) and multi-phase models (Pudasaini and Mergili, 20 

2019), monophasic ones, based on Shallow Water Equations, are still widely used in practice and can be effective (e.g. 

Rickenmann et al., 2006) when suitably calibrated (e.g. Stancanelli and Foti, 2015). However, apart from theoretical 

limitations, when the adopted rheological relation is multiparametric, its calibration is not straightforward. In the following, 

dealing only with depth-averaged models, we will use the term “rheology” as a synonym for friction law. In the widely used 

FLO-2D (O’Brien & Julien, 1988) model and also inside HEC-RAS Mud and Debris Flow (US Army Corps of Engineers, 25 

2023), an empirical quadratic rheological relation is used, as a function of several parameters and of the sediment concentration. 

Simpler relations are the one proposed by Voellmy (Voellmy, 1955), implemented in the RAMMS model (Christen et al., 

2010) and in HEC-RAS or the Bingham-like rheology (Malet et al., 2005; Begueria et al., 2009; Sauthier et al., 2015). The 

calibration of the rheological parameters is typically done, for past events, either by using experimental measurements or, more 

commonly, by reproducing the extension of mapped inundated areas, the distribution of the debris flow volume and the timing 30 
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of the propagation, all of which information may not be available. However, over the last 10 years debris-flow monitoring 

techniques have greatly improved (e.g. Hürlimann et al., 2019) and many monitoring systems have been installed worldwide 

that can provide observations on debris flow velocity and the corresponding stage along a channel reach. The same information 

can also be provided by occasional recording and we believe that it can be extremely valuable in constraining the calibration 

process. In this paper we propose to use a simple analytical solution for the uniform motion of a monophasic debris-flow with 35 

a general quadratic equation rheology along a channel of constant slope, to obtain the following results: 1) simplify the 

calibration by providing a priori insights on the role of the different rheological parameters on the modelled debris flow 

velocity, 2) identify a characteristic time of the model, to be used to evaluate the distance needed to reach the theoretical normal 

flow condition, and, in more general terms, to adapt the flow to bed-slope changes, 3) identify possible parameter combinations 

that lead to flow slow-down, 4) investigate the different parameters sensitivity on the process. We believe that these 40 

observations can be used to simplify the calibration process when field data are scarce. As an example, we applied the described 

methodology to a real debris flow event occurred in Ono San Pietro, Italy, where footage of the debris flow was available. 

2 Governing equations 

The 1D Shallow Water Equations 

ℎ௧ + (ℎݑ)௫ = 0 

(ℎݑ)௧ + ൬ℎݑଶ +
1
2

݃ℎଶ൰
௫

= ݃ℎ(ܵ௕ − ௙ܵ) 
(1) 

where ℎ [݉]  is the fluid depth, ݑ [݉ ିݏଵ]  is the depth-averaged flow velocity along the ݔ  direction, ݃ [݉ ିݏଶ]  is the 45 

acceleration of gravity, ܵ௕ [−] is the bed slope and ௙ܵ [−] is the friction slope, can be used to model the propagation of a 

monophasic non-newtonian debris flow on a rigid bed if a suitable model is selected for the friction slope. Although a steady 

state condition is rare in natural debris flows, some field and laboratory measurements of debris flow velocity in a confined 

channel (e.g. Takahashi, 1991; Hungr, 2000; Lanzoni et al., 2017) have shown that, where the flow is fully developed (Bernard 

et al., 2023) velocity records can show limited variations in terms of depth and velocity over distance. This constant velocity 50 

can be reproduced by a simple physically-based relationship of the asymptotic velocity of a debris layer with constant depth ℎ 

(measured normally with respect to the bottom), destabilized along an incline of constant slope. To account for cross-sections 

of limited width in a channel, it is possible to replace ℎ with the hydraulic radius (Perla et al., 1980). This analogy also provides 

a characteristic time for fluid acceleration. Using a Voellmy rheology, this approach was originally proposed for snow 

avalanches (Voellmy, 1955; Perla et al., 1980; Pudasaini and Hutter, 2007) and, more recently, for debris flow (Christen et al., 55 

2010; Kelfoun et al., 2011; Hergarten and Robl, 2015). The transient velocity ݑ  of the debris layer can be obtained by 

simplifying system (1) for a layer of infinite length (or alternatively, by adopting a Lagrangian framework) as 

(ݐ)′ݑ = ݃൫ܵ௕ − ௙ܵ൯ (2) 
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Equation (2) can be solved analytically if the equation of the friction slope ௙ܵ make it possible. A rather general rheology 

model is the quadratic one, according to which ௙ܵ can be written as a function of velocity as 

௙ܵ = ଶݑܲ + ݑܳ + ܴ (3) 

where ܲ, ܳ and ܴ are functions of the flow depth or fluid properties. Combining Eq. (2) and (3) leads to a Riccati equation 60 

(ݐ)′ݑ = (ݐ)ଶݑ ܣ + (ݐ)ݑ ܤ +  ܥ

ܣ = −݃ ܲ; ܤ     = −݃ ܳ; ܥ     = ݃ sin ߴ − ܴ݃ 
(4) 

in which ߴ [°] is the local inclination. Pudasaini and Krautblatter (2022) proposed a series of analytical solutions to estimate 

landslide velocity as a function of rather general rheologies where the linear term in the velocity is not included (ܤ = 0) 

because this term is negligible compared to the quadratic one when extremely fast flows are considered (Perla et al., 1980). 

Models in which ܤ ≠ 0 were considered by Salm (1966) and Nishimura and Maeno (1989) but only for snow avalanches. 

However, the linear term ܤ may be important considering debris flows. Eq. (4) has some interesting properties. For instance, 65 

it is clear that ܥ must be ≠ 0 if the motion starts from rest, as assumed in the following. The asymptotical velocity ݑஶ is 

provided by solving the quadratic equation obtained by setting (ݐ)′ݑ = 0 in Eq. (4). Accordingly, the discriminant ܤଶ −  ܥܣ4

must be positive for a uniform velocity to exist, which is always the case provided that all terms are different than zero and 

ܥ > 0, which happens when the slope is steep enough for the motion to occur. Degenerate cases, i.e. when either ܣ = 0 or 

ܤ = 0, will be discussed separately. When ܣ ≠ 0, the solution (ݐ)ݑ of Eq. (4) can then be obtained analytically with a standard 70 

integration of Riccati’s equation, leading to 

(ݐ)ݑ = − ஻
ଶ஺

+ ඥ|߮| tanh ቂ(௧ାఌ)
்

ቃ  

ߝ = −
1

|߮|ඥ ܣ
atanh ቆ

ܤ
|߮|ඥܣ2

ቇ 

ܶ =
2

ଶܤ√ − ܥܣ4
;     ߮ =

ܥܣ4 − ଶܤ

ଶܣ4  

(5) 

where ߝ  is a constant of integration computed using the condition that the initial velocity is zero, (0)ݑ = 0 , ܶ  is the 

characteristic time of the flow, which measures how quickly the velocity reaches its asymptotic value and ߮ is a short-hand 

for a more compact notation. The solution for the Voellmy model, investigated by Herganten and Robl (2015) as well as 

Pudasaini and Krautblatter (2022), implemented in the widely used RAMMS software (Christen et al., 2010), can be obtained 75 

using Eq. (5) when  ܤ = 0. When ܣ = 0 and ܤ ≠ 0 (a case corresponding to a Bingham’s rheology) another simple solution 

can be obtained from (4) by separation of variables as 

(ݐ)ݑ = ஼
஻

(݁஻௧ − 1)  

ܶ =
1

|ܤ|
 

(6) 
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Finally, if ܣ = ܤ = 0 (a case corresponding to a pure velocity-independent Coulomb’s friction) then the straightforward 

solution is 

(ݐ)ݑ =  (7)  ݐ ܥ

where the characteristic time does not exist anymore, reflecting the property that the flow will infinitely accelerate. 80 

3 Application to different rheological models 

The quadratic model (3) is used to describe the rheology of debris flows according to a monophasic approximation in some 

widely used numerical models. In the following sections the analytical solutions (5) and (6) will be used to show how the 

parameters of (3) affect the flow asymptotic velocity ݑஶ and the characteristic time ܶ, showing how field observations can 

constrain the parameters identification. Furthermore, a sensitivity analysis will provide additional insights on the rheological 85 

parameters which most impact the uniform velocity theoretically reached by the flow. 

