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8 Abstract: Accurately modeling and predicting flood flows across multiple sites within a watershed

9 presents significant challenges due to potential issues of insufficient accuracy and excessive
10 computational demands in existing methodologies. In response to these challenges, this study introduces
11 a novel approach centered around the use of vine copula models, termed RDV-Copula (Reduced-
12 dimension vine copula construction approach). The core of this methodology lies in its ability to integrate
13 and extract complex data information before constructing the copula function, thus preserving the
14 intricate spatial-temporal connections among multiple sites while substantially reducing the vine copula's
15 complexity. This study performs a synchronization frequency analysis using the devised copula models,
16 offering valuable insights into flood encounter probabilities. Additionally, the innovative approach
17 undergoes validation by comparison with three benchmark models, which vary in dimensions and nature
18 of variable interactions. Furthermore, the study conducts stochastic simulations, exploring both
19 unconditional and conditional scenarios across different vine copula models. Applied in the Shifeng
20 Creek watershed, China, the findings reveal that vine copula models are superior in capturing complex
21 variable relationships, demonstrating significant spatial interconnectivity crucial for flood risk prediction
22 in heavy rainfall events. Interestingly, the study observes that expanding the model's dimensions does
23 not inherently enhance simulation precision. The RDV-Copula method not only captures comprehensive
24 information effectively but also simplifies the vine copula model by reducing its dimensionality and
25 complexity. This study contributes to the field of hydrology by offering a refined method for analyzing
26 and simulating multisite flood flows.
27
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29 1  Introduction

30 Floods are the most frequent natural disaster, inflicting substantial economic losses, environmental
31 degradation and human casualties (Teng et al., 2017). As is reported by Centre for Research on the
32 Epidemiology of Disasters (CRED), floods represented 45.6% of worldwide natural disasters in 2022,
33 affecting an average of 57.1 million people annually (CRED,2023). The data also indicated a 4.76%
34 increase in flood occurrences in 2022 compared to the annual average from 2002 to 2021(CRED,2023).
35 Therefore, it is very meaningful and essential to analyze flooding and achieve flood risk control. At the
36 watershed scale, flood risk is primarily influenced by rainfall patterns and interconnections among sub-
37  watersheds. Large floods often result from the amalgamation of floods from multiple sub-watersheds
38 (Prohaska and Ilic, 2010). Concurrent flood events cause runoff from various sources to merge, forming
39 large floods that pose threats to downstream regions. As a result, analyzing the runoff at various sites not
40 only provides a better understanding of the flood characteristics within the watershed, but also contributes
41 to the development of flood control programs to avoid flood risks.

42 There are currently many techniques for analyzing hydrological variables. Common univariate
43 methods include statistical analyses such as frequency analysis (Stedinger et al., 1993), extreme value
44 theory (Coles, 2001), and time series analysis methods like the Autoregressive Integrated Moving
45 Average (ARIMA) model (Box et al., 2013). However, univariate analyses often fall short in accurately
46 estimating the risks associated with extreme events due to their inability to account for the
47 interdependence of variables (Khan et al., 2023). This oversight can lead to significant underestimation
48 or overestimation of risks, particularly given the inherent relationships among variables within a
49 catchment. To address the complexity of these relationships across multiple variables, researchers have
50 turned to multivariate analysis techniques. Methods such as Autoregressive (AR) models are utilized for
51 analyzing temporal correlations (Box et al., 2013), while spatial relationships can be examined using
52 techniques like geostatistical methods (Isaaks and Srivastava, 1989), spatial regression models (Bekker
53 and Wansbeek, 2001), Copula functions (Sklar, 1959) and Bayesian hierarchical models (Gelman et al.,
54 2013). However, these methods have their limitations. AR models, while effective for temporal analysis,
55 do not account for spatial dependencies. Geostatistical methods and spatial regression models focus
56  primarily on spatial relationships but may struggle with temporal dynamics. Bayesian hierarchical

57 models can handle complex dependencies but often involve high computational demands and require
2



https://doi.org/10.5194/egusphere-2024-2266
Preprint. Discussion started: 12 August 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

58 substantial prior information. In contrast, copula functions offer substantial advantages when dealing
59  with multivariate spatial-temporal relationships. They provide a flexible framework for modeling
60 dependencies between variables without assuming a specific marginal distribution, allowing for a more
61 accurate representation of complex interdependencies. Later adopted in hydrology by De Michele and
62 Salvadori (2003), copula functions link multidimensional probability distribution functions to their one-
63 dimensional margins, preserving both the dependence structure and the distinct distribution
64  characteristics of random variables (Tosunoglu et al., 2020). Copula function is widely applied in
65 hydrological fields, including the joint frequency analysis (Liu et al., 2018; Zhang et al., 2021), water
66 resources management (Gao et al., 2018; Nazeri Tahroudi et al., 2022), wetness-dryness encountering
67 (Wang et al., 2022; Zhang et al., 2023), flood risk assessment (Li et al., 2022; Tosunoglu et al., 2020;
68 Zhong et al., 2021) , water quality analysis (Yu et al., 2020; Yu and Zhang, 2021), precipitation model
69 (Gao et al., 2020; Nazeri Tahroudi et al., 2023; Tahroudi et al., 2022) and so on.

70 Despite the broad application of conventional copula functions to create joint distributions for
71 multiple variables, their capacity to accurately represent high-dimensional realities is constrained. This
72 limitation arises from their reliance on a single parameter to describe correlations and a simplistic
73 approach to model the dependence structure between variables (Aas et al., 2009; Daneshkhah et al., 2016).
74 To overcome these limitations, Bedford and Cooke (2002) proposed a reliable way called Vine Copula
75 to construct complex multivariate models with high dependency. Vine copula construction relies
76 exclusively on the principle of breaking down the complete multivariate density into a series or simple,
77 foundational components through conditional independence or pair-copula constructs. There are two
78 main types of vine structures: C-Vine and D-Vine (Brechmann and Schepsmeier, 2013). The former
79 presents star-shaped configurations, while the latter displays path-like structures, providing enhanced
80 flexibility in constructing the joint distribution of multiple variables by enabling the use of different types
81 of bivariate copulas for each pair, thus accommodating a diverse range of dependency structures (Aas et
82 al., 2009; Cekin et al., 2020).

83 Vine copulas are increasingly applied in hydrological studies to model complex relationships among
84 multiple variables. For instance, Ahn (2021) developed a D-vine copula-based model to estimate flows
85 in catchments with limited or partial gauging, focusing on the temporal relationship of runoff at a specific

86 site. This model employed a six-dimensional copula structure centered around annual runoff, using
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87 conditional simulation to compensate for missing data. Wang et al. (2022) explored the joint distribution
88 of multi-inflows to assess wetness-dryness conditions, highlighting spatial interconnections across three
89 water systems but ignoring the temporal influences within each system on the overall assessment. Unlike
90 the above studies, Xu et al. (2022) developed a stepwise and dynamic C-vine copula-based conditional
91 model (SDCVC) to incorporate the non-stationarity into a monthly streamflow prediction. This model
92 synthesizes the temporal and spatial relationships at multiple sites, developing a four-dimensional C-vine
93 copula for dual-site monthly streamflow forecasts. The term "four dimensions" relates to the categories
94 of variables involved, such as rainfall, downstream station streamflow, among others. Integrating
95 temporal and spatial relationships in copula construction allows for a more comprehensive data inclusion,
96 facilitating enhanced modeling of complex inter-variable relationships. However, challenges arise as the
97 number of sites or the analysis period extends, leading to increased complexity and dimensionality of the
98 copula function. This complexity can complicate the copula's structure determination, inflate
99 computational demands during parameter fitting, and potentially diminish the accuracy of stochastic
100 simulations. To bridge this gap, this study aims to propose a new approach to achieve dimensionality
101 reduction while ensuring the complete access of spatial-temporal relationships for multiple sites. The
102  primary focus is to filter effective information to fully incorporate runoff data from each site and mitigate
103 the complexity of the vine copula function, thereby preventing poor model fitting due to increased
104  computational effort.
105 Moreover, understanding the spatial and temporal relationships of runoff across multiple sites within
106 a catchment is essential for effective flood control and water resources management. Synchronization
107  probability analysis and stochastic simulation of streamflow sequences play a pivotal role in these
108 processes (Chen et al., 2015). The terminology used to describe the encounter situations of wetness and
109 dryness varies; an asynchronous event refers to a scenario where such encounters do not occur
110 simultaneously, whereas both wetness-wetness and dryness-dryness encounters are considered
111 synchronous events. These encounters exist not only in diversion projects and multi-source water supply
112 systems, but also in main streams and tributaries at a watershed scale. They offer invaluable insights into
113 the spatial and temporal distribution of water resources, aiding in the preparation for anticipated future
114 events (Szilagyi et al., 2006). Copula-based simulation was first discussed in the study of Bedford and

115 Cooke (2001;2002). Subsequently, as more studies have been conducted, copula-based modeling and
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116 simulation models for hydrological variables have demonstrated high performance (Gao et al., 2021;
117 Huang et al., 2018; Tahroudi et al., 2022). Utilizing stochastic simulation to generate sets of runoff
118 sequences from multiple sites not only allows for a more progressive test of the effectiveness of the vine
119 copula function in fitting the relationship, but also provides a data base for flood control scheduling in
120  making decisions.

121 The basic task of this study is to construct the relationship functions of runoff across multiple sites
122 within a catchment using the vine copula. By leveraging the copula model, the frequency of flood
123 encounters for multiple runoffs is calculated to further analyze the intrinsic spatial and temporal
124 relationship characteristics. Addressing the challenge of dimensionality disaster caused by excessive
125 variables, this study proposes a novel approach to reduce the dimensionality by filtering the effective
126 information under the premise of fully incorporating the runoff information from each site. This approach
127 makes it possible to access the spatial and temporal relationships of runoff from multiple sites in the
128 catchment more accurately and efficiently. In addition, more reality-oriented simulation results can be
129 obtained, which provide statistical support for flood control and scheduling decision-making.

130 This paper is structured as follows: Section 2 outlines the proposed methodology's framework.
131 Section 3 presents the application of this methodology through a case study. The results are detailed in
132 Section 4, while Section 5 provides a thorough analysis and discussion of the results. Finally, Section 6

133 concludes the paper by summarizing the principal conclusions.

134 2 Methodology

135 The framework of this study is shown in Figure 1. This Section focuses on constructing and applying
136 multivariate joint distribution functions based on the vine copula function. It is divided into two cases:
137  one considering only spatial relations and the other combining spatial and temporal relations. Utilizing
138  the data characteristics, it describes how to build a vine copula function based on multiple variables and
139 details the processes of synchronization frequency analysis and stochastic simulation with the
140 constructed vine copula function. Additionally, it presents a new approach called the reduced-dimension

141  vine copula (RDV-Copula).
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143 Figure 1. Framework of proposed methodology

144 2.1 Joint distribution of multiple variables

145 Before identifying the dependence relationships among multi-variables, their correlations need to be
146 analyzed and judged. Kendall's correlation coefficient, a nonparametric statistic, serves to measure the
147 correlation degree between two variables, making it suitable for nonlinear relationships and categorical
148  variables. In this study, vine copula functions are constructed to achieve synchronization frequency and
149 stochastic simulation of multiple streamflow sequences. To more accurately simulate the temporal and
150 spatial relationships, the correlations among multi-site streamflow series are determined by calculating

151 the Kendall correlation coefficients.

152  2.1.1Marginal distribution function

153 To build the dependence structure of hydrological variables using copulas, it is essential to determine the
154  marginal distribution of each variable first. Given that the marginal distribution function for each
155 characteristic variable is not predetermined and the skewness of their probability distributions varies

156 (Zhong et al., 2021), it becomes crucial to consider multiple marginal distribution functions as candidates.
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157 In this study, a comprehensive comparison is conducted among 12 commonly utilized distributions
158  (Tosunoglu, 2018), including Gamma distribution (gamma), Exponential distribution (exp), Pearson-III
159 distribution (p3), Generalized extreme value distribution (gev), Inverse gaussian distribution (invgauss),
160 Normal distribution (norm), Logistic distribution (logis), Log-normal distribution (Inorm), Log-logistic
161  distribution (llogis), Generalized pareto distribution (gpd), Weibull distribution (weibull) and Gumbel
162 distribution (gumbel). According to the goodness-of-fit test and AIC minimum criterion, the optimal
163 distribution functions are selected as the marginal functions of the characteristic variables. The specific
164 details of different distributions, such as the probability distribution function and the respective

165  parameters, are displayed in Appendix A.
166  2.1.2Vine copula function theory

167 Copula functions, first introduced in 1959, represent a multivariate joint probability distribution function
168 within the unit square [0, 1], featuring uniform marginal distributions. According to Sklar’s theorem
169 (Sklar, 1959), for a multivariate random variable x4, x,, x3,**» X4, there exist marginal distributions
170 uy = fi(x1), uy = fo(x2), uz = f3(x3),"**,uq = f4(x4) and joint distribution f(xy,x,,x3,*,%Xg),

171 then there exists a copula function Cy such that

Y2 x5, %) = Col G, o), fara)] = Coluty, g, o+, ug) M
173 If fi(x1), fo(x2), *+, fa(xq) are continuous functions, then C is unique. 6 represents an
174  explicit parameter to the function.

