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Abstract: Accurately modeling and predicting flood flows across multiple sites within a watershed 8 

presents significant challenges due to potential issues of insufficient accuracy and excessive 9 

computational demands in existing methodologies. In response to these challenges, this study introduces 10 

a novel approach centered around the use of vine copula models, termed RDV-Copula (Reduced-11 

dimension vine copula construction approach). The core of this methodology lies in its ability to integrate 12 

and extract complex data information before constructing the copula function, thus preserving the 13 

intricate spatial-temporal connections among multiple sites while substantially reducing the vine copula's 14 

complexity. This study performs a synchronization frequency analysis using the devised copula models, 15 

offering valuable insights into flood encounter probabilities. Additionally, the innovative approach 16 

undergoes validation by comparison with three benchmark models, which vary in dimensions and nature 17 

of variable interactions. Furthermore, the study conducts stochastic simulations, exploring both 18 

unconditional and conditional scenarios across different vine copula models. Applied in the Shifeng 19 

Creek watershed, China, the findings reveal that vine copula models are superior in capturing complex 20 

variable relationships, demonstrating significant spatial interconnectivity crucial for flood risk prediction 21 

in heavy rainfall events. Interestingly, the study observes that expanding the model's dimensions does 22 

not inherently enhance simulation precision. The RDV-Copula method not only captures comprehensive 23 

information effectively but also simplifies the vine copula model by reducing its dimensionality and 24 

complexity. This study contributes to the field of hydrology by offering a refined method for analyzing 25 

and simulating multisite flood flows. 26 

 27 

 28 
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1 Introduction 29 

Floods are the most frequent natural disaster, inflicting substantial economic losses, environmental 30 

degradation and human casualties (Teng et al., 2017). As reported by Centre for Research on the 31 

Epidemiology of Disasters (CRED), floods represented 45.6% of worldwide natural disasters in 2022, 32 

affecting an average of 57.1 million people annually (CRED,2023). The data also indicated a 4.76% 33 

increase in flood occurrences in 2022 compared to the annual average from 2002 to 2021(CRED,2023). 34 

Therefore, it is very meaningful and essential to analyze flooding and achieve flood risk control. At the 35 

watershed scale, flood risk is primarily influenced by rainfall patterns and interconnections among sub-36 

watersheds. Large floods often result from the merging of floods from multiple sub-watersheds (Prohaska 37 

and Ilic, 2010). Concurrent flood events cause runoff from various sources to merge, forming large floods 38 

that pose threats to downstream regions. As a result, analyzing the runoff at various sites not only 39 

provides a better understanding of the flood characteristics within the watershed, but also contributes to 40 

the development of flood control programs to avoid flood risks. 41 

There are currently many techniques for analyzing hydrological variables. Common univariate 42 

methods include statistical analyses such as frequency analysis (Stedinger et al., 1993), extreme value 43 

theory (Coles, 2001), and time series analysis methods like the Autoregressive Integrated Moving 44 

Average (ARIMA) model (Box et al., 2013). However, univariate analyses often fall short in accurately 45 

estimating the risks associated with extreme events due to their inability to account for the 46 

interdependence of variables (Guo et al., 2023; Khan et al., 2023). This oversight can lead to significant 47 

underestimation or overestimation of risks, particularly given the inherent relationships among variables 48 

within a catchment. To address the complexity of these relationships across multiple variables, 49 

researchers have turned to multivariate analysis techniques. Methods such as Autoregressive (AR) 50 

models are utilized for analyzing temporal correlations (Box et al., 2013), while spatial relationships can 51 

be examined using techniques like geostatistical methods (Isaaks and Srivastava, 1989), spatial 52 

regression models (Bekker and Wansbeek, 2001), Copula functions (Sklar, 1959) and Bayesian 53 

hierarchical models (Gelman et al., 2013). However, these methods have their limitations. AR models, 54 

while effective for temporal analysis, do not account for spatial dependencies. Geostatistical methods 55 

and spatial regression models focus primarily on spatial relationships but may struggle with temporal 56 

dynamics. Bayesian hierarchical models can handle complex dependencies but often involve high 57 
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computational demands and require substantial prior information. In contrast, copula functions offer 58 

substantial advantages when dealing with multivariate spatial-temporal relationships. They provide a 59 

flexible framework for modeling dependencies between variables without assuming a specific marginal 60 

distribution, allowing for a more accurate representation of complex interdependencies. Later adopted in 61 

hydrology by De Michele and Salvadori (2003), copula functions link multidimensional probability 62 

distribution functions to their one-dimensional margins, preserving both the dependence structure and 63 

the distinct distribution characteristics of random variables (Tosunoglu et al., 2020). Copula functions 64 

are widely applied in hydrological fields, including the joint frequency analysis (Liu et al., 2018; Zhang 65 

et al., 2021), water resources management (Gao et al., 2018; Nazeri Tahroudi et al., 2022), wetness-66 

dryness encountering (Wang et al., 2022; Zhang et al., 2023), flood risk assessment (Li et al., 2022; 67 

Tosunoglu et al., 2020; Zhong et al., 2021) , water quality analysis (Yu et al., 2020; Yu and Zhang, 2021)，68 

precipitation model (Gao et al., 2020; Nazeri Tahroudi et al., 2023; Tahroudi et al., 2022) and so on.  69 

Despite the broad application of conventional copula functions to create joint distributions for 70 

multiple variables, their capacity to accurately represent high-dimensional realities is constrained. This 71 

limitation arises from their reliance on a single parameter to describe correlations and a simplistic 72 

approach to model the dependence structure between variables (Aas et al., 2009; Daneshkhah et al., 2016). 73 

To overcome these limitations, Bedford and Cooke (2002) proposed a reliable way called Vine Copula 74 

to construct complex multivariate models with high dependency. Vine copula construction relies 75 

exclusively on the principle of breaking down the complete multivariate density into a series or simple, 76 

foundational components through conditional independence or pair-copula constructs. There are two 77 

main types of vine structures: C-Vine and D-Vine (Brechmann and Schepsmeier, 2013). The former 78 

presents star-shaped configurations, while the latter displays path-like structures, providing enhanced 79 

flexibility in constructing the joint distribution of multiple variables by enabling the use of different types 80 

of bivariate copulas for each pair, thus accommodating a diverse range of dependency structures (Aas et 81 

al., 2009; Çekin et al., 2020).  82 

Vine copulas are increasingly applied in hydrological studies to model complex relationships among 83 

multiple variables. For instance, Ahn (2021) developed a D-vine copula-based model to estimate flows 84 

in catchments with limited or partial gauging, focusing on the temporal relationship of runoff at a specific 85 

site. This model employed a six-dimensional copula structure centered around annual runoff, using 86 
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conditional simulation to compensate for missing data. Wang et al. (2022) explored the joint distribution 87 

of multi-inflows to assess wetness-dryness conditions, highlighting spatial interconnections across three 88 

water systems but ignoring the temporal influences within each system on the overall assessment. Unlike 89 

the above studies, Xu et al. (2022) developed a stepwise and dynamic C-vine copula-based conditional 90 

model (SDCVC) to incorporate the non-stationarity into a monthly streamflow prediction. This model 91 

synthesizes the temporal and spatial relationships at multiple sites, developing a four-dimensional C-vine 92 

copula for dual-site monthly streamflow forecasts. The term "four dimensions" relates to the categories 93 

of variables involved, such as rainfall, downstream station streamflow, among others. Integrating 94 

temporal and spatial relationships in copula construction allows for a more comprehensive data inclusion, 95 

facilitating enhanced modeling of complex inter-variable relationships. However, challenges arise as the 96 

number of sites or the analysis period extends, leading to increased complexity and dimensionality of the 97 

copula function. This complexity can complicate the copula structure's determination, inflate 98 

computational demands during parameter fitting, and potentially diminish the accuracy of stochastic 99 

simulations. To bridge this gap, this study aims to propose a new approach to achieve dimensionality 100 

reduction while ensuring the complete access of spatial-temporal relationships for multiple sites. The 101 

primary focus is to filter effective information to fully incorporate runoff data from each site and mitigate 102 

the complexity of the vine copula function, thereby preventing poor model fitting due to increased 103 

computational effort.  104 

Moreover, understanding the spatial and temporal relationships of runoff across multiple sites within 105 

a catchment is essential for effective flood control and water resources management. Synchronization 106 

probability analysis and stochastic simulation of streamflow sequences play a pivotal role in these 107 

processes (Chen et al., 2015; Guo et al., 2024). The terminology used to describe the encounter situations 108 

of wetness and dryness varies; an asynchronous event refers to a scenario where such encounters do not 109 

occur simultaneously, whereas both wetness-wetness and dryness-dryness encounters are considered 110 

synchronous events. These encounters exist not only in diversion projects and multi-source water supply 111 

systems, but also in main streams and tributaries at a watershed scale. They offer invaluable insights into 112 

the spatial and temporal distribution of water resources, aiding in the preparation for anticipated future 113 

events (Szilagyi et al., 2006). Copula-based simulation was first discussed in the study of Bedford and 114 

Cooke (2001;2002). Subsequently, as more studies have been conducted, copula-based modeling and 115 
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simulation models for hydrological variables have demonstrated high performance (Gao et al., 2021; 116 

Huang et al., 2018; Tahroudi et al., 2022). Utilizing stochastic simulation to generate sets of runoff 117 

sequences from multiple sites not only allows for a more progressive test of the effectiveness of the vine 118 

copula function in fitting the relationship, but also provides a data base for flood control scheduling in 119 

making decisions. 120 

The basic task of this study is to construct the relationship functions of runoff across multiple sites 121 

within a catchment using the vine copula. By leveraging the copula model, the frequency of flood 122 

encounters for multiple runoffs is calculated to further analyze the intrinsic spatial and temporal 123 

relationship characteristics. Addressing the challenge of dimensionality disaster caused by excessive 124 

variables, this study proposes a novel approach to reduce the dimensionality by filtering the effective 125 

information under the premise of fully incorporating the runoff information from each site. This approach 126 

makes it possible to access the spatial and temporal relationships of runoff from multiple sites in the 127 

catchment more accurately and efficiently. In addition, more reality-oriented simulation results can be 128 

obtained, which provide statistical support for flood control and scheduling decision-making. 129 