3.1 Sobol’s global sensitivity analysis 

In the following, in order to shed light on the relevance of each parameter on the model output and its interaction with other 

parameters, a Sobol’s global sensitivity analysis is performed (Sobol, 1993) which has been frequently used in environmental 

(Saltelli and Annoni, 2010; Estrada and Diaz, 2010) and hydrological modelling (Pappenberger et al., 2008). Assuming a 90 

single scalar output denoted ݕ = ݂(࢞), function of a vector of scalar variables ࢞ = ,ଵݔ) ,ଶݔ … ,  ௡) possibly grouped into twoݔ

complementary vectors (࢛, ࢜), the first order and total order indices are respectively defined as (Azzini et al., 2021) 

ܵ௨ =
ॽ[ॱ[ݕ|࢛]]

ॽ[ݕ]
 

ܵ ௨ܶ =
ॽ[ॱ[ݕ|࢜]]

ॽ[ݕ]
 

(8) 

where, ॽ[. ] stands for the unconditional variance operator (respectively ॽ[. |. ] the conditional variance) and ॱ [. ] stands for 

the mathematical expectation (respectively ॱ [. |. ] the conditional expectation). The amount of variance relative to the total 

variance, called Sobol’ sensitivity index, can be attributed either to a single parameter (first order index, ܵ௨) or to the interaction 95 

of a single parameter with respect to the others (total order index, ܵ ௨ܶ). The Sobol’s indices may vary between 0 and 1. 

Furthermore, the difference between ܵ௨ and ܵ ௨ܶ is that the total order index accounts not only for the amount of variance of ݕ 

explained by the input variables inside ࢛ (like ܵ௨) but it also contains contributions arising due to the interactions between the 

variables in ࢛ with those in ࢜ (Azzini et al., 2021). It can be shown that ܵ ௨ܶ > ܵ௨ and ܵ௨ + ܵ ௩ܶ = 1, see Azzini et al. (2021) 

and Saltelli (2002) for further details. The computation of Sobol’ indices could be easily accomplished by a Monte Carlo 100 

method, checking all possible parameter combinations, if the function to evaluate is not excessively complicated. However, 

from the computational point of view, it can be better to evaluate the first and total order indices according to the estimators 

recently proposed by Azzini et al. (2021), due to their simplicity in implementation. These estimators provide a better 

performance with respect to the ones originally introduced by Saltelli (2002). For each rheological model evaluation, the set 

of parameters has been selected using the latin hypercube sampler (Azzini et al., 2021). Each parameter is assumed to vary 105 

uniformly inside the range obtained considering typical values from the literature for each considered rheology. The uniform 

probability distribution reflects the absence of information about the flow being modelled but, if laboratory or field 

measurements are available, other parameter distributions can be used. For each model a conservative random sample size of 

50 000 parameter sets has been used, repeating the analysis 100 times to ensure the robustness of the Sobol’ indices. 
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3.2 O’Brien and Julien’s rheology 110 

One of the most used commercial software for the assessment of debris flow hazard is FLO-2D (O’Brien et al., 1993). To 

model debris flows, FLO-2D uses an ad-hoc rheology proposed by O’Brien and Julien (1988), as 

௙ܵ =
߬௬

௠ ℎߛ
+

ݑ ߟ ܭ
௠ ℎଶߛ 8 +

݊௧
ଶݑଶ

ℎସ/ଷ  (9) 

where ߬௬ [ܰ ݉ିଶ] is the yield stress of the granular material, ߛ௠ [ܰ ݉ିଷ] is the equivalent fluid specific weight, ܭ [−] is a 

resistance parameter for laminar flow, ߟ [ܲܽ  s] is the viscosity and ݊௧ [ݏ ݉ିଵ/ଷ] is the turbulent Manning’s coefficient. 

Specific weight, viscosity, yield stress and turbulent Manning’s coefficient are functions of the volumetric sediment 115 

concentration ܥ௩ [−] according to the relations (O’Brien and Julien, 1988) 

ߟ = ;ଵ݁ఉభ஼ೡߙ     ߬௬ =  ଶ݁ఉమ஼ೡߙ

݊௧ = 0.0538 ݊ ݁଺.଴଼ଽ଺ ஼ೡ; ௠ߛ    = ௦ߛ ௩ܥ + (1 −    ௪ߛ (௩ܥ
(10) 

where ߙଵ [ܲܽ ݏ], ,[ܽܲ]ଶߙ [−]ଵߚ  and ߚଶ [−]  are empirical coefficients that could be defined by laboratory experiments 

(O’Brien and Julien, 1988), ݊ [ݏ ݉ିଵ/ଷ] is the Manning’s coefficient while ߛ௦ [ܰ ݉ିଷ] and ߛ௪ [ܰ ݉ିଷ] are the sediment and 

water specific weight (the latter assumed fixed in this work) respectively. Accordingly, apart from Manning’s coefficient and 

sediment specific weight, that can be more easily identified, the model is a function of the six parameters ߙଵ, ,ଵߚ ,ଶߙ ,ଶߚ  and 120 ܭ

 ௩. The solution (5) can be used with the following meaning of the coefficientsܥ

ܣ = −
݃ ݊௧

ଶ

ℎସ/ଷ ; ܤ     = −
ߟ ܭ ݃

௠ ℎଶߛ 8 ; ܥ     = ݃ sin ߴ −
݃߬௬

௠ℎߛ
 (11) 

and the asymptotic velocity ݑஶ is given by  

ஶݑ = ቎−
ߟ ܭ

௠ ℎଶߛ 8 + ඨ൬
ߟ ܭ

௠ℎଶ൰ߛ 8
ଶ

+ 4
݊௧

ଶ

ℎସ/ଷ ൬sin ߴ −
߬௬

௠ℎߛ
൰  ቏

ℎସ/ଷ

2݊௧
ଶ   (12) 

whereas the characteristic time is  

ܶ =
2

ඨ൬ ݃ ߟ ܭ
௠ℎଶ൰ߛ 8

ଶ
+ 4 ݃ଶ ݊௧

ଶ

ℎସ/ଷ ቀsin ߴ −
߬௬

 ௠ℎቁߛ

 
(13) 

By inspection of Eq. (12) and (13) one can obtain some interesting insights that can be useful for the calibration of a FLO-2D  

based model:  125 

 ܭ always appears multiplied by ߟ and thus ܭ and ߙଵ are not observable, i.e. their value can’t be separately estimated 

from observations, (e.g. Sorooshian & Gupta, 1983). Accordingly they can be considered as a single parameter. 

 The asymptotic velocity is positive if and only if 

sin ߴ −
߬௬

௠ℎߛ
> 0  (14) 
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that is, among others, a non-linear function of the concentration ܥ௩, since ߬௬ and ߛ௠ depend on the concentration. This 

condition can also be regarded as one controlling the progressive flow deceleration of the modelled equivalent fluid.  130 

We believe that Eq. (12) and (13) can be useful for the calibration of the numerical model. As an example, Fig. 1 shows the 

dimensionless analytical solution for the “Aspen Pit 1” parameters set (O’Brien and Julien, 1988), considering typical values 

ℎ = 1 ݉  and ߴ = 20° . For this set of values, ݑஶ = ଵିݏ ݉ 4.85  and ܶ = ݏ 2.89 . Accordingly, ݑ/(ܶ)ݑஶ = 0.86 . The 

maximum sediment concentration for the flow to develop a uniform velocity is computed by solving Eq. (14), i.e. ܥ௩ = 0.49; 

by exceeding this limiting concentration, the flow will slow down and stop.  135 

 
Figure 1. Dimensionless analytical solution for 4 different rheological models. The solution (5) using the O’Brien rheology is shown 
in blue using the “Aspen Pit 1” parameters set with  ࢝ࢽ = ૢ ૡ૚૙ ି࢓ ࡺ૜ (water specific weight), ࢙ࢽ = ૛૟ ૞૙૙ ି࢓ ࡺ૜ (specific weight 
of sediments), ࢔ = ૙. ૙૜૜ ࢙ ି࢓૚/૜ and ࡷ = ૛૛ૡ૞. The solid red line is the analytical solution (17) for the Voellmy rheology using 
ࣆ = ૙. ૚ and ࣈ = ૚૙૙૙ ࢓ ࢙ି૛  . The solid green line shows the solution computed using Bingham frictional law (21) with ࣎ࢉ =140 
૛૙૙ ࢇࡼ, ࢓ࢽ = ૚૞ ૙૙૙ ି࢓ ࡺ૜ and ࣁ = ૢ૙ ࢇࡼ ࢙.  Finally the black line is the numerical solution using Bagnold frictional law with 
࢙࣋ = ૛ ૜૙૙ ࢓ ࢍ࢑૜, ࣋࢝ = ૚ ૙૙૙ ି࢓ ࢍ࢑૜, ࢊࣘ = ૜૞°, ࢅ = ૝૙, ࢼ = ૚ and ࢈ࢉ = ૙. ૟૞. In this case, being a numerical solution, there is 
no formula for the characteristic time, and the time at which the flow reaches ૟૜% of the uniform velocity has been arbitrarily 
selected as the characteristic time for the normalization. In all cases the debris flow layer ࢎ is equal to 1 ࢓ and the channel slope is 
૛૙°. 145 

 [−] ஶݑ/(ܶ)ݑ [ଵିݏ ݉] ஶݑ [ݏ] ܶ 
O’Brien 2.89 4.85 0.86 
Voellmy 6.47 15.74 0.76 
Bagnold 0.52 2.77 0.63 
Bingham 5.32 16.74 0.63 

Table 1. Numerical summary of the characteristic time ࢀ, terminal velocity ࢛ஶ and ratio between the velocity for ࢚ = ,ࢀ  and ,(ࢀ)࢛
the terminal one ࢛ஶ for all rheological models described. 

