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Abstract: Accurately modeling and predicting flood flows across multiple sites within a watershed 8 

presents significant challenges due to potential issues of insufficient accuracy and excessive 9 

computational demands in existing methodologies. In response to these challenges, this study introduces 10 

a novel approach centered around the use of vine copula models, termed RDV-Copula (Reduced-11 

dimension vine copula construction approach). The core of this methodology lies in its ability to integrate 12 

and extract complex data information before constructing the copula function, thus preserving the 13 

intricate spatial-temporal connections among multiple sites while substantially reducing the vine copula's 14 

complexity. This study performs a synchronization frequency analysis using the devised copula models, 15 

offering valuable insights into flood encounter probabilities. Additionally, the innovative approach 16 

undergoes validation by comparison with three benchmark models, which vary in dimensions and nature 17 

of variable interactions. Furthermore, the study conducts stochastic simulations, exploring both 18 

unconditional and conditional scenarios across different vine copula models. Applied in the Shifeng 19 

Creek watershed, China, the findings reveal that vine copula models are superior in capturing complex 20 

variable relationships, demonstrating significant spatial interconnectivity crucial for flood risk prediction 21 

in heavy rainfall events. Interestingly, the study observes that expanding the model's dimensions does 22 

not inherently enhance simulation precision. The RDV-Copula method not only captures comprehensive 23 

information effectively but also simplifies the vine copula model by reducing its dimensionality and 24 

complexity. This study contributes to the field of hydrology by offering a refined method for analyzing 25 

and simulating multisite flood flows. 26 

 27 

 28 
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1 Introduction 29 

Floods are the most frequent natural disaster, inflicting substantial economic losses, environmental 30 

degradation and human casualties (Teng et al., 2017). As is reported by Centre for Research on the 31 

Epidemiology of Disasters (CRED), floods represented 45.6% of worldwide natural disasters in 2022, 32 

affecting an average of 57.1 million people annually (CRED,2023). The data also indicated a 4.76% 33 

increase in flood occurrences in 2022 compared to the annual average from 2002 to 2021(CRED,2023). 34 

Therefore, it is very meaningful and essential to analyze flooding and achieve flood risk control. At the 35 

watershed scale, flood risk is primarily influenced by rainfall patterns and interconnections among sub-36 

watersheds. Large floods often result from the merging of floods from multiple sub-watershedsLarge 37 

floods often result from the amalgamation of floods from multiple sub-watersheds (Prohaska and Ilic, 38 

2010). Concurrent flood events cause runoff from various sources to merge, forming large floods that 39 

pose threats to downstream regions. As a result, analyzing the runoff at various sites not only provides a 40 

better understanding of the flood characteristics within the watershed, but also contributes to the 41 

development of flood control programs to avoid flood risks. 42 

There are currently many techniques for analyzing hydrological variables. Common univariate 43 

methods include statistical analyses such as frequency analysis (Stedinger et al., 1993), extreme value 44 

theory (Coles, 2001), and time series analysis methods like the Autoregressive Integrated Moving 45 

Average (ARIMA) model (Box et al., 2013). However, univariate analyses often fall short in accurately 46 

estimating the risks associated with extreme events due to their inability to account for the 47 

interdependence of variables (Khan et al., 2023). This oversight can lead to significant underestimation 48 

or overestimation of risks, particularly given the inherent relationships among variables within a 49 

catchment. To address the complexity of these relationships across multiple variables, researchers have 50 

turned to multivariate analysis techniques. Methods such as Autoregressive (AR) models are utilized for 51 

analyzing temporal correlations (Box et al., 2013), while spatial relationships can be examined using 52 

techniques like geostatistical methods (Isaaks and Srivastava, 1989), spatial regression models (Bekker 53 

and Wansbeek, 2001), Copula functions (Sklar, 1959) and Bayesian hierarchical models (Gelman et al., 54 

2013). However, these methods have their limitations. AR models, while effective for temporal analysis, 55 

do not account for spatial dependencies. Geostatistical methods and spatial regression models focus 56 

primarily on spatial relationships but may struggle with temporal dynamics. Bayesian hierarchical 57 
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models can handle complex dependencies but often involve high computational demands and require 58 

substantial prior information. In contrast, copula functions offer substantial advantages when dealing 59 

with multivariate spatial-temporal relationships. They provide a flexible framework for modeling 60 

dependencies between variables without assuming a specific marginal distribution, allowing for a more 61 

accurate representation of complex interdependencies. Later adopted in hydrology by De Michele and 62 

Salvadori (2003), copula functions link multidimensional probability distribution functions to their one-63 

dimensional margins, preserving both the dependence structure and the distinct distribution 64 

characteristics of random variables (Tosunoglu et al., 2020). Copula functions is are widely applied in 65 

hydrological fields, including the joint frequency analysis (Liu et al., 2018; Zhang et al., 2021), water 66 

resources management (Gao et al., 2018; Nazeri Tahroudi et al., 2022), wetness-dryness encountering 67 

(Wang et al., 2022; Zhang et al., 2023), flood risk assessment (Li et al., 2022; Tosunoglu et al., 2020; 68 

Zhong et al., 2021) , water quality analysis (Yu et al., 2020; Yu and Zhang, 2021)，precipitation model 69 

(Gao et al., 2020; Nazeri Tahroudi et al., 2023; Tahroudi et al., 2022) and so on.  70 

Despite the broad application of conventional copula functions to create joint distributions for 71 

multiple variables, their capacity to accurately represent high-dimensional realities is constrained. This 72 

limitation arises from their reliance on a single parameter to describe correlations and a simplistic 73 

approach to model the dependence structure between variables (Aas et al., 2009; Daneshkhah et al., 2016). 74 

To overcome these limitations, Bedford and Cooke (2002) proposed a reliable way called Vine Copula 75 

to construct complex multivariate models with high dependency. Vine copula construction relies 76 

exclusively on the principle of breaking down the complete multivariate density into a series or simple, 77 

foundational components through conditional independence or pair-copula constructs. There are two 78 

main types of vine structures: C-Vine and D-Vine (Brechmann and Schepsmeier, 2013). The former 79 

presents star-shaped configurations, while the latter displays path-like structures, providing enhanced 80 

flexibility in constructing the joint distribution of multiple variables by enabling the use of different types 81 

of bivariate copulas for each pair, thus accommodating a diverse range of dependency structures (Aas et 82 

al., 2009; Çekin et al., 2020).  83 

Vine copulas are increasingly applied in hydrological studies to model complex relationships among 84 

multiple variables. For instance, Ahn (2021) developed a D-vine copula-based model to estimate flows 85 

in catchments with limited or partial gauging, focusing on the temporal relationship of runoff at a specific 86 
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site. This model employed a six-dimensional copula structure centered around annual runoff, using 87 

conditional simulation to compensate for missing data. Wang et al. (2022) explored the joint distribution 88 

of multi-inflows to assess wetness-dryness conditions, highlighting spatial interconnections across three 89 

water systems but ignoring the temporal influences within each system on the overall assessment. Unlike 90 

the above studies, Xu et al. (2022) developed a stepwise and dynamic C-vine copula-based conditional 91 

model (SDCVC) to incorporate the non-stationarity into a monthly streamflow prediction. This model 92 

synthesizes the temporal and spatial relationships at multiple sites, developing a four-dimensional C-vine 93 

copula for dual-site monthly streamflow forecasts. The term "four dimensions" relates to the categories 94 

of variables involved, such as rainfall, downstream station streamflow, among others. Integrating 95 

temporal and spatial relationships in copula construction allows for a more comprehensive data inclusion, 96 

facilitating enhanced modeling of complex inter-variable relationships. However, challenges arise as the 97 

number of sites or the analysis period extends, leading to increased complexity and dimensionality of the 98 

copula function. This complexity can complicate the copula structure's determination copula's structure 99 

determination, inflate computational demands during parameter fitting, and potentially diminish the 100 

accuracy of stochastic simulations. To bridge this gap, this study aims to propose a new approach to 101 

achieve dimensionality reduction while ensuring the complete access of spatial-temporal relationships 102 

for multiple sites. The primary focus is to filter effective information to fully incorporate runoff data from 103 

each site and mitigate the complexity of the vine copula function, thereby preventing poor model fitting 104 

due to increased computational effort.  105 

Moreover, understanding the spatial and temporal relationships of runoff across multiple sites within 106 

a catchment is essential for effective flood control and water resources management. Synchronization 107 

probability analysis and stochastic simulation of streamflow sequences play a pivotal role in these 108 

processes (Chen et al., 2015). The terminology used to describe the encounter situations of wetness and 109 

dryness varies; an asynchronous event refers to a scenario where such encounters do not occur 110 

simultaneously, whereas both wetness-wetness and dryness-dryness encounters are considered 111 

synchronous events. These encounters exist not only in diversion projects and multi-source water supply 112 

systems, but also in main streams and tributaries at a watershed scale. They offer invaluable insights into 113 

the spatial and temporal distribution of water resources, aiding in the preparation for anticipated future 114 

events (Szilagyi et al., 2006). Copula-based simulation was first discussed in the study of Bedford and 115 
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Cooke (2001;2002). Subsequently, as more studies have been conducted, copula-based modeling and 116 

simulation models for hydrological variables have demonstrated high performance (Gao et al., 2021; 117 

Huang et al., 2018; Tahroudi et al., 2022). Utilizing stochastic simulation to generate sets of runoff 118 

sequences from multiple sites not only allows for a more progressive test of the effectiveness of the vine 119 

copula function in fitting the relationship, but also provides a data base for flood control scheduling in 120 

making decisions. 121 

The basic task of this study is to construct the relationship functions of runoff across multiple sites 122 

within a catchment using the vine copula. By leveraging the copula model, the frequency of flood 123 

encounters for multiple runoffs is calculated to further analyze the intrinsic spatial and temporal 124 

relationship characteristics. Addressing the challenge of dimensionality disaster caused by excessive 125 

variables, this study proposes a novel approach to reduce the dimensionality by filtering the effective 126 

information under the premise of fully incorporating the runoff information from each site. This approach 127 

makes it possible to access the spatial and temporal relationships of runoff from multiple sites in the 128 

catchment more accurately and efficiently. In addition, more reality-oriented simulation results can be 129 

obtained, which provide statistical support for flood control and scheduling decision-making. 130 

This paper is structured as follows: Section 2 outlines the proposed methodology's framework. 131 

Section 3 presents the application of this methodology through a case study. The results are detailed in 132 

Section 4, while Section 5 provides a thorough analysis and discussion of the results. Finally, Section 6 133 

concludes the paper by summarizing the principal conclusions. 134 

2 Methodology 135 

The framework of this study is shown in Figure 1. This Section focuses on constructing and applying 136 

multivariate joint distribution functions based on the vine copula function. It is divided into two cases: 137 

one considering only spatial relations and the other combining spatial and temporal relations. Utilizing 138 

the data characteristics, it describes how to build a vine copula function based on multiple variables and 139 

details the processes of synchronization frequency analysis and stochastic simulation with the 140 

constructed vine copula function. Additionally, it presents a new approach called the reduced-dimension 141 

vine copula (RDV-Copula). 142 
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 143 