This paper is structured as follows: Section 2 outlines the proposed methodology's framework. 130 

Section 3 presents the application of this methodology through a case study. The results are detailed in 131 

Section 4, while Section 5 provides a thorough analysis and discussion of the results. Finally, Section 6 132 

concludes the paper by summarizing the principal conclusions. 133 

2 Methodology 134 

The framework of this study is shown in Figure 1. This Section focuses on constructing and applying 135 

multivariate joint distribution functions based on the vine copula function. It is divided into two cases: 136 

one considering only spatial relations and the other combining spatial and temporal relations. Utilizing 137 

the data characteristics, it describes how to build a vine copula function based on multiple variables and 138 

details the processes of synchronization frequency analysis and stochastic simulation with the 139 

constructed vine copula function. Additionally, it presents a new approach called the reduced-dimension 140 

vine copula (RDV-Copula). 141 
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 142 

Figure 1. Framework of proposed methodology 143 

2.1 Joint distribution of multiple variables 144 

Before identifying the dependence relationships among multi-variables, their correlations need to be 145 

analyzed and judged. Kendall's correlation coefficient, a nonparametric statistic, serves to measure the 146 

correlation degree between two variables, making it suitable for nonlinear relationships and categorical 147 

variables. In this study, vine copula functions are constructed to achieve synchronization frequency and 148 

stochastic simulation of multiple streamflow sequences. To more accurately simulate the temporal and 149 

spatial relationships, the correlations among multi-site streamflow series are determined by calculating 150 

the Kendall correlation coefficients. 151 

2.1.1 Marginal distribution function 152 

To build the dependence structure of hydrological variables using copulas, it is essential to determine the 153 

marginal distribution of each variable first. Given that the marginal distribution function for each 154 

characteristic variable is not predetermined and the skewness of their probability distributions varies 155 

(Zhong et al., 2021), it becomes crucial to consider multiple marginal distribution functions as candidates. 156 
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In this study, a comprehensive comparison is conducted among 12 commonly utilized distributions 157 

(Tosunoğlu, 2018), including Gamma distribution (gamma), Exponential distribution (exp), Pearson-III 158 

distribution (p3), Generalized extreme value distribution (gev), Inverse gaussian distribution (invgauss), 159 

Normal distribution (norm), Logistic distribution (logis), Log-normal distribution (lnorm), Log-logistic 160 

distribution (llogis), Generalized pareto distribution (gpd), Weibull distribution (weibull) and Gumbel 161 

distribution (gumbel). According to the goodness-of-fit test and AIC minimum criterion, the optimal 162 

distribution functions are selected as the marginal functions of the characteristic variables. The specific 163 

details of different distributions, such as the probability distribution function and the respective 164 

parameters, are displayed in Appendix A. 165 

2.1.2 Vine copula function theory 166 

Copula functions, first introduced in 1959, represent a multivariate joint probability distribution function 167 

within the unit square [0, 1], featuring uniform marginal distributions. According to Sklar’s theorem 168 

(Sklar, 1959), for a multivariate random variable 𝑥1, 𝑥2, 𝑥3, ⋯，𝑥𝑑, there exist marginal distributions 169 

𝑢1 = 𝑓1(𝑥1), 𝑢2 = 𝑓2(𝑥2), 𝑢3 = 𝑓3(𝑥3), ,𝑢𝑑 = 𝑓𝑑(𝑥𝑑) and joint distribution 𝑓(𝑥1 , 𝑥2 , 𝑥3 , ⋯ , 𝑥𝑑 ), 170 

then there exists a copula function 𝐶𝜃 such that 171 

𝑓(𝑥1 , 𝑥2 , 𝑥3 , ⋯ , 𝑥𝑑 ) = 𝐶𝜃[𝑓1(𝑥1), 𝑓2(𝑥2), ⋯ , 𝑓𝑑(𝑥𝑑)] = 𝐶𝜃(𝑢1, 𝑢2, ⋯ , 𝑢𝑑)  (1) 172 

If 𝑓1(𝑥1) , 𝑓2(𝑥2) ,  , 𝑓𝑑(𝑥𝑑)  are continuous functions, then 𝐶  is unique. 𝜃 represents an 173 

explicit parameter to the function. 174 

The multivariate conditional density function can be represented as: 175 

𝑓(𝑥|𝜈) = 𝐶𝑥𝜈𝑗|𝜈−𝑗
(𝐹(𝑥|𝜈−𝑗), 𝐹(𝜈𝑗|𝜈−𝑗)) 𝑓(𝑥|𝜈−𝑗) (2) 176 

where 𝜈𝑗 denotes a component of the n-dimensional vector 𝜈, while 𝜈−𝑗 denotes the (n-1)-dimensional 177 

vector with 𝜈𝑗 removed.  178 

The term 𝑓(𝑥|𝜈) in each conditional density function can be denoted as: 179 

𝐹(𝑥|𝜈) =
𝜕𝐶

𝑥𝜈𝑗|𝜈−𝑗
(𝐹(𝑥|𝜈−𝑗),𝐹(𝜈𝑗|𝜈−𝑗))

𝐹(𝜈𝑗|𝜈−𝑗)
 (3) 180 

The copula function, essentially, acts as a transformation function that connects the joint distribution 181 

of multiple variables to the marginal distributions. There are a number of alternative copula families that 182 

can be selected for the construction of modeling dependence, such as Gaussian copula, t-copula, Clayton 183 

copula, Gumbel copula, Frank copula and so on. However, the construction of high-dimensional copula 184 
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functions is often constrained by parameter limitations and computationally demanding. Bedford and 185 

Cooke (2002) introduced a more advanced and flexible alternative method of constructing the 186 

dependence structure called Vine Copula. Also later called pair-copula construction by Aas et al. (2009), 187 

vine copulas decompose the joint density function into a cascade of building blocks of the bivariate 188 

copulas. Assuming that there are 𝑑 variables given to us, it is possible by this method to decompose the 189 

d-dimensional joint distribution into 𝑑(𝑑 − 1)/2 pair copulas densities. In vine copula structure, the 190 

vine consists of a series of trees, nodes, and edges. The trees represent the layers. Each layer contains 191 

several nodes and the connections between the nodes are called the edges. The nodes in the first tree 192 

represent the marginal distributions of each variable. Each edge represents a pair-copula joint distribution 193 

function of two adjacent nodes. The edges in each tree, except the last tree, are used as nodes in the next 194 

tree. There are two subsets of regular vines in commonly use: canonical vines (C-vines) and drawable 195 

vines (D-vines). Both types of vine-copula have their own specific way of decomposing the density 196 

function.  197 

In the C-vine copula structure, each tree features a central node that is connected to all other edges, 198 

as illustrated in Figure 2(a). C-vine is suitable for structures with a key variable that has a significant 199 

correlation with the remaining other variables. In contrast, in the D-vine copula structure, each node is 200 

connected to no more than two edges, as depicted in Figure 2(b). The order of dependencies between 201 

variables can be determined by one after the other. The expressions for the n-dimensional joint 202 

probability density of C-vine and D-vine are shown in Equations (4) and (5). 203 

 204 

Figure 2. The vine structures for the given order of 3 variables in (a) the C-vine copula and (b) the D-vine 205 

copula 206 
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𝑓(𝑥1 , ⋯ , 𝑥𝑑 ) = [∏ ∏ 𝑐𝑗,𝑗+1|1,⋯,𝑗−1
𝑑−𝑗
𝑖=1

𝑑−1
𝑗=1 ] ∙ [∏ 𝑓𝑘(𝑥𝑘)𝑑

𝑘=1 ] (C-vine)  (4) 207 

𝑓(𝑥1 , ⋯ , 𝑥𝑑 ) = [∏ ∏ 𝑐𝑖,(𝑖+𝑗)|(𝑖+1),⋯,(𝑖+𝑗−1)
𝑑−𝑗
𝑖=1

𝑑−1
𝑗=1 ] ∙ [∏ 𝑓𝑘(𝑥𝑘)𝑑

𝑘=1 ] (D-vine)  (5) 208 

where 𝑐( ) refers to the bivariate copula with index 𝑖 running over the edges for each tree and index 𝑗 209 

identifying the trees, 𝑓𝑘(𝑥𝑘) denotes the marginal density. 210 

2.2 Estimation of inflow synchronization frequency  211 

A distinct advantage of the copula method lies in its precision in analyzing inflow encounter probabilities 212 

and conditional probabilities. In this study, a synchronization event is defined as the simultaneous 213 

occurrence of inflows of similar magnitudes from multiple sites. We categorize the flow into three levels: 214 

high, medium, and low. The frequencies associated with high-water and low-water events are set as 𝑃ℎ =215 

37.5% and 𝑃𝑙 = 62.5%. It is assumed that there is a generalized reservoir group scheduling system, as 216 

shown in Figure 3. The system encompasses 𝑁 reservoirs and 𝑀 flood control cross sections.  217 

 218 

 219 

Figure 3. Schematic diagram of the generalized system in the catchment 220 

We can generalize all reservoirs and cross-sections to multiple sites within the watershed system. 221 

Each of these sites may be exposed to incoming flows when rainfall occurs. Let 𝑋𝑝ℎ and 𝑋𝑝𝑙 be the 222 

amounts of water corresponding to  𝑃ℎ and  𝑃𝑙 , respectively. 𝑋𝑖 > 𝑋𝑝ℎ corresponds to high-water (H), 223 