Despite the large number of parameters to be calibrated, the O’Brien rheology is widely used in monophasic numerical models 

(FLO-2D and HEC RAS) to replicate past debris flow events (e.g. Cesca and D’Agostino, 2008; Lin et al., 2011; Wu et al., 

2013; Stancanelli and Foti, 2015; Wang et al., 2024). Calibration of parameters is performed either a posteriori, i.e. using 150 

observations of depositional height or maximum velocity, or using rheological investigations (Boniello et al., 2010). In this 

process one may wonder which parameters have the greatest impact on the simulation results, a type of information that is 

difficult to know a priori, even when they appear explicitly like in Eq. (12). Although this information can be obtained by 

performing multiple simulations that encompass the range of variation of each parameter of the friction law, this way remains 

impractical if one does not use parallelization techniques as done by Zegers et al. (2020). On the other hand, Sobol’s analysis 155 

quantifies the amount of variance that each parameter contributes to the unconditional variance of the model output, 
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highlighting which of the parameters have a greater impact on the results. The velocity distributions obtained from random 

parameter sets used to perform the Sobol’s analysis corresponding to each rheological model are reported in Fig. 2. The 

variation range of the parameters has been obtained by considering typical values from in the literature, as shown in Table 2. 

 160 
Figure 2. Uniform velocity boxplot distribution for the 4 rheological models used to perform Sobol sensitivity analysis (ࢎ = ૚ ࢓, 
ࣖ = ૛૙°). For each graph the solid line represents the median value across the whole distribution, the rectangular box covers the 
range from the lower quartile (૛૞%) to the upper quartile (ૠ૞%) and the whiskers show the non-outlier maximum (the maximum 
data value which is not an outlier) and minimum (the minimum data value which is not an outlier). Here a point is classified as an 
outlier if it lies more than ૚. ૞ times the interquartile range away from the top or bottom of the red-shaded rectangle. 165 

Parameter Minimum Maximum Units Reference 

ଵ 3ߙ ∙ 10ିହ 6.4 ∙ 10ିଷ ܲܽ ݏ Sosio et al., (2007) 

 ଵ 6.2 33.1 − Zegers et al., (2020)ߚ

ଶ 7.1ߙ ∙ 10ିହ 0.0181 ܲܽ Zegers et al., (2020) 

 ଶ 16.9 29.8 − O’Brien and Julien, (1988)ߚ

 ௩ 0.2 0.55 − Zegers et al., (2020)ܥ

 ଵ/ଷ Zegers et al., (2020)ି݉ ݏ 0.2 0.01 ݊

 O’Brien and Garcia, (2009) − 2285 24 ܭ

௞ 7.2ߙ ∙ 10ିସ 14.62 ܲܽ ݏ O’Brien & Garcia, (2009); Sosio et al., (2007) 

 ௦ 18 25 ݇ܰ ݉ିଷ Iverson, (1997)ߛ
Table 2. Variation range for the parameters tested in the Sobol analysis. 

By performing the computations, the first-order Sobol’ indices (shown in Fig. 3) highlight that the most influential parameters 

are ܥ௩,  ,௩ is able, by itself, to explain around 35% of the variance of the terminal velocityܥ .ଵ and ݊, in order of importanceߚ

as one could expect considering that ܥ௩ influences all the terms in Eq. (12) whereas the other parameters affect just a single 

term of the equations. High model sensitivity to ߚଵ (almost 20%) confirms other findings in literature (Zegers et al., 2020). 170 

The sensitivity on the Manning’s coefficient (around 13%) reflects the importance of surface roughness and associated 

turbulent friction. This is not in line with the findings of Zegers et al. (2020), in which model results are insensitive to 

Manning’s roughness coefficient. This can be explained considering that the reference velocity considered by Zegers et al. 

(2020), which appears quadratically in the term where the Manning’s coefficient appears, is around 1 ݉ ିݏଵ, in contrast with 

the wider range of velocities considered in this study (see Fig. 2). Parameters ߙ௞, ,ଶߙ  ௦ appear to be less important in 175ߛ ଶ andߚ

terms of the terminal velocity.  
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Figure 3. Boxplot of the first-order Sobol’ index (a) and total order index (b) for the parameters of the O’Brien rheology, ordered 
in terms of importance. 

 180 
Figure 4. First-order (left) and total-order (right) Sobol index for the parameters ࢜࡯,  ࣖ as a function of different values of ࢔ ૚ andࢼ
and ࢎ. Each entry of the matrix represents the first- (total-) order Sobol index computed using the corresponding (ࢎ, ࣖ) couple, then 
divided by the average index over the whole matrix. The average first-order (total-order) Sobol indices for ࢜࡯  are ࢔ ૚ andࢼ ,
૙. ૜૝ (૙. ૟), ૙. ૚ૢ (૙. ૝૚) and ૙. ૚૜ (૙. ૜ૡ) respectively.  
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Globally, the sum of the first-order Sobol’ indices can explain 68% of the variance of the model meaning that the remainder 185 

of the variance is due to the nonlinearity of the model, i.e. the variance generated by a combination of parameters. Total-order 

indices reveals the importance of the interactions between ܥ௩, ଵߚ  and ݊. As observed above, the results of the sensitivity 

analysis are valid for a given couple of the fluid depth ℎ and channel slope ߴ: therefore the following analysis has been repeated 

to explore the variation of the Sobol’ indices as a function of (ℎ, ,௩ܥ Fig. 4 shows the Sobol’ indices for .(ߴ ଵߚ  and ݊, 

normalized by dividing each index by its average value across the whole matrix. The colour shading shows the growing 190 

direction for each index. As one can observe, the first-order Sobol’ index of ܥ௩ and ݊ is a growing function of ℎ and ߴ whereas 

their total-order index is mostly a growing function of ߴ. Considering ߚଵ, both the first-order and total-order Sobol’ indices 

show that for growing values of ℎ and ߴ the sensitivity of the uniform velocity decreases, suggesting the growing importance 

of viscosity for small fluid depths or channel slope. 

3.3 Voellmy’s rheology 195 

The Voellmy’s rheology (Voellmy, 1955) splits the total basal friction into a velocity independent dry-Coulomb term 

proportional to the normal stress at the flow bottom and a velocity dependent friction (Salm, 1993). This simple friction law 

is implemented in several numerical software, e.g. RAMMS (Christen et al., 2010), HEC-RAS Mud and Debris Flow (US 

Army Corps of Engineers, 2023) and FLATModel (Medina et al., 2007). The Voellmy’s friction law is given by 

௙ܵ = ߤ cos ߴ +
ଶݑ

ℎ ߦ
  (15) 

where ߤ [−] is a Coulomb friction coefficient and ߦ [݉ ିݏଶ] is a turbulent friction coefficient. The analytical solution to Eq. 200 

(2) is given by Eq. (5) using the following coefficients 

ܣ = −
݃

ℎ ߦ
; ܤ    = 0; ܥ    = ݃ sin ߴ − ߤ ݃ cos  (16) ߴ

obtaining the solution suggested by Voellmy (1955) and Hergarten and Robl (2015) 

(ݐ)ݑ = ஶݑ tanh ൬
ݐ
ܶ

൰ 

ஶݑ = ඥߦℎ(sin ߴ − ߤ cos ;(ߴ     ܶ =
ℎ ߦ

ஶݑ ݃
 

(17) 

Eq. (17) is a simple and interesting piece of information to evaluate the appropriateness of the parameters used to propagate 

the debris flow being modelled. Once again by inspection of the terminal velocity of Eq. (17) one can conclude that the flow 

can approach a uniform condition only when tan ߴ >  meaning that the slope of the channel must be higher than the friction 205 ,ߤ

coefficient. Assuming invariance of the parameters during the motion, this condition can be used to calibrate the friction 

parameter ߤ that must be upper limited by the local slope angle in the inception area and lower limited by the local slope angle 

where the debris flow has stopped its propagation. The analytical solution (17) is shown in Fig. 1 in correspondence of the 

parameters set ߤ = ߦ ,0.1 = ,ଶିݏ ݉ 000 1 ℎ = 1 ݉ and ߴ = 20°.  After a characteristic time (6.47 ݏ) the flow approaches a 

velocity which is 76% of the terminal one (15.74 ݉ ିݏଵ). Performing the Sobol sensitivity analysis described above yields 210 

the results reported in Table 3, where the first line is the variation range explored in the analysis and ℎ = 1 ݉ and ߴ = 20°. 

