Supplementary material for

What can we learn about tropospheric OH from satellite observations of methane?

⁵ Elise Penn¹, Daniel J. Jacob², Zichong Chen², James D. East², Melissa P. Sulprizio², Lori Bruhwiler³, Joannes D. Maasakkers⁴, Hannah Nesser⁵, Zhen Qu⁶, Yuzhong Zhang⁷, and John Worden⁵

¹Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA, ²Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, ³NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, USA,

- ⁴SRON Netherlands Institute for Space Research, Leiden, the Netherlands
 ⁵Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA,
 ⁶Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
 ⁷Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- 15 Correspondence to: Elise Penn (epenn@g.harvard.edu)

Figure S1: Ability of inversions using GOSAT and GOSAT+AIRS methane column retrievals to quantify seasonal and latitudinal variabilities of both methane emissions and [OH]. All plots show rows of the reduced averaging kernel matrix, which describe the ability of the observing system to separately quantify [OH] in different latitudinal bands. A perfect observing system would have an averaging kernel sensitivity of 1 for the reduced state vector element of interest (perfect characterization) and 0 for other elements (no error correlation). Because we find posterior emissions and [OH] in terms of relative correction to the prior, all averaging kernel elements are unitless, including off-diagonals.