𝑋𝑖 < 𝑋𝑝𝑙 corresponds to low-water (L), and 𝑋𝑝𝑙 < 𝑋𝑖 < 𝑋𝑝ℎ corresponds to medium-water (M), where 224 

𝑋𝑖 denotes the inflow of day 𝑖 .  225 

Let the inflows of the different sites be represented by 𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑁+𝑀 . 226 

𝑋𝑝ℎ
1 , 𝑋𝑝ℎ

2 , 𝑋𝑝ℎ
3 , ⋯ , 𝑋𝑝ℎ

𝑁+𝑀  represent the amounts of inflow corresponding to the high-water of these 227 

different sites respectively. Meanwhile, 𝑋𝑝𝑙
1 , 𝑋𝑝𝑙

2 , 𝑋𝑝𝑙
3 , ⋯ , 𝑋𝑝𝑙

𝑁+𝑀  represent the amounts of inflow 228 

corresponding to the low-water of these different sites respectively. The marginal distribution functions 229 
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are 𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑁+𝑀 , respectively. Specifically, 𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , ⋯ , 𝑢𝑝ℎ

𝑁+𝑀 denote the marginal 230 

distribution functions corresponding to the high-water inflow amounts 𝑋𝑝ℎ
1 , 𝑋𝑝ℎ

2 , 𝑋𝑝ℎ
3 , ⋯ , 𝑋𝑝ℎ

𝑁+𝑀, 231 

capturing the probabilistic behavior of the inflows during high-water conditions at each site. Similarly, 232 

𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , ⋯ , 𝑢𝑝𝑙

𝑁+𝑀 represent the marginal distribution functions for the low-water inflow amounts 233 

𝑋𝑝𝑙
1 , 𝑋𝑝𝑙

2 , 𝑋𝑝𝑙
3 , ⋯ , 𝑋𝑝𝑙

𝑁+𝑀, describing the inflow behavior during low-water conditions at these sites. 234 

The number of possible inflow-state combinations increases with the number of sites, directly tied 235 

to the three distinct states (High/Medium/Low) identified for each site. For instance, with just two sites, 236 

there are nine unique combinations. The number of combinations expands to 27 for three sites, 81 for 237 

four sites, and 243 for five sites. The pattern continues similarly for additional sites. Take the 238 

combinations of four sites as an example, following the copula theory, 𝑃(𝑋1 < 𝑥1, 𝑋2 < 𝑥2) =239 

𝑓(𝑢1, 𝑢2) = 𝐶(𝑢1, 𝑢2)  and 𝑃(𝑋 > 𝑥) = 1 − 𝑃(𝑋 < 𝑥)  , the probability formulas of synchronization 240 

are derived as below.  241 

(1) The probability of synchronized high-water is as follows: 242 

𝑃(𝑋1 > 𝑋𝑝ℎ
1 , 𝑋2 > 𝑋𝑝ℎ

2 , 𝑋3 > 𝑋𝑝ℎ
3 , 𝑋4 > 𝑋𝑝ℎ

4 ) = 1 − 𝑢𝑝ℎ
1 − 𝑢𝑝ℎ

2 − 𝑢𝑝ℎ
3 − 𝑢𝑝ℎ

4

 +𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 ) + 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

3 ) + 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

4 ) + 𝐶(𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

3 ) + 𝐶(𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

4 )

 +𝐶(𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 ) − 𝐶(𝑢𝑝ℎ

1 , 𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

3 , 𝑢𝑝ℎ
4 )

 −𝐶(𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

3 , 𝑢𝑝ℎ
4 ) + 𝐶(𝑢𝑝ℎ

1 , 𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

3 , 𝑢𝑝ℎ
4 )

 (6) 243 

(2) The probability of synchronized medium-water is as follows: 244 

𝑃 = (𝑋𝑝𝑙
1 < 𝑋1 < 𝑋𝑝ℎ

1 , 𝑋𝑝𝑙
2 < 𝑋2 < 𝑋𝑝ℎ

2 , 𝑋𝑝𝑙
3 < 𝑋3 < 𝑋𝑝ℎ

3 , 𝑋𝑝𝑙
4 < 𝑋4 < 𝑋𝑝ℎ

4 )

 = 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝𝑙

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝ℎ

4 )

 −𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) + 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 )

 +𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝𝑙

4 ) + 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝𝑙

4 ) + 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝ℎ

4 )

 +𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝ℎ

4 ) + 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 )

 −𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 ) − 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝𝑙

4 ) − 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝ℎ

4 )

 +𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 )

  (7) 245 

(3) The probability of synchronized low-water is as follows: 246 

         𝑃(𝑋1 < 𝑋𝑝𝑙
1 , 𝑋2 < 𝑋𝑝𝑙

2 , 𝑋3 < 𝑋𝑝𝑙
3 , 𝑋4 < 𝑋𝑝𝑙

4 ) = 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 ) (8) 247 

2.3 Stochastic simulation based on RDV-Copula functions 248 

2.3.1 Reduced-dimension vine copula construction approach (RDV-Copula) for multi-variate 249 

To construct joint distribution functions for multiple variables that encapsulate both temporal and spatial 250 

relationships, it is essential to incorporate a comprehensive range of information to efficiently capture 251 

the interconnections among variables. 252 
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Using the flow at 𝑁 points within a catchment as an example, the relationships among the flows 253 

are analyzed. Given that these points reside within the same geographical region, it's highly likely that 254 

they are spatially related and the strength of the relationship is negatively correlated with spatial distance. 255 

Additionally, each site exhibits temporal correlations, such as the relationship between today's flow and 256 

that of the previous day(s), although for simplicity, this analysis assumes relevance only between 257 

consecutive days' flows. Incorporating both temporal and spatial dimensions into the analysis implies 258 

that for " 𝑁 " sites, there should ideally be "𝑁 + 𝑁 " variables considered in constructing the copula 259 

function. As the number of sites grows, it simultaneously elevates the dimensionality of the copula, 260 

leading to increasingly complex structures. This complexity not only escalates computational efforts but 261 

also presents significant challenges in accurately fitting the model. To address this issue, our study 262 

introduces a novel methodology termed the Reduced-Dimension Vine Copula Construction Approach 263 

(RDV-Copula). This strategy aims to extract essential spatial-temporal information, thereby reducing the 264 

vine copula function's dimensionality to simplify the model structure.  265 

The primary goal of this approach is to pinpoint the crucial variables necessary for effectively and 266 

efficiently representing the spatial-temporal relationships among different sites. The process begins by 267 

identifying variables to capture spatial relationships, under the assumption that the spatial relationships 268 

remain stable over short periods. Consequently, the current day's flows across all sites are selected as 269 

spatial variables, totaling 𝑁. Subsequently, the Kendall correlation coefficient between the current and 270 

previous day's flows is computed for each site, with the values ranked in descending order. The site with 271 

the highest Kendall coefficient is deemed the most temporally correlated, and its previous day's flow is 272 

also chosen as a key variable for the vine copula construction. Flows from the previous day at other sites 273 

are excluded from being key variables. Ultimately, this approach selects “𝑁 + 1   key variables, 274 

achieving an effective representation of spatial-temporal relationships while minimizing variable count. 275 

The schematic diagram of the process is shown in Figure 4. 276 
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 277 

Figure 4. Schematic diagram of the RDV-Copula method  278 

After identifying the "N+1" key variables, the marginal distribution function for each variable is 279 

determined, selecting the most appropriate distribution (e.g., Normal, Gamma) based on the 280 

statistical characteristics of each variable. Using these marginal distributions, a suitable copula 281 

structure is then selected, such as C-Vine or D-Vine, depending on the nature of dependencies among 282 

the key variables. Next, for each pair of variables in the chosen vine structure, the most appropriate 283 

bivariate copula family (e.g., Gaussian, Clayton, Gumbel) is selected to accurately capture their 284 

dependencies. Subsequently, parameters for each selected pair-copula are estimated sequentially 285 

using methods like Maximum Likelihood Estimation (MLE). Finally, the constructed copula model 286 

is validated using statistical criteria such as the Akaike Information Criterion (AIC) or Bayesian 287 

Information Criterion (BIC). 288 

 289 
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2.3.2 Stochastic simulation 290 

Simulation methods for multivariate stochastic processes are categorized into two main types: 291 

unconditional and conditional simulations, as delineated by Wu et al. (2015). The key difference between 292 

these two simulation methods lies in whether specific data points are known in advance before generating 293 

the simulation. Figure 5(a) and (b) illustrate the unconditional simulation and the conditional simulation, 294 

respectively. 295 

Unconditional simulation (Figure 5(a)): This approach generates random samples based solely on 296 

the marginal probability distribution, without incorporating any existing data constraints. The probability 297 

distribution is shown in the upper-left plot, and random samples are generated simultaneously, resulting 298 

in the scatter plot below. The generated samples, represented by blue points, illustrate the joint variability 299 

according to their predefined marginal distributions. Since no prior information is used, each data point 300 

is in an unknown state before the simulation. 301 

Conditional simulation (Figure 5(b)): In this scenario, the simulation takes into account pre-existing 302 

data conditions. The marginal probability distribution is displayed in the top-center plot, while the known 303 

conditional data is shown in the upper-right scatter plot (in pink). These known data points act as a 304 

constraint for generating new random samples. The resulting scatter plot below (blue and pink points) 305 

demonstrates how the conditional samples are influenced by both the marginal distribution and the 306 

specified conditions of the known data. This method allows for a tailored simulation that incorporates 307 

pre-existing data insights. 308 

 309 

Figure 5. Schematic diagram for generating random simulation samples (a) unconditional simulation (b) 310 
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conditional simulation 311 

Based on the presentation of each section in detail above, it can be generalized that stochastic 312 

simulation based on the RDV-Copula function needs to go through the following steps. 313 