Figure 1. Framework of proposed methodology 144 

2.1 Joint distribution of multiple variables 145 

Before identifying the dependence relationships among multi-variables, their correlations need to be 146 

analyzed and judged. Kendall's correlation coefficient, a nonparametric statistic, serves to measure the 147 

correlation degree between two variables, making it suitable for nonlinear relationships and categorical 148 

variables. In this study, vine copula functions are constructed to achieve synchronization frequency and 149 

stochastic simulation of multiple streamflow sequences. To more accurately simulate the temporal and 150 

spatial relationships, the correlations among multi-site streamflow series are determined by calculating 151 

the Kendall correlation coefficients. 152 

2.1.1 Marginal distribution function 153 

To build the dependence structure of hydrological variables using copulas, it is essential to determine the 154 

marginal distribution of each variable first. Given that the marginal distribution function for each 155 

characteristic variable is not predetermined and the skewness of their probability distributions varies 156 

(Zhong et al., 2021), it becomes crucial to consider multiple marginal distribution functions as candidates. 157 
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In this study, a comprehensive comparison is conducted among 12 commonly utilized distributions 158 

(Tosunoğlu, 2018), including Gamma distribution (gamma), Exponential distribution (exp), Pearson-III 159 

distribution (p3), Generalized extreme value distribution (gev), Inverse gaussian distribution (invgauss), 160 

Normal distribution (norm), Logistic distribution (logis), Log-normal distribution (lnorm), Log-logistic 161 

distribution (llogis), Generalized pareto distribution (gpd), Weibull distribution (weibull) and Gumbel 162 

distribution (gumbel). According to the goodness-of-fit test and AIC minimum criterion, the optimal 163 

distribution functions are selected as the marginal functions of the characteristic variables. The specific 164 

details of different distributions, such as the probability distribution function and the respective 165 

parameters, are displayed in Appendix A. 166 

2.1.2 Vine copula function theory 167 

Copula functions, first introduced in 1959, represent a multivariate joint probability distribution function 168 

within the unit square [0, 1], featuring uniform marginal distributions. According to Sklar’s theorem 169 

(Sklar, 1959), for a multivariate random variable 𝑥1, 𝑥2, 𝑥3, ⋯，𝑥𝑑, there exist marginal distributions 170 

𝑢1 = 𝑓1(𝑥1), 𝑢2 = 𝑓2(𝑥2), 𝑢3 = 𝑓3(𝑥3), ,𝑢𝑑 = 𝑓𝑑(𝑥𝑑) and joint distribution 𝑓(𝑥1 , 𝑥2 , 𝑥3 , ⋯ , 𝑥𝑑 ), 171 

then there exists a copula function 𝐶𝜃 such that 172 

𝑓(𝑥1 , 𝑥2 , 𝑥3 , ⋯ , 𝑥𝑑 ) = 𝐶𝜃[𝑓1(𝑥1), 𝑓2(𝑥2), ⋯ , 𝑓𝑑(𝑥𝑑)] = 𝐶𝜃(𝑢1, 𝑢2, ⋯ , 𝑢𝑑)  (1) 173 

If 𝑓1(𝑥1) , 𝑓2(𝑥2) ,  , 𝑓𝑑(𝑥𝑑)  are continuous functions, then 𝐶  is unique. 𝜃 represents an 174 

explicit parameter to the function. 175 

The multivariate conditional density function can be represented as: 176 

𝑓(𝑥|𝜈) = 𝐶𝑥𝜈𝑗|𝜈−𝑗
(𝐹(𝑥|𝜈−𝑗), 𝐹(𝜈𝑗|𝜈−𝑗)) 𝑓(𝑥|𝜈−𝑗) (2) 177 

where 𝜈𝑗 denotes a component of the n-dimensional vector 𝜈, while 𝜈−𝑗 denotes the (n-1)-dimensional 178 

vector with 𝜈𝑗 removed.  179 

The term 𝑓(𝑥|𝜈) in each conditional density function can be denoted as: 180 

𝐹(𝑥|𝜈) =
𝜕𝐶

𝑥𝜈𝑗|𝜈−𝑗
(𝐹(𝑥|𝜈−𝑗),𝐹(𝜈𝑗|𝜈−𝑗))

𝐹(𝜈𝑗|𝜈−𝑗)
 (3) 181 

The copula function, essentially, acts as a transformation function that connects the joint distribution 182 

of multiple variables to the marginal distributions. There are a number of alternative copula families that 183 

can be selected for the construction of modeling dependence, such as Gaussian copula, t-copula, Clayton 184 

copula, Gumbel copula, Frank copula and so on. However, the construction of high-dimensional copula 185 
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functions is often constrained by parameter limitations and computationally demanding. Bedford and 186 

Cooke (2002) introduced a more advanced and flexible alternative method of constructing the 187 

dependence structure called Vine Copula. Also later called pair-copula construction by Aas et al. (2009), 188 

vine copulas decompose the joint density function into a cascade of building blocks of the bivariate 189 

copulas. Assuming that there are 𝑑 variables given to us, it is possible by this method to decompose the 190 

d-dimensional joint distribution into 𝑑(𝑑 − 1)/2 pair copulas densities. In vine copula structure, the 191 

vine consists of a series of trees, nodes, and edges. The trees represent the layers. Each layer contains 192 

several nodes and the connections between the nodes are called the edges. The nodes in the first tree 193 

represent the marginal distributions of each variable. Each edge represents a pair-copula joint distribution 194 

function of two adjacent nodes. The edges in each tree, except the last tree, are used as nodes in the next 195 

tree. There are two subsets of regular vines in commonly use: canonical vines (C-vines) and drawable 196 

vines (D-vines). Both types of vine-copula have their own specific way of decomposing the density 197 

function.  198 

C-vine is suitable for structures with a key variable that has a significant correlation with the 199 

remaining other variables. However, in D-vine structure, each node is linked to at most two edges. In the 200 

C-vine copula structure, each tree features a central node that is connected to all other edges, as illustrated 201 

in Figure 2(a). C-vine is suitable for structures with a key variable that has a significant correlation with 202 

the remaining other variables. In contrast, in the D-vine copula structure, each node is connected to no 203 

more than two edges, as depicted in Figure 2(b). The order of dependencies between variables can be 204 

determined by one after the other. The expressions for the n-dimensional joint probability density of C-205 

vine and D-vine are shown in Equations (4) and (5). 206 

 207 
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Figure 2. The vine structures for the given order of 3 variables in (a) the C-vine copula and (b) the D-208 

vine copula 209 

𝑓(𝑥1 , ⋯ , 𝑥𝑑 ) = [∏ ∏ 𝑐𝑗,𝑗+1|1,⋯,𝑗−1
𝑑−𝑗
𝑖=1

𝑑−1
𝑗=1 ] ∙ [∏ 𝑓𝑘(𝑥𝑘)𝑑

𝑘=1 ] (C-vine)  (4) 210 

𝑓(𝑥1 , ⋯ , 𝑥𝑑 ) = [∏ ∏ 𝑐𝑖,(𝑖+𝑗)|(𝑖+1),⋯,(𝑖+𝑗−1)
𝑑−𝑗
𝑖=1

𝑑−1
𝑗=1 ] ∙ [∏ 𝑓𝑘(𝑥𝑘)𝑑

𝑘=1 ] (D-vine)  (5) 211 

where 𝑐( ) refers to the bivariate copula with index 𝑖 running over the edges for each tree and index 𝑗 212 

identifying the trees, 𝑓𝑘(𝑥𝑘) denotes the marginal density. 213 

2.2 Estimation of inflow synchronization frequency  214 

A distinct advantage of the copula method lies in its precision in analyzing inflow encounter probabilities 215 

and conditional probabilities. In this study, a synchronization event is defined as the simultaneous 216 

occurrence of inflows of similar magnitudes from multiple sites. We categorize the flow into three levels: 217 

high, medium, and low. The frequencies associated with high-water and low-water events are set as 𝑃ℎ =218 

37.5% and 𝑃𝑙 = 62.5%. It is assumed that there is a generalized reservoir group scheduling system, as 219 

shown in Figure 32. The system encompasses 𝑁 reservoirs and 𝑀 flood control cross sections.  220 

 221 

 222 

Figure 32. Schematic diagram of the generalized system in the catchment 223 

We can generalize all reservoirs and cross-sections to multiple sites within the watershed system. 224 

Each of these sites may be exposed to incoming flows when rainfall occurs. Let 𝑋𝑝ℎ and 𝑋𝑝𝑙 be the 225 
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amounts of water corresponding to  𝑃ℎ and  𝑃𝑙 , respectively. 𝑋𝑖 > 𝑋𝑝ℎ corresponds to high-water (H), 226 

𝑋𝑖 < 𝑋𝑝𝑙 corresponds to low-water (L), and 𝑋𝑝𝑙 < 𝑋𝑖 < 𝑋𝑝ℎ corresponds to medium-water (M), where 227 

𝑋𝑖 denotes the inflow of day 𝑖 .  228 

Let the inflows of the different sites be represented by 𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑁+𝑀 . 229 

𝑋𝑝ℎ
1 , 𝑋𝑝ℎ

2 , 𝑋𝑝ℎ
3 , ⋯ , 𝑋𝑝ℎ

𝑁+𝑀  represent the amounts of inflow corresponding to the high-water of these 230 

different sites respectively. Meanwhile, 𝑋𝑝𝑙
1 , 𝑋𝑝𝑙

2 , 𝑋𝑝𝑙
3 , ⋯ , 𝑋𝑝𝑙

𝑁+𝑀  represent the amounts of inflow 231 

corresponding to the low-water of these different sites respectively. The marginal distribution functions 232 

are 𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑁+𝑀 , respectively. Specifically, 𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , ⋯ , 𝑢𝑝ℎ

𝑁+𝑀 denote the marginal 233 

distribution functions corresponding to the high-water inflow amounts 𝑋𝑝ℎ
1 , 𝑋𝑝ℎ

2 , 𝑋𝑝ℎ
3 , ⋯ , 𝑋𝑝ℎ

𝑁+𝑀, 234 

capturing the probabilistic behavior of the inflows during high-water conditions at each site. Similarly, 235 

𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , ⋯ , 𝑢𝑝𝑙

𝑁+𝑀 represent the marginal distribution functions for the low-water inflow amounts 236 

𝑋𝑝𝑙
1 , 𝑋𝑝𝑙

2 , 𝑋𝑝𝑙
3 , ⋯ , 𝑋𝑝𝑙

𝑁+𝑀, describing the inflow behavior during low-water conditions at these sites. 237 

The number of possible inflow-state combinations increases with the number of sites, directly tied 238 

to the three distinct states (High/Medium/Low) identified for each site. For instance, with just two sites, 239 

there are nine unique combinations. The number of combinations expands to 27 for three sites, 81 for 240 

four sites, and 243 for five sites. The pattern continues similarly for additional sites. Take the 241 

combinations of four sites as an example, following the copula theory, 𝑃(𝑋1 < 𝑥1, 𝑋2 < 𝑥2) =242 

