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Abstract. The hydroxyl radical (OH) is the main oxidant in the troposphere and controls the lifetime of 

many atmospheric pollutants including methane. Global annual mean tropospheric OH concentrations ([OH$$$$]) have been 15 

inferred since the late 1970s using the methyl chloroform (MCF) proxy. However, concentrations of MCF are now approaching 

the detection limit, and a replacement proxy is urgently needed. Previous inversions of GOSAT satellite measurements of 

methane in the shortwave infrared (SWIR) have shown success in quantifying [OH$$$$] independently of methane emissions, and 

observing system simulations have suggested that satellite measurements in the thermal infrared (TIR) may provide additional 

constraints on OH. Here we combine SWIR and TIR satellite observations from the GOSAT and AIRS instruments, 20 

respectively, in a three-year (2013-2015) analytical Bayesian inversion optimizing both methane emissions and OH 

concentrations. We examine how much information can be achieved on the interannual, seasonal, and latitudinal features of 

the OH distribution. We use information from MCF data as well as the ACCMIP ensemble of global atmospheric chemistry 

models to construct a full prior error covariance matrix for OH concentrations for use in the inversion. This is essential to 

avoid overfit to observations. Our results show that GOSAT alone is sufficient to quantify [OH$$$$] and its interannual variability 25 

independently of methane emissions, and that AIRS adds little information. The ability to constrain the latitudinal variability 

of OH is limited by strong error correlations. There is no information on OH at mid-latitudes, but there is some information 

on the NH/SH interhemispheric ratio, showing this ratio to be lower than currently simulated in models. There is also some 

information on the seasonal variation of OH concentrations, though it mainly confirms that simulated by models.  

  30 
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1 Introduction 

The hydroxyl radical (OH) is the main oxidant in the troposphere. It determines the lifetimes of most atmospheric species 

removed by oxidation such as methane (a major greenhouse gas), non-methane volatile organic compounds (NMVOCs, 40 

important for air quality), and hydrogenated halocarbons (contributing to stratospheric ozone loss). The global OH 

concentration and its trend have been monitored indirectly since the 1980s by measuring the concentration of 

methylchloroform (MCF), an industrial solvent removed from the atmosphere by reaction with OH (Lovelock, 1977; Prinn et 

al., 1987; Krol et al., 1998; Bousquet et al., 2005; Patra et al., 2020). MCF was banned in the 1990s because of its contribution 

to stratospheric ozone depletion, and its concentration is now approaching the detection limit where it loses its value as a proxy 45 

for OH (Liang et al., 2017). An observation system simulation experiment (OSSE) previously suggested that a combination of 

thermal infrared (TIR) and shortwave infrared (SWIR) satellite observations of atmospheric methane could provide a continued 

proxy for global OH going forward (Zhang et al., 2018). Here we evaluate this idea with a joint inversion of AIRS and GOSAT 

satellite measurements for 2013-2015, examining the capability of the observations to quantify global OH concentrations as 

well as interannual, seasonal, and latitudinal variations.  50 

 

The OH concentration is controlled by complex photochemistry (Levy, 1971; Logan et al., 1981; Lelieveld et al., 2016). The 

primary source is UV-B photolysis of ozone in the presence of water vapor. The main sinks are reactions with carbon monoxide 

(CO), methane, and NMVOCs, resulting in a lifetime of ~1 second, and producing peroxy radicals that can be recycled to OH 

by reaction with nitric oxide (NO). The global mean tropospheric OH concentration is commonly expressed as the lifetime of 55 

methane against oxidation by tropospheric OH, 𝜏!"#$" . From the methylchloroform proxy one infers a tropospheric lifetime of 

methane 𝜏!"#$" = 11.2 ± 1.3 years for 2000 (Prather et al., 2012). Atmospheric chemistry models find a methane lifetime  

𝜏!"#$" =	9.7 ± 1.5 years, implying that OH in the models is too high (Naik et al., 2013).  