175 The multivariate conditional density function can be represented as:

16 £ty = Cono, (Flv ) F(ylvo)) £(lvy) @
177 where v; denotes a component of the n-dimensional vector v, while v_; denotes the (n-1)-dimensional

178 vector with v; removed.

179 The term f(x|v) in each conditional density function can be denoted as:
180 9, fv_ (FEV-)F(vslv-)
F(xlv) = 1= 3)
) Fvjlv-j)
181 The copula function, essentially, acts as a transformation function that connects the joint distribution

182 of multiple variables to the marginal distributions. There are a number of alternative copula families that
183 can be selected for the construction of modeling dependence, such as Gaussian copula, t-copula, Clayton

184  copula, Gumbel copula, Frank copula and so on. However, the construction of high-dimensional copula
7
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185 functions is often constrained by parameter limitations and computationally demanding. Bedford and
186 Cooke (2002) introduced a more advanced and flexible alternative method of constructing the
187 dependence structure called Vine Copula. Also later called pair-copula construction by Aas et al. (2009),
188 vine copulas decompose the joint density function into a cascade of building blocks of the bivariate
189 copulas. Assuming that there are d variables given to us, it is possible by this method to decompose the
190  d-dimensional joint distribution into d(d — 1)/2 pair copulas densities. In vine copula structure, the
191  vine consists of a series of trees, nodes, and edges. The trees represent the layers. Each layer contains
192 several nodes and the connections between the nodes are called the edges. The nodes in the first tree
193 represent the marginal distributions of each variable. Each edge represents a pair-copula joint distribution
194  function of two adjacent nodes. The edges in each tree, except the last tree, are used as nodes in the next
195 tree. There are two subsets of regular vines in commonly use: canonical vines (C-vines) and drawable
196  vines (D-vines). Both types of vine-copula have their own specific way of decomposing the density
197  function.

198 C-vine is suitable for structures with a key variable that has a significant correlation with the
199 remaining other variables. However, in D-vine structure, each node is linked to at most two edges. The
200 order of dependencies between variables can be determined by one after the other. The expressions for

201  the n-dimensional joint probability density of C-vine and D-vine are shown in Equations (4) and (5).
202 _ [rjd-1774-J N C-vi 4
fOo,xq) = [Hj:l i=1 Cj,j+1|1,...,j_1] [Hk:lfk(xk)] (C-vine) 4)

_ d—j .
203 £, xa) = ST o pin i) - [MTiea fi(xi)] (D-vine) ®)
204 where c¢() refers to the bivariate copula with index i running over the edges for each tree and index j

205  identifying the trees, fi(x;) denotes the marginal density.
206 2.2 Estimation of inflow synchronization frequency

207 A distinct advantage of the copula method lies in its precision in analyzing inflow encounter probabilities
208 and conditional probabilities. In this study, a synchronization event is defined as the simultaneous
209 occurrence of inflows of similar magnitudes from multiple sites. We categorize the flow into three levels:
210 high, medium, and low. The frequencies associated with high-water and low-water events are setas P, =
211 37.5% and P, = 62.5%. It is assumed that there is a generalized reservoir group scheduling system, as

212 shown in Figure 2. The system encompasses N reservoirs and M flood control cross sections.
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214 Figure 2. Schematic diagram of the generalized system in the catchment
215 We can generalize all reservoirs and cross-sections to multiple sites within the watershed system.

216 Each of these sites may be exposed to incoming flows when rainfall occurs. Let X,, and X, be the
217 amounts of water corresponding to P, and Py, respectively. X; > X, corresponds to high-water (H),
218  X; < Xp; corresponds to low-water (L), and X,,; < X; < Xp,), corresponds to medium-water (M), where
219  X; denotes the inflow of day i .

220 Let the inflows of the different sites be represented by X1, X2 X3,... XNtM
221 Xpp, XZn, X3n, -, Xpu™ represent the amounts of inflow corresponding to the high-water of these

222 different sites respectively. Meanwhile, Xll,Xzfl,X3

b pl,m,XzI,VfM represent the amounts of inflow

223 corresponding to the low-water of these different sites respectively. The marginal distribution functions
224 are ul,u? ul, -, uN*tM, respectively.

225 The number of possible inflow-state combinations increases with the number of sites, directly tied
226 to the three distinct states (High/Medium/Low) identified for each site. For instance, with just two sites,
227 there are nine unique combinations. The number of combinations expands to 27 for three sites, 81 for
228 four sites, and 243 for five sites. The pattern continues similarly for additional sites. Take the
229  combinations of four sites as an example, following the copula theory, P(X! < x1,X2 < x2) =
230  f@hu?)=C@'u?) and P(X >x) =1— P(X < x) , the probability formulas of synchronization

231 are derived as below.

232 (1) The probability of synchronized high-water is as follows:
P(XY > Xpn X2 > X2, X3 > X3, X4 > X)) = 1 —upy, —udy, —ud, —upy
233 +C (wpn upn) + € (pn tpn) + € (o wpn) + € (Wpn upn) + € (g )

(6)

+C(upn upn) = € (wpn o pn) = € (o U wpn) = € (Upns Upns gn)
—C(uf,h, udp, ugh) + C(uzl,h, ulp, udp, ugh)

234 (2) The probability of synchronized medium-water is as follows:
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P=(Xp < X' <Xhp X2 < X< X2, X3 < X3 <X, Xy < X* < X})
= C(u;h-ufm' ugnluéh) - C(u;h-ufm- ulp, ufn) - C(uz}zh' Upn ugl'ugh)
—C(u;,h, uzzzlvughv uén) - C(“;zruﬁn' u?,h, u‘;h) + C(uglm' uih.uiz,uﬁz)
235 +C(u},h, Uz, Upp, uzl) + C(u;l,uf,h, ulp, ugl) + C(u},h, uﬁl,ugl,ugh) @)
+C(upp upn upn upn) + C(upn ufs wpn, upn) = € (upn uje wpn, 1)
=C(upr uin upn upt) = C(upp up upn upr) — € (upr, ufs w1, upn)
+C (upp udy, ud, upy)

236 (3) The probability of synchronized low-water is as follows:

237 P(X' < X1, X2 < X2, X3 < X3,X* < X}) = C(ub, w2, ud,uby) ®)

238 2.3 Stochastic simulation based on RDV-Copula functions

239  2.3.1Reduced-dimension vine copula construction approach (RDV-Copula) for multi-variate

240 To construct joint distribution functions for multiple variables that encapsulate both temporal and spatial
241 relationships, it is essential to incorporate a comprehensive range of information to efficiently capture
242  the interconnections among variables.

243 Using the flow at N points within a catchment as an example, the relationships among the flows
244 are analyzed. Given that these points reside within the same geographical region, it's highly likely that
245 they are spatially related and the strength of the relationship is negatively correlated with spatial distance.
246 Additionally, each site exhibits temporal correlations, such as the relationship between today's flow and
247 that of the previous day(s), although for simplicity, this analysis assumes relevance only between
248 consecutive days' flows. Incorporating both temporal and spatial dimensions into the analysis implies
249 that for " N" sites, there should ideally be "N + N" variables considered in constructing the copula
250  function. As the number of sites grows, it simultaneously elevates the dimensionality of the copula,
251 leading to increasingly complex structures. This complexity not only escalates computational efforts but
252 also presents significant challenges in accurately fitting the model. To address this issue, our study
253 introduces a novel methodology termed the Reduced-Dimension Vine Copula Construction Approach
254  (RDV-Copula). This strategy aims to distill essential spatial-temporal information, thereby reducing the
255 vine copula function's dimensionality to simplify the model structure.

256 The primary goal of this approach is to pinpoint the crucial variables necessary for effectively and
257 efficiently representing the spatial-temporal relationships among different sites. The process begins by

258 identifying variables to capture spatial relationships, under the assumption that the spatial relationships

10
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remain stable over short periods. Consequently, the current day's flows across all sites are selected as
spatial variables, totaling N. Subsequently, the Kendall correlation coefficient between the current and
previous day's flows is computed for each site, with the values ranked in descending order. The site with
the highest Kendall coefficient is deemed the most temporally correlated, and its previous day's flow is
also chosen as a key variable for the vine copula construction. Flows from the previous day at other sites
are excluded from being key variables. Ultimately, this approach selects “N 4+ 1 key variables,
achieving an effective representation of spatial-temporal relationships while minimizing variable count.

The schematic diagram of the process is shown in Figure 3.

Current day (t) 1) 1) 21 21 3() 3(t1) N(b) N(t-1)
1 2 3 n._ e N & 1 10
062 | 1 1(t-1)
I 077 | 073| 2 2(t)
Previous day (t-_l)_ FAmEN
. ™ 054 | 0.65¢ 0.86 2 2(t-1)
1 0 2 7 3 e no e N S
. H
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1 2 ol ... n e N 2 071 | 078 | 050 | 0.64 | 066 | 053 | 066 | N [N(t-1)

Figure 3. Schematic diagram of the RDV-Copula method

2.3.2Stochastic simulation

Simulation methods for multivariate stochastic processes are categorized into two main types:
unconditional and conditional simulations, as delineated by Wu et al. (2015). The core distinction
between these two simulation methods hinges on whether certain data points are pre-determined at the
time of simulation. Figure 4(a) and (b) illustrate the unconditional simulation and the conditional
simulation, respectively.

Unconditional simulation: This simulation approach generates stochastic samples solely based on
the probability distribution of the dataset, without any prior knowledge of data states. All sample data
are produced simultaneously through stochastic simulation, with each data point being in an unknown
state prior to the simulation.

Conditional simulation: Conversely, conditional simulation operates under the premise that data at

11
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280 specific locations are already known. These known data points are then used to generate random samples,
281  with the complete set of samples being produced based on both the probability distribution of the data
282 and the conditions set by the known variables. This method allows for a tailored simulation that

283  incorporates pre-existing data insights.

€ b)
@ Probability distribution ® Probability distribution Conditional data

" Random sample v
0 04y
] o
_ |
M e e e ws o0 02 04 06 08 0
284 * *
285 Figure 4. Schematic diagram for generating random simulation samples (a) unconditional simulation (b)
286  conditional simulation
287 Based on the presentation of each section in detail above, it can be generalized that stochastic

288 simulation based on the RDV-Copula function needs to go through the following steps.

289 Step 1: Collect as much historical data as possible.

290 Step 2: Correlation analysis is conducted on the collected data by calculating the Kendall's
291  coefficient.

292 Step 3: According to the method of filtering key variables proposed in Subsection 2.3.1, the
293 representative key variables are extracted based on the correlation relationship among multiple variables.
294 Step 4: Marginal distribution functions are fitted to the historical data series of the screened key
295  variables.

296 Step 5: Based on the proposed RDV-Copula approach, the joint distribution function of multi-site
297 runoff sequences is constructed with consideration of spatial-temporal relationships.

298 Step 6: The stochastic simulation sequences of runoff are generated by performing unconditional
299 stochastic simulation and conditional stochastic simulation based on the constructed vine copula

300 functions with different structures.
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301 3 Casestudy
302 3.1 Study area and data description

303 This study applies its methodology to a case study focusing on constructing spatial-temporal
304  relationships within the Shifeng Creek area, located in the Jiaojiang River catchment in Eastern China.
305 The Jiaojiang River ranks as the third largest river in Zhejiang Province. As the primary tributary of the
306 Jiaojiang River basin and the principal watercourse in Tiantai County, Shifeng Creek plays a significant
307 role. Rainfall distribution in the Shifeng Creek catchment is notably uneven throughout the year, with a
308 substantial portion, approximately 70 to 80%, occurring from March to September. The remaining 20 to
309 30% of yearly rainfall is distributed over the other months. The period from July to September is
310 particularly marked by intense storms and rainfall, largely influenced by the Pacific subtropical high-
311 pressure system and the frequent occurrence of typhoons, contributing about 35% of the annual total
312 precipitation, with amounts ranging from 400 to 600mm.