𝑓(𝑢1, 𝑢2) = 𝐶(𝑢1, 𝑢2)  and 𝑃(𝑋 > 𝑥) = 1 − 𝑃(𝑋 < 𝑥)  , the probability formulas of synchronization 243 

are derived as below.  244 

(1) The probability of synchronized high-water is as follows: 245 

𝑃(𝑋1 > 𝑋𝑝ℎ
1 , 𝑋2 > 𝑋𝑝ℎ

2 , 𝑋3 > 𝑋𝑝ℎ
3 , 𝑋4 > 𝑋𝑝ℎ

4 ) = 1 − 𝑢𝑝ℎ
1 − 𝑢𝑝ℎ

2 − 𝑢𝑝ℎ
3 − 𝑢𝑝ℎ

4

 +𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 ) + 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

3 ) + 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

4 ) + 𝐶(𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

3 ) + 𝐶(𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

4 )

 +𝐶(𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 ) − 𝐶(𝑢𝑝ℎ

1 , 𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

3 , 𝑢𝑝ℎ
4 )

 −𝐶(𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

3 , 𝑢𝑝ℎ
4 ) + 𝐶(𝑢𝑝ℎ

1 , 𝑢𝑝ℎ
2 , 𝑢𝑝ℎ

3 , 𝑢𝑝ℎ
4 )

 (6) 246 

(2) The probability of synchronized medium-water is as follows: 247 

𝑃 = (𝑋𝑝𝑙
1 < 𝑋1 < 𝑋𝑝ℎ

1 , 𝑋𝑝𝑙
2 < 𝑋2 < 𝑋𝑝ℎ

2 , 𝑋𝑝𝑙
3 < 𝑋3 < 𝑋𝑝ℎ

3 , 𝑋𝑝𝑙
4 < 𝑋4 < 𝑋𝑝ℎ

4 )

 = 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝𝑙

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝ℎ

4 )

 −𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) + 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 )

 +𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝𝑙

4 ) + 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝𝑙

4 ) + 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝ℎ

4 )

 +𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝ℎ

4 ) + 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝ℎ

4 ) − 𝐶(𝑢𝑝ℎ
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 )

 −𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝ℎ

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 ) − 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝ℎ
3 , 𝑢𝑝𝑙

4 ) − 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝ℎ

4 )

 +𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 )

  (7) 248 

(3) The probability of synchronized low-water is as follows: 249 
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         𝑃(𝑋1 < 𝑋𝑝𝑙
1 , 𝑋2 < 𝑋𝑝𝑙

2 , 𝑋3 < 𝑋𝑝𝑙
3 , 𝑋4 < 𝑋𝑝𝑙

4 ) = 𝐶(𝑢𝑝𝑙
1 , 𝑢𝑝𝑙

2 , 𝑢𝑝𝑙
3 , 𝑢𝑝𝑙

4 ) (8) 250 

2.3 Stochastic simulation based on RDV-Copula functions 251 

2.3.1 Reduced-dimension vine copula construction approach (RDV-Copula) for multi-variate 252 

To construct joint distribution functions for multiple variables that encapsulate both temporal and spatial 253 

relationships, it is essential to incorporate a comprehensive range of information to efficiently capture 254 

the interconnections among variables. 255 

Using the flow at 𝑁 points within a catchment as an example, the relationships among the flows 256 

are analyzed. Given that these points reside within the same geographical region, it's highly likely that 257 

they are spatially related and the strength of the relationship is negatively correlated with spatial distance. 258 

Additionally, each site exhibits temporal correlations, such as the relationship between today's flow and 259 

that of the previous day(s), although for simplicity, this analysis assumes relevance only between 260 

consecutive days' flows. Incorporating both temporal and spatial dimensions into the analysis implies 261 

that for " 𝑁 " sites, there should ideally be "𝑁 + 𝑁 " variables considered in constructing the copula 262 

function. As the number of sites grows, it simultaneously elevates the dimensionality of the copula, 263 

leading to increasingly complex structures. This complexity not only escalates computational efforts but 264 

also presents significant challenges in accurately fitting the model. To address this issue, our study 265 

introduces a novel methodology termed the Reduced-Dimension Vine Copula Construction Approach 266 

(RDV-Copula). This strategy aims to extract distill essential spatial-temporal information, thereby 267 

reducing the vine copula function's dimensionality to simplify the model structure.  268 

The primary goal of this approach is to pinpoint the crucial variables necessary for effectively and 269 

efficiently representing the spatial-temporal relationships among different sites. The process begins by 270 

identifying variables to capture spatial relationships, under the assumption that the spatial relationships 271 

remain stable over short periods. Consequently, the current day's flows across all sites are selected as 272 

spatial variables, totaling 𝑁. Subsequently, the Kendall correlation coefficient between the current and 273 

previous day's flows is computed for each site, with the values ranked in descending order. The site with 274 

the highest Kendall coefficient is deemed the most temporally correlated, and its previous day's flow is 275 

also chosen as a key variable for the vine copula construction. Flows from the previous day at other sites 276 

are excluded from being key variables. Ultimately, this approach selects “𝑁 + 1   key variables, 277 
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achieving an effective representation of spatial-temporal relationships while minimizing variable count. 278 

The schematic diagram of the process is shown in Figure 43. 279 

 280 

Figure 3. Schematic diagram of the RDV-Copula method  281 

 282 

Figure 4. Schematic diagram of the RDV-Copula method  283 
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After identifying the "N+1" key variables, the marginal distribution function for each variable is 284 

determined, selecting the most appropriate distribution (e.g., Normal, Gamma) based on the 285 

statistical characteristics of each variable. Using these marginal distributions, a suitable copula 286 

structure is then selected, such as C-Vine or D-Vine, depending on the nature of dependencies among 287 

the key variables. Next, for each pair of variables in the chosen vine structure, the most appropriate 288 

bivariate copula family (e.g., Gaussian, Clayton, Gumbel) is selected to accurately capture their 289 

dependencies. Subsequently, parameters for each selected pair-copula are estimated sequentially 290 

using methods like Maximum Likelihood Estimation (MLE). Finally, the constructed copula model 291 

is validated using statistical criteria such as the Akaike Information Criterion (AIC) or Bayesian 292 

Information Criterion (BIC). 293 

 294 

2.3.2 Stochastic simulation 295 

Simulation methods for multivariate stochastic processes are categorized into two main types: 296 

unconditional and conditional simulations, as delineated by Wu et al. (2015). The core distinction 297 

between these two simulation methods hinges on whether certain data points are pre-determined at the 298 

time of simulation.The key difference between these two simulation methods lies in whether specific 299 

data points are known in advance before generating the simulation. Figure 54(a) and (b) illustrate the 300 

unconditional simulation and the conditional simulation, respectively. 301 

Unconditional simulation (Figure 5(a)): This simulation approach generates stochastic samples 302 

solely based on the probability distribution of the dataset, without any prior knowledge of data states. All 303 

sample data are produced simultaneously through stochastic simulation, with each data point being in an 304 

unknown state prior to the simulation.This approach generates random samples based solely on the 305 

marginal probability distribution, without incorporating any existing data constraints. The probability 306 

distribution is shown in the upper-left plot, and random samples are generated simultaneously, resulting 307 

in the scatter plot below. The generated samples, represented by blue points, illustrate the joint variability 308 

according to their predefined marginal distributions. Since no prior information is used, each data point 309 

is in an unknown state before the simulation. 310 

Conditional simulation (Figure 5(b)): Conversely, conditional simulation operates under the premise 311 

that data at specific locations are already known. These known data points are then used to generate 312 
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random samples, with the complete set of samples being produced based on both the probability 313 

distribution of the data and the conditions set by the known variables. This method allows for a tailored 314 

simulation that incorporates pre-existing data insights. In this scenario, the simulation takes into account 315 

pre-existing data conditions. The marginal probability distribution is displayed in the top-center plot, 316 

while the known conditional data is shown in the upper-right scatter plot (in pink). These known data 317 

points act as a constraint for generating new random samples. The resulting scatter plot below (blue and 318 

pink points) demonstrates how the conditional samples are influenced by both the marginal distribution 319 

and the specified conditions of the known data. This method allows for a tailored simulation that 320 

incorporates pre-existing data insights. 321 

 322 

 323 

Figure 54. Schematic diagram for generating random simulation samples (a) unconditional simulation (b) 324 

conditional simulation 325 

 326 
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Based on the presentation of each section in detail above, it can be generalized that stochastic 327 

simulation based on the RDV-Copula function needs to go through the following steps. 328 

Step 1: Collect as much historical data as possible. 329 

Step 2: Correlation analysis is conducted on the collected data by calculating the Kendall's 330 

coefficient. 331 

Step 3: According to the method of filtering key variables proposed in Subsection 2.3.1, the 332 

representative key variables are extracted based on the correlation relationship among multiple variables. 333 

Step 4: Marginal distribution functions are fitted to the historical data series of the screened key 334 

variables. 335 

Step 5: Based on the proposed RDV-Copula approach, the joint distribution function of multi-site 336 

runoff sequences is constructed with consideration of spatial-temporal relationships. 337 

Step 6: The stochastic simulation sequences of runoff are generated by performing unconditional 338 

stochastic simulation and conditional stochastic simulation based on the constructed vine copula 339 

functions with different structures. 340 

3 Case study 341 

3.1 Study area and data description 342 

This study applies its methodology to a case study focusing on constructing spatial-temporal 343 

relationships within the Shifeng Creek area, located in the Jiaojiang River catchment in Eastern China. 344 

The Jiaojiang River ranks as the third largest river in Zhejiang Province. As the primary tributary of the 345 

Jiaojiang River basin and the principal watercourse in Tiantai County, Shifeng Creek plays a significant 346 

role. Rainfall distribution in the Shifeng Creek catchment is notably uneven throughout the year, with a 347 

substantial portion, approximately 70 to 80%, occurring from March to September. The remaining 20 to 348 

30% of yearly rainfall is distributed over the other months. The period from July to September is 349 

particularly marked by intense storms and rainfall, largely influenced by the Pacific subtropical high-350 

pressure system and the frequent occurrence of typhoons, contributing about 35% of the annual total 351 

precipitation, with amounts ranging from 400 to 600mm. 352 

The objective of this study is to delineate the spatial-temporal relationships of inflows within the 353 
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catchment during August, a flood-prone month, to enhance flood pattern understanding and support 354 

effective flood management strategies. In the Shifeng Creek region, there are many important hydraulic 355 

structures and critical control cross-sections. This study focuses on four major sites within the Shifeng 356 

Creek catchment: the Lishimen Reservoir (LSM) site, the Longxi Reservoir (LX) site, along with the 357 