 

Although models are generally consistent in their simulations of global mean OH concentrations, there are large disagreements 60 

in the regional distributions of OH concentrations driven by NOx and NMVOC distributions (Naik et al., 2013; Zhao et al., 

2020), chemical mechanisms (Murray et al., 2021), clouds (Liu et al., 2006; Voulgarakis et al., 2009), UV radiation flux 

(Nicely et al., 2020), and other meteorological variables (He et al., 2021). Models consistently simulate higher OH in the 

Northern Hemisphere (NH) than the Southern Hemisphere (SH) (Naik et al., 2013; Stevenson et al., 2020). MCF observations, 

by contrast, suggest no interhemispheric gradient (Patra et al., 2014), or slightly higher OH in the SH (Montzka et al., 2000). 65 

Models may have excessive OH in the northern hemisphere because of underestimated CO (Naik et al., 2013).  

 

Understanding year-to-year variability and decadal-scale trends in OH concentrations is important for attributing the cause of 

methane fluctuations (Turner et al., 2017), including the recent acceleration of the methane trend (Laughner et al., 2021; Qu 

et al., 2022; Stevenson et al., 2022). Methane is emitted from a range of poorly quantified sources including wetlands, livestock, 70 
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waste, fuel exploitation, rice paddies, and open fires (Saunois et al., 2020). These sources could be responsible for methane 

interannual variability and trends but so could OH concentrations (Turner et al., 2017). The El Nino Southern Oscillation 

(ENSO) drives interannual variability in model OH due to its influence on lightning (Murray et al., 2013; Turner et al., 2018; 

Anderson et al., 2021), water vapor (Turner et al., 2018; Anderson et al., 2021), and CO emitted from biomass burning (Zhao 

et al., 2020). Models and measurements show a 5% range of interannual variability of OH over the last 30 years though with 80 

no temporal correlation between the two (Szopa et al., 2021). Models find increasing OH from 1980 to present driven by 

increases in anthropogenic NOx emissions (Naik et al., 2013; Gaubert et al., 2017; Zhao et al., 2019; Stevenson et al., 2020). 

By contrast, MCF observations indicate OH increasing from 1980 to 2005 but then flat or decreasing after 2005 (Rigby et al., 

2017; Turner et al., 2017; Nicely et al., 2018; Stevenson et al., 2020).  

 85 

Many studies have used satellite observations of methane to infer methane emissions using specified OH concentrations to 

optimize methane sources (Turner et al., 2015), while others have attempted to optimize both methane sources and OH 

concentrations by exploiting differences in spatial/seasonal impacts on methane concentrations (Maasakkers et al., 2019; 

Zhang et al., 2021) (Maasakkers et al., 2016; Zhang et al., 2021) or by including in the inversion complementary information 

from observations of MCF (Cressot et al., 2014; Cressot et al., 2016) or formaldehyde and CO (Yin et al., 2021). Inversions 90 

of GOSAT (SWIR) satellite observations of methane alone can constrain global mean OH about as well as MCF and infer a 

flat interhemispheric gradient, although posterior errors may be too optimistic (Maasakkers et al., 2019; Lu et al., 2021; Zhang 

et al., 2021). Zhang et al., (2018) proposed that TIR satellite observations of methane, which have sensitivity to the free 

troposphere and broader coverage over oceans and at night, may reduce error correlation between OH and methane emissions.   

 95 

Satellite-based observations of methane in the TIR have been made continuously since 2002 by several instruments: AIRS 

(2002-present), TES (2004-2011), IASI (2007-present), CrIS (2011-present), and GOSAT-2 (2018-present) (Jacob et al., 

2016). TIR observations have received little attention in inverse studies because they are not sensitive to methane near the 

surface (Wecht et al., 2012). Direct applications of TIR satellite observations have mostly focused on processes affecting the 

free troposphere, such as detecting stratospheric intrusions (Xiong et al., 2013), methane emissions from large wildfires (Xiong 100 

et al., 2010; Ribeiro et al., 2018), interannual variations in mid-troposphere methane in response to ENSO (Corbett et al., 