313 The objective of this study is to delineate the spatial-temporal relationships of inflows within the
314  catchment during August, a flood-prone month, to enhance flood pattern understanding and support
315 effective flood management strategies. In the Shifeng Creek region, there are many important hydraulic
316 structures and critical control cross-sections. This study focuses on four major sites within the Shifeng
317 Creek catchment: the Lishimen Reservoir (LSM) site, the Longxi Reservoir (LX) site, along with the
318 Qianshan (QS) cross-section site and the Shaduan (SD) cross-section site. These sites are strategically
319  located along the upper, middle, and lower stretches of Shifeng Creek, facilitating a comprehensive
320 analysis of the entire catchment and flood characteristics of Shifeng Creek. To achieve this, daily runoff
321 data of August, covering a span from 2000 to 2020, have been compiled. This dataset encompasses
322 inflows for the LSM and LX reservoir sites, as well as flow data for the QS and SD cross-sections. The

323  geographic positioning of Shifeng Creek is depicted in Figure 5.
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324
325  Figure 5. Map of location of Shifeng Creek
326 3.2 Numerical experiments setup
327 3.2.1Synchronization frequency analysis based on spatial relationship
328 In this study, we employ the vine copula function to construct the joint distribution of runoff across four
329 sites, aiming to analyze the synchronization frequency of floods in August, a month identified as having
330 a high risk of flooding. The variables under consideration include the inflow from these four sites,
331 denoted as LSM-Aug, LX-Aug, QS-Aug, and SD-Aug. Our initial step involves calculating the Kendall
332 coefficients among these variables to assess their interdependencies. Following the methodology outlined
333 in Subsection 2.1.1, we determine the marginal distribution functions of the four variables through a
334  fitting test. Subsequently, based on the marginal distribution function of each variable, the joint
335 distribution function of four variables is constructed. The parameters of the vine copula are estimated via
336 the maximum likelihood method, with the Akaike Information Criterion (AIC) serving as the selection
337 criterion to ensure optimal model fit. Upon passing the fitting test, we identify the most appropriate vine
338  copula structure to accurately model the relationships among the variables.
339 With the four-dimensional vine copula function established, we proceed to calculate and analyze
340  the synchronization frequency of inflows as described in Subsection 2.2. The inflows at the four sites are
341 symbolized as LSM, LX, QS, and SD, with high-water and low-water inflow amounts represented as
342 Xpn, Yons Zpn, Wyn and Xy, Yy, Zp; and Wy, respectively. The marginal distribution functions are
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343 denoted as u, v, r and s.

344 Considering the three potential states (High/Medium/Low) at each site, a total of 81 possible inflow-
345 state combinations are identified. Among these, the combinations [X-H, Y-H, Z-H, W-H], [X-M, Y-M,
346 Z-M, W-M], and [X-L, Y-L, Z-L, W-L] are classified as synchronous, while the remainder are deemed
347 asynchronous. The calculation equations can be referenced in Appendix B.

348 3.2.2Various vine copulas construction based on spatial-temporal relationships and stochastic
349  simulation

350 To enhance the vine copula function's accuracy, it's imperative to integrate the temporal dimension into
351 its construction. In this section, the vine copula functions are developed on a daily basis, encompassing
352 a series of 31 copula models corresponding to each day of August, from the st to the 31st. Consequently,
353  both Kendall correlation analysis and the fitting of marginal distribution functions must be independently
354  conducted for the data spanning these 31 days. Following this preliminary analysis, 31 distinct
355 relationship functions are constructed, each tailored to the specific type of vine copula identified for each
356  day.

357 3.221 RDV-Copula function construction

358 Given that all four sites are situated within the Shifeng Creek watershed, their spatial interconnectivity
359 is inherent and can be leveraged in constructing a vine copula function. Additionally, due to the persisting
360 effects of rainfall, the flow at any given site is also temporally linked to its previous day's flow. To
361 encapsulate this temporal correlation, the study integrates the inflows from the four sites over two
362 consecutive days. The inflows for the current day are denoted as LSM, LX, QS, and SD, while those for
363  the previous day are labeled LSM1, LX1, QS1, and SD1, respectively.

364 The methodology, as detailed in Subsection 2.3, initiates by analyzing the current day’s inflows at
365 the four sites to establish their spatial relationships. The subsequent step involves identifying the site
366  with the most significant correlation to its preceding day's inflow, which is then used as a as a variable
367 to represent the temporal relationship on that day. For instance, analysis between August 1st and 2nd
368 reveals that the LSM site had the highest correlation with its prior day's flow compared to the other sites.
369 Taking the construction of the copula function relationship between August 1st and August 2nd as an
370 example, the analysis reveals that the LSM site has the highest correlation with its previous day's flow

371 compared to the other three sites. As a result, a total of five key variables are determined for this
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372 relationship set, including LSM, LX, QS, SD, and LSM1, effectively encompassing both temporal and
373 spatial correlations while streamlining the variable dimensions within the copula.

374 Due to the fundamental difference in structure between C-vine and D-vine copula, this study
375 constructs five-dimensional RDV-Copula functions based on these two types, respectively, labeled as
376 RDV-Cvine and RDV-Dvine. These two types of models should first be evaluated against each other on
377 various indexes, including AIC, BIC, and Loglik, to ascertain the most suitable five-dimensional RDV-
378 Copula structure. This chosen structure is then further compared with other copula functions to validate
379 its efficacy.

380 3.222 Benchmark copula functions construction

381 To validate the effectiveness of the RDV-Copula approach, this study compares it against a series of
382  benchmark copula functions. These benchmarks are constructed by applying various combinations of
383 multiple variables and stochastic simulation approaches to the existing data, resulting in vine copula
384  models of differing dimensions. The specifics of these vine copula models are summarized as follows
385  and illustrated in Figure 6.

386 Benchmark 1:

387 Focuses solely on spatial correlations, utilizing inflows at the four sites on the current day (LSM-
388 LX-QS-SD) to create a four-dimensional vine copula. Simulations are conducted unconditionally.

389 Benchmark 2:

390 Incorporates both spatial and temporal correlations, including inflows at the four sites for both the
391  current and previous day (LSM-LX-QS-SD-LSM1-LX1-QS1-SD1), resulting in an eight-dimensional
392  vine copula. This model also employs unconditional simulation.

393 Benchmark 3:

394 Like Benchmark 2, this model considers both spatial and temporal correlations using the same set
395  of key variables (LSM-LX-QS-SD-LSM1-LX1-QS1-SD1), thereby forming an eight-dimensional vine
396 copula. However, it differs in its application of conditional simulation, assuming the previous day's runoff
397  as aknown condition to simulate the current day's flows.

398 To further detail the distinctions in stochastic simulation approaches, the RDV-Copula functions are
399  bifurcated into two categories:

400 RDV-un/ RDV-con:
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Both models account for spatial and temporal correlations by incorporating inflows at the four sites
on the current day and the inflow at one site from the previous day (LSM-LX-QS-SD-X1), creating a
five-dimensional vine copula. The variable “X” represents the site with the strongest temporal connection.
The “RDV-un” employs unconditional simulation, while “RDV-con” utilizes conditional simulation.
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Figure 6. Five different vine copula models

4 Results

4.1 Synchronization frequency analysis

Prior to performing a synchronization frequency analysis on multiple variables, it is imperative to
conduct a correlation analysis to verify the presence of spatial correlations among them. Following the
approach outlined in Subsection 2.1, this study begins with a correlation analysis of the daily runoff in
August at the four selected sites, utilizing Kendall coefficients to quantify their interconnections. The
results of this analysis, demonstrating the correlation among the four variables, are shown in Figure 7(a).
Subsequent to identifying correlation, the next step involves determining the marginal distributions for
these variables. Figure 7(b) displays the results of this process, showcasing both the plots of the fitted
marginal distributions for the four variables and the actual data distribution, thereby laying the

groundwork for a comprehensive understanding of the data's distribution characteristics.
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Figure 7. (a) Results of correlation analysis for daily runoff at multiple sites (b) Cumulative probability

distribution of the preferred marginal distribution function

Figure 7 demonstrates that the correlations among the four study variables have all passed the

significance test (p < 0.05), with the QS and SD sites exhibiting the strongest correlations. This is
closely followed by the spatial connections between the LX site and both QS and SD sites, with
correlation coefficients of 0.67 and 0.65, respectively. The correlations involving the LSM site and the
other three sites are relatively low, reflecting a reduction in spatial correlation with increasing distance.
In terms of runoff distribution, the LSM site's runoff adheres to the Weibull distribution (weibull), while
the runoff at the LX site fits the Inverse Gaussian distribution (invgauss), and the runoffs at both QS and
SD sites align with the Log-normal distribution (Inorm). Building on the vine copula function
methodology outlined in Subsection 2.1.2, we have developed a four-dimensional vine copula function
using these variables. The function's structure, alongside the estimated parameters, is detailed in Table 1.

Table 1 Four-dimensional vine copula structure and parameters

Tree edge family rotation parameters tau loglik

1,3 bb7 0 22,11 0.54 296
1 2,3 t 0 0.86, 6.51 0.66 433
34 t 0 0.92,2.69 0.74 636
1,43 frank 0 -1.3 -0.15 15

2
2,43 Bbl 180 0.13,1.10 0.15 25
3 1243 bb7 180 1.07,0.21 0.13 24

Upon the construction of four-dimensional vine copula function, the synchronization frequency

analysis can be expanded. Using the approach detailed in Subsection 2.2, we obtained 81 encounter
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433 probabilities reflecting potential inflow scenarios at four sites: high-water, medium-water, and low-water.
434 Figure 8(a) shows these 81 probabilities in detail. Figures 8(b)-(g) present aggregated views, focusing

435 on nine combinations representing two of the four variables in each of their three states.

@) [ g probability | LSM-high I LSM-medium | LSM-low |
1% LX-medium LX-medium LX-high LX-medium
19.80
TS 19.765
QS-high | SD-medium 1.969
15.84
SD-low 0.301
SD-high 0.685 615 1188
QS-medium | SD-medium 1.556 5 1.560
SD-low .856 0.706 7.920
SD-high 0.298
3.960
QS-low | SD-medium 2.007
SD-low 92 19.375
0.000
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436 Figure 8. Encounter probabilities for the multiple sites (a) LSM-LX-QS-SD (b) LSM-LX (¢) LSM-QS (d)
437 LSM-SD (e) LS-QS (f) LX-SD (g) QS-SD
438 As observed in Figure 8, the cumulative probability of synchronization across all four sites

439  simultaneously stands at 41.92%, encompassing three scenarios: (1) LSM-high, LX-high, QS-high, SD-
440  high (2) LSM-medium, LX-medium, QS-medium, SD-medium (3) LSM-low, LX-low, QS-low, SD-low.
441  Any two of these sites also demonstrate a very strong synchronization between them, with probabilities
442 nearing 60%. The obvious dark colored blocks in the graph indicate the high probabilities of being the

443 high-water or the low-water concurrently. Among these, the strongest synchronization occurs between
19
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the QS and SD sites, reaching a probability of 77.52%. This is closely followed by the LX site's
synchronization with both QS and SD sites, at probabilities of 72.76% and 68.24%, respectively. While
the LSM site's synchronization probabilities with the other sites are comparatively lower, they still exceed
50%, recorded at 58.29% with the LX site, 61.25% with the QS site, and 57.15% with the SD site. This
analysis underscores the clear spatial correlation among the four sites and highlights the critical
importance of monitoring high-water synchronization. This is because such a case of simultaneous high
water at multiple sites can easily induce flooding and pose a risk to the downstream. By analyzing the
relationship of flow among multiple sites in advance and clarifying the probability of synchronization, it
would be more conducive to the formulation of flood control and scheduling strategies to reduce the

probability of flood encounters and protect the safety of the downstream.

4.2 Construction of joint distributions of multi-site daily inflows

4.2.1Correlation analysis

Correlation analysis serves as an efficient tool for quickly identifying and quantifying the correlations
among multiple variables. Following the methodology outlined in Subsection 2.1, this study incorporates
both temporal and spatial correlations in its analysis. To achieve this, historical runoff data from four key
sites, along with the previous day’s runoff data at each site, were used, resulting in a set of eight variables
for the correlation analysis. The results of the analysis are presented in Figure 9. Due to the large amount

of information, only part of the correlation results is shown here. The complete set of results is available
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463 Figure 9. Partial results of correlation analysis for daily runoff at multiple sites (LSM, LX, QS, SD

464 represent the runoff sequences of current day, while LSM1, LX1, QS1, SD1 represent the runoff sequences
465 of previous day)

466 Figure 9 illustrates the Kendall correlation coefficients between pairs of variables. The intensity of
467 colors correlates with the strength of positive correlation, with darker shades signifying a correlation
468  coefficient closer to 1. The "*" on the ellipse means that the correlation passes the significance test of
469 o = 0.05. This figure uncovers a marked positive correlation among the runoff series at the LSM, LX,
470 QS, and SD sites, with approximately 93% of these correlations meeting the significance threshold. This
471 finding indicates that there is an obvious spatial correlation among the four locations. Notably, the QS
472 and SD sites exhibit the strongest spatial correlation, with an average coefficient in August of 0.74,
473 closely followed by the LX reservoir's correlation with the QS and SD sections at 0.67 and 0.63,
474 respectively. In comparison, the LSM reservoir's runoff shows relatively lower correlations with the other
475  sites, averaging 0.48 with LX site, 0.55 with QS site, and 0.45 with SD site in August.