Step 1: Collect as much historical data as possible. 314 

Step 2: Correlation analysis is conducted on the collected data by calculating the Kendall's 315 

coefficient. 316 

Step 3: According to the method of filtering key variables proposed in Subsection 2.3.1, the 317 

representative key variables are extracted based on the correlation relationship among multiple variables. 318 

Step 4: Marginal distribution functions are fitted to the historical data series of the screened key 319 

variables. 320 

Step 5: Based on the proposed RDV-Copula approach, the joint distribution function of multi-site 321 

runoff sequences is constructed with consideration of spatial-temporal relationships. 322 

Step 6: The stochastic simulation sequences of runoff are generated by performing unconditional 323 

stochastic simulation and conditional stochastic simulation based on the constructed vine copula 324 

functions with different structures. 325 

3 Case study 326 

3.1 Study area and data description 327 

This study applies its methodology to a case study focusing on constructing spatial-temporal 328 

relationships within the Shifeng Creek area, located in the Jiaojiang River catchment in Eastern China. 329 

The Jiaojiang River ranks as the third largest river in Zhejiang Province. As the primary tributary of the 330 

Jiaojiang River basin and the principal watercourse in Tiantai County, Shifeng Creek plays a significant 331 

role. Rainfall distribution in the Shifeng Creek catchment is notably uneven throughout the year, with a 332 

substantial portion, approximately 70 to 80%, occurring from March to September. The remaining 20 to 333 

30% of yearly rainfall is distributed over the other months. The period from July to September is 334 

particularly marked by intense storms and rainfall, largely influenced by the Pacific subtropical high-335 

pressure system and the frequent occurrence of typhoons, contributing about 35% of the annual total 336 

precipitation, with amounts ranging from 400 to 600mm. 337 
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The objective of this study is to delineate the spatial-temporal relationships of inflows within the 338 

catchment during August, a flood-prone month, to enhance flood pattern understanding and support 339 

effective flood management strategies. In the Shifeng Creek region, there are many important hydraulic 340 

structures and critical control cross-sections. This study focuses on four major sites within the Shifeng 341 

Creek catchment: the Lishimen Reservoir (LSM) site, the Longxi Reservoir (LX) site, along with the 342 

Qianshan (QS) cross-section site and the Shaduan (SD) cross-section site. These four sites were selected 343 

for their strategic importance within the Shifeng Creek catchment, covering the upper, middle, and lower 344 

reaches. The Lishimen (LSM) and Longxi (LX) reservoirs, both in the upper reaches, are vital for flood 345 

control, regulating inflows to reduce downstream flood risks. The Qianshan (QS) cross-section, in the 346 

middle reaches, and the Shaduan (SD) cross-section, in the lower reaches, serve as key flood control 347 

points. Analyzing flows at these sites enables better coordination of reservoir operations and prevents 348 

flood peak convergence, enhancing overall flood management. To achieve this, daily runoff data of 349 

August, covering a span from 2000 to 2020, were compiled. This dataset encompasses inflows for the 350 

LSM and LX reservoir sites, as well as flow data for the QS and SD cross-sections. The geographic 351 

positioning of Shifeng Creek is depicted in Figure 6. 352 

 353 

Figure 6. Map of location of Shifeng Creek  354 
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3.2 Numerical experiments setup 355 

3.2.1 Synchronization frequency analysis based on spatial relationship 356 

In this study, we employ the vine copula function to construct the joint distribution of runoff across four 357 

sites, aiming to analyze the synchronization frequency of floods in August, a month identified as having 358 

a high risk of flooding. The variables under consideration include the inflow from these four sites, 359 

denoted as LSM-Aug, LX-Aug, QS-Aug, and SD-Aug. Our initial step involves calculating the Kendall 360 

coefficients among these variables to assess their interdependencies. Following the methodology outlined 361 

in Subsection 2.1.1, we determine the marginal distribution functions of the four variables through a 362 

fitting test. Subsequently, based on the marginal distribution function of each variable, the joint 363 

distribution function of four variables is constructed. The parameters of the vine copula are estimated via 364 

the maximum likelihood method, with the Akaike Information Criterion (AIC) serving as the selection 365 

criterion to ensure optimal model fit. Upon passing the fitting test, we identify the most appropriate vine 366 

copula structure to accurately model the relationships among the variables.  367 

With the four-dimensional vine copula function established, we proceed to calculate and analyze 368 

the synchronization frequency of inflows as described in Subsection 2.2. The inflows at the four sites are 369 

symbolized as LSM, LX, QS, and SD, with high-water and low-water inflow amounts represented as 370 

𝑋𝑝ℎ, 𝑌𝑝ℎ, 𝑍𝑝ℎ, 𝑊𝑝ℎ and 𝑋𝑝𝑙, 𝑌𝑝𝑙, 𝑍𝑝𝑙 and 𝑊𝑝𝑙, respectively. The marginal distribution functions are 371 

denoted as 𝑢, 𝑣, 𝑟  and 𝑠.  372 

Considering the three potential states (High/Medium/Low) at each site, a total of 81 possible inflow-373 

state combinations are identified. For ease of presentation, H, M, and L are then used as abbreviations 374 

for High, Medium, and Low. Among the 81 combinations, the combinations [X-H, Y-H, Z-H, W-H], [X-375 

M, Y-M, Z-M, W-M], and [X-L, Y-L, Z-L, W-L] are classified as synchronous high-water, synchronous 376 

medium-water, synchronous low-water, respectively, while the remainder are deemed asynchronous. The 377 

calculation equations can be provided in Appendix B. 378 

3.2.2 Various vine copulas construction based on spatial-temporal relationships and stochastic 379 

simulation  380 

To enhance the vine copula function's accuracy, it's imperative to integrate the temporal dimension into 381 

its construction. In this section, the vine copula functions are developed on a daily basis, encompassing 382 
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a series of 31 copula models corresponding to each day of August, from the 1st to the 31st. Consequently, 383 

both Kendall correlation analysis and the fitting of marginal distribution functions must be independently 384 

conducted for the data spanning these 31 days. Following this preliminary analysis, 31 distinct 385 

relationship functions are constructed, each tailored to the specific type of vine copula identified for each 386 

day. 387 

3.2.2.1 RDV-Copula function construction 388 

Given that all four sites are situated within the Shifeng Creek watershed, their spatial interconnectivity 389 

is inherent and can be leveraged in constructing a vine copula function. Additionally, the results of the 390 

correlation analysis indicate that the correlation between the current day's runoff and the previous day's 391 

runoff is the highest. While the data from two days ago no longer has much influence on the current day's 392 

runoff data, so it can be excluded from the critical variable selection. Considering only the previous day's 393 

contribution in the time dimension can effectively represent the time correlation while avoiding 394 

unnecessary dimension increase. This study integrates the inflows from the four sites over two 395 

consecutive days. The inflows for the current day are denoted as LSM, LX, QS, and SD, while those for 396 

the previous day are labeled LSM1, LX1, QS1, and SD1, respectively. 397 

The methodology, as detailed in Subsection 2.3, initiates by analyzing the current day’s inflows at 398 

the four sites to establish their spatial relationships. The subsequent step involves identifying the site 399 

with the most significant correlation to its preceding day's inflow, which is then used as a variable to 400 

represent the temporal relationship on that day. For instance, analysis between August 1st and 2nd reveals 401 

that the LSM site had the highest correlation with its prior day's flow compared to the other sites. Taking 402 

the construction of the copula function relationship between August 1st and August 2nd as an example, 403 

the analysis reveals that the LSM site has the highest correlation with its previous day's flow compared 404 

to the other three sites. As a result, a total of five key variables are determined for this relationship set, 405 

including LSM, LX, QS, SD, and LSM1, effectively encompassing both temporal and spatial correlations 406 

while streamlining the variable dimensions within the copula. 407 

Due to the fundamental difference in structure between C-vine and D-vine copula, this study 408 

constructs five-dimensional RDV-Copula functions based on these two types, respectively, labeled as 409 

RDV-Cvine and RDV-Dvine. These two types of models should first be evaluated against each other on 410 

various indexes, including AIC, BIC, and Loglik, to ascertain the most suitable five-dimensional RDV-411 
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Copula structure. The RDV-Copula structure with better index values is then further compared with other 412 

copula functions to validate its efficacy. 413 

3.2.2.2 Benchmark copula functions construction 414 

To validate the effectiveness of the RDV-Copula approach, this study compares it against a series of 415 

benchmark copula functions. These benchmarks are constructed by applying various combinations of 416 

multiple variables and stochastic simulation approaches to the existing data, resulting in vine copula 417 

models of differing dimensions. The specifics of these vine copula models are summarized as follows 418 

and illustrated in Figure 7. 419 

Benchmark 1:  420 

Focuses solely on spatial correlations, utilizing inflows at the four sites on the current day (LSM-421 

LX-QS-SD) to create a four-dimensional vine copula. Simulations are conducted unconditionally. 422 

Benchmark 2:  423 

Incorporates both spatial and temporal correlations, including inflows at the four sites for both the 424 

current and previous day (LSM-LX-QS-SD-LSM1-LX1-QS1-SD1), resulting in an eight-dimensional 425 

vine copula. This model also employs unconditional simulation. 426 

Benchmark 3:  427 

Like Benchmark 2, this model considers both spatial and temporal correlations using the same set 428 

of key variables (LSM-LX-QS-SD-LSM1-LX1-QS1-SD1), thereby forming an eight-dimensional vine 429 

copula. However, it differs in its application of conditional simulation, assuming the previous day's runoff 430 

as a known condition to simulate the current day's flows. 431 

To further detail the distinctions in stochastic simulation approaches, the RDV-Copula functions are 432 

bifurcated into two categories: 433 

RDV-un/ RDV-con: 434 

Both models account for spatial and temporal correlations by incorporating inflows at the four sites 435 

on the current day and the inflow at one site from the previous day (LSM-LX-QS-SD-X1), creating a 436 

five-dimensional vine copula. The variable “X  represents the site with the strongest temporal connection. 437 