2017), seasonal fluctuations of methane in response to fossil fuel and rice paddy emissions in China (X. Zhang et al., 2011), 

and differences of seasonality compared to surface observations (Zhou et al., 2023). The combination of SWIR and TIR 

observations has been used to develop lower troposphere methane products including with  GOSAT+AIRS (Worden et al., 

2015), GOSAT+IASI (Schneider et al., 2022), and GOSAT-2 (Kuze et al., 2022; Suto, 2022).  105 

 

Here we combine TIR observations from AIRS with SWIR observations from GOSAT in a three-year 2013-2015 inversion 

optimizing both methane emissions and OH concentrations. We use an analytical solution that provides formal characterization 

of posterior error statistics (including error correlations) and information content as part of the inversion. We place particular 
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focus on the ability of the inversion to quantify global mean OH concentrations, interannual variability, and latitudinal and 110 

seasonal variations. This involves careful characterization of prior error covariances using OH concentrations from the 

ACCMIP model ensemble (Naik et al., 2013).   

2 Data and Methods 

We use 3 years (2013-2015) of satellite observations from GOSAT and AIRS (Sect. 2.1), to optimize a state vector of OH 

distributions and annual methane emissions. The observations are assembled in an observation vector y with total dimension 115 

𝑚 . The state vector x comprises 𝑛  elements describing annual gridded non-wetland methane emissions, monthly 

subcontinental wetland methane emissions, and mean OH concentrations for individual years in different latitudinal bands and 

seasons (Sect. 2.2). Optimization is done by Bayesian inference using a prior estimate xA for the state vector and error 

covariances for that prior estimate (SA) and for the observations (SO) (Sect. 2.3), together with the GEOS-Chem chemical 

transport model y = F(x) expressing the sensitivity of the observations to the state vector (Sect. 2.4). We use an analytical 120 

solution for minimization of the Bayesian cost function J(x) to yield the optimal value (posterior estimate) 𝒙, of the state vector, 

the posterior error covariance matrix 𝑺., and metrics of information content (Sect. 2.5). The subsections below describe these 

different elements of the inversion except for the prior error covariance matrix of OH concentrations, which will be presented 

in a dedicated Sect. 3. Throughout this paper, we refer to “OH concentrations” ([OH]) for a given domain as the mass-weighted 

average tropospheric OH number density for that domain, and the global annual mean tropospheric OH concentrations as 125 

[OH$$$$]. 

2.1 Satellite data 

GOSAT (Greenhouse gases Observing SATellite), launched in 2009, detects methane by solar backscatter in the SWIR using 

the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation ‐ Fourier Transform Spectrometer) instrument. 

In its default operating mode, GOSAT provides 10.5 km-diameter nadir observations of radiance separated by about 250 km 130 

along-track and cross-track on a sun-synchronous orbit with an equatorial overpass at about 1300 local solar time (LST). We 

use the University of Leicester CO2-proxy methane retrieval v9.0 (Parker and Boesch, 2020), which uses the GOSAT 

observations in the 1.65 μm band to retrieve methane as a column-averaged dry air mixing ratio XCH4 with a vertical sensitivity 

profile (column averaging kernel) of near-unity in the troposphere.  

 135 

AIRS (Atmospheric Infrared Sounder), launched in 2002, detects methane by observing TIR radiation emitted by the Earth. 

AIRS provides 15 km-diameter nadir observations across a 1250 km swath with equatorial overpasses at about 0130 and 1330 

LST, resulting in global coverage twice per day. We use the optimal estimation MUSES-AIRS retrieval of methane in the 8 

and 12 μm bands, which provides 26-level profiles of dry-air methane mixing ratio (Kulawik et al., 2021). The AIRS instrument 

has less than two degrees of freedom for signal per measurement and little sensitivity to the lower troposphere. We therefore 140 
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convert the vertical profiles to a column-averaged dry air mixing ratio XCH4 above 600 hPa, with column averaging kernels 

featuring maximum sensitivity to the upper troposphere. See Worden et al., (2015) for typical GOSAT and AIRS column 

averaging kernels.   145 

 

For both AIRS and GOSAT, we remove measurements flagged for low quality, negative values, and surface pressures differing 

by more than 50 hPa from the local GEOS-Chem surface pressure which would indicate unresolved topography. We do not 

use GOSAT sunglint measurements because of their sparsity and seasonal sampling bias (Maasakkers et al., 2019). We also 

exclude measurements poleward of 60° due to model stratospheric bias in interpreting methane column observations in the 150 

polar vortex (Turner et al., 2015; Stanevich et al., 2020; Zhang et al., 2021). We include both daytime and nighttime 

measurements for AIRS, as we find no significant biases between them. This results in 600,000 successful retrievals for 

GOSAT and 2.5 million for AIRS.  