The indices highlight a balanced sensitivity of the uniform velocity to both parameters, with ߤ scoring slightly higher both in 

terms of the first- and total-order indices. 
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 ߤ ߦ 

Range 50 − ଶ 0.01ିݏ ݉  000 2 − 0.4 

First-order index 0.40 0.55 

Total-order index 0.44 0.60 
Table 3. Summary of the Sobol sensitivity analysis obtained with a fluid depth of ૚ ࢓ and a channel slope of ૛૙°. The parameter’s 215 
range is taken from RAMMS user manual. 

Repeating the analysis for different values of ℎ and ߴ shows little variation in terms of the computed sensitivity indices (both 

first- and total-order ones); therefore the indices reported in Table 3 are representative of the whole spectrum of variation of ℎ 

and ߴ. 

3.4 Bagnold’s rheology 220 

Bagnold’s rheology (1954) modified by Takahashi (1978) on the basis of experimental data and valid for stony-type debris 

flow is used, for instance, inside the TRENT2D software (Rosatti and Begnudelli, 2013): 

௙ܵ =
25
4

௦ߩ

௪ߩ
sin ߶ௗ

ଶߣ

ܻଶ(1 + ௩ Δ௦) ݃ ℎܥ
  ଶݑ

ߣ = ൣ(ܿ௕/ܥ௩)ଵ/ଷ − 1൧ିଵ;     Δ௦ =
௦ߩ − ௪ߩ

௪ߩ
; ௩ܥ     = ܿ௕ߚ

ଶݑ

݃ℎ
 

(18) 

where ߩ௦ [݇݃ ݉ିଷ] is the density of the sediments, ߩ௪ [݇݃ ݉ିଷ] is the density of water, ߶ௗ  [°] is the friction angle of the 

sediments, ܻ [−] is the submergence parameter, Δ௦ is the submerged relative density of the sediments, ܿ௕ [−] is the maximum 

concentration of the mixture in static conditions, ܥ௩ [−] is the concentration of the mixture and ߚ is a transport parameter to 225 

be calibrated. Although the submergence parameter depends on other factors, following Rosatti and Begnudelli (2013) we kept 

it as a calibration parameter. Due to the function ߣ, which depends non-linearly on the velocity, a simple analytical expression 

of the solution of (2) is no longer obtainable. Similarly, a simple closed-form expression for the uniform velocity can’t be 

obtained, due to the non-integer exponents present inside Eq. (18). Accordingly, to compare the results with previous models, 

we solved Eq. (2) numerically, by using a finite difference method. The solution is shown in Fig. 1, for ߩ௦ =230 

2 300 ݇݃ ݉ିଷ, ௪ߩ = 1 000 ݇݃ ݉ିଷ, ߶ௗ = 35°, ܻ = 40, ߚ = 1, ܿ௕ = 0.65, ℎ = 1 ݉ and ߴ = 20°. For this combination, the 

uniform velocity is 2.77 ݉ ିݏଵ  and the characteristic time is 0.52 ݏ . Being a numerical solution, no expression for the 

characteristic time is available, and the time when the flow reaches 63% of the uniform velocity has been arbitrarily regarded 

as the characteristic time, in analogy with an exponential decay. Contrary to the rheological models studied so far, Bagnold’s 

model provides a uniform velocity for every choice of the parameters, when ߴ > 0 . The Sobol’s analysis has been repeated 235 

for the Bagnold’s rheology exploring the parameters range shown in Table 4, taken from literature (e.g. Stancanelli and Foti, 

2015). 

 ௦ ܿ௕ߩ ௗ߶ ܻ ߚ 

Range 0.1 − 100 1 − 50 20 − 45° 1 800 − 2 500 ݇݃ ݉ିଷ 0.4 − 0.65 

First-order index 0.95 0.01 9 ∙ 10ିହ 3 ∙ 10ି଺ 3 ∙ 10ି଺ 

Total-order index 0.98 0.04 5 ∙ 10ିସ 3 ∙ 10ିହ 10ିହ 
Table 4. Summary of the Sobol sensitivity analysis obtained with a fluid depth of ૚ ࢓ and a channel slope of ૛૙°.  

The indices of Table 4 show that the most important parameter is ߚ, which by itself is able to explain more than 90% of the 

variance, while the others show limited influence on the uniform velocity. Repeating the analysis for different values of ℎ and 240 

 shows little to no variation in terms of the computed sensitivity indices (both first- and total-order ones); therefore the indices ߴ

shown in Table 4 are representative for the whole spectrum of variation of ℎ and ߴ. Furthermore, considering the uniform 
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velocity distributions showed in Fig. 2 for the different rheological models it is possible to notice that the Bagnold rheology is 

characterized by a narrow field of variation of the velocity (0 −  ଵ) with respect to the other rheologies. This finding isିݏ ݉ 3

in line with other comparative works in literature (e.g. Stancanelli & Foti, 2015) where it is observed that FLO-2D (O’Brien 245 

rheology) can predict velocities during a general simulation which are considerably higher (1.5 −  ଵ) compared withିݏ ݉ 20

the TRENT2D (Bagnold rheology) ones (1 −    .ଵ) on the same simulationିݏ ݉ 2

3.5 Bingham’s rheology 

The Bingham’s (1922) rheology is another commonly adopted model for debris flow propagation (Malet et al. 2005; Begueria 

et al., 2009), implemented, for instance, inside the TELEMAC-2D software (TELEMAC-2D User Manual, 2017). The main 250 

assumption in the Bingham model of laminar flow regime of viscoplastic materials with a constant value of yield strength and 

viscosity is especially valid in flows with high fine fraction (Abraham et al., 2022). Using the shear stress equation reported in 

Coussot (1997), a simplified Bingham expression of shear stress has been used to derive the value of the friction slope term, 

as proposed by (Abraham et al., 2022): 

௙ܵ =
3 ߬௖

௠ ℎߛ 2 cos ߴ
+

ݑ ߟ 3
௠ℎଶߛ  cos ߴ

 (19) 

where ߬௖ [ܲܽ] is the constant yield strength due to cohesion of soil in the static case, [ݏ ܽܲ] ߟ  is the viscosity parameter and 255 

 ௠ [ܰ ݉ିଷ] is the specific weight of the mixture. Using the following coefficientsߛ

ܣ = 0; ܤ     = −
݃ ߟ 3

௠ℎଶߛ  cos ߴ
; ܥ     = ݃ sin ߴ −

3 ߬௖ ݃
௠ ℎߛ 2 cos ߴ

 (20) 

from Eq. (6) one can obtain the analytical solution 

(ݐ)ݑ = ஶݑ ቆ݁
ି ଷ ఎ ௚

 ఊ೘௛మ ୡ୭ୱ ణ ௧
− 1ቇ 

ஶݑ =
௠ℎଶߛ cos ߴ

ߟ 3
൬sin ߴ −

3 ߬௖

௠ ℎߛ 2 cos ߴ
൰ 

ܶ =
௠ℎଶߛ cos ߴ

݃ ߟ 3
 

(21) 

Finally, the flow will approach a terminal velocity if the quantity inside the brackets of Eq. (21) is positive, i.e. if 

sin ߴ cos ߴ >
3 ߬௖

௠ ℎߛ 2
 (22) 

providing a simple criterion to understand flow deceleration. Fig. 1 plots the analytical solution Eq. (21) using ߬௖ =

200 ܲܽ, ߟ = ,ݏ ܽܲ 90 ௠ߛ = 15 000 ܰ ݉ିଷ, ℎ = 1 ݉ and ߴ = 20°. After a characteristic time of 5.32 ݏ the flow reaches a 260 

velocity of 16.74 ݉ ିݏଵ  which is 63%  of the terminal velocity. Interestingly, the parameter ߬௖  does not influence the 

characteristic time of the flow, but only the terminal velocity. Table 5 shows the results obtained by performing Sobol’s 

sensitivity analysis in the range taken from Phillips and Davies (1991), properly extended due to lack of specific information 

regarding the simplified formulation adopted and using ℎ = 1 ݉ and ߴ = 20°. The indices highlight a high sensitivity of the 

uniform velocity to the viscosity ߟ, while the other parameters show negligible influence on the model’s output. This finding 265 

is consistent with what already found using the O’Brien rheology, i.e. that parameters that control viscosity strongly influences 

the uniform velocity. 
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 ௠ߛ ߬ ߟ 

Range 1 − 4 ∙ 10ଷ ܲܽ 0.1 ݏ − 5 ∙ 10ସ ܰ ݉ିଶ 16 − 23 ݇ܰ ݉ିଷ 

First-order index 0.82 3 ∙ 10ିଷ 10ିସ 

Total-order index 0.99 0.16 0.014 
Table 5. Summary of the Sobol sensitivity analysis, assuming a fluid depth of ૚ ࢓ and a channel slope of ૛૙°.  270 

Repeating the analysis for different values of ℎ and ߴ shows little to no variation in terms of the computed sensitivity indices 

(both first- and total-order ones). Accordingly the indices reported in Table 5 are representative of the whole spectrum of 

variation of ℎ and ߴ. 