476 Upon analyzing the temporal correlation of runoff at each site for adjacent days within August
477 (denoted as LSM-LSM1, LX-LX1, QS-QS1, SD-SD1), it becomes evident that temporal correlations are
478 significant and should not be overlooked. Particularly in early August, these correlations register at a
479 notably high level, suggesting more frequent flooding during this period. The LSM site demonstrates a
480 standout temporal correlation, averaging 0.72 in August, indicative of a strong link between the current
481 and previous day's runoff. The other sites display slightly lower, yet significant, temporal correlations:
482 LX at 0.65, QS at 0.65, and SD at 0.67. When these temporal correlations are considered alongside the
483 spatial ones, it's evident that LSM's temporal correlation surpasses its spatial correlation with other sites.
484 These correlation analysis results solidly confirm both spatial and temporal correlations among the

485 four sites, laying a foundational basis for advancing with the construction of a copula structural model.
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486  4.2.2Fitting of marginal distribution of each runoff

487 In this study, twelve distinct distribution functions were utilized to model the daily runoff at four sites
488 throughout August. To assess the goodness-of-fit of these distributions, the Kolmogorov-Smirnov (K-S)
489 test, with a significance level of 0.05, was employed. Following a successful significance test, the Akaike
490 Information Criterion (AIC) minimum method was applied to evaluate and determine the optimal
491 marginal distribution for each dataset. Figure 10 shows the preferred marginal distribution functions for
492 each variable over the 31 days of August. This figure contrasts the actual historical data points against
493 the curves of the fitted functions, offering a visual representation of the fitting accuracy. The specific
494 marginal distribution functions chosen for each variable, along with their parameters for each day, are
495 comprehensively listed in Appendix D. Figure 10 notably illustrates how well these selected marginal
496 distribution functions match the actual data for all four variables from the st to the 12th of August. The
497  chosen marginal distribution functions for the entire month are detailed in Figure D1. Furthermore, the
498 figure's legend explicitly details the types of fitting functions employed for each variable, providing a

499  clear and comprehensive overview of the distributional characteristics.

(i} s 2 0 pwe (3 woon (4) w s
LSMigev) LSM_data LSM(inorm) LSM_data LSMigev) LSM_data
LSMigamma) LSM_data . . e
. qurx U WAl D T ——LXGngauss) LX data R P ——LX(imvgauss) @ LX data L P ——LX(norm} @ LX data “
——QS(gen) o Q5 datn | ——0S(eev) @ QS data ——QS(norm) @ QS_data ——QS(epd) @ QS data 15
B Soieen o Sodas —— SDillogis) @ SD_data ——SDGmgauss) @ SD data ——SD(zpd) @ SD_data
1 s
! Wl o tw 0
0 0 ol v " - " = o La
00 a2 04 06 0 10 00 ar 04 08 0s 16 ez a4 05 68 10 00 ez 04 s 08 L0
Cumatatve Probabiy Cumalative Probabilt Cumutative Probabitity Cumulatie Probabiliy
(5) W@ (6) TSR ¢ ) NS U ) By
LSM(weibull) LSM_data LSV(gamma) LSM _data ol LSM(gey) LSM_data 3 LSM(weibull) LSM_data
——LX(gev) 5 LX_data 7 i ——— LX(llogis) o LX_data ——LX(logis)  * LX_data 2 Ls0 ——LX(mvgauss) 9 LX_data 55 b
——QS(imgauss) @ QS_data 1 ——QS(gev) o QS data ——QS(norm) @ QS_data —— QS(llogis) ® QS dua i
“ ——SD(ges) o SD_data 1 ——SDlogis) ® SD_data ——SD(ges) @ SD_data ——SDigpd) ® SD_data
1567600 B
’ - o e i st
o Lo « o Lo 0 o Lo 0 Lo
o0 02 es o6 o8 10 o0 02 04 06 o8 10 00 0z o4 06 s 10 00 02 04 06 os 10
Cumaluti Probbily Cumuluti Probbily Cumltive Probabilie Cumltive Probabiliey
. 9) 150 a0 200 (10) N N T R p— § | E————— S| b ) E——
| LSM(weibull) LSM_data LSM(weibull) LSM_data LSM(weibull) LSM_data 9|40 LSM(llogis) LSM_data
~——LX(invgauss) @ LX_data = LX(Inorm) 9 LX_data - . 18 = LX(Inorm) @ LX_data 750 | = LX(invgauss) & LX_data 100 f200
——QS(inorm) 9 QS daa ——QS(norm) @ QS_data ——QS(norm) o QS duta 1w ——QS(mgauss) 9 QS_data
——SD(norm) o SD_data ——SD(inorm) SD_data ——SDllogis) o SD_data ——SD(imgauss) 9 SD_data
Ais
0
0 [0
0 e
0
0 1 1 L bo Lo
o0 02 04 06 o8 1o 00 0z 04 o6 os 10 o0 02 es o6 o8 1o 00 0z o4 o6 0w 10
Cumulatie Probabilty Cumulatve Probabilt Cumulatve Probabile Cumulative Probabilt

500 Figure 10. Cumulative probability distribution of the preferred marginal distribution function for runoff
501  on each day throughout 1%-12® in August
502 The distribution of the corresponding marginal distribution functions for the four variables over the
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503 31 days in August is summarized in Figure 11.
gamma []
weibull

LSM

LX

invgauss

SD

gpd
504

505 Figure 11. Distribution of the preferred marginal distribution function for the daily series of flows at LSM,
506 LX, QS and SD site in August

507 Figure 11 shows that most streamflow series follow the “gev” distribution (27.52%) and the
508 “invgauss” distribution (23.39%). Relatively few streamflow series follow the “weibull”, “llogis”,
509  “lnorm”, and “gpd” distributions, and only a very small number follow the “gamma” and “gumbel”
510  distributions. Additionally, 71% of the runoff sequences at the LSM site follow the “weibull” and “gev”
511 distributions, each accounting for 35.5%. The runoff sequences at the LX site, the QS site, and the SD
512 site predominantly follow the “gev” and “invgauss” distributions, accounting for 29.03% and 29.03% at
513 the LX site, 22.58% and 35.48% at the QS site, and 22.58% and 29.03% at the SD site, respectively.

514  Meanwhile, nearly 30% of the runoff sequences at the SD site also follow the “gpd” distribution.

515  4.2.3Construction of RDV-Copula function

516 Following the identification of each variable's marginal distribution, the next step involves selecting the
517 appropriate copula structures to construct the vine copula models among the multiple variables. Utilizing
518  the RDV-Copula function construction approach described in Section 3.2.2.1, we identified the sites
519 exhibiting the highest temporal correlation for each day in August, based on our correlation analysis

520  results. The variables chosen for each specific day are illustrated in Figure 12.
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Figure 12. Key factors in the five-dimensional vine copula structure constructed in two adjacent days

(LSM, LX, QS, SD represent the runoff sequences of current day, while LSM1, LX1, QS1, SD1 represent the

runoff sequences of previous day)

Prior to selecting a specific copula function for modeling, it is essential to decide on the type of

copula to be employed. Among the options, C-vine and D-vine structures stand out for their common use

in various applications. In this study, we constructed both C-vine and D-vine copula structures for the set

of multiple variables under consideration. To evaluate the efficacy of these structures, metrics such as

the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Log-Likelihood

(Loglik) values were utilized and computed, with the results presented in Figure 13. The AIC and BIC

values reveal that, for the majority of cases, the D-vine copula structures exhibit significantly lower

values compared to those of the C-vine structures. Lower values in these criteria suggest a model's better
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532  performance and fit. Moreover, the comparison of log-likelihood values also showed that D-vine
533 structures typically yielded lower values than their C-vine counterparts. Consequently, the D-vine copula
534 structure was identified as more effective and suitable for modeling the intricate relationships among the
535 variables in this study. Therefore, the RDV-Copula and other benchmark copula models were designed

536  using the D-vine structure.

a
(a) 120 (©)
801 —m—C-vine —@—C-vine
—®—D-vine =&—D-vine
100
< =
= é" 30
60
40
o 5 10 15 20 25 30 o 5 10 15 20 25 30 0 5 10 15 20 25 30
Copula serial number ‘Copula serial number Copula serial number

537 Figure 13. Comparison of the performance of RDV-Copula models for C-vine and D-vine (a) AIC (b) BIC
538 (¢) Loglik

539 A large number of copula families were utilized to model the joint distributions, such as Gaussian
540 copula, Gumbel copula, t copula and so on. Following the guidance of AIC criteria, the most suitable
541  pair-copula for each connection within every tree was selected. After fitting the goodness of the copula
542 functions, we employed the maximum likelihood method to estimate the parameters. As an illustrative
543 example, the copula structure for August 1st-2nd is shown in Figure 14. This figure not only reveals the
544 best-fit copula family for each pair of adjacent nodes but also the estimated parameters. The nodes,
545 labeled 1 through 5, represent LSM, LX, QS, SD, and X1, which indicates the site with the highest
546 temporal correlation on that day, respectively. In this instance, X1 corresponds to LSM1. It is important
547 to note that the specific choice of X1 might vary from day to day, as further elaborated in Figure 12. In
548  Figure 14, each pair of subfigures situated between nodes shows two aspects of the bi-dimensional copula
549 function for those nodes. The first subfigure presents the joint probability plot, while the second

550 illustrates the joint probability density plot.
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Figure 14. Structure of the five-dimensional D-vine copula model for August 1° -2"d (Nodes 1-5 represent
LSM, LX, QS, SD, and LSM1; The plots between each two nodes are schematic plots of the corresponding

copula function, with joint probability plot on the left and joint probability density plot on the right.)

4.3 Stochastic simulation results of runoff from multiple sites

To validate the models and facilitate a comparative analysis of different vine copula functions, the
following work was carried out. Initially, the constructed copula structure and the results from parameter
estimation were incorporated into a simulation process, generating 20,000 sets of random runoff
scenarios for each day in August. Considering August's susceptibility to flooding and the typical
continuity of rainfall events, it's highly likely that runoff on consecutive days is temporally correlated.
Therefore, comparing only the mean and standard deviation of runoff simulated for individual days might
not fully capture the model's simulation efficacy. In this context, the study calculated the mean and
standard deviation for the current day by considering the simulated flows of both the preceding and

following days. Ultimately, after the exclusion of outliers from the 20,000 sets of simulated runoff
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564 scenarios, the average of the mean and standard deviation calculated from these three days' simulated
565  flows will be used as the mean and standard deviation for the current day. The runoff simulation results
566 for the four locations (LSM, LX, QS, and SD) are presented in Figures 15, 16, 17 and 18, respectively.
567 Notably, in each figure, subfigure (a) displays the mean values and standard deviations from the
568 simulation results for the five copula structures, allowing these results to be compared against historical
569 observations for a nuanced evaluation of the simulation's performance. Subfigures(b), (c), (d), (¢) and (f)
570 represent the simulation results for five different sets of copula structures (RDV-con, RDV-un,
571 Benchmark1, Benchmark?2 and Benchmark3) respectively. The solid line in the figure is the mean of the
572 simulation results and the shaded area represents the uncertainty (=1 standard deviation) of the simulation.
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573 Figure 15. Comparison of the actual observed series with simulation results of four copula structures at
574 LSM site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-
575 con (c) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of
576 Benchmark?2 (f) simulation results of Benchmark3
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577 Figure 16. Comparison of the actual observed series with simulation results of four copula structures at LX
578 site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-con (c¢)
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581 Figure 17. Comparison of the actual observed series with simulation results of four copula structures at
582 QS site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-
583 con (c¢) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of

584  Benchmark2 (f) simulation results of Benchmark3
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585 Figure 18. Comparison of the actual observed series with simulation results of four copula structures at

586 SD site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-
587 con (c) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of

588 Benchmark?2 (f) simulation results of Benchmark3

589 From four figures, it is evident that the simulation results of RDV-Copula, Benchmarkl and
590 Benchmark?2 are comparatively more accurate. The mean values and standard deviations from these
591 simulations closely match the actual observed runoff, particularly for simulations involving smaller flow
592 magnitudes, where the accuracy aligns more precisely with the actual values. Although the RDV-Copula
593 results are consistent with the benchmark models, they do not exhibit a marked advantage for smaller
594 flows. However, in scenarios involving larger flows, such as those at the SD site, RDV-Copulas
595 outperform other models, highlighting their superiority in capturing the characteristics of larger inflow
596 events. This analysis suggests that for smaller flows, models focusing solely on spatial relationships
597 suffice to capture the critical interrelationships among variables. In contrast, for larger flows, neglecting
598 the influence of temporal correlations can lead to substantial inaccuracies in the simulation results,
599 suggesting that larger flows are more significantly influenced by adjacent day’s flows. Comparing the
600 four figures, we can also find that the simulation results at LX location consistently exhibit high accuracy,
601 with the simulation results basically covering the actual observations. This suggests that the constructed
602 copula models can easily extract the historical correlations and simulate them, particularly in smaller

603  flow magnitudes.
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604 However, the Benchmark3 model's performance is notably less effective among the five models.
605  This suboptimal performance can be attributed to two main factors. Firstly, the complexity of the eight-

606 dimensional copula function, which involves a diverse combination of "trees," "

nodes," and various types
607 of parameters, poses significant challenges in accurately extracting the relationship characteristics among
608 the four sites. Secondly, the conditional simulation approach of Benchmark3, which relies on the previous
609 day's flow at the four sites as a known condition for simulation, is highly susceptible to the accuracy of
610 these initial conditions. If the simulation results for the previous day contain significant errors, these
611 inaccuracies are likely to propagate through the simulation, leading to compounded errors in the entire
612 results. Another noteworthy point is that the simulation results on the August 10", 20" and 31% are not
613 quite consistent with historical conditions. This is because the runoff on these three days has been at a
614 low level for most of the time over a number of years in history. It is therefore a rather exceptional
615  phenomenon that a major flood event occurred on these particular dates in just one year. Specifically, the
616 data recorded on these dates (August 10, 2009, August 31, 2011, and August 20, 2014) indicate unusually
617 high runoff, which significantly exceeds their respective historical averages. Such an occurrence presents
618 a challenge for the simulations, as it requires accurately capturing and replicating these atypically high
619  flow values within the model.