The “RDV-un  employs unconditional simulation, while “RDV-con  utilizes conditional simulation. 438 
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 439 

Figure 7.  Five different vine copula models 440 

4 Results  441 

4.1 Synchronization frequency analysis 442 

Prior to performing a synchronization frequency analysis on multiple variables, it is imperative to 443 

conduct a correlation analysis to verify the presence of spatial correlations among them. Following the 444 

approach outlined in Subsection 2.1, this study begins with a correlation analysis of the daily runoff in 445 

August at the four selected sites, utilizing Kendall coefficients to quantify their interconnections. The 446 

results of this analysis, demonstrating the correlation among the four variables, are shown in Figure 8(a). 447 

The "*" on the ellipse means that the correlation passes the significance test of 𝛼 = 0.05 .Subsequent 448 

to identifying correlation, the next step involves determining the marginal distributions for these 449 

variables. Figure 8(b) displays the results of this process, showcasing both the plots of the fitted marginal 450 

distributions for the four variables and the actual data distribution, thereby laying the groundwork for a 451 

comprehensive understanding of the data's distribution characteristics.  452 
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Figure 8. (a) Results of correlation analysis for daily runoff at multiple sites (b) Cumulative probability 453 

distribution of the preferred marginal distribution function 454 

Figure 8 demonstrates that the correlations among the four study variables have all passed the 455 

significance test (𝑝 ≤ 0.05 ), with the QS and SD sites exhibiting the strongest correlations. This is 456 

closely followed by the spatial connections between the LX site and both QS and SD sites, with 457 

correlation coefficients of 0.67 and 0.65, respectively. The correlations involving the LSM site and the 458 

other three sites are relatively low, reflecting a reduction in spatial correlation with increasing distance. 459 

In terms of runoff distribution, the LSM site's runoff adheres to the Weibull distribution (weibull), while 460 

the runoff at the LX site fits the Inverse Gaussian distribution (invgauss), and the runoffs at both QS and 461 

SD sites align with the Log-normal distribution (lnorm). Building on the vine copula function 462 

methodology outlined in Subsection 2.1.2, we have developed a four-dimensional vine copula function 463 

using these variables. The function's structure, alongside the estimated parameters, is detailed in Table 1. 464 

Table 1 Four-dimensional vine copula structure and parameters 465 

Tree edge family rotation parameters tau loglik 

1 

1,3 bb7 0 2.2, 1.1 0.54 296 

2,3 t 0 0.86, 6.51 0.66 433 

3,4 t 0 0.92,2.69 0.74 636 

2 

1,4|3 frank 0 -1.3 -0.15 15 

2,4|3 Bb1 180 0.13, 1.10 0.15 25 

3 12|43 bb7 180 1.07, 0.21 0.13 24 

Upon the construction of four-dimensional vine copula function, the synchronization frequency 466 

analysis can be expanded. Using the approach detailed in Subsection 2.2, we obtained 81 encounter 467 
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probabilities reflecting potential inflow scenarios at four sites: high-water, medium-water, and low-water. 468 

Figure 9(a) shows these 81 probabilities in detail. Figures 9(b)-(g) present aggregated views, focusing 469 

on nine combinations representing two of the four variables in each of their three states.  470 

 

Figure 9.  Encounter probabilities for the multiple sites (a) LSM-LX-QS-SD (b) LSM-LX (c) LSM-QS (d) 471 

LSM-SD (e) LS-QS (f) LX-SD (g) QS-SD 472 

As observed in Figure 9, the cumulative probability of synchronization across all four sites 473 

simultaneously stands at 41.92%, encompassing three scenarios: (1) LSM-high, LX-high, QS-high, SD-474 

high (2) LSM-medium, LX-medium, QS-medium, SD-medium (3) LSM-low, LX-low, QS-low, SD-low. 475 

Any two of these sites also demonstrate a very strong synchronization between them, with probabilities 476 

nearing 60%. The obvious dark-colored blocks in the graph indicate the high probabilities of being in 477 

high-water or low-water states concurrently. Among these, the strongest synchronization occurs between 478 
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the QS and SD sites, reaching a probability of 77.52%. This is closely followed by the LX site's 479 

synchronization with both QS and SD sites, at probabilities of 72.76% and 68.24%, respectively. While 480 

the LSM site's synchronization probabilities with the other sites are comparatively lower, they still exceed 481 

50%, with values of 58.29% for the LX site, 61.25% for the QS site, and 57.15% for the SD site. This 482 

analysis underscores the clear spatial correlation among the four sites and highlights the critical 483 

importance of monitoring high-water synchronization. This is because such a case of simultaneous high 484 

water at multiple sites can easily induce flooding and pose a risk to the downstream. By analyzing the 485 

relationship of flow among multiple sites in advance and clarifying the probability of synchronization, it 486 

would be more conducive to the formulation of flood control and scheduling strategies to reduce the 487 

probability of flood encounters and protect the safety of the downstream. 488 

4.2 Construction of joint distributions of multi-site daily inflows 489 

4.2.1 Correlation analysis 490 

Correlation analysis serves as an efficient tool for quickly identifying and quantifying the correlations 491 

among multiple variables. Following the methodology outlined in Subsection 2.1, this study incorporates 492 

both temporal and spatial correlations in its analysis. To achieve this, historical runoff data from four key 493 

sites, along with the previous day’s runoff data at each site, were used, resulting in a set of eight variables 494 

for the correlation analysis. The results of the analysis are presented in Figure 10. Due to the large amount 495 

of information, only part of the correlation results is shown here. The complete set of results is available 496 

in Appendix C. 497 
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Figure 10.  Partial results of correlation analysis for daily runoff at multiple sites (LSM, LX, QS, SD 498 

represent the runoff sequences of current day, while LSM1, LX1, QS1, SD1 represent the runoff sequences 499 

of previous day) 500 

Figure 10 illustrates the Kendall correlation coefficients between pairs of variables. The intensity of 501 

colors correlates with the strength of positive correlation, with darker shades signifying a correlation 502 

coefficient closer to 1. The "*" on the ellipse means that the correlation passes the significance test of 503 

0.05 = . This figure uncovers a marked positive correlation among the runoff series at the LSM, LX, 504 

QS, and SD sites, with approximately 93% of these correlations meeting the significance threshold. This 505 

finding indicates that there is an obvious spatial correlation among the four locations. Notably, the QS 506 

and SD sites exhibit the strongest spatial correlation, with an average coefficient in August of 0.74, 507 

closely followed by the LX reservoir's correlation with the QS and SD sections at 0.67 and 0.63, 508 

respectively. In comparison, the LSM reservoir's runoff shows relatively lower correlations with the other 509 

sites, averaging 0.48 with LX site, 0.55 with QS site, and 0.45 with SD site in August.  510 

Upon analyzing the temporal correlation of runoff at each site for adjacent days within August 511 

(denoted as LSM-LSM1, LX-LX1, QS-QS1, SD-SD1), it becomes evident that temporal correlations are 512 

significant and should not be overlooked. Particularly in early August, these correlations register at a 513 

notably high level, suggesting more frequent flooding during this period. The LSM site demonstrates a 514 

standout temporal correlation, averaging 0.72 in August, indicative of a strong link between the current 515 

and previous day's runoff. The other sites display slightly lower, yet significant, temporal correlations: 516 

LX at 0.65, QS at 0.65, and SD at 0.67. When these temporal correlations are considered alongside the 517 

spatial ones, it's evident that LSM's temporal correlation surpasses its spatial correlation with other sites.  518 

These correlation analysis results solidly confirm both spatial and temporal correlations among the 519 

four sites, laying a foundational basis for advancing with the construction of a copula structural model. 520 
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4.2.2 Fitting of marginal distribution of each runoff 521 

In this study, twelve distinct distribution functions were utilized to model the daily runoff at four sites 522 

throughout August. To assess the goodness-of-fit of these distributions, the Kolmogorov-Smirnov (K-S) 523 

test, with a significance level of 0.05, was employed. Following a successful significance test, the Akaike 524 

Information Criterion (AIC) minimum method was applied to evaluate and determine the optimal 525 

marginal distribution for each dataset. Figure 11 shows the preferred marginal distribution functions for 526 

each variable over the 31 days of August. This figure contrasts the actual historical data points against 527 

the curves of the fitted functions, offering a visual representation of the fitting accuracy. The specific 528 

marginal distribution functions chosen for each variable, along with their parameters for each day, are 529 

comprehensively listed in Appendix D. Figure 11 notably illustrates how well these selected marginal 530 

distribution functions match the actual data for all four variables from the 1st to the 12th of August. The 531 

chosen marginal distribution functions for the entire month are detailed in Figure D1. Furthermore, the 532 

figure's legend explicitly details the types of fitting functions employed for each variable, providing a 533 

clear and comprehensive overview of the distributional characteristics.  534 
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Figure 11.  Cumulative probability distribution of the preferred marginal distribution function for runoff 535 

on each day throughout 1st-9th in August  536 

The distribution of the corresponding marginal distribution functions for the four variables over the 537 

31 days in August is summarized in Figure 12.  538 

 539 

Figure 12.  Distribution of the preferred marginal distribution function for the daily series of flows at 540 

LSM, LX, QS and SD site in August 541 

Figure 12 shows that most streamflow series follow the “gev  distribution (27.52%) and the 542 

“invgauss  distribution (23.39%). Relatively few streamflow series follow the “weibull , “llogis , 543 