4 Application and discussion 

The proposed analytical solutions can be applied to simplify the calibration of parameters when some insights on the expected 275 

debris flow velocity are available, as shown in the following with reference to the debris flow that occurred in the Blé basin in 

Valle Camonica valley, in the Central Italian Alps (Lombardia Region). On August 16, 2021, a debris flow was triggered by 

an intense rainfall of 40 mm in 1 hour, caused by a localized storm cell moving west to east (Berti et al., 2023). The event 

mobilized a total volume of about 60 000 ݉ଷ and travelled along the channel for about 2 kilometres before covering a local 

road with debris and boulders. A monitoring station (Berti et al., 2023) provided video footage of the debris flow through a 280 

known cross-section. 

 
Figure 5. Map view of the study area. The yellow dashed line highlights the computational domain used in this numerical simulation, 
the red dot illustrates the position of the recording station while the dashed blue line shows an enlargement of the inlet cross section 
(depicted in green) as well as the unstructured mesh adopted for the simulation. Locations A and B indicate the main areas where 285 
the debris flow deposited, (© Google Earth 2019). 

Using video footage and cross-section geometry, Berti et al. (2023) combined two free Matlab tools (PIVlab, Thielicke and 

René, 2021 and RiveR, Patalano et al., 2017) in order to estimate the peak flow velocity and discharge. The obtained peak 

flow velocity and discharge are 4.4 ݉ ିݏଵ and 224 ݉ଷ ିݏଵ respectively during the first surge and 5.4 ݉ ିݏଵ and 227 ݉ଷ ିݏଵ 

during the second one (Berti et al., 2023). Based on the volume of the event and peak discharge, the reconstructed solid 290 

hydrograph shown in Fig. 6 was adopted as a boundary condition. The two-peak structure of the hydrograph was obtained by 

fixing the peaks (both assumed of 227 ݉ଷ ିݏଵ for simplicity) as well as the time lag between the first surge and the second 
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one (about 2 minutes), with the constrain on the overall duration of the event of about 10 minutes. The Finite Volume SWE-

based numerical scheme presented in Bonomelli et al. (2023), adapted for mountain area applications (Bonomelli and Pilotti, 

2023; Bonomelli, 2024) was used to propagate the debris flow along the main channel of the catchment, with an unstructured 295 

triangular mesh consisting of 194 151 elements with an average distance of 1.63 ݉. The resolution of the available Digital 

Elevation Model (DEM) was 2 ݉. To show how the proposed methodology can be used to guide the calibration process, in 

the following we will use the two most used rheological models, i.e. Voellmy and O’Brien, to replicate the debris flow occurred 

in the Blé catchment.  

 300 

Figure 6. Solid discharge hydrograph used as a boundary condition for the Blé event. Two discharge peaks were observed during 
the event, approximately two minutes apart. This information, together with the total volume estimate provided, allowed to fix the 
shape of the hydrograph. A base flow of ૜૙ ࢓૜ ࢙ି૚ was assumed after the analysis of the available video footage. 

4.1 Calibration of the Voellmy model 

The Voellmy rheological model uses only two parameters: ߤ and ߦ: the first one is usually estimated using the local average 305 

slope in the main deposition area of the debris flow (locations A and B of Fig. 5), which has been evaluated to be around 14° 

based on the available DEM: accordingly, ߤ = 0.249. Eq. (17) provides a first guess estimate for ߦ, using the cross section 

geometry where the velocity was measured. Setting ݑஶ = ଵିݏ ݉ 5.4 , ℎ௔௩௘௥௔௚௘ ≈ 2 ݉ (Berti et al., 2023), ߤ = 0.249 and 

computing the average slope at the measuring station, i.e. ߴ ≈ 30°, one can obtain a first guess for ߦ  

ߦ =
ஶݑ

2

ℎ (sin ߴ − ߤ cos  (23) (ߴ

of about 52 ݉ ିݏଶ. The corresponding characteristic time, Eq. (17), is about 2 ݏ, confirming that the debris flow rapidly adjusts 310 

itself to the local slope and the idea of using a normal flow equation is reasonably grounded. Having determined two first-

guess values for the rheological parameters, the numerical simulation can be performed to assess whether the depositional 

depths and extent reasonably match the observed ones. The stopping criteria for propagation adopted by RAMMS (RAMMS 

manual, 2022) was implemented, which happened after 17 minutes of simulated time. Fig. 7 shows the simulated deposition 

map compared to the extent surveyed after the event (see the supplementary material for some photos of the event). The 315 

observed qualitative match is good and could be further improved to better reproduce the main characteristics of the event by 

exploring a neighbourhood of the two identified parameters.  
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Figure 7. Deposition map at the end of the simulation using the Voellmy model with ࣆ = ૙. ૛૝ૢ and ࣈ = ૞૛ ࢓ ࢙ି૛ (© Google Earth 
2019). 320 

Fig. 8 shows the computed velocity profile at the measuring station in correspondence of the peak during the simulation. Quite 

interestingly, the identified ߦ value, although obtained by a steady state formula, provides velocity during the transient process 

which are in the order of 5 −  ଵ, confirming the role of the small characteristic time and the effectiveness of the simpleିݏ ݉ 6

analytical law adopted. The same figure also shows the higher velocity profile that would be obtained if the same input 

hydrograph were routed with the same ߤ but with a blind initial guess of ߦ, selected in the middle of its documented range of 325 

variation.  

 
Figure 8. Peak flow velocity module at the measuring cross-section. The two profiles are obtained with the same ࣆ value but different 

 was obtained ࣈ was selected in the middle of its range of admissible values, while for red squares, the value of ࣈ ,For blue squares .ࣈ

using the proposed approach exploiting the available velocity measurement. 330 
 

Accordingly, the proposed approach provides an effective initial guess for the rheological parameters of the Voellmy’s model 

if a velocity measurement is available at a known cross-section, showing how a simple analytical law can speed up the 

calibration process. Finally, it is important to observe that another interesting use of Eq. (17) is as a uniform flow relation for 

the implementation of the inlet (or outlet) boundary condition (Hou et al., 2015) inside a numerical model. For instance, by 335 
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rearranging Eq. (17) for the Voellmy rheological model one can easily obtain the incoming discharge as a function of the fluid 

depth 

ܳ(ℎ) = ߦℎଷ/ଶ ට ܮ (sin ߴ − ߤ cos  (24)   (ߴ

where ܮ is the inlet cross section width and ߴ is the local channel inclination, which must exceed ߤ for the flow to occur.  

4.2 Calibration of the O’Brien model 

The second model considered is the widely used O’Brien model. Considering its multiparametric nature, Sobol’s analysis 340 

suggests that the most influential parameters in terms of the terminal velocity are ܥ௩,  ଵ and ݊. The Manning’s coefficient is aߚ

parameter frequently used in flood modelling therefore its value can be estimated according to the tabulated values existing in 

literature (e.g. Chow, 1959) and finding the best match by visual inspection. On this basis ݊ =  ଵ/ଷ was selected forି݉ ݏ 0.1

this simulation. The other parameters are less influential in terms of the terminal velocity and can be fixed around their default 

values without significantly affecting the computed velocities. Contrary to the Voellmy model, there is no direct way to use 345 

the local average slope of the main deposition areas to fix a particular parameter inside the rheological model. Eq. (14) regulates 

flow deceleration, but the presence of the fluid depth inside the relationship states that the flow will slow down depending on 

the fluid depth at which it is propagating, thus making it harder to obtain a proper constraint on the rheological parameters that 

mostly influence deposition. First of all, in Fig. 9 we show the deposition map obtained by running a numerical simulation in 

a “blind” way, by using a standard rheological set, i.e. “Aspen Pit 1” (O’Brien & Julien, 1988), without any information to 350 

guide the calibration process.  

 
Figure 9. Deposition map at the end of the simulation using the O’Brien model with the Aspen pit 1 parameters. ࢜࡯ = ૙. ૜૚૜, ૚ࢻ =
૙. ૙૙૜૟ ࢇࡼ ࢙, ૛ࢻ = ૙. ૙૚ૡ૚ ࢇࡼ, ૚ࢼ = ૛૛. ૚, ૛ࢼ = ૛૞. ૠ, ࢓ࢽ = ૛૟. ૞ ି࢓ ࡺ࢑૜, ࢔ = ૙. ૚ ࢙ ି࢓૚/૜ and ࡷ = ૛૛ૡ૞  (© Google Earth 
2019). 355 

As it can be noticed the debris flow is too fluid and flows out of the domain, contrary to field observations. Furthermore, Fig. 