620 Comparing the two types of simulations of RDV-Copula, it can be found that the performances of
621 the simulation results of RDV-un and RDV-con are similarly well for LSM and LX sites. However, in
622 the simulation of QS and SD sites, RDV-con shows an obvious superiority compared to RDV-un. This
623 illustrates the better generalization of conditional simulation for such complex structure with spatial-
624  temporal relationships. In contrast to the unconditional simulation, RDV-con can better utilize the
625 temporal correlation to improve the accuracy of the simulation. Meanwhile, since it is different from the
626  conditional simulation of the eight-dimensional vine copula (Benchmark2), RDV-con successfully
627  reduces the cumulative error caused by the excessive dimensionality.

628 In summary, for the relational construction and stochastic simulation of flows across varying
629 magnitudes, RDV-Copula and Benchmark? emerge as more suitable, particularly when considering the
630 influences of both temporal and spatial correlations. However, the use of an eight-dimensional copula
631 function in Benchmark? introduces significant computational demands and adds complexity to the

632  problem. RDV-Copula is favored for its effective integration of temporal and spatial correlations, while
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633 also simplifying the copula structure, thereby streamlining the problem-solving process and enhancing

634  computational efficiency.

635 5  Discussion

636 For variables with interdependencies, the copula function, increasingly popular in contemporary studies,
637 extracts spatial-temporal relationships from their marginal distributions. Vine copulas are notably
638 effective in modeling complex dependencies among variables, as they offer substantial flexibility. This
639 capability is exemplified in the work of Pereira and Veiga (2018), who developed a multivariate
640 conditional model using D-vine copulas for simulating periodic streamflow scenarios, emphasizing the
641 structured arrangement of variables to capture monthly flow dependencies. This and numerous other
642 studies (Nazeri Tahroudi et al., 2022; Wang et al., 2018, 2019; Wang and Shen, 2023a) underscored the
643 effectiveness of vine copulas in capturing dependencies among variables with differing marginal
644  distributions.

645 The synchronous probability analysis of multi-site runoff shows that the vine copula model can be
646 used to provide a good fit to the dependencies among variables obeying different marginal distributions.
647 Similar conclusions have been obtained in other studies (Qian et al., 2022; Ren et al., 2020; Wei et al.,
648  2023). In the study of Xu et al. (2022), the multivariate Copula model was implemented to evaluate the
649 synchronous—asynchronous characteristics for hydrological probabilities for the multiple water sources.
650 The simultaneous probabilistic analysis of multi-site runoff provides an understanding of the flood
651 characteristics of the catchment leading to better flood control and prevention.

652 For high-dimensional variable dependency analysis, the structure of the vine copula is extremely
653 complicated to construct. Depending on the number of hydrometric stations, Wang and Shen (2023b)
654  established the 7-dimensional regular vine (R-vine) copula models to depict the complex and diverse
655 dependence. To tackle the problem above, in their study, the corresponding vine structure was specified
656 by the vine structure array that can reflect the sequence of tributaries flowing into the main stream and
657 the spatial locations of different hydrometric stations. The performance of the ultimate simulation results
658 was favorable, but it did not incorporate the temporal connection of the variables for each hydrometric
659 station. If considered, it would lead to an exponential increase in the dimensionality of the variable. The

660 RDV-Copula method proposed in this study aims to minimize the dimensionality of the copula model
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661 while extracting the effective information of spatial-temporal relationships. The evaluation criterion of
662  high-performance stochastic simulation is that the simulated series can preserve the statistical
663 characteristics of the observed records (Hao and Singh, 2013). As shown in Figure 15 - 18, different vine
664 copula structures have a large impact on the results of stochastic simulations. The simulation results of
665  the four-dimensional and five-dimensional vine copula models are relatively closer to the actual historical
666 values. Although the eight-dimensional vine copula model takes more variables into account, including
667 both temporal and spatial correlation, the model is too complicated due to many variables, which makes
668 the simulation less efficient on the contrary. This illustrates that when performing multi-site runoff
669 simulations, it is not better for the vine copula function to consider as many variables as possible.
670 Compared to the four-dimensional copula structure that only considers spatial relations, the five-
671 dimensional copula structure can better fit the characteristics of high flows, which is especially evident
672 in the simulation results of QS and SD points. This is due to the fact that high flows in flood season
673 mostly originate from continuous heavy rainfall, which implies that the temporal connection is not
674  negligible for capturing the flow characteristics.

675 Consequently, the approach introduced in this study effectively integrates all pertinent information
676  for multi-site runoff simulations while reducing the complexity of the vine copula function. This
677 methodology strikes a critical balance between detailed representation and practicality in model

678 complexity, enhancing the applicability of the simulations.

679 6  Conclusions

680 This study introduced an innovative approach designed to capture the spatial-temporal relationships
681 across multiple sites while simplifying the computational complexity inherent in vine copula functions.
682 By computing Kendall correlation coefficients, we assessed the interconnections among various sites.
683  Utilizing the approach proposed, we pinpointed the key variables for the construction of the vine copula
684 model, fitted the marginal distribution functions for multiple variables, and constructed the RDV-Copula
685 functions considering the spatial-temporal relationships. Subsequent to this, a synchronization frequency
686 analysis based on the copula model was executed to delve deeper into the characteristics of the watershed.
687 To gauge the efficacy of this method, three benchmark vine copula models, each predicated on different

688  dimensions and variable relationships, were constructed. Stochastic simulations were then employed to
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generate arrays of daily inflow sequences over a typical flood month, with both conditional and

unconditional simulation methods being critically compared. Key findings are summarized below.

(1) The results of our study demonstrated that, within the Shifeng Creek watershed, the synchronization

probability among the four sites reaches up to 41.92%, with the average synchronization probability
between any two sites hitting 65.87%. This strong spatial connectivity indicates a potential for heavy

rainfall events to exacerbate flooding risks downstream.

(2) This study revealed that increasing model dimensions does not inherently improve simulation

outcomes. The high-dimensional copula function, while it can capture more information on the
variables, also makes the structure more complicated. The RDV-Copula method not only ensures
comprehensive data integration but also diminishes the complexity and dimensionality of the vine

copula function, showcasing an optimal balance between information accuracy and model simplicity.

(3) The conditional simulation is a double-edged sword. In comparison to unconditional simulation, for

temporally correlated runoff sequences, conditional simulation can better follow the properties of
prior conditions. However, with an increase in the copula's dimensionality, relying on previously
simulated runoff as a basis for current day predictions can accumulate errors, reducing the overall
simulation accuracy.

In summary, our proposed approach can effectively consolidate relevant spatial-temporal

information for multisite runoff simulations, striking a critical balance between detailed representation

and practical model complexity. This methodology enhances the applicability of vine copula models for

analyzing and managing flood risks. The results obtained using this method can provide valuable decision

support for flood control and scheduling, effectively mitigating flood risk.

Appendix A

Table A1 Common hydrological distribution functions

Distribution name Probability distribution function

Parameters

Gamma distribution k=1

(gamma)

k - shape parameter (k > 0)

a — scale parameter (a > 0)
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Pearson-II1

distribution (p3)

Generalized
extreme value
distribution (gev)
Inverse gaussian
distribution
(invgauss)
Normal distribution
(norm)
Logistic distribution
(logis)
Log-normal
distribution (Inorm)
Log-logistic

distribution (llogis)

Generalized pareto

distribution (gpd)

Weibull distribution

(weibull)

Gumbel distribution

(gumbel)

_ fAexp(=Ax) ,x =0
f&y = { 0 ,x<0
fG0) = %(x —p)etepeED)

fx) = exp{—(1+§¥) f}

i A - w?
f) = |5—zexp {_ (Z’szﬂ) }

— 2
FO0 = _M)

1
ex
\2ro p( 202

e~(x-w/y
f@) = y(1+ e~&-w/r)2
[ L ]2 >0
xp |~ 5z Unx — w7, x

0 ,x<0

()%

_ 1
F&) = {\xVzno

flo) =

k-1

100 =5 (D) em[- (2]

1 — —
1= Lo (E2E ey (529

A - rate parameter

a — shape parameter (@ > 0)
B — scale parameter (§ > 0)
y— location parameter
a — scale parameter (a > 0)
u— location parameter

& — shape parameter

p— mean (location parameter)

A — shape parameter

u— location parameter
o — scale parameter
p— location parameter
y — shape parameter (y > 0)
p— location parameter
o — scale parameter
a — scale parameter (a > 0)
B— shape parameter (8 > 0)
p— location parameter
o — scale parameter
k - shape parameter
k - shape parameter (k > 0)
a — scale parameter (a > 0)
y— location parameter
u — location parameter

o — scale parameter
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Appendix B

The probability formulas for the 81 combinations are presented as follows.

@)

@

©)

©

®)

(6)

@

®)

The probability of Type [X-H, Y-H, Z-H, W-H] is as follows:

P(X > Xpn, Y > Yon, Z > Zpp, W > Wpp) = 1 = Uy — Vpn — Tpn — Spn
+C(uph, vph) + C(uph, rph) + C(uph, sph) + C(vph,rph) + C(vph, sph)
+C(rph'5ph) - C(uph' vphlrph) - C(u,,h, vphlsph) - C(uphl rphrsph)
=C(Vpns Tons Spn) + C(tpn, Vpns Tons Spn)

The probability of Type [X-M, Y-M, Z-M, W-M] is as follows:
P=(Xp <X <Xpp Yo <Y < Yo, Zpyy < Z < Zpp, Wiy < W < W)
= C(pns Vs Tons Spn) = € (Upns Vs Tons Spt) = € (tpns Vpns Tpu Spn)
_C(uph' "zzl'rph'sph) - C(”pl"’ph'rph' Szzh) + C(uzﬂv ”ph'rpl'spl)
+C(uph, Vp1, Tpho spl) + C(um, Vph Tphs spl) + C(uph, Vpu, Tpts sph)
+C(upt, Vpn, Tows Spn) + € (tpt, Vi, Tons Spn) = € (pn, Vpus Tt Spt)

=C (1, Vo ot Sp1) = € (o Vo Toms Spt) = € (o Vs Tyt Spn)
+C(upl,vpl,rp,,spl)

The probability of Type [X-L, Y-L, Z-L, W-L] is as follows:
P(X < Xp1,Y <Yy, Z < Zp, W < Wyy) = C(upi Vo1, Tyt Sp1)

The probability of Type [X-L, Y-H, Z-H, W-H] is as follows:

P(X < Xp1, Y > Yop,Z > Zpp, W > Wpp) = Uy — C(upp vpn) — C(tp1 Ton)
=C(upt, Spn) + C(upt Vpn, Tpn) + C(pi, Vpn, Spr) + C(Upt, Tons Spr)
=C(tp1, Von, Tpns Spn)

The probability of Type [X-H, Y-L, Z-H, W-H] is as follows:

P(X > Xpn, Y < Yo, Z > Zpp, W > Wpp) = vy — C(utpns 1) — C(Vp1, Tpn)
=C(Vpt, Spn) + C(pn, Vp1, o) + C(Upn, Vi, Spn) + C (Vo1 Ton Spr)
_C(uph' Vpur Tpns Sph)