“lnorm , and “gpd  distributions, and only a very small number follow the “gamma  and “gumbel  544 

distributions. Additionally, 71% of the runoff sequences at the LSM site follow the “weibull  and “gev  545 

distributions, each accounting for 35.5%. The runoff sequences at the LX site, the QS site, and the SD 546 

site predominantly follow the “gev  and “invgauss  distributions, accounting for 29.03% and 29.03% at 547 

the LX site, 22.58% and 35.48% at the QS site, and 22.58% and 29.03% at the SD site, respectively. 548 

Meanwhile, nearly 30% of the runoff sequences at the SD site also follow the “gpd  distribution. 549 

4.2.3 Construction of RDV-Copula function  550 

Following the identification of each variable's marginal distribution, the next step involves selecting the 551 

appropriate copula structures to construct the vine copula models among the multiple variables. Utilizing 552 

the RDV-Copula function construction approach described in Section 3.2.2.1, we identified the sites 553 
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exhibiting the highest temporal correlation for each day in August, based on our correlation analysis 554 

results. The variables chosen for each specific day are illustrated in Figure 13. 555 

 

Figure 13.  Key factors in the five-dimensional vine copula structure constructed in two adjacent days 556 

(LSM, LX, QS, SD represent the runoff sequences of current day, while LSM1, LX1, QS1, SD1 represent the 557 

runoff sequences of previous day) 558 

Prior to selecting a specific copula function for modeling, it is essential to decide on the type of 559 

copula to be employed. Among the options, C-vine and D-vine structures stand out for their common use 560 

in various applications. In this study, we constructed both C-vine and D-vine copula structures for the set 561 

of multiple variables under consideration. To evaluate the efficacy of these structures, metrics such as 562 

the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Log-Likelihood 563 

(Loglik) values were utilized and computed, with the results presented in Figure 14. The AIC and BIC 564 
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values reveal that, for the majority of cases, the D-vine copula structures exhibit significantly lower 565 

values compared to those of the C-vine structures. Lower values in these criteria suggest a model's better 566 

performance and fit. Moreover, the comparison of log-likelihood values also showed that D-vine 567 

structures typically yielded lower values than their C-vine counterparts. Consequently, the D-vine copula 568 

structure was identified as more effective and suitable for modeling the intricate relationships among the 569 

variables in this study. Therefore, the RDV-Copula and other benchmark copula models were designed 570 

using the D-vine structure. 571 

 

Figure 14.  Comparison of the performance of RDV-Copula models for C-vine and D-vine (a) AIC (b) BIC 572 

(c) Loglik 573 

A large number of copula families were utilized to model the joint distributions, such as Gaussian 574 

copula, Gumbel copula, t copula and so on. Following the guidance of AIC criteria, the most suitable 575 

pair-copula for each connection within every tree was selected. After fitting the goodness of the copula 576 

functions, we employed the maximum likelihood method to estimate the parameters. As an illustrative 577 

example, the copula structure for August 1st-2nd is shown in Figure 15. This figure not only reveals the 578 

best-fit copula family for each pair of adjacent nodes but also the estimated parameters. The nodes, 579 

labeled 1 through 5, represent LSM, LX, QS, SD, and X1, which indicates the site with the highest 580 

temporal correlation on that day, respectively. In this instance, X1 corresponds to LSM1. It is important 581 

to note that the specific choice of X1 might vary from day to day, as further elaborated in Figure 13. In 582 

Figure 15, each pair of subfigures situated between nodes shows two aspects of the bi-dimensional copula 583 

function for those nodes. The first subfigure presents the joint probability plot, while the second 584 

illustrates the joint probability density plot. 585 
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Figure 15. Structure of the five-dimensional D-vine copula model for August 1st -2nd (Nodes 1–5 represent 586 

LSM, LX, QS, SD, and LSM1; The plots between each two nodes are schematic plots of the corresponding 587 

copula function, with joint probability plot on the left and joint probability density plot on the right.) 588 

4.3 Stochastic simulation results of runoff from multiple sites 589 

To validate the models and facilitate a comparative analysis of different vine copula functions, the 590 

following work was carried out. Initially, the constructed copula structure and the results from parameter 591 

estimation were incorporated into a simulation process, generating 20,000 sets of random runoff 592 

scenarios for each day in August. Considering August's susceptibility to flooding and the typical 593 

continuity of rainfall events, it's highly likely that runoff on consecutive days is temporally correlated. 594 

Therefore, comparing only the mean and standard deviation of runoff simulated for individual days might 595 

not fully capture the model's simulation efficacy. In this context, the study calculated the mean and 596 

standard deviation for the current day by considering the simulated flows of both the preceding and 597 

following days. Ultimately, after the exclusion of outliers from the 20,000 sets of simulated runoff 598 
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scenarios, the average of the mean and standard deviation calculated from these three days' simulated 599 

flows will be used as the mean and standard deviation for the current day. The runoff simulation results 600 

for the four locations (LSM, LX, QS, and SD) are presented in Figures 16, 17, 18 and 19, respectively. 601 

Notably, in each figure, subfigure (a) displays the mean values and standard deviations from the 602 

simulation results for the five copula structures, allowing these results to be compared against historical 603 

observations for a nuanced evaluation of the simulation's performance. Subfigures(b), (c), (d), (e) and (f) 604 

represent the simulation results for five different sets of copula structures (RDV-con, RDV-un, 605 

Benchmark1, Benchmark2 and Benchmark3) respectively. The solid line in the figure is the mean of the 606 

simulation results and the shaded area represents the uncertainty (±1 standard deviation) of the simulation. 607 

 

Figure 16.  Comparison of the actual observed series with simulation results of four copula structures at 608 

LSM site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-609 

con (c) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of 610 

Benchmark2 (f) simulation results of Benchmark3 611 
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Figure 17. Comparison of the actual observed series with simulation results of four copula structures at LX 612 

site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-con (c) 613 

simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of Benchmark2 (f) 614 

simulation results of Benchmark3 615 

 

Figure 18.  Comparison of the actual observed series with simulation results of four copula structures at 616 

QS site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-617 

con (c) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of 618 

Benchmark2 (f) simulation results of Benchmark3 619 
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Figure 19.  Comparison of the actual observed series with simulation results of four copula structures at 620 

SD site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-621 

con (c) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of 622 

Benchmark2 (f) simulation results of Benchmark3 623 

From four figures, it is evident that the simulation results of RDV-Copula, Benchmark1 and 624 

Benchmark2 are comparatively more accurate. The mean values and standard deviations from these 625 

simulations closely match the actual observed runoff, particularly for simulations involving smaller flow 626 

magnitudes, where the accuracy aligns more precisely with the actual values. Although the RDV-Copula 627 

results are consistent with the benchmark models, they do not exhibit a marked advantage for smaller 628 

flows. However, in scenarios involving larger flows, such as those at the SD site, RDV-Copulas 629 

outperform other models, highlighting their superiority in capturing the characteristics of larger inflow 630 

events. This analysis suggests that for smaller flows, models focusing solely on spatial relationships 631 

suffice to capture the critical interrelationships among variables. In contrast, for larger flows, neglecting 632 

the influence of temporal correlations can lead to substantial inaccuracies in the simulation results, 633 

suggesting that larger flows are more significantly influenced by adjacent day’s flows. Comparing the 634 

four figures, we can also find that the simulation results at LX location consistently exhibit high accuracy, 635 

with the simulation results basically covering the actual observations. This suggests that the constructed 636 

copula models can easily extract the historical correlations and simulate them, particularly in smaller 637 

flow magnitudes.  638 
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However, the Benchmark3 model's performance is notably less effective among the five models. 639 

This suboptimal performance can be attributed to two main factors. Firstly, the complexity of the eight-640 

dimensional copula function, which involves a diverse combination of "trees," "nodes," and various types 641 

of parameters, poses significant challenges in accurately extracting the relationship characteristics among 642 

the four sites. Secondly, the conditional simulation approach of Benchmark3, which relies on the previous 643 

day's flow at the four sites as a known condition for simulation, is highly susceptible to the accuracy of 644 

these initial conditions. If the simulation results for the previous day contain significant errors, these 645 

inaccuracies are likely to propagate through the simulation, leading to compounded errors in the entire 646 

results. Another noteworthy point is that the simulation results on the August 10th, 20th and 31st are not 647 

quite consistent with historical conditions. This is because the runoff on these three days has been at a 648 

low level for most of the time over a number of years in history. It is therefore a rather exceptional 649 

phenomenon that a major flood event occurred on these particular dates in just one year. Specifically, the 650 

data recorded on these dates (August 10, 2009, August 31, 2011, and August 20, 2014) indicate unusually 651 

high runoff, which significantly exceeds their respective historical averages. Such an occurrence presents 652 

a challenge for the simulations, as it requires accurately capturing and replicating these atypically high 653 

flow values within the model.  654 

Comparing the two types of simulations of RDV-Copula, it can be found that the performances of 655 

the simulation results of RDV-un and RDV-con are similarly well for LSM and LX sites. However, in 656 

the simulation of QS and SD sites, RDV-con shows an obvious superiority compared to RDV-un. This 657 

illustrates the better generalization of conditional simulation for such complex structure with spatial-658 

temporal relationships. In contrast to the unconditional simulation, RDV-con can better utilize the 659 

temporal correlation to improve the accuracy of the simulation. Meanwhile, since it is different from the 660 

conditional simulation of the eight-dimensional vine copula (Benchmark2), RDV-con successfully 661 

reduces the cumulative error caused by the excessive dimensionality. 662 

In summary, for the relational construction and stochastic simulation of flows across varying 663 

magnitudes, RDV-Copula and Benchmark2 emerge as more suitable, particularly when considering the 664 

influences of both temporal and spatial correlations. However, the use of an eight-dimensional copula 665 

function in Benchmark2 introduces significant computational demands and adds complexity to the 666 

problem. RDV-Copula is favored for its effective integration of temporal and spatial correlations, while 667 
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also simplifying the copula structure, thereby streamlining the problem-solving process and enhancing 668 

computational efficiency. 669 

5 Discussion 670 

For variables with interdependencies, the copula function, increasingly popular in contemporary studies, 671 

extracts spatial-temporal relationships from their marginal distributions. Vine copulas are notably 672 

effective in modeling complex dependencies among variables, as they offer substantial flexibility. This 673 

capability is exemplified in the work of Pereira and Veiga (2018), who developed a multivariate 674 

conditional model using D-vine copulas for simulating periodic streamflow scenarios, emphasizing the 675 

structured arrangement of variables to capture monthly flow dependencies. This and numerous other 676 

studies (Nazeri Tahroudi et al., 2022; Wang et al., 2018, 2019; Wang and Shen, 2023a) underscored the 677 

effectiveness of vine copulas in capturing dependencies among variables with differing marginal 678 

distributions. 679 

The synchronous probability analysis of multi-site runoff shows that the vine copula model can be 680 

used to provide a good fit to the dependencies among variables obeying different marginal distributions. 681 