12 shows the velocity profile computed at the recording station in correspondence of the second peak discharge, which is 

unrealistically high (around 10 ݉ ିݏଵ) when compared with the recordings (5.4 ݉ ିݏଵ). This is not surprising considering that 

no calibration has been performed other than fixing the Manning’s coefficient. As a following step, we propose to calibrate 

the remaining parameters suggested by the Sobol’s analysis by setting the terminal velocity showed in Eq. (12) at the 360 

monitoring station equal to the recorded one. Moreover, to make a direct comparison with the previous Voellmy example, we 

set the characteristic time in Eq. (13) equal to the characteristic time computed during the calibration of the Voellmy rheology, 
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i.e. ௏ܶ௢௘௟௟௠௬ ≈  This leads to a nonlinear system of two equations showed in Eq. (25) that can be solved numerically to . ݏ 2

find the parameter values, 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ௏ܶ௢௘௟௟௠௬ =

2

ඨ൬ ݃ ߟ ܭ
௠ℎଶ൰ߛ 8

ଶ
+ 4 ݃ଶ ݊௧

ଶ

ℎସ/ଷ ቀsin ߴ −
߬௬

 ௠ℎቁߛ

௦௧௔௧௜௢௡ݑ = ቎−
ߟ ܭ

௠ ℎଶߛ 8 + ඨ൬
ߟ ܭ

௠ℎଶ൰ߛ 8
ଶ

+ 4
݊௧

ଶ

ℎସ/ଷ ൬sin ߴ −
߬௬

௠ℎߛ
൰  ቏

ℎସ/ଷ

2݊௧
ଶ

 (25) 

and whose solution is ܥ௩ = 0.423 and ߚଵ = 20.5, which are then used to propagate the debris flow along the main channel 365 

using the same boundary condition and mesh of the previous simulation. By doing this, a great improvement is obtained on 

the velocity profile computed at the station (see Fig. 12, around 6.4 ݉ ିݏଵ), that is now much closer to the observed one 

 with respect to the previous simulation. However, the computed final deposition (see Fig. 10) shows only a limited (ଵିݏ ݉ 5.4)

improvement because the occurred debris flow does not flow out of the flooded area. Actually, one can observe that there is 

not a compelling reason to impose the same characteristic time obtained for the Voellmy rheology, as we did for comparison’s 370 

sake in the system (25). Considering that deposition is controlled by Eq. (14) in the O’Brien model, one can improve the pattern 

of the depositional area by changing the involved parameters, i.e. either ߙଶ or ߚଶ, which, in turn, do not affect the terminal 

velocity significantly according to the Sobol’s analysis. For instance,  Fig. 11 shows the deposition obtained by setting ߙଶ =

0.001 ܲܽ, which improves the previous simulation without altering significantly the velocity profile computed at the recording 

station (see Fig. 12). This example shows how it is possible to get to the neighbourhood of an acceptable and physical set of 375 

parameters in a few trials with the proposed approach. 

 

 
Figure 10. Deposition map at the end of the simulation using the O’Brien model with ࢜࡯ = ૙. ૝૛૜, ૚ࢻ = ૙. ૙૙૜૟ ࢇࡼ ࢙, ૛ࢻ =
૙. ૙૚ૡ૚ ࢇࡼ, ૚ࢼ = ૛૙. ૞, ૛ࢼ = ૛૞. ૠ, ࢓ࢽ = ૛૟. ૞ ି࢓ ࡺ࢑૜, ࢔ = ૙. ૚ ࢙ ି࢓૚/૜ and ࡷ = ૛૛ૡ૞ (© Google Earth 2019). 380 

It may be worthwhile to observe that with the O’Brien model the debris flow propagates out of the domain along the main 

channel regardless of the rheological set adopted, contrary to field observations. This behaviour is known and can be explained 

on the basis of Eq. (14) that shows that the critical yield stress to stop the motion increases with the flow depth, whereas in the 

Voellmy rheology this behaviour is mitigated by the constant friction term (see Eq. 15) which is independent from the fluid 

depth. Therefore, in the Voellmy rheology, a debris flow which encounters a slope which is less than its internal friction angle 385 

 will tend to slow down and deposit for any fluid depth. This is not true for the O’Brien rheology, where friction decreases ߤ

with the flow depth, contributing to a more fluid-like behaviour. 
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Figure 11. Deposition map at the end of the simulation using the O’Brien model with ࢜࡯ = ૙. ૝૛૜, ૚ࢻ = ૙. ૙૙૜૟ ࢇࡼ ࢙, ૛ࢻ =390 
૙. ૙૙૚ ࢇࡼ, ૚ࢼ = ૛૙. ૞, ૛ࢼ = ૛૞. ૠ, ࢓ࢽ = ૛૟. ૞ ି࢓ ࡺ࢑૜, ࢔ = ૙. ૚ ࢙ ି࢓૚/૜ and ࡷ = ૛૛ૡ૞ (© Google Earth 2019). 

 
Figure 12. Peak flow velocity module at the measuring cross-section. Aspen pit 1 rheological set is given by ࢜࡯ = ૙. ૜૚૜, ૚ࢻ =
૙. ૙૙૜૟ ࢇࡼ ࢙, ૛ࢻ = ૙. ૙૚ૡ૚ ࢇࡼ, ૚ࢼ = ૛૛. ૚, ૛ࢼ = ૛૞. ૠ, ࢓ࢽ = ૛૟. ૞ ି࢓ ࡺ࢑૜, ࢔ = ૙. ૚ ࢙ ି࢓૚/૜ and ࡷ = ૛૛ૡ૞ . Rheological set 1 is 
given by ࢜࡯ = ૙. ૝૛૜, ૚ࢻ = ૙. ૙૙૜૟ ࢇࡼ ࢙, ૛ࢻ = ૙. ૙૚ૡ૚ ࢇࡼ, ૚ࢼ = ૛૙. ૞, ૛ࢼ = ૛૞. ૠ, ࢓ࢽ = ૛૟. ૞ ି࢓ ࡺ࢑૜, ࢔ = ૙. ૚ ࢙ ି࢓૚/૜  and ࡷ =395 
૛૛ૡ૞ . Rheological set 2 is given by ࢜࡯ = ૙. ૝૛૜, ૚ࢻ = ૙. ૙૙૜૟ ࢇࡼ ࢙, ૛ࢻ = ૙. ૙૙૚ ࢇࡼ, ૚ࢼ = ૛૙. ૞, ૛ࢼ = ૛૞. ૠ, ࢓ࢽ =
૛૟. ૞ ି࢓ ࡺ࢑૜, ࢔ = ૙. ૚ ࢙ ି࢓૚/૜ and ࡷ = ૛૛ૡ૞. 

As a second observation, we mentioned above that in the O’Brien’s rheology the parameter ܭ always appears multiplied by 

 ଵ are not indipendent and can be considered as a single parameter. This property, that to ourߙ and ܭ ଵ in Eq. (12) and thusߙ

knowledge has so far passed unnoticed in the vast literature on FLO-2D and that contributes to limit the calibration effort, is 400 

clearly shown by the simple example of Fig. 13, where the 1D profile for a dam break problem on a dry inclined slope for a 

debris flow described by the O’Brien rheology is shown. The profile is shown 18 ݏ after starting from rest and is computed 

with two different parameters set. The first is the mentioned Aspen Pit 1 set and the second set is obtained from the first by 

switching the value of ܭ and ߙଵ. As one can observe, there is no detectable difference between the two simulations. It is 

interesting to observe that using FLO-2D in similar tests, some differences were observed between the simulations, possibly 405 

due to other numerical features of that code. 
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Figure 13. Numerical solution of a dam break problem on a sloping dry bed with O’Brien & Julien friction law. The initial condition 
is a constant fluid depth of ૚ ࢓ in the first ૚૙૙ ࢓, while completely dry elsewhere. Boundary conditions used are a constant fluid 
depth upstream and transmissive boundary conditions downstream. The snapshot depicts the numerical solution ૚ૡ ࢙ after release 410 
with two rheological sets: 1) Aspen Pit 1 and 2) Aspen Pit 1 with ࢻ૚ = ૛૛ૡ૞ ࢇࡼ ࢙ and ࡷ = ૙. ૙૙૜૟. The dashed black line in the 
bottom panel depicts the transient analytical solution for the flow velocity showed in Eq. (5). In the top panel the fluid depth has 
been enlarged for graphical purposes. 