The probability of Type [X-H, Y-H, Z-L, W-H] is as follows:

P(X > Xpn, Y > Yo, Z < Zy, W > Wyp) = 151 — C(tpn, Tp1) — C(Vpn Tpr)
=C (11 5pn) + C(pn, Vprs 1) + C(Upns Tt Spn) + C(Vpns ot Spn)
_C(uzﬂv Vph Tpls Sph)

The probability of Type [X-H, Y-H, Z-H, W-L] is as follows:

P(X > Xpp, Y > Ypn, Z > Zpp, W < Wyy) = Sy — Ctp, Sp1) — C(Vpns Spr)
=C(pns Spr) + C(pn, Vpns Sp1) + C(pns oo Spi) + C(Vpn, Tons Spi)
_C(”ph' Vphs Tphs Spl)

The probability of Type [X-M, Y-H, Z-H, W-H] is as follows:
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P(Xp <X <Xpn, ¥ > Yo, Z > Zpp, W > Wip) = tpp — Upy — C(tpn, Vi)
=C(upnion) = C(tpns Spn) + C(upt vpn) + C(Upr, Ton) + C(pr, Spn)
+C(uzrh' Vph, rph) + C(uph’ ”ph'szzh) + C(“ph'rph’ Svh) - C(upl' Vph rph)
=C(upt, Vpns Spn) = € (ot Tons Spn) = C(Upns Vpns Tpns Spn)
+C(upl, Vph Tphs sph)

(9) The probability of Type [X-H, Y-M, Z-H, W-H] is as follows:
P(X > Xpp, Yoy <Y <Ypn, Z > Zypn, W > Wpp) = Vpi — Yy — C(Upn, Vpn)
_C(”ph'rph) - C(”ph'sph) + C(“ph' ”pl) + C(vpl'rph) + C(”pl'sph)
+C(Upns Vpns Tpn) + C(Upns Vpns Spn) + C(Vpns Tons Spn) = € (pns Vpi, Tn)
=C(ttpns Vi, Spn) = C(Wpt Tpns Spn) = C(tpns Vpns Tons Spn)
+C(uph, Vpi, Toh sph)

(10) The probability of Type [X-H, Y-H, Z-M, W-H] is as follows:
P(X > Xpn, Y > Yo, Zyy < Z < Zpp, W > Wpp) = 1 — Ty — C(Upn, Ton)
=C(vpn o) = C(ron Spn) + € (tpn, 1) + € (Vpns 1) + C (o1, 5pn)
+C(”ph' Vph rph) + C(uzﬂv rph'sph) + C(”phlrph' sph) - C(uph' Vvh'rpl)
—C(upns ot Spn) = C(Vpns ot Spn) = € (Upns Vpni Tons Spr)
+C(uph, Vphs Tpls sph)

(11) The probability of Type [X-H, Y-H, Z-H, W-M] is as follows:
P(X > Xpn, Y > Yo, Z > Zpp, Wiy < W < Wyp) = Spi — Spi — C(Upns Spn)
_C(Vph'sph) - C(rph' Szzh) + C(uzzh' Spl) + C(Vph'spl) + C(rph' Szzl)
+C(Upn, Vphs Spn) + C(Upns Tons Spn) + C(Vpn, Tons Spn) = € (tpn, Vpn, Spt)
=C(upns Tons Spt) = C(Vpns o Sp1) = C(tpns Vo Ton Spr)
+C (Wpns Vohs Tons Spi)

(12) The probability of Type [X-L, Y-L, Z-H, W-H] is as follows:
P(X < Xp,Y <Yy, Z> Zpp, W > W) = C(wpp vp1) = C(upp Vo1 Ton)
_C(upl' ”nl'sph) + C(“pl- Vpl'rph'sph)

(13) The probability of Type [X-L, Y-H, Z-L, W-H] is as follows:
P(X < Xp,Y > Yop,Z < Zp, W > Wyp,) = C(tpp, Tt) — C(tpi, Vs Tot)
_C(upl'rpl’sph) + C(uzzl'vph'rpl'sph)

(14) The probability of Type [X-L, Y-H, Z-H, W-L] is as follows:
P(X < Xp1,Y > Yop, Z > Zpp, W < Wyy) = C(upp, Sp1) = € (Wi, Vpn Spi)
_C(”pl'rph’ Spl) + C(upllvph'rph' Spl)

(15) The probability of Type [X-H, Y-L, Z-L, W-H] is as follows:
P(X > Xpn, Y <Y, Z < Zp, W > W) = C(vp1, T1) — C(pn, Vp1 1)
—C(Vpt, Tp1, Spn) + C(Upn, Vpi, Ty1, Spr)

(16) The probability of Type [X-H, Y-L, Z-H, W-L] is as follows:
P(X > Xpn Y <Y, Z > Zpp, W < Wy) = C(vp1, Sp1) — C(tpns Vpis Sp1)
_C(Upl'rph' Spl) + C(uph' Vpis Tphs Spl)

(17) The probability of Type [X-H, Y-H, Z-L, W-L] is as follows:
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P(X > Xpn Y > Yy, Z < Zy, W < W) = C(11, 5p1) — C(tpns Tt Spt)
=C(vpn o1 5p1) + C(Upn, Vpn Tyt Spr)

(18) The probability of Type [X-M, Y-L, Z-H, W-H] is as follows:

P(Xp <X <Xpn, Y < Yo, Z > Zyp, W > Wyy) = C(upn, vp1) — C(upi V1)
=C(tpn, V1 Tpn) = € (tpns ”pl'sph) + C(upl' Vo1 on) + C(upy, sz,Sph)
+C (Upns Vpu, Tons Spn) = € (Upt, Vpu, Tons Spr)

(19) The probability of Type [X-L, Y-M, Z-H, W-H] is as follows:

P(X < Xpp, Yy <Y < Ypp, Z > Zpp, W > Wypp,) = C(upi, Vpn) — C(tpr, V1)
=C(upt, Vpns Ton) = C(tpt, Vpns Spn) + C(Upt Vpi Tpn) + € (Uprs Vpur Spn)
+C (Wi, Vpns Tons Spn) = € (Upts Vpu Tons Spn)

(20) The probability of Type [X-M, Y-H, Z-L, W-H] is as follows:

P(Xp <X <Xpn ¥ > Yo, Z < Zpy, W > Wyy) = C(pn 1) — C(uprn Tt)
=C(ttpns Vs 1) = C(Upns o1 Spn) + C(upl'vph’ 7p1) + C(Upis Tyt Spn)
+C(“ph’ Vpn Tpls Sph) - C(”pl'vph'rpl'sph)

(21) The probability of Type [X-L, Y-H, Z-M, W-H] is as follows:

P(X < Xp, Y > Yo, Zyy < Z < Zpp, W > Wypp,) = C(tpp, Tpn) = C(tpr, 1)
=C(tp1 Vpn, Tpn) = C(pt, Tons Spn) + € (Wi, Vpns Tor) + C (1, Tt Spn)
+C(“pl'vph' rph'sph) - C(upl'vph'rpllsph)

(22) The probability of Type [X-M, Y-H, Z-H, W-L] is as follows:

P(Xp1 <X < Xpn, Y > Yop, Z > Zpp, W < Wy;) = C(upnr Sp1) — € (upr Sp1)
_C(”ph' Vph Spl) - C(uph'rph' Spl) + C(”pl' Vph Spl) + C(upl' rphlspl)
+C (W Vphs Tpns Spt) = € (Upts Vphs Tpns Spt)

(23) The probability of Type [X-L, Y-H, Z-H, W-M] is as follows:

P(X < Xp1, Y > Yop, Z > Zpp, Wy < W < W) = C(upi, Spn) = € (upi Spi)
_C(upl' Vph Sph) - C(“pl-rph'sph) + C(“pl' Vph Szzl) + C(“pl' rph'spl)
+C(upt, Vpn, Tons Spr) = C(Upt, Vpns Tons Spt)

(24) The probability of Type [X-H, Y-M, Z-L, W-H] is as follows:

P(X > Xpn, Yo <Y <Yyp, Z < Zp, W > W) = C(vpn 1) — C(vp1 1)
=C(upns Vpns Tpr) = C(Vpns Tt Spn) + C(pn, Vi Tr) + C(Vpu, Tt Spn)
+C(Upns Vpns Tt Spn) = C(Upns Vpi, Tyt Spn)

(25) The probability of Type [X-H, Y-L, Z-M, W-H] is as follows:

P(X > Xpn, Y < Yo, Zpy <Z < Zpp, W > Wyp,) = C(vp1, Ton) — C(Vp1 1)
_C(uph' ”pl'rph) - C(Vpl'rph' Sph) + C(“ph’ Upl'rpl) + C(Vpl'rpl'sph)
+C(uph, V1, Tphs sph) - C(uphl Vi Tpls Sph)

(26) The probability of Type [X-H, Y-M, Z-H, W-L] is as follows:

P(X > Xy, Yo <Y < Yo, Z > Zpp, W < W) = C(pns Sp) = C(Vp1s Spr)
=C(tpns s 5p1) = C(Wpns Tons Sp1) + € (tpns Vo1, Sp1) + C(Vp1, Tons Sp1)
+C(“ph' Vphs Tphs Spl) - C(”phr Vpi» Tphs sz)

(27) The probability of Type [X-H, Y-L, Z-H, W-M] is as follows:
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P(X > Xpn, Y <Yy, Z > Zpy, Wy < W < W) = C(vpr spn) = C(Vp1 Sp1)
=C(ttpns V1 Spn) = C(Wpt Tpns Spn) + € (tpns Vo1, Sp1) + C (Vo1 Tons Sp1)
+C(“ph' vpl'rph'sph) - C(”phr Vpi» Tphs sz)
(28) The probability of Type [X-H, Y-H, Z-M, W-L] is as follows:
P(X > Xpn, Y > Yo, Zyy < Z < Zpp, W < Wyy) = C(1pn, Sp1) = € (11, 5p1)
_C(uph' Tphs Spl) - C(Uphfrph' Svl) + C(”ph' Tpls Spl) + C(”ph'rpl'spl)
+C(”ph' Vph Tpns Spl) - C(”ph' Vph» rpl'spl)
(29) The probability of Type [X-H, Y-H, Z-L, W-M] is as follows:
P(X > Xpn, Y > Yo, Z < Zp, Wy < W < W) = C(1p1,5pn) = € (11, 1)
_C(uph’ rpl’szrh) - C(”ph'rpl'sph) + C(“ph' Tpls Spl) + C(”ph-rpl'spl)
+C (tpn Vpns o1, Sph) - C(uph' Vph Tyl, Spt)
(30) The probability of Type [X-M, Y-M, Z-H, W-H] is as follows:
P(Xpr < X < Xpp, You <Y < Yo, Z > Zyp, W > Wpp) = C(Upn, Vpn)
+C(upl' ”pl) - C(uzzh' "pl) - C(upl’ Uzzh) - C(”ph' Uph» rph)
—C(wpn Vo Spn) + € (p, Voo Ton) + C(Upt Vpns Spn) + C(prs Vo1, Ton)
+C (upn, ”pl'sph) - C(upl' Vi, pn) = C(tp1, Upllsph) + C(uph- Vphs Tos Sph)
=C(Upt, Vpns Tons Sp) = C(pns Vi, Tons Spn) + € (Upi, Vpu, Tons Spr)
(31) The probability of Type [X-M, Y-H, Z-M, W-H] is as follows:
P(Xp1 <X < Xpn, Y > Yop, Zyy < Z < Zpp, W > Wpp) = C(tpp, Tpn)
+C (up 1) = C(pns 1) = € (i Ton) = € (Wpns Vpns Ton)
=C(upns Tons Spr) + C(pus Vons Ton) + C(Upts Tpns Spn) + C(Upns Vpns Tt
+C(upns Tor, Spn) = C(Upt, Vpns Tor) = C(pus T Spn) + C(Upns Vpns Tpns Spn)
_C(uzﬂ' Vph rph'sph) - C(”ph' Vph» rpl'sph) + C(upl’ "zzh'rpl'sph)
(32) The probability of Type [X-M, Y-H, Z-H, W-M] is as follows:
P(Xp <X <Xpn, ¥ > Yo, Z > Zpp, Wy < W < Wyp) = C(tpp, Spi)
+C(upt, 5p1) = C(pns Sp1) = € (pr, Spn) = C(pn, Vprs Spn)
_C(uph' Tphs Szzh) + C(uzzl' Vph Sph) + C(upl’ Tph Sph) + C(”ph' Vph Spl)
+C(wpns Tons Sp1) = € (1, Vons Sp1) = € (i, Tpns Spi) + € (Upns Vpn Tons Spn)
=C(upt, Vpn, Tons Spr) = C(Ups Vphs Tpns Sp) + C(Upt, Vpn, Tpns Spt)
(33) The probability of Type [X-H, Y-M, Z-M, W-H] is as follows:
P(X > Xpn, Yo <Y <Yyp, Zpyy < Z < Zpp, W > W) = C(Vpn, Tpn)
+C("pl'rpl) - C("ph'rpl) - C(”pl'rph) - C(“ph' "ph'rph)
=C(Vpns o Spn) + C(Upns Vpu, Ton) + C(Vpu, Tons Spr) + € (Upn, Vpns T1)
+C(Vpns o1 Spn) = C(upt Vprs 1) = C(Vpts Tt Spn) + € (pns Vpns oo Spn)
_C(uph' Upllrph'sph) - C(”ph' Vph» rpl'sph) + C(uph' ”pl'rpl'sph)