Similar conclusions have been obtained in other studies (Qian et al., 2022; Ren et al., 2020; Wei et al., 682 

2023). In the study of Xu et al. (2022), the multivariate Copula model was implemented to evaluate the 683 

synchronous–asynchronous characteristics for hydrological probabilities for the multiple water sources. 684 

The simultaneous probabilistic analysis of multi-site runoff provides an understanding of the flood 685 

characteristics of the catchment leading to better flood control and prevention. 686 

For high-dimensional variable dependency analysis, the structure of the vine copula is extremely 687 

complicated to construct. Depending on the number of hydrometric stations, Wang and Shen (2023b) 688 

established 7-dimensional regular vine (R-vine) copula models to depict the complex and diverse 689 

dependencies. To tackle the problem above, in their study, the corresponding vine structure was specified 690 

by the vine structure array that can reflect the sequence of tributaries flowing into the main stream and 691 

the spatial locations of different hydrometric stations. The performance of the ultimate simulation results 692 

was favorable, but it did not incorporate the temporal connection of the variables for each hydrometric 693 

station. If considered, it would lead to an exponential increase in the dimensionality of the variable. The 694 

RDV-Copula method proposed in this study aims to minimize the dimensionality of the copula model 695 
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while extracting the effective information of spatial-temporal relationships. The evaluation criterion of 696 

high-performance stochastic simulation is that the simulated series can preserve the statistical 697 

characteristics of the observed records (Hao and Singh, 2013). As shown in Figure 16 - 19, different vine 698 

copula structures have a large impact on the results of stochastic simulations. The simulation results of 699 

the four-dimensional and five-dimensional vine copula models are relatively closer to the actual historical 700 

values. Although the eight-dimensional vine copula model considers both temporal and spatial 701 

correlations, its complexity reduces simulation efficiency due to the large number of variables. This 702 

illustrates that when performing multi-site runoff simulations, it is not better for the vine copula function 703 

to consider as many variables as possible. Compared to the four-dimensional copula structure that only 704 

considers spatial relations, the five-dimensional copula structure can better fit the characteristics of high 705 

flows, which is especially evident in the simulation results of QS and SD points. This is due to the fact 706 

that high flows in flood season mostly originate from continuous heavy rainfall, which implies that the 707 

temporal connection is not negligible for capturing the flow characteristics. 708 

Consequently, the approach introduced in this study effectively integrates all pertinent information 709 

for multi-site runoff simulations while reducing the complexity of the vine copula function. This 710 

methodology strikes a critical balance between detailed representation and practicality in model 711 

complexity, enhancing the applicability of the simulations. 712 

6 Conclusions 713 

This study introduced an innovative approach designed to capture the spatial-temporal relationships 714 

across multiple sites while simplifying the computational complexity inherent in vine copula functions. 715 

By computing Kendall correlation coefficients, we assessed the interconnections among various sites. 716 

Utilizing the approach proposed, we pinpointed the key variables for the construction of the vine copula 717 

model, fitted the marginal distribution functions for multiple variables, and constructed the RDV-Copula 718 

functions considering the spatial-temporal relationships. Subsequent to this, a synchronization frequency 719 

analysis based on the copula model was executed to delve deeper into the characteristics of the watershed. 720 

To gauge the efficacy of this method, three benchmark vine copula models, each predicated on different 721 

dimensions and variable relationships, were constructed. Stochastic simulations were then employed to 722 

generate arrays of daily inflow sequences over a typical flood month, with both conditional and 723 
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unconditional simulation methods being critically compared. Key findings are summarized below. 724 

(1) The results of our study demonstrated that, within the Shifeng Creek watershed, the synchronization 725 

probability among the four sites reaches up to 41.92%, with the average synchronization probability 726 

between any two sites hitting 65.87%. This strong spatial connectivity indicates a potential for heavy 727 

rainfall events to exacerbate flooding risks downstream. 728 

(2) This study revealed that increasing model dimensions does not inherently improve simulation 729 

outcomes. The high-dimensional copula function, while it can capture more information on the 730 

variables, also makes the structure more complicated. The RDV-Copula method not only ensures 731 

comprehensive data integration but also diminishes the complexity and dimensionality of the vine 732 

copula function, showcasing an optimal balance between information accuracy and model simplicity. 733 

(3) Conditional simulation is a double-edged sword. In comparison to unconditional simulation, for 734 

temporally correlated runoff sequences, conditional simulation can better follow the properties of 735 

prior conditions. However, with an increase in the copula's dimensionality, relying on previously 736 

simulated runoff as a basis for current day predictions can accumulate errors, reducing the overall 737 

simulation accuracy. 738 

In summary, our proposed approach can effectively consolidate relevant spatial-temporal 739 

information for multisite runoff simulations, striking a critical balance between detailed representation 740 

and practical model complexity. This methodology enhances the applicability of vine copula models for 741 

analyzing and managing flood risks. The results obtained using this method can provide valuable decision 742 

support for flood control and scheduling, effectively mitigating flood risk. 743 

 744 

Appendix A 745 

Table A1 Common hydrological distribution functions 746 

Distribution name Probability distribution function Parameters 

Gamma distribution 

(gamma) 

𝑓(𝑥) =  
𝑥𝑘−1

𝛼𝑘(𝑘)
𝑒𝑥𝑝 [

−(𝑥)

𝛼
] 

𝑘 - shape parameter (𝑘 > 0) 

𝛼 – scale parameter (𝛼 > 0) 

Exponential 𝑓(𝑥) = {
𝜆𝑒𝑥𝑝(−𝜆𝑥) , 𝑥 ≥ 0
         0           , 𝑥 < 0

 𝜆 - rate parameter 
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distribution (exp) 

Pearson-III 

distribution (p3) 

𝑓(𝑥) =
𝛽𝛼

Γ(𝛼)
(𝑥 − 𝛾)𝛼−1𝑒−𝛽(𝑥−𝛾) 

𝛼 – shape parameter (𝛼 > 0) 

𝛽 – scale parameter (𝛽 > 0) 

𝛾– location parameter 

Generalized 

extreme value 

distribution (gev) 

𝑓(𝑥) = 𝑒𝑥𝑝 {− (1 + 𝜉
𝑥 − 𝜇

𝛼
)

−
1
𝜉

} 

𝛼 – scale parameter (𝛼 > 0) 

𝜇– location parameter 

𝜉 – shape parameter 

Inverse gaussian 

distribution 

(invgauss) 

𝑓(𝑥) = √
𝜆

2𝜋𝑥3 𝑒𝑥𝑝 {
−𝜆(𝑥 − 𝜇)2

2𝜇2𝑥
} 

𝜇– mean (location parameter) 

𝜆 – shape parameter 

Normal distribution 

(norm) 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑥 − 𝜇)2

2𝜎2
) 

𝜇– location parameter 

𝜎 – scale parameter 

Logistic distribution 

(logis) 

𝑓(𝑥) =  
𝑒−(𝑥−𝜇)/𝛾

𝛾(1 + 𝑒−(𝑥−𝜇)/𝛾)2
 

𝜇– location parameter 

𝛾 – shape parameter (𝛾 > 0) 

Log-normal 

distribution (lnorm) 

𝑓(𝑥) =  {

1

𝑥√2𝜋𝜎
𝑒𝑥𝑝 [−

1

2𝜎2
(𝑙𝑛𝑥 − 𝜇)2] , 𝑥 > 0

                             0                            , 𝑥 ≤ 0

 

𝜇– location parameter 

𝜎 – scale parameter 

Log-logistic 

distribution (llogis) 

𝑓(𝑥) =  
(

𝛽
𝛼

)
𝑥
𝛼

𝛽−1

[1 + (
𝑥
𝛼

)
𝛽

]
2  , 𝑥 > 0 

𝛼 – scale parameter (𝛼 > 0) 

𝛽– shape parameter (𝛽 > 0) 

Generalized pareto 

distribution (gpd) 

𝑓(𝑥) =  
1

𝜎
(1 + 𝑘

(𝑥 − 𝜇)

𝜎
)

−1−1/𝑘

 

𝜇– location parameter 

𝜎 – scale parameter 

𝑘 - shape parameter 

Weibull distribution 

(weibull) 

𝑓(𝑥) =
𝑘

𝛼
(

𝑥 − 𝛾

𝛼
)

𝑘−1

𝑒𝑥𝑝 [− (
𝑥 − 𝛾

𝛼
)

𝑘

] 

𝑘 - shape parameter (𝑘 > 0) 

𝛼 – scale parameter (𝛼 > 0) 

𝛾– location parameter 

Gumbel distribution 

(gumbel) 