Qianshan (QS) cross-section site and the Shaduan (SD) cross-section site. These sites are strategically 358 

located along the upper, middle, and lower stretches of Shifeng Creek, facilitating a comprehensive 359 

analysis of the entire catchment and flood characteristics of Shifeng Creek.These four sites were selected 360 

for their strategic importance within the Shifeng Creek catchment, covering the upper, middle, and lower 361 

reaches. The Lishimen (LSM) and Longxi (LX) reservoirs, both in the upper reaches, are vital for flood 362 

control, regulating inflows to reduce downstream flood risks. The Qianshan (QS) cross-section, in the 363 

middle reaches, and the Shaduan (SD) cross-section, in the lower reaches, serve as key flood control 364 

points. Analyzing flows at these sites enables better coordination of reservoir operations and prevents 365 

flood peak convergence, enhancing overall flood management. To achieve this, daily runoff data of 366 

August, covering a span from 2000 to 2020, have beenwere compiled. This dataset encompasses inflows 367 

for the LSM and LX reservoir sites, as well as flow data for the QS and SD cross-sections. The geographic 368 

positioning of Shifeng Creek is depicted in Figure 65. 369 

 370 

Figure 65. Map of location of Shifeng Creek  371 
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3.2 Numerical experiments setup 372 

3.2.1 Synchronization frequency analysis based on spatial relationship 373 

In this study, we employ the vine copula function to construct the joint distribution of runoff across four 374 

sites, aiming to analyze the synchronization frequency of floods in August, a month identified as having 375 

a high risk of flooding. The variables under consideration include the inflow from these four sites, 376 

denoted as LSM-Aug, LX-Aug, QS-Aug, and SD-Aug. Our initial step involves calculating the Kendall 377 

coefficients among these variables to assess their interdependencies. Following the methodology outlined 378 

in Subsection 2.1.1, we determine the marginal distribution functions of the four variables through a 379 

fitting test. Subsequently, based on the marginal distribution function of each variable, the joint 380 

distribution function of four variables is constructed. The parameters of the vine copula are estimated via 381 

the maximum likelihood method, with the Akaike Information Criterion (AIC) serving as the selection 382 

criterion to ensure optimal model fit. Upon passing the fitting test, we identify the most appropriate vine 383 

copula structure to accurately model the relationships among the variables.  384 

With the four-dimensional vine copula function established, we proceed to calculate and analyze 385 

the synchronization frequency of inflows as described in Subsection 2.2. The inflows at the four sites are 386 

symbolized as LSM, LX, QS, and SD, with high-water and low-water inflow amounts represented as 387 

𝑋𝑝ℎ, 𝑌𝑝ℎ, 𝑍𝑝ℎ, 𝑊𝑝ℎ and 𝑋𝑝𝑙, 𝑌𝑝𝑙, 𝑍𝑝𝑙 and 𝑊𝑝𝑙, respectively. The marginal distribution functions are 388 

denoted as 𝑢, 𝑣, 𝑟  and 𝑠.  389 

Considering the three potential states (High/Medium/Low) at each site, a total of 81 possible inflow-390 

state combinations are identified. Among these, the combinations [X-H, Y-H, Z-H, W-H], [X-M, Y-M, 391 

Z-M, W-M], and [X-L, Y-L, Z-L, W-L] are classified as synchronous, while the remainder are deemed 392 

asynchronous. For ease of presentation, H, M, and L are then used as abbreviations for High, Medium, 393 

and Low. Among the 81 combinations, the combinations [X-H, Y-H, Z-H, W-H], [X-M, Y-M, Z-M, W-394 

M], and [X-L, Y-L, Z-L, W-L] are classified as synchronous high-water, synchronous medium-water, 395 

synchronous low-water, respectively, while the remainder are deemed asynchronous. The calculation 396 

equations can be provided referenced in Appendix B. 397 
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3.2.2 Various vine copulas construction based on spatial-temporal relationships and stochastic 398 

simulation  399 

To enhance the vine copula function's accuracy, it's imperative to integrate the temporal dimension into 400 

its construction. In this section, the vine copula functions are developed on a daily basis, encompassing 401 

a series of 31 copula models corresponding to each day of August, from the 1st to the 31st. Consequently, 402 

both Kendall correlation analysis and the fitting of marginal distribution functions must be independently 403 

conducted for the data spanning these 31 days. Following this preliminary analysis, 31 distinct 404 

relationship functions are constructed, each tailored to the specific type of vine copula identified for each 405 

day. 406 

3.2.2.1 RDV-Copula function construction 407 

Given that all four sites are situated within the Shifeng Creek watershed, their spatial interconnectivity 408 

is inherent and can be leveraged in constructing a vine copula function. Additionally, the results of the 409 

correlation analysis indicate that the correlation between the current day's runoff and the previous day's 410 

runoff is the highest. While the data from two days ago no longer has much influence on the current day's 411 

runoff data, so it can be excluded from the critical variable selection. Considering only the previous day's 412 

contribution in the time dimension can effectively represent the time correlation while avoiding 413 

unnecessary dimension increase. due to the persisting effects of rainfall, the flow at any given site is also 414 

temporally linked to its previous day's flow. To encapsulate this temporal correlation, the This study 415 

integrates the inflows from the four sites over two consecutive days. The inflows for the current day are 416 

denoted as LSM, LX, QS, and SD, while those for the previous day are labeled LSM1, LX1, QS1, and 417 

SD1, respectively. 418 

The methodology, as detailed in Subsection 2.3, initiates by analyzing the current day’s inflows at 419 

the four sites to establish their spatial relationships. The subsequent step involves identifying the site 420 

with the most significant correlation to its preceding day's inflow, which is then used as a as a variable 421 

to represent the temporal relationship on that day. For instance, analysis between August 1st and 2nd 422 

reveals that the LSM site had the highest correlation with its prior day's flow compared to the other sites. 423 

Taking the construction of the copula function relationship between August 1st and August 2nd as an 424 

example, the analysis reveals that the LSM site has the highest correlation with its previous day's flow 425 

compared to the other three sites. As a result, a total of five key variables are determined for this 426 
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relationship set, including LSM, LX, QS, SD, and LSM1, effectively encompassing both temporal and 427 

spatial correlations while streamlining the variable dimensions within the copula. 428 

Due to the fundamental difference in structure between C-vine and D-vine copula, this study 429 

constructs five-dimensional RDV-Copula functions based on these two types, respectively, labeled as 430 

RDV-Cvine and RDV-Dvine. These two types of models should first be evaluated against each other on 431 

various indexes, including AIC, BIC, and Loglik, to ascertain the most suitable five-dimensional RDV-432 

Copula structure. This chosen structure The RDV-Copula structure with better index values is then further 433 

compared with other copula functions to validate its efficacy. 434 

3.2.2.2 Benchmark copula functions construction 435 

To validate the effectiveness of the RDV-Copula approach, this study compares it against a series of 436 

benchmark copula functions. These benchmarks are constructed by applying various combinations of 437 

multiple variables and stochastic simulation approaches to the existing data, resulting in vine copula 438 

models of differing dimensions. The specifics of these vine copula models are summarized as follows 439 

and illustrated in Figure 76. 440 

Benchmark 1:  441 

Focuses solely on spatial correlations, utilizing inflows at the four sites on the current day (LSM-442 

LX-QS-SD) to create a four-dimensional vine copula. Simulations are conducted unconditionally. 443 

Benchmark 2:  444 

Incorporates both spatial and temporal correlations, including inflows at the four sites for both the 445 

current and previous day (LSM-LX-QS-SD-LSM1-LX1-QS1-SD1), resulting in an eight-dimensional 446 

vine copula. This model also employs unconditional simulation. 447 

Benchmark 3:  448 

Like Benchmark 2, this model considers both spatial and temporal correlations using the same set 449 

of key variables (LSM-LX-QS-SD-LSM1-LX1-QS1-SD1), thereby forming an eight-dimensional vine 450 

copula. However, it differs in its application of conditional simulation, assuming the previous day's runoff 451 

as a known condition to simulate the current day's flows. 452 

To further detail the distinctions in stochastic simulation approaches, the RDV-Copula functions are 453 

bifurcated into two categories: 454 

RDV-un/ RDV-con: 455 
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Both models account for spatial and temporal correlations by incorporating inflows at the four sites 456 

on the current day and the inflow at one site from the previous day (LSM-LX-QS-SD-X1), creating a 457 

five-dimensional vine copula. The variable “X  represents the site with the strongest temporal connection. 458 

The “RDV-un  employs unconditional simulation, while “RDV-con  utilizes conditional simulation. 459 

 460 

Figure 76.  Five different vine copula models 461 

4 Results  462 

4.1 Synchronization frequency analysis 463 

Prior to performing a synchronization frequency analysis on multiple variables, it is imperative to 464 

conduct a correlation analysis to verify the presence of spatial correlations among them. Following the 465 

approach outlined in Subsection 2.1, this study begins with a correlation analysis of the daily runoff in 466 

August at the four selected sites, utilizing Kendall coefficients to quantify their interconnections. The 467 

results of this analysis, demonstrating the correlation among the four variables, are shown in Figure 87(a). 468 

The "*" on the ellipse means that the correlation passes the significance test of 0.05 =  .Subsequent 469 

to identifying correlation, the next step involves determining the marginal distributions for these 470 

variables. Figure 87(b) displays the results of this process, showcasing both the plots of the fitted 471 

marginal distributions for the four variables and the actual data distribution, thereby laying the 472 
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groundwork for a comprehensive understanding of the data's distribution characteristics.  473 

 

Figure 87. (a) Results of correlation analysis for daily runoff at multiple sites (b) Cumulative probability 474 

distribution of the preferred marginal distribution function 475 

Figure 87 demonstrates that the correlations among the four study variables have all passed the 476 

significance test (𝑝 ≤ 0.05 ), with the QS and SD sites exhibiting the strongest correlations. This is 477 

closely followed by the spatial connections between the LX site and both QS and SD sites, with 478 

correlation coefficients of 0.67 and 0.65, respectively. The correlations involving the LSM site and the 479 

other three sites are relatively low, reflecting a reduction in spatial correlation with increasing distance. 480 

In terms of runoff distribution, the LSM site's runoff adheres to the Weibull distribution (weibull), while 481 

the runoff at the LX site fits the Inverse Gaussian distribution (invgauss), and the runoffs at both QS and 482 

SD sites align with the Log-normal distribution (lnorm). Building on the vine copula function 483 

methodology outlined in Subsection 2.1.2, we have developed a four-dimensional vine copula function 484 

using these variables. The function's structure, alongside the estimated parameters, is detailed in Table 1. 485 

Table 1 Four-dimensional vine copula structure and parameters 486 

Tree edge family rotation parameters tau loglik 

1 

1,3 bb7 0 2.2, 1.1 0.54 296 

2,3 t 0 0.86, 6.51 0.66 433 

3,4 t 0 0.92,2.69 0.74 636 

2 

1,4|3 frank 0 -1.3 -0.15 15 

2,4|3 Bb1 180 0.13, 1.10 0.15 25 

3 12|43 bb7 180 1.07, 0.21 0.13 24 

Upon the construction of four-dimensional vine copula function, the synchronization frequency 487 
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analysis can be expanded. Using the approach detailed in Subsection 2.2, we obtained 81 encounter 488 

probabilities reflecting potential inflow scenarios at four sites: high-water, medium-water, and low-water. 489 