5 Conclusions 

Although monophasic models like FLO-2D, RAMMS, HEC-RAS or TELEMAC-2D only provide a first-order approximation 415 

of the complex dynamics of debris flow propagation, they are widely used in practice and depend strongly on parameters that 

can be difficult to identify. This inevitably leads to a trial-and-error optimization that is computationally demanding. When the 

number of parameters grows too large, this calibration may become impossible. To limit these “blind” simulations, it is 

practically very useful to have some simple analytical relations like Eq. (12), (13), (17) and (21) that, in presence of field 

measurements or other evidence, can be used to evaluate the normal flow velocity for a given parameters set. This velocity is 420 

a physical constraint that can be compared to the one expected or observed in the field. The validity on the assumption of a 

normal flow condition can be locally supported by the comparison with the computed value of the characteristic time. This 

procedure is shown with reference to the Blé test case, where we tested the two most widely used monophasic models. Using 

the Voellmy model, one of the parameters, i.e. ߤ can be estimated knowing the average slope of the main areas where the 

debris flow deposited, as suggested in the literature, whereas the parameter ߦ can be fixed according to the terminal velocity 425 

constraint if such information is available. The O’Brien rheological model does not allow to completely fix each of the 

parameters on the basis of the information available in the presented test case. To make a comparative test, we fixed both the 

terminal velocity and the characteristic time to the same values provided by the calibrated Voellmy model, by focusing on the 

most important rheological parameters suggested by the Sobol’s sensitivity analysis. The results of the comparison show that 

for the Blé event, the Voellmy model predicts a more realistic deposition map with respect to the O’Brien model. For this 430 

model, we show how, starting from an ineffective standard parameterization, it is possible to significantly improve the 

performance of the model. The proposed equations (12), (13), (17) and (21) can also provide additional insights on the physical 

interplay between parameters, like the previously undocumented lack of observability of the O’Brien rheology with respect to 

ܭ  and ߙଵ . These two parameters appear only in a multiplicative fashion within the equations and, accordingly, can be 

considered as a single parameter (ߙ௞ =  reducing by one the degrees of freedom during the calibration process. The 435 ,(ܭ ଵߙ

Sobol’s sensitivity analysis is performed to highlight which parameters have a greater influence on the uniform velocity for 

each rheology, so further helping the calibration effort. Regarding the O’Brien rheology, the most influential parameters turn 

out to be ܥ௩ (silt concentration),  ଵ(exponential coefficient of the viscosity) and ݊ (Manning’s coefficient). For the Voellmyߚ

rheology each parameter is equally important. In the Bingham rheological model the viscosity parameter, i.e. ߟ, dominates the 

magnitude of the uniform flow velocity. In both O’Brien and Bingham models, the viscosity that appears in the linear term in 440 



19 
 

the velocity is very important. Finally, in the case of the Bagnold rheology, the most influential parameter in terms of the 

uniform velocity is the transport parameter, which traditionally is calibrated experimentally (Armanini et al., 2009). As stated 

by Zegers et al. (2020), “the development of computationally frugal methods to understand parameter interactions in 

environmental models emerges as an attractive avenue for future research”. Accordingly, our contribution moves in this 

direction: we believe that the proposed analytical solutions, along with the sensitivity analysis of the parameters involved, can 445 

be a significant help to guide the calibration of these numerical models. While our results are limited to the analysis of a stage-

discharge relation and of a characteristic time, so providing a single piece of information of a more complex picture, they are 

not confined to a particular case or geometry and accordingly have a wider applicability. Other possible uses of the proposed 

solutions (Eq. 12, 17 and 21) can be in the implementation of boundary conditions for numerical solver of monophasic models, 

in the computation of stage-discharge equations at a given cross-section (as showed in the Blé application, i.e. Eq. 24) or even, 450 

when coupled with a local mass balance, in the implementation of simplified kinematic routing schemes that could be used to 

provide back-of-the-envelope evaluations of the debris flow potential along the drainage network of a watershed.  

Code availability 

All software used in this research is available upon reasonable request to the authors. 

Data availability 455 

No datasets were used in this article. 

Author contribution 

RB and MP conceptualized the work, RB carried out the formal analysis and all authors contributed to write the paper, finally, 

GF reviewed and improved the paper. 

Competing interests 460 

The authors declare that they have no conflict of interest. 

Acknowledgements 

This research was accomplished within the project “Dynamics of debris flows in Val Camonica valley (Brescia): field 

monitoring of the Val Rabbia and Blé debris flow catchments”, funded by Regione Lombardia, Italy. We thank Prof. Berti for 

leading the experimental activities in the Blé creek that provided the value of the measured debris-flow discharge used in the 465 

paper. 

References 

Abraham, M. T., Satyam, N., Pradhan, B. and Tian, H.: Debris flow simulation 2D (DFS 2D): Numerical modelling of debris 

flows and calibration of friction parameters, JRMGE, 14 (6), 1747-1760, https://doi.org/10.1016/j.jrmge.2022.01.004, 2022. 

Armanini, A, Fraccarollo, L., Rosatti, G.: Two-dimensional simulation of debris flows in erodible channels, Comput. and 470 

Geosci, 35, 5, 993-1006, https://doi.org/10.1016/j.cageo.2007.11.008, 2009. 

Azzini, I., Mara, T. A. and Rosati, R.: Comparison of two sets of Monte Carlo estimators of Sobol’s indices, Environ. Model. 

Softw., 144, 105167, https://doi.org/10.1016/j.envsoft.2021.105167, 2021. 



20 
 

Bagnold, R. A.: Experiments on gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. 

Lond. A, 225(1160):49-63, https://doi.org/10.1098/rspa.1954.0186, 1954. 475 

Beguería, S., Van Asch, Th. W. J., Malet, J.-P., and Gröndahl, S.: A GIS-based numerical model for simulating the kinematics 

of mud and debris flows over complex terrain, Nat. Hazards Earth Syst. Sci., 9, 1897–1909, https://doi.org/10.5194/nhess-9-

1897-2009, 2009.  

Bernard, M., Barbini, M., Boreggio, M., Biassuzzi, K. and Gregoretti, C.: Deposition areas: an effective solution for the 

reduction of the sediment volume transported by stony debris flows on the high-sloping reach of channels incising fans and 480 

debris cones. Earth Surf. Process. Landf., 49, 2, https://doi.org/10.1002/esp.5727, 2023. 

Berti, M., Schimmel, A., Coviello, V., Venturelli, M., Albertelli, L., Beretta, L., Brardioni, F., Ceriani, M., Pilotti, M., Ranzi, 

R., Redaelli, M., Scotti, R., Simoni, A., Turconi, L. and Luino, F.: Characterization of a debris flow event using an affordable 

monitoring system, 8th International Conference on Debris Flow Hazard and Mitigation, Torino, 

https://doi.org/10.1051/e3sconf/202341503004, 2023. 485 

Bingham, E. C.: Fluidity and plasticity, McGraw-Hill, New York, 439, 1922. 

Boniello, M. A., Calligaris, C., Lapasin, R., and Zini, L.: Rheological investigation and simulation of a debris-flow event in 

the Fella watershed, Nat. Hazards Earth Syst. Sci., 10, 989–997, https://doi.org/10.5194/nhess-10-989-2010, 2010. 

Bonomelli, R., Farina, G., Pilotti, M., Molinari, D. and Ballio, F.: Historical comparison of the damage caused by the 

propagation of a dam break wave in a prealpine valley, J. Hydrol. Reg. Stud., 48, 101467, 490 

https://doi.org/10.1016/j.ejrh.2023.101467, 2023. 

Bonomelli, R. and Pilotti, M.: A multi-rheological finite volume scheme on unstructured grid for debris flow propagation, 15th 

Congress INTERPRAEVENT 2022 Taiwan, 2023. 

Bonomelli, R.: An enhanced modelling approach for debris flow inception and propagation, PhD thesis, 2024. 

Cesca, M. and D’Agostino, V.: Comparison between FLO-2D and RAMMS in debris-flow modelling: a case study in the 495 

Dolomites, Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flow II, WIT Press, 2008. 

Christen, M., Kowalski, J. and Bartelt, P.: RAMMS: numerical simulation of dense snow avalanches in three-dimensional 

terrain, Cold Reg. Sci. Technol., 63, 1-14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2014. 

Chow, V. T.: Open Channel Hydraulics. McGraw-Hill, New York, 1959. 

Coussot, P.: Mudflow Rheology and Dynamics, IAHR Monograph, 1997. 500 

Estrada, V. and Diaz, M. S.: Global sensitivity analysis in the development of first principle-based eutrophication models. 

Environ. Model. Softw., 25, 1539-1551, https://doi.org/10.1016/j.envsoft.2010.06.009, 2010. 

Hergarten, S. and Robl, J.: Modelling rapid mass movements using the shallow water equations in Cartesian coordinates, Nat. 

Hazards Earth Syst. Sci., 15, 671–685, https://doi.org/10.5194/nhess-15-671-2015, 2015.  

Hou, J., Liang, Q., Zhang, H. and Hinkelmann, R.: An efficient unstructured MUSCL scheme for solving the 2D shallow water 505 

equations, Environ. Model. Softw., 66, 131-152, https://doi.org/10.1016/j.envsoft.2014.12.007, 2015 

Hungr, O.: Analysis of debris flow surges using the theory of uniformly progressive flow, Earth Surf. Process. Landf., 25, 483-

495, https://doi.org/10.1002/(SICI)1096-9837(200005)25:5<483::AID-ESP76>3.0.CO;2-Z, 2000. 

Hürlimann, M., Coviello, V., Bel, C., Guo, X., Berti, M., Graf, C., Hübl, J., Miyata, S., Smith, J. B., Yin, H., Debris-flow 

monitoring and warning: Review and examples, Earth-Science Reviews, Volume 199, 102981, ISSN 0012-8252, 510 

https://doi.org/10.1016/j.earscirev.2019.102981, 2019. 