𝑓(𝑥) =  
1

𝜎
𝑒𝑥𝑝 (−

𝑥 − 𝜇

𝜎
− exp (−

𝑥 − 𝜇

𝜎
)) 

𝜇 – location parameter 

𝜎 – scale parameter 

 747 
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Appendix B 748 

The probability formulas for the 81 combinations are presented as follows. 749 

(1) The probability of Type [X-H, Y-H, Z-H, W-H] is as follows: 750 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 1 − 𝑢𝑝ℎ − 𝑣𝑝ℎ − 𝑟𝑝ℎ − 𝑠𝑝ℎ

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ) + 𝐶(𝑣𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 751 

(2) The probability of Type [X-M, Y-M, Z-M, W-M] is as follows: 752 

𝑃 = (𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 753 

(3) The probability of Type [X-L, Y-L, Z-L, W-L] is as follows: 754 

         𝑃(𝑋 < 𝑋𝑝𝑙 , 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) 755 

(4) The probability of Type [X-L, Y-H, Z-H, W-H] is as follows: 756 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑢𝑝𝑙 − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 757 

(5) The probability of Type [X-H, Y-L, Z-H, W-H] is as follows: 758 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑣𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 759 

(6) The probability of Type [X-H, Y-H, Z-L, W-H] is as follows: 760 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝑟𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙)

 −𝐶(𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 761 

(7) The probability of Type [X-H, Y-H, Z-H, W-L] is as follows: 762 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝑠𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 763 

(8) The probability of Type [X-M, Y-H, Z-H, W-H] is as follows: 764 
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𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑢𝑝ℎ − 𝑢𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) 

 765 

(9) The probability of Type [X-H, Y-M, Z-H, W-H] is as follows: 766 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑣𝑝ℎ − 𝑣𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ) − 𝐶(𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 767 

(10) The probability of Type [X-H, Y-H, Z-M, W-H] is as follows: 768 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑟𝑝ℎ − 𝑟𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ) − 𝐶(𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙) + 𝐶(𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 769 

(11) The probability of Type [X-H, Y-H, Z-H, W-M] is as follows: 770 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝑠𝑝ℎ − 𝑠𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑟𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 771 

(12) The probability of Type [X-L, Y-L, Z-H, W-H] is as follows: 772 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)
 773 

(13) The probability of Type [X-L, Y-H, Z-L, W-H] is as follows: 774 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 775 

(14) The probability of Type [X-L, Y-H, Z-H, W-L] is as follows: 776 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 777 

(15) The probability of Type [X-H, Y-L, Z-L, W-H] is as follows: 778 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 779 

(16) The probability of Type [X-H, Y-L, Z-H, W-L] is as follows: 780 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 781 

(17) The probability of Type [X-H, Y-H, Z-L, W-L] is as follows: 782 
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𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 783 

(18) The probability of Type [X-M, Y-L, Z-H, W-H] is as follows: 784 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 785 

(19) The probability of Type [X-L, Y-M, Z-H, W-H] is as follows: 786 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 787 

(20) The probability of Type [X-M, Y-H, Z-L, W-H] is as follows: 788 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶 (𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 789 

(21) The probability of Type [X-L, Y-H, Z-M, W-H] is as follows: 790 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 791 

(22) The probability of Type [X-M, Y-H, Z-H, W-L] is as follows: 792 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 793 

(23) The probability of Type [X-L, Y-H, Z-H, W-M] is as follows: 794 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 795 

(24) The probability of Type [X-H, Y-M, Z-L, W-H] is as follows: 796 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 797 

(25) The probability of Type [X-H, Y-L, Z-M, W-H] is as follows: 798 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 799 

(26) The probability of Type [X-H, Y-M, Z-H, W-L] is as follows: 800 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 801 
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(27) The probability of Type [X-H, Y-L, Z-H, W-M] is as follows: 802 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 803 

(28) The probability of Type [X-H, Y-H, Z-M, W-L] is as follows: 804 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 805 

(29) The probability of Type [X-H, Y-H, Z-L, W-M] is as follows: 806 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 807 

(30) The probability of Type [X-M, Y-M, Z-H, W-H] is as follows: 808 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 809 

(31) The probability of Type [X-M, Y-H, Z-M, W-H] is as follows: 810 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 811 

(32) The probability of Type [X-M, Y-H, Z-H, W-M] is as follows: 812 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 813 

(33) The probability of Type [X-H, Y-M, Z-M, W-H] is as follows: 814 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ)

 +𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙)

 +𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 815 

(34) The probability of Type [X-H, Y-M, Z-H, W-M] is as follows: 816 
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𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 817 

(35) The probability of Type [X-H, Y-H, Z-M, W-M] is as follows: 818 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 819 

(36) The probability of Type [X-M, Y-M, Z-M, W-H] is as follows: 820 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 821 

(37) The probability of Type [X-H, Y-M, Z-M, W-M] is as follows: 822 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 823 

(38) The probability of Type [X-M, Y-H, Z-M, W-M] is as follows: 824 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 825 

(39) The probability of Type [X-M, Y-M, Z-H, W-M] is as follows: 826 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 827 

(40) The probability of Type [X-M, Y-M, Z-L, W-H] is as follows: 828 
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𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 829 

(41) The probability of Type [X-M, Y-M, Z-H, W-L] is as follows: 830 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 831 

(42) The probability of Type [X-M, Y-L, Z-M, W-H] is as follows: 832 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 833 

(43) The probability of Type [X-M, Y-H, Z-M, W-L] is as follows: 834 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 835 

(44) The probability of Type [X-M, Y-H, Z-L, W-M] is as follows: 836 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 837 

(45) The probability of Type [X-M, Y-L, Z-H, W-M] is as follows: 838 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 839 

(46) The probability of Type [X-L, Y-M, Z-M, W-H] is as follows: 840 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 841 

(47) The probability of Type [X-H, Y-M, Z-M, W-L] is as follows: 842 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 843 

(48) The probability of Type [X-H, Y-M, Z-L, W-M]] is as follows: 844 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 845 

(49) The probability of Type [X-L, Y-M, Z-H, W-M]] is as follows: 846 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 847 



43 

 

(50) The probability of Type [X-L, Y-H, Z-M, W-M]] is as follows: 848 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 849 

(51) The probability of Type [X-H, Y-L, Z-M, W-M]] is as follows: 850 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 851 

(52) The probability of Type [X-M, Y-L, Z-L, W-H] is as follows: 852 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 853 

(53) The probability of Type [X-L, Y-M, Z-L, W-H] is as follows: 854 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 855 

(54) The probability of Type [X-L, Y-L, Z-M, W-H] is as follows: 856 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 857 

(55) The probability of Type [X-M, Y-L, Z-H, W-L] is as follows: 858 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 859 

(56) The probability of Type [X-L, Y-M, Z-H, W-L] is as follows: 860 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 861 

(57) The probability of Type [X-L, Y-L, Z-H, W-M] is as follows: 862 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 863 

(58) The probability of Type [X-M, Y-H, Z-L, W-L] is as follows: 864 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 865 

(59) The probability of Type [X-L, Y-H, Z-M, W-L] is as follows: 866 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 867 

(60) The probability of Type [X-L, Y-H, Z-L, W-M] is as follows: 868 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠 𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 869 

(61) The probability of Type [X-H, Y-M, Z-L, W-L] is as follows: 870 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 871 
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(62) The probability of Type [X-H, Y-L, Z-M, W-L] is as follows: 872 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 873 

(63) The probability of Type [X-H, Y-L, Z-L, W-M] is as follows: 874 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 875 

(64) The probability of Type [X-L, Y-L, Z-L, W-H] is as follows: 876 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 877 

(65) The probability of Type [X-L, Y-L, Z-H, W-L] is as follows: 878 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 879 

(66) The probability of Type [X-L, Y-H, Z-L, W-L] is as follows: 880 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 881 

(67) The probability of Type [X-H, Y-L, Z-L, W-L] is as follows: 882 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 883 

(68) The probability of Type [X-M, Y-M, Z-M, W-L] is as follows: 884 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

−𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

  +𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 885 

(69) The probability of Type [X-M, Y-M, Z-L, W-M] is as follows: 886 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

−𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

  +𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 887 

(70) The probability of Type [X-M, Y-L, Z-M, W-M] is as follows: 888 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

−𝐶 (𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

  +𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 889 

(71) The probability of Type [X-L, Y-M, Z-M, W-M] is as follows: 890 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

−𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

  +𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 891 
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(72) The probability of Type [X-M, Y-M, Z-L, W-L] is as follows: 892 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 893 

(73) The probability of Type [X-M, Y-L, Z-M, W-L] is as follows: 894 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 895 

(74) The probability of Type [X-M, Y-L, Z-L, W-M] is as follows: 896 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 897 

(75) The probability of Type [X-L, Y-M, Z-M, W-L] is as follows: 898 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 899 

(76) The probability of Type [X-L, Y-M, Z-L, W-M] is as follows: 900 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 901 

(77) The probability of Type [X-L, Y-L, Z-M, W-M] is as follows: 902 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 903 

(78) The probability of Type [X-M, Y-L, Z-L, W-L] is as follows: 904 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 905 

(79) The probability of Type [X-L, Y-M, Z-L, W-L] is as follows: 906 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 907 

(80) The probability of Type [X-L, Y-L, Z-M, W-L] is as follows: 908 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 909 

(81) The probability of Type [X-L, Y-L, Z-L, W-M] is as follows: 910 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 911 
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Appendix C 913 
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Figure C1.  Results of correlation analysis for daily runoff at multiple sites 914 
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Appendix D 916 

A total of twelve different distribution functions were employed to fit the daily runoff flows at the four 917 

points for each day in August. Figure D1 shows the preferred marginal distribution functions for each 918 

variable over month of August.  919 
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Figure D1.  Cumulative probability distribution of the preferred marginal distribution function for runoff 920 

on each day throughout August  921 

 922 

Code availability 923 
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