Figure 98(a) shows these 81 probabilities in detail. Figures 98(b)-(g) present aggregated views, focusing 490 

on nine combinations representing two of the four variables in each of their three states.  491 

 

Figure 98.  Encounter probabilities for the multiple sites (a) LSM-LX-QS-SD (b) LSM-LX (c) LSM-QS (d) 492 

LSM-SD (e) LS-QS (f) LX-SD (g) QS-SD 493 

As observed in Figure 98, the cumulative probability of synchronization across all four sites 494 

simultaneously stands at 41.92%, encompassing three scenarios: (1) LSM-high, LX-high, QS-high, SD-495 

high (2) LSM-medium, LX-medium, QS-medium, SD-medium (3) LSM-low, LX-low, QS-low, SD-low. 496 

Any two of these sites also demonstrate a very strong synchronization between them, with probabilities 497 

nearing 60%. The obvious dark colored blocks in the graph indicate the high probabilities of being the 498 
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high-water or the low-water concurrently. The obvious dark-colored blocks in the graph indicate the high 499 

probabilities of being in high-water or low-water states concurrently. Among these, the strongest 500 

synchronization occurs between the QS and SD sites, reaching a probability of 77.52%. This is closely 501 

followed by the LX site's synchronization with both QS and SD sites, at probabilities of 72.76% and 502 

68.24%, respectively. While the LSM site's synchronization probabilities with the other sites are 503 

comparatively lower, they still exceed 50%, recorded at 58.29% with the LX site, 61.25% with the QS 504 

site, and 57.15% with the SD site. While the LSM site's synchronization probabilities with the other sites 505 

are comparatively lower, they still exceed 50%, with values of 58.29% for the LX site, 61.25% for the 506 

QS site, and 57.15% for the SD site. This analysis underscores the clear spatial correlation among the 507 

four sites and highlights the critical importance of monitoring high-water synchronization. This is 508 

because such a case of simultaneous high water at multiple sites can easily induce flooding and pose a 509 

risk to the downstream. By analyzing the relationship of flow among multiple sites in advance and 510 

clarifying the probability of synchronization, it would be more conducive to the formulation of flood 511 

control and scheduling strategies to reduce the probability of flood encounters and protect the safety of 512 

the downstream. 513 

4.2 Construction of joint distributions of multi-site daily inflows 514 

4.2.1 Correlation analysis 515 

Correlation analysis serves as an efficient tool for quickly identifying and quantifying the correlations 516 

among multiple variables. Following the methodology outlined in Subsection 2.1, this study incorporates 517 

both temporal and spatial correlations in its analysis. To achieve this, historical runoff data from four key 518 

sites, along with the previous day’s runoff data at each site, were used, resulting in a set of eight variables 519 

for the correlation analysis. The results of the analysis are presented in Figure 109. Due to the large 520 

amount of information, only part of the correlation results is shown here. The complete set of results is 521 

available in Appendix C. 522 
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Figure 109.  Partial results of correlation analysis for daily runoff at multiple sites (LSM, LX, QS, SD 523 

represent the runoff sequences of current day, while LSM1, LX1, QS1, SD1 represent the runoff sequences 524 

of previous day) 525 

Figure 109 illustrates the Kendall correlation coefficients between pairs of variables. The intensity 526 

of colors correlates with the strength of positive correlation, with darker shades signifying a correlation 527 

coefficient closer to 1. The "*" on the ellipse means that the correlation passes the significance test of 528 

0.05 = . This figure uncovers a marked positive correlation among the runoff series at the LSM, LX, 529 

QS, and SD sites, with approximately 93% of these correlations meeting the significance threshold. This 530 

finding indicates that there is an obvious spatial correlation among the four locations. Notably, the QS 531 

and SD sites exhibit the strongest spatial correlation, with an average coefficient in August of 0.74, 532 

closely followed by the LX reservoir's correlation with the QS and SD sections at 0.67 and 0.63, 533 

respectively. In comparison, the LSM reservoir's runoff shows relatively lower correlations with the other 534 

sites, averaging 0.48 with LX site, 0.55 with QS site, and 0.45 with SD site in August.  535 

Upon analyzing the temporal correlation of runoff at each site for adjacent days within August 536 

(denoted as LSM-LSM1, LX-LX1, QS-QS1, SD-SD1), it becomes evident that temporal correlations are 537 



25 

 

significant and should not be overlooked. Particularly in early August, these correlations register at a 538 

notably high level, suggesting more frequent flooding during this period. The LSM site demonstrates a 539 

standout temporal correlation, averaging 0.72 in August, indicative of a strong link between the current 540 

and previous day's runoff. The other sites display slightly lower, yet significant, temporal correlations: 541 

LX at 0.65, QS at 0.65, and SD at 0.67. When these temporal correlations are considered alongside the 542 

spatial ones, it's evident that LSM's temporal correlation surpasses its spatial correlation with other sites.  543 

These correlation analysis results solidly confirm both spatial and temporal correlations among the 544 

four sites, laying a foundational basis for advancing with the construction of a copula structural model. 545 

4.2.2 Fitting of marginal distribution of each runoff 546 

In this study, twelve distinct distribution functions were utilized to model the daily runoff at four sites 547 

throughout August. To assess the goodness-of-fit of these distributions, the Kolmogorov-Smirnov (K-S) 548 

test, with a significance level of 0.05, was employed. Following a successful significance test, the Akaike 549 

Information Criterion (AIC) minimum method was applied to evaluate and determine the optimal 550 

marginal distribution for each dataset. Figure 1110 shows the preferred marginal distribution functions 551 

for each variable over the 31 days of August. This figure contrasts the actual historical data points against 552 

the curves of the fitted functions, offering a visual representation of the fitting accuracy. The specific 553 

marginal distribution functions chosen for each variable, along with their parameters for each day, are 554 

comprehensively listed in Appendix D. Figure 10 11 notably illustrates how well these selected marginal 555 

distribution functions match the actual data for all four variables from the 1st to the 12th of August. The 556 

chosen marginal distribution functions for the entire month are detailed in Figure D1. Furthermore, the 557 

figure's legend explicitly details the types of fitting functions employed for each variable, providing a 558 

clear and comprehensive overview of the distributional characteristics.  559 
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Figure 1011.  Cumulative probability distribution of the preferred marginal distribution function for 560 

runoff on each day throughout 1st-12th 9th in August  561 

The distribution of the corresponding marginal distribution functions for the four variables over the 562 

31 days in August is summarized in Figure 1112.  563 
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 564 

Figure 1112.  Distribution of the preferred marginal distribution function for the daily series of flows at 565 

LSM, LX, QS and SD site in August 566 

Figure 11 12 shows that most streamflow series follow the “gev  distribution (27.52%) and the 567 

“invgauss  distribution (23.39%). Relatively few streamflow series follow the “weibull , “llogis , 568 

“lnorm , and “gpd  distributions, and only a very small number follow the “gamma  and “gumbel  569 

distributions. Additionally, 71% of the runoff sequences at the LSM site follow the “weibull  and “gev  570 

distributions, each accounting for 35.5%. The runoff sequences at the LX site, the QS site, and the SD 571 

site predominantly follow the “gev  and “invgauss  distributions, accounting for 29.03% and 29.03% at 572 

the LX site, 22.58% and 35.48% at the QS site, and 22.58% and 29.03% at the SD site, respectively. 573 

Meanwhile, nearly 30% of the runoff sequences at the SD site also follow the “gpd  distribution. 574 

4.2.3 Construction of RDV-Copula function  575 

Following the identification of each variable's marginal distribution, the next step involves selecting the 576 

appropriate copula structures to construct the vine copula models among the multiple variables. Utilizing 577 

the RDV-Copula function construction approach described in Section 3.2.2.1, we identified the sites 578 

exhibiting the highest temporal correlation for each day in August, based on our correlation analysis 579 

results. The variables chosen for each specific day are illustrated in Figure 1213. 580 
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Figure 1213.  Key factors in the five-dimensional vine copula structure constructed in two adjacent days 581 

(LSM, LX, QS, SD represent the runoff sequences of current day, while LSM1, LX1, QS1, SD1 represent the 582 

runoff sequences of previous day) 583 

Prior to selecting a specific copula function for modeling, it is essential to decide on the type of 584 

copula to be employed. Among the options, C-vine and D-vine structures stand out for their common use 585 

in various applications. In this study, we constructed both C-vine and D-vine copula structures for the set 586 

of multiple variables under consideration. To evaluate the efficacy of these structures, metrics such as 587 

the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Log-Likelihood 588 

(Loglik) values were utilized and computed, with the results presented in Figure 1314. The AIC and BIC 589 

values reveal that, for the majority of cases, the D-vine copula structures exhibit significantly lower 590 

values compared to those of the C-vine structures. Lower values in these criteria suggest a model's better 591 
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performance and fit. Moreover, the comparison of log-likelihood values also showed that D-vine 592 

structures typically yielded lower values than their C-vine counterparts. Consequently, the D-vine copula 593 

structure was identified as more effective and suitable for modeling the intricate relationships among the 594 

variables in this study. Therefore, the RDV-Copula and other benchmark copula models were designed 595 

using the D-vine structure. 596 

 

Figure 1314.  Comparison of the performance of RDV-Copula models for C-vine and D-vine (a) AIC (b) 597 

BIC (c) Loglik 598 

A large number of copula families were utilized to model the joint distributions, such as Gaussian 599 

copula, Gumbel copula, t copula and so on. Following the guidance of AIC criteria, the most suitable 600 

pair-copula for each connection within every tree was selected. After fitting the goodness of the copula 601 

functions, we employed the maximum likelihood method to estimate the parameters. As an illustrative 602 

example, the copula structure for August 1st-2nd is shown in Figure 1415. This figure not only reveals 603 

the best-fit copula family for each pair of adjacent nodes but also the estimated parameters. The nodes, 604 

labeled 1 through 5, represent LSM, LX, QS, SD, and X1, which indicates the site with the highest 605 

temporal correlation on that day, respectively. In this instance, X1 corresponds to LSM1. It is important 606 

to note that the specific choice of X1 might vary from day to day, as further elaborated in Figure 1213. 607 

In Figure 1415, each pair of subfigures situated between nodes shows two aspects of the bi-dimensional 608 

copula function for those nodes. The first subfigure presents the joint probability plot, while the second 609 

illustrates the joint probability density plot. 610 
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Figure 1415. Structure of the five-dimensional D-vine copula model for August 1st -2nd (Nodes 1–5 represent 611 

LSM, LX, QS, SD, and LSM1; The plots between each two nodes are schematic plots of the corresponding 612 

copula function, with joint probability plot on the left and joint probability density plot on the right.) 613 