(34) The probability of Type [X-H, Y-M, Z-H, W-M] is as follows:
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P(X > Xpn, Yo <Y < Yyp, Z > Zpp, Wy < W < Wpy) = C(Vpn, Spn)
+C(Vpl'spl) - C("vhlsvl) - C(”plfsph) - C(”ph' Vph Sph)

_C(Vph'rph' sph) + C(uph' Upi» Sph) + C(Vpl'rvh' Sph) + C(uph’ Vph Spl)
+C(Vph'rph' Spl) - C(“ph' Upl» Szzl) - C(”pl' Tph Spl) + C(“ph’ Vphs Tpns Sph)
_C(uph’ Vpi Tpns Sph) - C(“ph' Uph Tphs Szzl) + C(uzrh' ”pl-rph'spl)

(35) The probability of Type [X-H, Y-H, Z-M, W-M] is as follows:

P(X > Xpn, ¥ > Yon, Zpy < Z < Zyps Wiy < W < Wpp) = C(Tpn, Spn)
+C(rpl'5pl) - C(rph'spl) - C(Tpl'sph) - C(“ph' rph'sph)
=C(vpn, Tons Spn) + C(Upn, Tp1, Spn) + C(Vpn, Tor, Spn) + C(pn, Tons Spt)
+C(Vpn Tons Sp1) = C(pns o1 Sp1) = C(Wpn Tt Spr) + C(Wpns Vons Tpns Spn)
=C(upns Vpns Tyt Spn) = C(pns Vpns Tpns Spr) + € (Upn, Vprs Tt Spi)
(36) The probability of Type [X-M, Y-M, Z-M, W-H] is as follows:
P(Xpr <X < Xpn, Yo <Y <Yy, Zp < Z < Zpp, W > Wpp,)
= C(“ph' Vph'rzrh) - C(uzzh- Vph'rzzl) - C(“ph- Vpl'rph) - C(“pl' Vph rph)
+C (wpr, vp1, rph) + € (upr, Vpns rpl) + C(uph, Vpts rpl) - C(upl, Vpts Tpr)
=C(tpns Vs Tons Spn) + C(wp, Vons Tpns Spn) + € (Upns Vpi, Tons Spn)
+C(“ph’ Vph rpl'sph) - C(”pl"’pl'rph'sph) - C(“pl’ Vph Tp1s Sph)
_C(uph’ ”pl'rpl'sph) + C(“pl'vpl'rpl- Sph)
(37) The probability of Type [X-H, Y-M, Z-M, W-M] is as follows:
P(X > Xpn, Yoy <Y < Yyp, Zpyy < Z < Zpp, Wy < W < Wpp)
= C(”zﬂv Tphs Szzh) - C(Vph'rph' Spl) - C(”ph' rpl'sph) - C(Upl'rphnsph)
+C(Vpl'rpl'5ph) + C(”pl'rph’ Szzl) + C(”ph' rpl'spl) - C("pl-rpl'spl)
=C(tpns Vs Tons Spn) + € (tpns V1 Tpns Spn) + € (Upns Vpns Tt Spn)
+C(“ph’ VphsTphs Spl) - C(”ph' Vpl'rpl'sph) - C(“ph' Upl'rphﬁspl)
_C(uph’ Vpn Tpls Spl) + C(“ph'”pl-rpl'spl)
(38) The probability of Type [X-M, Y-H, Z-M, W-M] is as follows:
P(Xpr < X < Xpn, Yo <Y <Yyp, Z > Zpp, Wy < W < W)
= C(“ph'rvh'sph) - C(uph’ rph'spl) - C(uzzh' rpl’szzh) - C(uz’l'rph' Sph)
+C(”pl'rpl’sph) + C(unl'rph'spl) + C(“ph’ sz.sz) - C(uzzl'rnl'spl)
=C(tpn) Vpns o) Sph) + C(p1, Vpns Tons Spn) + € (Uphy Vpns Tots Spn)
+C(”ph' Vph Tpns Spl) - C(“pl"’ph'rpl'sph) - C(“pl’ Vphs Tphs Spl)
—C(uph, Vphs Tpts spl) + C(upl. Vphs Tp1s Spl)
(39) The probability of Type [X-M, Y-M, Z-H, W-M] is as follows:
P(Xpr <X < Xpn, Yo <Y <Yyp, Z > Zpy, Wy < W < W)
= C(“ph' Vph'sph) - C(“ph' Vph Spl) - C(“ph' ”pl’sph) - C(upl"’ph- Sph)
+C(“pl' "zzl'sph) + C(“pl- Vph Szzl) + C(uzzh- Vpl'spl) - C(uzzl'”pl- Spl)
=C(tpns Vs Tons Spn) + C(wp, Vons Tpns Spn) + € (Upns Vpis Tons Spn)
+C(“ph' Vph Tphs Spl) - C(“pl"’pl'rph'sph) - C(“pl’ Uph'rph'spl)
_C(”ph’ Vpir Tpns Spl) + C(“pl'vpl'rph'spl)

(40) The probability of Type [X-M, Y-M, Z-L, W-H] is as follows:
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P(Xp <X <Xpp Yy <Y < Yo, Z < Zpy, W > Wyp) = C(upn, Vpns Tpr)
=C(ttpny V1, Tp1) = € (Upts Vs 1) + C(tpts Vi 7o) = C(Wpns Vons Tpts Spn)
+C (pt, Vpns Tt Spn) + C(tpns Vi Torr Spn) = € (Ups Vpi Tt Spn)

(41) The probability of Type [X-M, Y-M, Z-H, W-L] is as follows:
P(Xpr <X < Xpn, Yo <Y <Yy, Z > Zpp, W < Wyy) = C(Upn Vi Spr)
=C(upns Vpur Sp1) = C(Upt Vpns Sp1) + C(pt, Vi, Spi) = € (pns Vpns Tpns Spt)
+C(uzﬂ' Vph rph'szﬂ) + C(uph' Upts Tph» spl) - C(”pl' ”pl'rph'szzl)

(42) The probability of Type [X-M, Y-L, Z-M, W-H] is as follows:
P(Xp <X < Xpn, Y <Yy, Zp) < Z < Zpp, W > Wip,) = C(pn, V1 Tpn)
_C(upl' Uzal'rph) - C(“ph’ Uzzl'rpl) + C(uzzl- Upi» rpl) - C(“ph- Vpl’rph'sph)
+C (1, Vo1, Tons Sph) + C(uph'”pl'rpl'sph) = C(up, ”pl'rpl'sph)

(43) The probability of Type [X-M, Y-H, Z-M, W-L] is as follows:
P(Xp1 <X < Xpn, Y > Yop, Zpy < Z < Zpp, W < W) = C(Upn Tons Spi)
_C(”pllrph'spl) - C(uph' Tpllspl) + C(”pl: Tplrspl) - C(uphl vphrrphrspl)
+C(upl, Vph Tpho spl) + C(uph, Vph Tpts spl) — C(um, Vphs Tpls spl)

(44) The probability of Type [X-M, Y-H, Z-L, W-M] is as follows:
P(Xpr < X < Xpn, ¥ > Yop, Z < Zp, Wy < W < W) = C(upns o1 Spn)
_C(upl'rpl' Sph) - C(uph' rpl'spl) + C(“pl' Tpl» Spl) - C(uph' Vph'rplrsph)
+C(“pl' Vph rpl'sph) + C(“ph' Vph'rpl'spl) - C(upb Vphs Tpls sz)

(45) The probability of Type [X-M, Y-L, Z-H, W-M] is as follows:
P(Xp <X <Xpn, Y <Y, Z > Zyp, Wy < W < Wpp) = C(tpn Vpi, Spn)
=C(tpt, Vo1, Spn) = € (pn Vo1, Spr) + C(ptr Vi Sp1) = € (tpny Vi, Tpns Spn)
+C(Upt, Vo1, oo Spn) + C(Upns Vpus Tons Spi) = C(Upts Vi, Tpns Spr)

(46) The probability of Type [X-L, Y-M, Z-M, W-H] is as follows:
P(X < Xp1, Yy <Y < Yoy, Zyy < Z < Zpp, W > Wyp) = C(tpp, Vs Ton)
_C(upl' Upllrph) - C(”pl'vph' Tpl) + C(upl' vpl'rpl) - C(upl' Vph rph'sph)
+C(upl, Vpi, Tphs sph) + C(up,, Vph Tpts sph) - C(upl, Vpi, Tpls sph)

(47) The probability of Type [X-H, Y-M, Z-M, W-L] is as follows:
P(X > Xpn, Yo <Y <VYyp, Zpy <Z < Zpp, W < W) = C(Vp, Ty Spi)
_C(Vpl'rph' Spl) - C(”ph' rpl’szﬂ) + C(”pl'rpl’slzl) - C(“ph' Uphs Tphs Spl)
+C(“ph’ Vpur Tphs Spl) + C(“ph'”ph'rpl'spl) - C(uph' Vpi Tpls Spl)

(48) The probability of Type [X-H, Y-M, Z-L, W-M]] is as follows:
P(X > Xpn, Yo <Y <Yyp, Z < Zpy, Wy < W < Wyp) = C(Vpns Tprs Spn)
=C(Vpt, 11 Spn) = C(vpn Tow Sp1) + C(Vpu, Tows Sp1) = C(Upns Von Tt Spn)
+C(Upns Vpu, Tow Spn) + C(Upns Vons Tyt Spt) = C(Upns Vo ot Spr)

(49) The probability of Type [X-L, Y-M, Z-H, W-M]] is as follows:
P(X < Xpp, Yy <Y < Yoy, Z > Zpp, Wy < W < Wpp) = C(tpp, Vpns Spn)
_C(uzﬂ' ”pllsph) - C(upl' Vph Spl) + C(upl' Vpi» Spl) - C(upl'vvh'rph' Sph)

+C(”pl' Vpur Tpns Sph) + C(“pl"’ph'rph' Spl) - C(upl’ Vpi Tpns Spl)
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(50) The probability of Type [X-L, Y-H, Z-M, W-M]] is as follows:
P(X < Xp1,Y > Yop, Zpy < Z < Zpp, Wiy < W < Wyp) = C(tpp, Ty Spr)

_C(”pl'rpl’sph) - C(“pl'rph'spl) + C(“pl' rpl’spl) - C(“pl'”ph-rphrsph)

+C(upll vph' 7"pl' Sph) + C(upl’ 1Jphv Tph: Spl) - C(upl: vph: rpl! Spl)

(51) The probability of Type [X-H, Y-L, Z-M, W-M]] is as follows:
P(X > Xpn Y < Yo, Zpyy < Z < Zppy Wy < W < Wyp) = C(Vp1, Tons Spn)
=C(Vpt, Tp1 Spn) = C(Vp1 o Sp1) + C(Vpu, Tows Sp1) = C(Upns Vot Tons Spn)
+C(uph, Vpu Tpis sph) + C(uph, Vpu Tphs spl) — C(uph, Vpu Tpis s,,l)

(52) The probability of Type [X-M, Y-L, Z-L, W-H] is as follows:
P(Xpr <X <Xpn, Y < Yo, Z < Zp, W > Wyp) = C(pn, V1 Tr)
=C(p1, V1, Tpt) = C(pns Vo, Tot Spn) + C (i, Vpt, Tt Spn)

(53) The probability of Type [X-L, Y-M, Z-L, W-H] is as follows:

P(X < Xpp, Yy <Y <Yy, Z < Zp, W > Wyp) = C(upp, Vs 1)
_C(uzﬂ' ”pl'rpl) - C(”pl'”phlrpl'svh) + C(upl' Ulerpleph)

(54) The probability of Type [X-L, Y-L, Z-M, W-H] is as follows:

P(X < Xpp, Yy <Y <Yy, Z < Zy, W > Wyp) = C(upp, V1 Tpn)
=C (1, Vo1, 11) = C (1, Vo1, Toms Spn) + C (Ut Vi, Tt Spn)