Iverson, R. M., The physics of debris flows, Reviews of Geophysics, 35, 3, https://doi.org/10.1029/97RG00426, 1997. 

Kelfoun, K., Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout 

volcanic avalanches, J. Geophys. Res., 116, B08209, https://doi.org/10.1029/2010JB007622, 2011. 

Lanzoni, S., Gregoretti, C. and Stancanelli, L. M.: Coarse-grained debris flow dynamics on erodible beds, J. Geophys. Res. 515 

Earth Surf, 122, 592-614, https://doi.org/10.1002/2016JF004046, 2017.  



21 
 

Lin, J. Y., Yang, M. D., Lin, B. R. and Lin, P. S.: Risk assessment of debris flows in Songhe Stream, Taiwan, Eng. Geol., 123, 

100–112, https://doi.org/10.1016/j.enggeo.2011.07.003, 2011.  

Malet, J. P., Laigle, D., Remaître and Maquaire, O.: Triggering conditions and mobility of debris flows associated with 

complex earthflows, Geomorphology, 66, 215-235, https://doi.org/10.1016/j.geomorph.2004.09.014, 2005. 520 

Medina, V., Hürlimann, M. and Bateman, A.: Application of FLATModel, a 2D finite volume code, to debris flows in the 

northeastern part of the Iberian Peninsula, Landslides, 5, 127-142, https://doi.org/10.1007/s10346-007-0102-3, 2007. 

Nishimura, K. and Maeno, N.: Contribution of viscous forces to avalanche dynamics, Ann. Glaciol., 13, 1989. 

Nossent, J., Elsen, P. and Bauwens, W.: Sobol sensitivity analysis of a complex environmental model, Environ. Model. Softw., 

26, 1515-1525, https://doi.org/10.1016/j.envsoft.2011.08.010, 2011. 525 

O'Brien, J. S. and Garcia, R.: FLO-2D Reference manual, available at: https://www.flo-2d.com/ (last access: 1 March 2019), 

2009.  

O’Brien, J. S., Julien, P. Y. and Fullerton, W. T.: Two-dimensional water flood and mudflow simulation, J. Hydraul. Eng, 

ASCE, 119(2), 244-259, https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244), 1993. 

O’Brien, J. S. and Julien, P. Y.: Laboratory analysis of mudflow properties, J. Hydraul. Eng., 114, 8, 530 

https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877), 1988. 

Pappenberger, F., Bartholmes, J., Thielen, J., Cloke, H. L., Buizza, R. and de Roo, A.: New dimensions in early flood warning 

across the globe using grand-ensemble weather predictions, Geophys. Res. Lett., 35, 10, 

https://doi.org/10.1029/2008GL033837, 2008. 

Patalano, A., Garcia, C. M. and Rodriguez, A.: Rectification of image velocity results (RIVeR): A simple and user-friendly 535 

toolbox for large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), Comput. 

Geosci., 109, 323-330, https://doi.org/10.1016/j.cageo.2017.07.009, 2017. 

Perla, R., Cheng, T. T., and McClung, D. M.: A two–parameter model of snow–avalanche motion, J. Glaciol., 26 (94), 197–

207, https://doi.org/10.1017/s002214300001073x, 1980. 

Pitman, E. B. and Le, L.: A two-fluid model for avalanche and debris flows, Philos. Transact. A Math. Phys. Eng. Sci., 363, 540 

1573–1601, https://doi.org/10.1098/rsta.2005.1596, 2005. 

Phillips, C. J. and Davies, T. R. H.: Determining rheological parameters of debris flow material, Geomorphology, 4, 101-110, 

https://doi.org/10.1016/0169-555X(91)90022-3, 1991. 

Pudasaini, S. P. and Hutter, K.: Avalanche dynamics, Springer Berlin, 2007. 

Pudasaini, S. P. and Mergili, M.: A multi-phase mass flow model. J. Geophys. Res. Earth Surf. 124, 2920–2942, 545 

https://doi.org/10.1029/2019JF005204, 2019. 

Pudasaini, S. P. and Fischer, J. T.: A mechanical erosion model for two-phase mass flows, Int. J. Multiph. Flow 132, 103416, 

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103416, 2020. 

Pudasaini, S. P. and Krautblatter, M.: The landslide velocity, Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-

10-165-2022, 2022. 550 

RAMMS::DEBRISFLOW User Manual: A numerical model for debris flows in research and practise, 2022. 

Rickenmann, D., Laigle, D., McArdell, B.W. and Hübl, J.: Comparison of 2D debris-flow simulation models with field events, 

Comput. Geosci., 10, 241-264, https://doi.org/10.1007/s10596-005-9021-3, 2006. 

Rosatti, G. and Begnudelli, L.: Two-dimensional simulation of debris flows over mobile bed: Enhancing the TRENT2D model 

by using a well-balanced Generalized Roe-type solver, Comput. Fluids, 71, 179-195, 555 

https://doi.org/10.1016/j.compfluid.2012.10.006, 2013. 

Salm, B.: Contribution to avalanche dynamics, international association of scientific, hydrology publication 69 (Symposium 

at Davos 1965—Scientific aspects of snow and ice avalanches), pp 199–214, 1966. 



22 
 

Salm, B.: Flow, flow transition and runout distances of flowing avalanches, Ann. Glaciol., 221-226, 

https://doi.org/10.3189/S0260305500011551 , 1993. 560 

Saltelli, A. and Annoni, P.: How to avoid a perfunctory sensitivity analysis, Environ. Model. Softw., 25, 1505-1517, 

https://doi.org/10.1016/j.envsoft.2010.04.012, 2010. 

Saltelli, A.: Sensitivity Analysis for Importance Assessment. Risk Analysis, 22, 3, 2002. 

Sobol, I. M.: Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and Computational 

Experiments, 4, 407-414, 1993. 565 

Sauthier, C., Pirulli, M., Pisani, G., Scavia, C. & Labiouse V.: Numerical modelling of gravel unconstrained flow experiments 

with the DAN3D and RASH3D codes, Comput. Geosci., 85, 81-90, https://doi.org/10.1016/j.cageo.2015.09.008, 2015. 

Sosio, R., Crosta, G. B. and Frattini, P.: Field observations, rheological testing and numerical modelling of a debris flow event, 

Earth Surf. Process. Landforms, 32, 290-306, 2007. 

Sorooshain, S. and Gupta, V. K.: Automatic calibration of conceptual rainfall-runoff models: the question of parameter 570 

observability and uniqueness, Water Resour. Res., 19, 260-268, https://doi.org/10.1029/WR019i001p00260, 1983. 

Stancanelli, L. M. and Foti, E.: A comparative assessment of two different debris flow propagation approaches – blind 

simulations on a real debris flow event, Nat. Hazards Earth Syst. Sci., 15, 735–746, https://doi.org/10.5194/nhess-15-735-

2015, 2015.  

Takahashi, T.: Debris flow IAHR Monographs, CRC Press, 1991. 575 

Takahashi, T.: Mechanical characteristics of debris flow, J. Hydraul., 104, 8, https://doi.org/10.1061/JYCEAJ.0005046, 1978. 

TELEMAC-2D User Manual, EDF-R&D, http://www.opentelemac.org, 2017. 

Thielicke, W. and Sonntag, R.: Particle image velocimetry for Matlab: Accuracy and enhanced algorithms in PIVlab, J. Open 

Res. Softw., 9, 1, 12, https://doi.org/10.5334/jors.334, 2021. 

US Army Corps of Engineers: HEC-RAS, River Analysis System, Hydrologic Engineering Center, Mud and Debris Flow, 580 

https://www.hec.usace.army.mil/confluence/rasdocs/rasmuddebris, 2023. 

Voellmy, A.: Ueber die Zerstoerungskraft von Lawinen, Schweiz. Bauzeitung, 73, 159-162, 1955. 

Wang, T., Yin, K., Li, Y., Xiao, C., Zhu, H. & Westen C. W.: Physical vulnerability curve construction and quantitative risk 

assessment of a typhoon-triggered debris flow via numerical simulation: A case study of Zhejiang Province, SE China, 

Landslides 21, 1333–1352, https://doi.org/10.1007/s10346-024-02218-8, 2024.  585 

Wu, Y. H., Liu, K. F, Chen, Y. C.: Comparison between FLO-2D and Debris-2D on the application of assessment of granular 

debris flow hazards with case study. J. Mountain Res., 10, 293-304, https://doi.org/10.1007/s11629-013-2511-1, 2013. 

Zegers, G., Mendoza, P. A., Garces, A., and Montserrat, S.: Sensitivity and identifiability of rheological parameters in debris 

flow modeling, Nat. Hazards Earth Syst. Sci., 20, 1919–1930, https://doi.org/10.5194/nhess-20-1919-2020, 2020. 