4.3 Stochastic simulation results of runoff from multiple sites 614 

To validate the models and facilitate a comparative analysis of different vine copula functions, the 615 

following work was carried out. Initially, the constructed copula structure and the results from parameter 616 

estimation were incorporated into a simulation process, generating 20,000 sets of random runoff 617 

scenarios for each day in August. Considering August's susceptibility to flooding and the typical 618 

continuity of rainfall events, it's highly likely that runoff on consecutive days is temporally correlated. 619 

Therefore, comparing only the mean and standard deviation of runoff simulated for individual days might 620 

not fully capture the model's simulation efficacy. In this context, the study calculated the mean and 621 

standard deviation for the current day by considering the simulated flows of both the preceding and 622 

following days. Ultimately, after the exclusion of outliers from the 20,000 sets of simulated runoff 623 
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scenarios, the average of the mean and standard deviation calculated from these three days' simulated 624 

flows will be used as the mean and standard deviation for the current day. The runoff simulation results 625 

for the four locations (LSM, LX, QS, and SD) are presented in Figures 1516, 1617, 17 18 and 1819, 626 

respectively. Notably, in each figure, subfigure (a) displays the mean values and standard deviations from 627 

the simulation results for the five copula structures, allowing these results to be compared against 628 

historical observations for a nuanced evaluation of the simulation's performance. Subfigures(b), (c), (d), 629 

(e) and (f) represent the simulation results for five different sets of copula structures (RDV-con, RDV-630 

un, Benchmark1, Benchmark2 and Benchmark3) respectively. The solid line in the figure is the mean of 631 

the simulation results and the shaded area represents the uncertainty (±1 standard deviation) of the 632 

simulation. 633 

 

Figure 1516.  Comparison of the actual observed series with simulation results of four copula structures at 634 

LSM site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-635 

con (c) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of 636 

Benchmark2 (f) simulation results of Benchmark3 637 
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Figure 1617. Comparison of the actual observed series with simulation results of four copula structures at 638 

LX site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-639 

con (c) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of 640 

Benchmark2 (f) simulation results of Benchmark3 641 

 

Figure 1718.  Comparison of the actual observed series with simulation results of four copula structures at 642 

QS site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-643 

con (c) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of 644 

Benchmark2 (f) simulation results of Benchmark3 645 
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Figure 1819.  Comparison of the actual observed series with simulation results of four copula structures at 646 

SD site (a) comparison of daily runoff mean values and standard deviation (b) simulation results of RDV-647 

con (c) simulation results of RDV-un (d) simulation results of Benchmark1 (e) simulation results of 648 

Benchmark2 (f) simulation results of Benchmark3 649 

From four figures, it is evident that the simulation results of RDV-Copula, Benchmark1 and 650 

Benchmark2 are comparatively more accurate. The mean values and standard deviations from these 651 

simulations closely match the actual observed runoff, particularly for simulations involving smaller flow 652 

magnitudes, where the accuracy aligns more precisely with the actual values. Although the RDV-Copula 653 

results are consistent with the benchmark models, they do not exhibit a marked advantage for smaller 654 

flows. However, in scenarios involving larger flows, such as those at the SD site, RDV-Copulas 655 

outperform other models, highlighting their superiority in capturing the characteristics of larger inflow 656 

events. This analysis suggests that for smaller flows, models focusing solely on spatial relationships 657 

suffice to capture the critical interrelationships among variables. In contrast, for larger flows, neglecting 658 

the influence of temporal correlations can lead to substantial inaccuracies in the simulation results, 659 

suggesting that larger flows are more significantly influenced by adjacent day’s flows. Comparing the 660 

four figures, we can also find that the simulation results at LX location consistently exhibit high accuracy, 661 

with the simulation results basically covering the actual observations. This suggests that the constructed 662 

copula models can easily extract the historical correlations and simulate them, particularly in smaller 663 

flow magnitudes.  664 
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However, the Benchmark3 model's performance is notably less effective among the five models. 665 

This suboptimal performance can be attributed to two main factors. Firstly, the complexity of the eight-666 

dimensional copula function, which involves a diverse combination of "trees," "nodes," and various types 667 

of parameters, poses significant challenges in accurately extracting the relationship characteristics among 668 

the four sites. Secondly, the conditional simulation approach of Benchmark3, which relies on the previous 669 

day's flow at the four sites as a known condition for simulation, is highly susceptible to the accuracy of 670 

these initial conditions. If the simulation results for the previous day contain significant errors, these 671 

inaccuracies are likely to propagate through the simulation, leading to compounded errors in the entire 672 

results. Another noteworthy point is that the simulation results on the August 10th, 20th and 31st are not 673 

quite consistent with historical conditions. This is because the runoff on these three days has been at a 674 

low level for most of the time over a number of years in history. It is therefore a rather exceptional 675 

phenomenon that a major flood event occurred on these particular dates in just one year. Specifically, the 676 

data recorded on these dates (August 10, 2009, August 31, 2011, and August 20, 2014) indicate unusually 677 

high runoff, which significantly exceeds their respective historical averages. Such an occurrence presents 678 

a challenge for the simulations, as it requires accurately capturing and replicating these atypically high 679 

flow values within the model.  680 

Comparing the two types of simulations of RDV-Copula, it can be found that the performances of 681 

the simulation results of RDV-un and RDV-con are similarly well for LSM and LX sites. However, in 682 

the simulation of QS and SD sites, RDV-con shows an obvious superiority compared to RDV-un. This 683 

illustrates the better generalization of conditional simulation for such complex structure with spatial-684 

temporal relationships. In contrast to the unconditional simulation, RDV-con can better utilize the 685 

temporal correlation to improve the accuracy of the simulation. Meanwhile, since it is different from the 686 

conditional simulation of the eight-dimensional vine copula (Benchmark2), RDV-con successfully 687 

reduces the cumulative error caused by the excessive dimensionality. 688 

In summary, for the relational construction and stochastic simulation of flows across varying 689 

magnitudes, RDV-Copula and Benchmark2 emerge as more suitable, particularly when considering the 690 

influences of both temporal and spatial correlations. However, the use of an eight-dimensional copula 691 

function in Benchmark2 introduces significant computational demands and adds complexity to the 692 

problem. RDV-Copula is favored for its effective integration of temporal and spatial correlations, while 693 
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also simplifying the copula structure, thereby streamlining the problem-solving process and enhancing 694 

computational efficiency. 695 

5 Discussion 696 

For variables with interdependencies, the copula function, increasingly popular in contemporary studies, 697 

extracts spatial-temporal relationships from their marginal distributions. Vine copulas are notably 698 

effective in modeling complex dependencies among variables, as they offer substantial flexibility. This 699 

capability is exemplified in the work of Pereira and Veiga (2018), who developed a multivariate 700 

conditional model using D-vine copulas for simulating periodic streamflow scenarios, emphasizing the 701 

structured arrangement of variables to capture monthly flow dependencies. This and numerous other 702 

studies (Nazeri Tahroudi et al., 2022; Wang et al., 2018, 2019; Wang and Shen, 2023a) underscored the 703 

effectiveness of vine copulas in capturing dependencies among variables with differing marginal 704 

distributions. 705 

The synchronous probability analysis of multi-site runoff shows that the vine copula model can be 706 

used to provide a good fit to the dependencies among variables obeying different marginal distributions. 707 

Similar conclusions have been obtained in other studies (Qian et al., 2022; Ren et al., 2020; Wei et al., 708 

2023). In the study of Xu et al. (2022), the multivariate Copula model was implemented to evaluate the 709 

synchronous–asynchronous characteristics for hydrological probabilities for the multiple water sources. 710 

The simultaneous probabilistic analysis of multi-site runoff provides an understanding of the flood 711 

characteristics of the catchment leading to better flood control and prevention. 712 

For high-dimensional variable dependency analysis, the structure of the vine copula is extremely 713 

complicated to construct. Depending on the number of hydrometric stations, Wang and Shen (2023b) 714 

established the 7-dimensional regular vine (R-vine) copula models to depict the complex and diverse 715 

dependence dependencies. To tackle the problem above, in their study, the corresponding vine structure 716 

was specified by the vine structure array that can reflect the sequence of tributaries flowing into the main 717 

stream and the spatial locations of different hydrometric stations. The performance of the ultimate 718 

simulation results was favorable, but it did not incorporate the temporal connection of the variables for 719 

each hydrometric station. If considered, it would lead to an exponential increase in the dimensionality of 720 

the variable. The RDV-Copula method proposed in this study aims to minimize the dimensionality of the 721 
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copula model while extracting the effective information of spatial-temporal relationships. The evaluation 722 

criterion of high-performance stochastic simulation is that the simulated series can preserve the statistical 723 

characteristics of the observed records (Hao and Singh, 2013). As shown in Figure 15 16 - 1819, different 724 

vine copula structures have a large impact on the results of stochastic simulations. The simulation results 725 

of the four-dimensional and five-dimensional vine copula models are relatively closer to the actual 726 

historical values. Although the eight-dimensional vine copula model takes more variables into account, 727 

including both temporal and spatial correlation, the model is too complicated due to many variables, 728 

which makes the simulation less efficient on the contrary. Although the eight-dimensional vine copula 729 

model considers both temporal and spatial correlations, its complexity reduces simulation efficiency due 730 

to the large number of variables. This illustrates that when performing multi-site runoff simulations, it is 731 

not better for the vine copula function to consider as many variables as possible. Compared to the four-732 

dimensional copula structure that only considers spatial relations, the five-dimensional copula structure 733 

can better fit the characteristics of high flows, which is especially evident in the simulation results of QS 734 

and SD points. This is due to the fact that high flows in flood season mostly originate from continuous 735 

heavy rainfall, which implies that the temporal connection is not negligible for capturing the flow 736 

characteristics. 737 

Consequently, the approach introduced in this study effectively integrates all pertinent information 738 

for multi-site runoff simulations while reducing the complexity of the vine copula function. This 739 

methodology strikes a critical balance between detailed representation and practicality in model 740 

complexity, enhancing the applicability of the simulations. 741 

6 Conclusions 742 

This study introduced an innovative approach designed to capture the spatial-temporal relationships 743 

across multiple sites while simplifying the computational complexity inherent in vine copula functions. 744 

By computing Kendall correlation coefficients, we assessed the interconnections among various sites. 745 

Utilizing the approach proposed, we pinpointed the key variables for the construction of the vine copula 746 

model, fitted the marginal distribution functions for multiple variables, and constructed the RDV-Copula 747 

functions considering the spatial-temporal relationships. Subsequent to this, a synchronization frequency 748 

analysis based on the copula model was executed to delve deeper into the characteristics of the watershed. 749 
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To gauge the efficacy of this method, three benchmark vine copula models, each predicated on different 750 

dimensions and variable relationships, were constructed. Stochastic simulations were then employed to 751 

generate arrays of daily inflow sequences over a typical flood month, with both conditional and 752 

unconditional simulation methods being critically compared. Key findings are summarized below. 753 