(55) The probability of Type [X-M, Y-L, Z-H, W-L] is as follows:
P(Xp <X <Xpn, Y <Y1, Z > Zpp, W < W) = C (U, V1, Spr)
—C(wpr, 1, Sp1) — C(pns Vo1 Tons Sp1) + C(Upi Vi, Ty Spr)

(56) The probability of Type [X-L, Y-M, Z-H, W-L] is as follows:

P(X < Xy Ypr <Y < Ypp, Z > Zpp, W < W) = C(Upt, Vs Spi)
=C(tp1, Vo1, 5p1) = C(Upts Vpns Tons Spr) + C(pts Vi Tons Spi)

(57) The probability of Type [X-L, Y-L, Z-H, W-M] is as follows:

P(X < Xp, Y <Yy, Z > Zpp, Wy < W < Wyp) = C(tpp, Vi, Spr)
=C(tp1, Vo1, Sp) = C(Upt, Vi, oy Sph) + C(upl' Vpl, Tons Spt)

(58) The probability of Type [X-M, Y-H, Z-L, W-L] is as follows:
P(Xp <X < Xpn, ¥ > Yop, Z < Zp, W < Wyy) = C(pn Tp1, Spi)
_C(upl'rpl’spl) - C(uzrh' Vph'rpl'spl) + C(“pl' Vphs rpl’szrl)

(59) The probability of Type [X-L, Y-H, Z-M, W-L] is as follows:

P(X <Xy, Y > Yop, Zp < Z < Zpp, W < Wy;) = C(tpp, Tons Spi)
_C(upl'rpl’spl) - C(upl' Vphs Tphs Spl) + C(upl' Uphs Tpls sz)

(60) The probability of Type [X-L, Y-H, Z-L, W-M] is as follows:

P(X < Xp1,Y > Yop, Z < Zpy, Wy < W < Wpp) = C(tpp, Tt Spn)
_C(”pl'rpl'spl) - C(”pl"’ph'rpl'svh) + C(upl' ”ph'rvl'szzl)

(61) The probability of Type [X-H, Y-M, Z-L, W-L] is as follows:

P(X > Xpn, Yo <Y <Yyp, Z < Zp, W < W) = C(Vp, Tyt Sp1)

=C(Vpt, Tt Spt) = C(Upns Vpns Tt Spt) + C(Upns Vpus Tot, Sp1)
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(62) The probability of Type [X-H, Y-L, Z-M, W-L] is as follows:
P(X > Xpn, Y < Yo, Zpy <Z < Zpp, W < W) = C(Vp1, Tpn, Sp1)
_C(Vpl'rpl'spl) - C(“ph' Vpi Tphs Spl) + C(”ph' Vpl-rpl'spl)
(63) The probability of Type [X-H, Y-L, Z-L, W-M] is as follows:
P(X > Xpn, Y < Yo, Z < Zpy, Wy < W < Wpp) = C(0p1, Tp1, Spn)
_C(Vpl'rpl'spl) - C(uph’ Uzzl'rpl'szzh) + C(”ph' Vpl'rpl'spl)
(64) The probability of Type [X-L, Y-L, Z-L, W-H] is as follows:
P(X < Xp,Y <Yy, Z < Zp, W > Wyy) = C(upp, vy Tp1)
_C(uzﬂ' Vpu Tp1s Svh)
(65) The probability of Type [X-L, Y-L, Z-H, W-L] is as follows:
P(X < Xp,Y <Yy, Z > Zpp, W < Wy;) = C(upr, V1 Sp1)
_C(”pl' Vpu Tpns Spl)
(66) The probability of Type [X-L, Y-H, Z-L, W-L] is as follows:
P(X < Xp1,Y > Yon, Z < Zpy, W < Wyy) = C(upp, o1, Spi)
_C(”Pllvph' sz,Spl)
(67) The probability of Type [X-H, Y-L, Z-L, W-L] is as follows:
P(X > Xpn Y <Y, Z < Zpy, W < Wy;) = C(vp1 Ty Sp1)
_C(uphl Upir Tpl» Spl)
(68) The probability of Type [X-M, Y-M, Z-M, W-L] is as follows:
P(Xpr <X < Xpn, Yo <Y <Yy, Zpyy < Z < Zpp, W < W)
= C(”ph' Vphs Tphs Svl) - C(uph' Vphs rpl'spl) - C(uph' Vpts Tphs Spl)
—C(upl,vph,rph, spl) + C(uph, Vpu Tpts spl) + C(upl, vph,rpl,spl)
+C(upl' "pl'rphfspl) - C(”pl' vpl'rpl'spl)
(69) The probability of Type [X-M, Y-M, Z-L, W-M] is as follows:
P(Xpr <X < Xpn Yo <Y <Yy, Z < Zpyy, Wy < W < Wyp)
= C(”ph' "nh'rplfsph) - C(uph' Uph'rpl'spl) - C(uph' vplfrpllsph)
—C(up,,vph,rp,,sph) + C(uph, Vpu Tpis sp,) + C(upl, vph,rp,,spl)
+C(upl' vpl'rplrsph) - C(”pl' vpl'rpl'spl)
(70) The probability of Type [X-M, Y-L, Z-M, W-M] is as follows:
P(Xp <X <Xpno Y < Y1, Zpy < Z < Zpppy Wiy < W < W)
= C(”ph' Vpur rphfsph) - C(”pl' vplfrph'sph) - C(uph' ”plfrpl'sph)
—C(uph, Vpis Vs spl) + C(uph, vp,,rpl,spl) + C(upl, vp,,rph,spl)
+C(upl' vpl'rplrsph) - C(”pl’ vpl'rpllspl)
(71) The probability of Type [X-L, Y-M, Z-M, W-M] is as follows:
P(X < Xpp, Yyt <Y <Yy, Zpy < Z < Zppy, Wyt < W < W)
= C(up1, Vpns Tpnr Spn) = C(Upt Vo, Tons Spn) = C(Upt Vpns Tyt Spn)
_C(upllvph'rph' Spl) + C(”pl' Vph rpl'spl) + C(upl' Vpis Tphs Spl)
+C(uplv Up o1 Sph) - C(upl’ Vpi, o1 Spl)

(72) The probability of Type [X-M, Y-M, Z-L, W-L] is as follows:
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P(Xpr <X < Xpp, Yoy <Y < VYo, Z < Zy, W < W)
= C(pns Vs o1 Spt) = C(pns Vpu o1 Spt) = € (Ut Vpns ot Spt)
+C (Wi, V1 Tp1r Sp1)

(73) The probability of Type [X-M, Y-L, Z-M, W-L] is as follows:
P(Xpr <X <Xpn, Y <Yy, Zp < Z < Zpp, W < Wp))
= C(”ph' Upi» Tphfspl) - C(”ph' Upl'Tpl'Spl) - C(upl' Upi» Tphrspl)
+C(upl,vpl,rp,,spl)

(74) The probability of Type [X-M, Y-L, Z-L, W-M] is as follows:
P(Xp <X <Xpn, ¥ <Yy, Z < Zpy, Wy < W < Wpp)

= C(upns Vpu: Tt Spn) = C(Upns Vpus Tos Sp1) = C (i, Vpi, Tyt Spr)
+C(upl, Vpi, Tpts spl)
(75) The probability of Type [X-L, Y-M, Z-M, W-L] is as follows:
P(X < Xpp, Yyt <Y <Yy, Zpy < Z < Zpy, W < Wpyy)
= C(upt, Vpn Tons Spt) = C(Upts Vpn o Spi) = C (i, Vpi, Tons Spi)
+C(up,, Vpu, ot spl)

(76) The probability of Type [X-L, Y-M, Z-L, W-M] is as follows:
P(X < Xpp, Yy <Y < Yoy, Z < Zp, Wy < W < W)

= C(upl’ Vph rpl'sph) - C(upl' Vph'rpl’spl) - C(upl' Vpi Tpis sph)
+C(upl,vpl,rpl,sp,)

(77) The probability of Type [X-L, Y-L, Z-M, W-M] is as follows:
P(X < Xp,Y < Yo, Zpy < Z < Zyp, Wiy < W < Wyp)

= C(uplv 17;71: rphﬁ Sph) - C(upl' 17plf rplﬁ Sph) - C(uplﬂ 1;pl' rphr Spl)
+C (wpi, V1 Tp1r Sp1)

(78) The probability of Type [X-M, Y-L, Z-L, W-L] is as follows:
P(Xpr <X <Xpn, Y < Yo, Z < Zp, W < Wp)
= C(uph' Vpi» Tpl'spl) - C(upllvpl'rplrspl)

(79) The probability of Type [X-L, Y-M, Z-L, W-L] is as follows:
P(X < Xpp, Yy <Y <Yy, Z < Zpp, W < Wyy)
= C(upl' "ph'rplrspl) - C(upl’vpl'rplrspl)

(80) The probability of Type [X-L, Y-L, Z-M, W-L] is as follows:
P(X < XY < Yo, Zyy < Z < Zypp, W < Wy))
= C(upl' Vpl'rphrspl) - C(upl'vpl'rplrspl)

(81) The probability of Type [X-L, Y-L, Z-L, W-M] is as follows:
P(X < Xp,Y < Yo, Z < Zy, Wy < W < Wpp)

= C(uplv Vpll rp[' Sph) - C(upl' 1Jplf Tplr Spl)
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880 Figure C1. Results of correlation analysis for daily runoff at multiple sites
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Appendix D

EGUsphere\

A total of twelve different distribution functions were employed to fit the daily runoff flows at the four

points for each day in August. For each of the 31 days in August, the preferred marginal distribution

functions and their corresponding parameters for each variable can be seen in Table D1. Figure D1 shows

the preferred marginal distribution functions for each variable over month of August.

Table D1 Marginal distributions and parameters preferred for each variable on August 1st-31st

Date variable distribution shape loc scale mean rate meanlog sdlog alpha
LSM gamma 0.379 0.106
LX gev 0.583 0.246 0.274
' QS gev 0.578 1.890  2.056
SD gev 0.643 3.716  3.670
LSM gev 0539 0.854 1434
LX invgauss 0.260 0.715
’ QS gev 0539 1964 1.986
SD llogis 1.527 5.206
LSM Inorm -0.437  2.817
LX invgauss 0.182 1.835
? QS Inorm 1.166  1.425
SD invgauss 3.541 15.295
LSM gev 0.646  1.265  2.495
LX Inorm -0.664  1.445
) QS gpd -0.202 -0.715 9.321
SD gpd 0.000 -0.350 15.000
LSM weibull 0.433 3.195
LX gev 0.888  0.250  0.385
’ QS invgauss 2.133 8.328
SD gev 0.626 4946  5.406
6 LSM gamma 0.402 0.090
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llogis
Inorm
gev
weibull
invgauss
llogis
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Inorm
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Inorm
Inorm
Inorm
weibull
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1.277

0.688

1.495

0.365

1.073

0.836

0.456

0.214

0.977

0.846

0.438

0.211

0.358

0.474

0.929

0.885
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2.772

7.912

0.216
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1.545
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4.670

-0.712
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0.324
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10.057
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Qs gpd 0.299 -0.095 10.472
SD invgauss 10.011 33.990
LSM gev 0.608 1.580 2.722
LX invgauss 0.432 1.527
14
Qs invgauss 3.695 14.640
SD invgauss 8.444 31.374
LSM gev 0.436 1.242 2.118
LX gumbel 0.655 0.515
15
QS invgauss 3.225 7.595
SD invgauss 7.520 18.606
LSM weibull 0.506 2.783
LX invgauss 0.360 1.148
16
QS invgauss 2.943 9.336
SD gpd 0.359 0.529 13.680
LSM weibull 0.479 2.907
LX weibull 0.897 0.952
17
QS gpd 0.385 -0.580 6.729
SD invgauss 6.433 19.990
LSM gev 0.552 1.252  2.482
LX gev 0.492 0411 0.493
18
Qs gpd 0.300 -0.632 7.393
SD Inorm 2290 1.315
LSM weibull 0.452 3.243
LX invgauss 0.301 1.595
19
Qs invgauss 2.268 14.869
SD gpd 0.618 -0.297 11.762
LSM Inorm -0.048 2.580
20 LX llogis 1.246 0.593
QS invgauss 1.989 25.636
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890 Figure D1. Cumulative probability distribution of the preferred marginal distribution function for runoff

891  on each day throughout August

892  Code availability

893  The developed routines for working with conditional joint probability density functions are publicly
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894  available via the rvinecopulib R package (https:/github.com/vinecopulib/rvinecopulib) and

895 CDVineCopulaConditional R package (https://github.com/cran/CDVineCopulaConditional). Other

896  codes used to support the findings of this study are available from the authors upon request.

897 Data Availability

898  Streamflow can be checked form hydrology information of Taizhou City at
899  http://www.shui00.com/ZhswFloodWater/web/html/index.html?module=wssyq. Other data used to

900 support the findings of this study are available from the corresponding author upon request.
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