(1) The results of our study demonstrated that, within the Shifeng Creek watershed, the synchronization 754 

probability among the four sites reaches up to 41.92%, with the average synchronization probability 755 

between any two sites hitting 65.87%. This strong spatial connectivity indicates a potential for heavy 756 

rainfall events to exacerbate flooding risks downstream. 757 

(2) This study revealed that increasing model dimensions does not inherently improve simulation 758 

outcomes. The high-dimensional copula function, while it can capture more information on the 759 

variables, also makes the structure more complicated. The RDV-Copula method not only ensures 760 

comprehensive data integration but also diminishes the complexity and dimensionality of the vine 761 

copula function, showcasing an optimal balance between information accuracy and model simplicity. 762 

(3) The Cconditional simulation is a double-edged sword. In comparison to unconditional simulation, 763 

for temporally correlated runoff sequences, conditional simulation can better follow the properties 764 

of prior conditions. However, with an increase in the copula's dimensionality, relying on previously 765 

simulated runoff as a basis for current day predictions can accumulate errors, reducing the overall 766 

simulation accuracy. 767 

In summary, our proposed approach can effectively consolidate relevant spatial-temporal 768 

information for multisite runoff simulations, striking a critical balance between detailed representation 769 

and practical model complexity. This methodology enhances the applicability of vine copula models for 770 

analyzing and managing flood risks. The results obtained using this method can provide valuable decision 771 

support for flood control and scheduling, effectively mitigating flood risk. 772 

 773 

Appendix A 774 

Table A1 Common hydrological distribution functions 775 

Distribution name Probability distribution function Parameters 
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Gamma distribution 

(gamma) 

𝑓(𝑥) =  
𝑥𝑘−1

𝛼𝑘(𝑘)
𝑒𝑥𝑝 [

−(𝑥)

𝛼
] 

𝑘 - shape parameter (𝑘 > 0) 

𝛼 – scale parameter (𝛼 > 0) 

Exponential 

distribution (exp) 

𝑓(𝑥) = {
𝜆𝑒𝑥𝑝(−𝜆𝑥) , 𝑥 ≥ 0
         0           , 𝑥 < 0

 𝜆 - rate parameter 

Pearson-III 

distribution (p3) 

𝑓(𝑥) =
𝛽𝛼

Γ(𝛼)
(𝑥 − 𝛾)𝛼−1𝑒−𝛽(𝑥−𝛾) 

𝛼 – shape parameter (𝛼 > 0) 

𝛽 – scale parameter (𝛽 > 0) 

𝛾– location parameter 

Generalized 

extreme value 

distribution (gev) 

𝑓(𝑥) = 𝑒𝑥𝑝 {− (1 + 𝜉
𝑥 − 𝜇

𝛼
)

−
1
𝜉

} 

𝛼 – scale parameter (𝛼 > 0) 

𝜇– location parameter 

𝜉 – shape parameter 

Inverse gaussian 

distribution 

(invgauss) 

𝑓(𝑥) = √
𝜆

2𝜋𝑥3
𝑒𝑥𝑝 {

−𝜆(𝑥 − 𝜇)2

2𝜇2𝑥
} 

𝜇– mean (location parameter) 

𝜆 – shape parameter 

Normal distribution 

(norm) 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑥 − 𝜇)2

2𝜎2 ) 

𝜇– location parameter 

𝜎 – scale parameter 

Logistic distribution 

(logis) 

𝑓(𝑥) =  
𝑒−(𝑥−𝜇)/𝛾

𝛾(1 + 𝑒−(𝑥−𝜇)/𝛾)2
 

𝜇– location parameter 

𝛾 – shape parameter (𝛾 > 0) 

Log-normal 

distribution (lnorm) 

𝑓(𝑥) =  {

1

𝑥√2𝜋𝜎
𝑒𝑥𝑝 [−

1

2𝜎2
(𝑙𝑛𝑥 − 𝜇)2] , 𝑥 > 0

                             0                            , 𝑥 ≤ 0

 

𝜇– location parameter 

𝜎 – scale parameter 

Log-logistic 

distribution (llogis) 

𝑓(𝑥) =  
(

𝛽
𝛼

)
𝑥
𝛼

𝛽−1

[1 + (
𝑥
𝛼

)
𝛽

]
2  , 𝑥 > 0 

𝛼 – scale parameter (𝛼 > 0) 

𝛽– shape parameter (𝛽 > 0) 

Generalized pareto 

distribution (gpd) 

𝑓(𝑥) =  
1

𝜎
(1 + 𝑘

(𝑥 − 𝜇)

𝜎
)

−1−1/𝑘

 

𝜇– location parameter 

𝜎 – scale parameter 

𝑘 - shape parameter 

Weibull distribution 

(weibull) 

𝑓(𝑥) =
𝑘

𝛼
(

𝑥 − 𝛾

𝛼
)

𝑘−1

𝑒𝑥𝑝 [− (
𝑥 − 𝛾

𝛼
)

𝑘

] 

𝑘 - shape parameter (𝑘 > 0) 

𝛼 – scale parameter (𝛼 > 0) 

𝛾– location parameter 

Gumbel distribution 

(gumbel) 

𝑓(𝑥) =  
1

𝜎
𝑒𝑥𝑝 (−

𝑥 − 𝜇

𝜎
− exp (−

𝑥 − 𝜇

𝜎
)) 

𝜇 – location parameter 

𝜎 – scale parameter 
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 776 

Appendix B 777 

The probability formulas for the 81 combinations are presented as follows. 778 

(1) The probability of Type [X-H, Y-H, Z-H, W-H] is as follows: 779 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 1 − 𝑢𝑝ℎ − 𝑣𝑝ℎ − 𝑟𝑝ℎ − 𝑠𝑝ℎ

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ) + 𝐶(𝑣𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 780 

(2) The probability of Type [X-M, Y-M, Z-M, W-M] is as follows: 781 

𝑃 = (𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 782 

(3) The probability of Type [X-L, Y-L, Z-L, W-L] is as follows: 783 

         𝑃(𝑋 < 𝑋𝑝𝑙 , 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) 784 

(4) The probability of Type [X-L, Y-H, Z-H, W-H] is as follows: 785 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑢𝑝𝑙 − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 786 

(5) The probability of Type [X-H, Y-L, Z-H, W-H] is as follows: 787 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑣𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 788 

(6) The probability of Type [X-H, Y-H, Z-L, W-H] is as follows: 789 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝑟𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙)

 −𝐶(𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 790 

(7) The probability of Type [X-H, Y-H, Z-H, W-L] is as follows: 791 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝑠𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 792 

(8) The probability of Type [X-M, Y-H, Z-H, W-H] is as follows: 793 
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𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑢𝑝ℎ − 𝑢𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) 

 794 

(9) The probability of Type [X-H, Y-M, Z-H, W-H] is as follows: 795 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑣𝑝ℎ − 𝑣𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ) − 𝐶(𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 796 

(10) The probability of Type [X-H, Y-H, Z-M, W-H] is as follows: 797 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝑟𝑝ℎ − 𝑟𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ) − 𝐶(𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙) + 𝐶(𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 798 

(11) The probability of Type [X-H, Y-H, Z-H, W-M] is as follows: 799 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝑠𝑝ℎ − 𝑠𝑝𝑙 − 𝐶(𝑢𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑟𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 800 

(12) The probability of Type [X-L, Y-L, Z-H, W-H] is as follows: 801 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)
 802 

(13) The probability of Type [X-L, Y-H, Z-L, W-H] is as follows: 803 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 804 

(14) The probability of Type [X-L, Y-H, Z-H, W-L] is as follows: 805 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 806 

(15) The probability of Type [X-H, Y-L, Z-L, W-H] is as follows: 807 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 808 

(16) The probability of Type [X-H, Y-L, Z-H, W-L] is as follows: 809 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 810 

(17) The probability of Type [X-H, Y-H, Z-L, W-L] is as follows: 811 
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𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 812 

(18) The probability of Type [X-M, Y-L, Z-H, W-H] is as follows: 813 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 814 

(19) The probability of Type [X-L, Y-M, Z-H, W-H] is as follows: 815 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 816 

(20) The probability of Type [X-M, Y-H, Z-L, W-H] is as follows: 817 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶 (𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 818 

(21) The probability of Type [X-L, Y-H, Z-M, W-H] is as follows: 819 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 820 

(22) The probability of Type [X-M, Y-H, Z-H, W-L] is as follows: 821 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 822 

(23) The probability of Type [X-L, Y-H, Z-H, W-M] is as follows: 823 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 824 

(24) The probability of Type [X-H, Y-M, Z-L, W-H] is as follows: 825 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 826 

(25) The probability of Type [X-H, Y-L, Z-M, W-H] is as follows: 827 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 828 

(26) The probability of Type [X-H, Y-M, Z-H, W-L] is as follows: 829 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 830 
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(27) The probability of Type [X-H, Y-L, Z-H, W-M] is as follows: 831 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 832 

(28) The probability of Type [X-H, Y-H, Z-M, W-L] is as follows: 833 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 834 

(29) The probability of Type [X-H, Y-H, Z-L, W-M] is as follows: 835 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 836 

(30) The probability of Type [X-M, Y-M, Z-H, W-H] is as follows: 837 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 838 

(31) The probability of Type [X-M, Y-H, Z-M, W-H] is as follows: 839 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 840 

(32) The probability of Type [X-M, Y-H, Z-H, W-M] is as follows: 841 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 842 

(33) The probability of Type [X-H, Y-M, Z-M, W-H] is as follows: 843 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ)

 +𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙)

 +𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 844 

(34) The probability of Type [X-H, Y-M, Z-H, W-M] is as follows: 845 
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𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 846 

(35) The probability of Type [X-H, Y-H, Z-M, W-M] is as follows: 847 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 +𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 848 

(36) The probability of Type [X-M, Y-M, Z-M, W-H] is as follows: 849 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 850 

(37) The probability of Type [X-H, Y-M, Z-M, W-M] is as follows: 851 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) − 𝐶(𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 852 

(38) The probability of Type [X-M, Y-H, Z-M, W-M] is as follows: 853 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 854 

(39) The probability of Type [X-M, Y-M, Z-H, W-M] is as follows: 855 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 856 

(40) The probability of Type [X-M, Y-M, Z-L, W-H] is as follows: 857 



44 

 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 858 

(41) The probability of Type [X-M, Y-M, Z-H, W-L] is as follows: 859 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 860 

(42) The probability of Type [X-M, Y-L, Z-M, W-H] is as follows: 861 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 862 

(43) The probability of Type [X-M, Y-H, Z-M, W-L] is as follows: 863 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 864 

(44) The probability of Type [X-M, Y-H, Z-L, W-M] is as follows: 865 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 866 

(45) The probability of Type [X-M, Y-L, Z-H, W-M] is as follows: 867 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 868 

(46) The probability of Type [X-L, Y-M, Z-M, W-H] is as follows: 869 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 870 

(47) The probability of Type [X-H, Y-M, Z-M, W-L] is as follows: 871 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 872 

(48) The probability of Type [X-H, Y-M, Z-L, W-M]] is as follows: 873 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 874 

(49) The probability of Type [X-L, Y-M, Z-H, W-M]] is as follows: 875 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 876 
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(50) The probability of Type [X-L, Y-H, Z-M, W-M]] is as follows: 877 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 878 

(51) The probability of Type [X-H, Y-L, Z-M, W-M]] is as follows: 879 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ)

 +𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 880 

(52) The probability of Type [X-M, Y-L, Z-L, W-H] is as follows: 881 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 882 

(53) The probability of Type [X-L, Y-M, Z-L, W-H] is as follows: 883 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 884 

(54) The probability of Type [X-L, Y-L, Z-M, W-H] is as follows: 885 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 886 

(55) The probability of Type [X-M, Y-L, Z-H, W-L] is as follows: 887 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 888 

(56) The probability of Type [X-L, Y-M, Z-H, W-L] is as follows: 889 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 890 

(57) The probability of Type [X-L, Y-L, Z-H, W-M] is as follows: 891 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 892 

(58) The probability of Type [X-M, Y-H, Z-L, W-L] is as follows: 893 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 > 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 894 

(59) The probability of Type [X-L, Y-H, Z-M, W-L] is as follows: 895 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙, 𝑟𝑝ℎ , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 896 

(60) The probability of Type [X-L, Y-H, Z-L, W-M] is as follows: 897 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙, 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠 𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 898 

(61) The probability of Type [X-H, Y-M, Z-L, W-L] is as follows: 899 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 900 
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(62) The probability of Type [X-H, Y-L, Z-M, W-L] is as follows: 901 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 902 

(63) The probability of Type [X-H, Y-L, Z-L, W-M] is as follows: 903 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

 −𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 904 

(64) The probability of Type [X-L, Y-L, Z-L, W-H] is as follows: 905 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙, 𝑊 > 𝑊𝑝ℎ) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)
 906 

(65) The probability of Type [X-L, Y-L, Z-H, W-L] is as follows: 907 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 > 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)
 908 

(66) The probability of Type [X-L, Y-H, Z-L, W-L] is as follows: 909 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 > 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑢𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 910 

(67) The probability of Type [X-H, Y-L, Z-L, W-L] is as follows: 911 

𝑃(𝑋 > 𝑋𝑝ℎ, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙) = 𝐶(𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 −𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 912 

(68) The probability of Type [X-M, Y-M, Z-M, W-L] is as follows: 913 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝ℎ, 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

−𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

  +𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 914 

(69) The probability of Type [X-M, Y-M, Z-L, W-M] is as follows: 915 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

−𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

  +𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 916 

(70) The probability of Type [X-M, Y-L, Z-M, W-M] is as follows: 917 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

−𝐶 (𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

  +𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 918 

(71) The probability of Type [X-L, Y-M, Z-M, W-M] is as follows: 919 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

−𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ, 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) + 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝ℎ, 𝑠𝑝𝑙)

  +𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 920 
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(72) The probability of Type [X-M, Y-M, Z-L, W-L] is as follows: 921 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ, 𝑍 < 𝑍𝑝𝑙, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝ℎ , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 922 

(73) The probability of Type [X-M, Y-L, Z-M, W-L] is as follows: 923 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 924 

(74) The probability of Type [X-M, Y-L, Z-L, W-M] is as follows: 925 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 926 

(75) The probability of Type [X-L, Y-M, Z-M, W-L] is as follows: 927 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 928 

(76) The probability of Type [X-L, Y-M, Z-L, W-M] is as follows: 929 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 930 

(77) The probability of Type [X-L, Y-L, Z-M, W-M] is as follows: 931 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙)

+𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)

 932 

(78) The probability of Type [X-M, Y-L, Z-L, W-L] is as follows: 933 

𝑃(𝑋𝑝𝑙 < 𝑋 < 𝑋𝑝ℎ , 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙 , 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝ℎ, 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 934 

(79) The probability of Type [X-L, Y-M, Z-L, W-L] is as follows: 935 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌𝑝𝑙 < 𝑌 < 𝑌𝑝ℎ , 𝑍 < 𝑍𝑝𝑙, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝ℎ, 𝑟𝑝𝑙 , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 936 

(80) The probability of Type [X-L, Y-L, Z-M, W-L] is as follows: 937 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍𝑝𝑙 < 𝑍 < 𝑍𝑝ℎ, 𝑊 < 𝑊𝑝𝑙)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝ℎ , 𝑠𝑝𝑙) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 938 

(81) The probability of Type [X-L, Y-L, Z-L, W-M] is as follows: 939 

𝑃(𝑋 < 𝑋𝑝𝑙, 𝑌 < 𝑌𝑝𝑙 , 𝑍 < 𝑍𝑝𝑙, 𝑊𝑝𝑙 < 𝑊 < 𝑊𝑝ℎ)

 = 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝ℎ) − 𝐶(𝑢𝑝𝑙 , 𝑣𝑝𝑙 , 𝑟𝑝𝑙 , 𝑠𝑝𝑙)
 940 
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Appendix C 942 
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Figure C1.  Results of correlation analysis for daily runoff at multiple sites 943 

 944 
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Appendix D 945 

A total of twelve different distribution functions were employed to fit the daily runoff flows at the four 946 

points for each day in August. For each of the 31 days in August, the preferred marginal distribution 947 

functions and their corresponding parameters for each variable can be seen in Table D1. Figure D1 shows 948 

the preferred marginal distribution functions for each variable over month of August.  949 

Table D1 Marginal distributions and parameters preferred for each variable on August 1st-31st  950 

Date variable distribution shape loc scale mean rate meanlog sdlog alpha 

1 

LSM gamma 0.379        0.106        

LX gev 0.583  0.246  0.274            

QS gev 0.578  1.890  2.056            

SD gev 0.643  3.716  3.670            

2 

LSM gev 0.539  0.854  1.434            

LX invgauss 0.260      0.715          

QS gev 0.539  1.964  1.986            

SD llogis 1.527    5.206            

3 

LSM lnorm           -0.437  2.817    

LX invgauss 0.182      1.835          

QS lnorm           1.166  1.425    

SD invgauss 3.541      15.295          

4 

LSM gev 0.646  1.265  2.495            

LX lnorm           -0.664  1.445    

QS gpd -0.202  -0.715  9.321            

SD gpd 0.000  -0.350  15.000            

5 

LSM weibull 0.433    3.195            

LX gev 0.888  0.250  0.385            

QS invgauss 2.133      8.328          

SD gev 0.626  4.946  5.406            

6 LSM gamma 0.402        0.090        
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LX llogis 1.277    0.324            

QS gev 0.688  1.545  1.486            

SD llogis 1.495    5.761            

7 

LSM gev 0.365  1.537  2.783            

LX llogis 1.073    0.459            

QS lnorm           1.072  1.567    

SD gev 0.836  4.670  5.745            

8 

LSM weibull 0.456    4.064            

LX invgauss 0.214      1.749          

QS llogis 0.977    3.253            

SD gpd 0.846  -0.712  10.057            

9 

LSM weibull 0.438    5.072            

LX invgauss 0.211      3.978          

QS lnorm           1.368  1.887    

SD lnorm           2.433  1.905    

10 

LSM weibull 0.358    6.476            

LX lnorm           -0.005  2.051    

QS lnorm           1.678  2.274    

SD lnorm           2.720  2.410    

11 

LSM weibull 0.474    6.926            

LX lnorm           0.127  1.718    

QS lnorm           1.899  1.923    

SD llogis 0.929    16.980            

12 

LSM llogis 0.885    1.786            

LX invgauss 0.542      1.797          

QS invgauss 2.772      14.129          

SD invgauss 7.912      37.729          

13 

LSM gpd 0.216  -0.976  7.565            

LX weibull 0.796    1.774            
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QS gpd 0.299  -0.095  10.472            

SD invgauss 10.011      33.990          

14 

LSM gev 0.608  1.580  2.722            

LX invgauss 0.432      1.527          

QS invgauss 3.695      14.640          

SD invgauss 8.444      31.374          

15 

LSM gev 0.436  1.242  2.118            

LX gumbel     0.655          0.515  

QS invgauss 3.225      7.595          

SD invgauss 7.520      18.606          

16 

LSM weibull 0.506    2.783            

LX invgauss 0.360      1.148          

QS invgauss 2.943      9.336          

SD gpd 0.359  0.529  13.680            

17 

LSM weibull 0.479    2.907            

LX weibull 0.897    0.952            

QS gpd 0.385  -0.580  6.729            

SD invgauss 6.433      19.990          

18 

LSM gev 0.552  1.252  2.482            

LX gev 0.492  0.411  0.493            

QS gpd 0.300  -0.632  7.393            

SD lnorm           2.290  1.315    

19 

LSM weibull 0.452    3.243            

LX invgauss 0.301      1.595          

QS invgauss 2.268      14.869          

SD gpd 0.618  -0.297  11.762            

20 

LSM lnorm           -0.048  2.580    

LX llogis 1.246    0.593            

QS invgauss 1.989      25.636          
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SD gev 0.818  6.508  9.642            

21 

LSM gev 0.779  0.859  1.315            

LX llogis 1.522    0.528            

QS gev 0.738  2.163  2.485            

SD invgauss 7.401      27.102          

22 

LSM weibull 0.521    2.298            

LX llogis 1.595    0.402            

QS invgauss 2.757      7.322          

SD invgauss 7.626      19.094          

23 

LSM weibull 0.460    3.114            

LX gev 0.764  0.294  0.402            

QS invgauss 3.491      9.169          

SD gpd 0.345  0.923  13.719            

24 

LSM gev 0.619  1.204  2.195            

LX invgauss 0.293      1.625          

QS invgauss 2.790      10.814          

SD invgauss 7.810      23.039          

25 

LSM gamma 0.438        0.073        

LX gev 0.238  0.632  0.797            

QS gev 0.403  3.483  4.696            

SD gpd 0.387  0.057  14.586            

26 

LSM gev 0.348  2.009  3.077            

LX weibull 0.789    1.674            

QS weibull 0.759    11.716            

SD gev 0.439  12.256  17.061            

27 

LSM gamma 0.533        0.127        

LX lnorm           -0.472  1.424    

QS lnorm           1.549  1.321    

SD gev 0.555  7.945  9.853            
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28 

LSM gev 0.604  1.375  2.510            

LX gev 0.318  0.640  0.823            

QS gev 0.605  3.316  4.562            

SD gpd 0.328  -0.247  14.191            

29 

LSM weibull 0.661    4.721            

LX gev -0.186  0.938  0.851            

QS gpd 0.316  -0.775  8.682            

SD gpd 0.107  -0.389  17.428            

30 

LSM gev 0.699  1.338  1.895            

LX gev 0.547  0.500  0.639            

QS invgauss 3.152      15.179          

SD gpd 0.651  -0.480  10.676            

31 

LSM llogis 0.868    1.232            

LX gev 0.792  0.313  0.325            

QS gev 0.858  1.962  2.066            

SD gev 0.814  4.883  6.333            
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Figure D1.  Cumulative probability distribution of the preferred marginal distribution function for runoff 953 

on each day throughout August  954 
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