 

In order to compare satellite retrievals to the GEOS-Chem simulations, we produce a model column sampled in the same 155 

manner as the satellite data. For each AIRS and GOSAT observation, we select the coincident GEOS-Chem grid cell and 

interpolate the GEOS-Chem methane mixing ratio profile, which is on 47 vertical levels, to the AIRS profile (26 vertical levels) 

and the GOSAT profile (20 vertical levels) using a mass-conserving interpolation algorithm described in Keppens et al. (2019) 

with Python code available on GitHub at https://github.com/pennelise/GOOPy (Penn and Nesser, 2024). We call these 

interpolated profiles 𝒄%. We then translate these profiles to column-averaged dry air mixing ratios using the column averaging 160 

kernel 𝒂. The column averaging kernel is based on mixing ratio and does not include different pressure weights for each level 

(Boesch et al., 2011), so we apply the pressure weighting function (𝒉) provided in the GOSAT and AIRS data products. For 

an individual satellite XCH4 observation y, we derive the corresponding model value ym using:  

 

𝑦% = 𝒉&((𝑰 − 𝑰𝒂)&𝒄' + (𝑰𝒂)&𝒄%)	 (1) 

 165 

where I is the identity matrix and 𝒄' is the prior profile provided by the GOSAT and AIRS products, which come from the 

MACC-II methane inversion and TOMCAT stratospheric chemistry model for GOSAT and from the MOZART atmospheric 

chemistry model for AIRS. 

 

Figure 1 shows satellite observations from 2013 for GOSAT and AIRS compared to a 2013 GEOS-Chem simulation driven 170 

by GOSAT-optimized emissions from Lu et al. (2021). As expected, GOSAT is globally unbiased relative to this GEOS-Chem 

simulation (-2 ± 12 ppb), but AIRS is biased low (-19 ppb ± 24 ppb), and so we apply a correction of +19 ppb to the AIRS 

data to ensure consistency with GOSAT  Although errors in the GEOS-Chem vertical profiles of methane mixing ratios would 

affect this intercomparison platform, we see in Figure 1 that the AIRS bias extends over background regions where the vertical 
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profile would be uniform.  Figure 1 shows additional latitudinal differences between AIRS and GOSAT but these may provide 

information for the inversion and we have no rationale to remove them. 

 
Figure 1: GOSAT and AIRS observations of annual mean methane dry column mixing ratio (XCH4) in 2013, binned by 4°x5° grid 180 
cells. GOSAT sunglint and observations poleward of 60° are not included. The bottom panels compare these observations with a 
GEOS-Chem simulation driven by 2013 posterior emissions from an inversion of GOSAT observations (Lu et al., 2021). A +19 ppb 
global bias correction is applied to AIRS on the basis of this comparison. Means and standard deviations of the differences between 
the satellite observations and GEOS-Chem are given inset. 

 185 

2.2 State vector and prior estimates 

We optimize a state vector including annual gridded non-wetland emissions, monthly subcontinental wetland emissions, and 

OH distributions. Separate characterization of wetland and non-wetland emissions is done on the basis of assumed 

subcontinental spatial coherence and seasonality of the prior wetland emission estimates (Maasakkers et al., 2019; Zhang et 

al., 2021). Non-wetland emissions consist of 1009 4°x5° grid cells over land for each year (1009x3 = 3027 elements). Wetland 190 

emissions are optimized for each month and in 14 subcontinental regions following Bloom et al. (2017) (12x14x3 = 504 

elements). OH concentrations are optimized for each season and year in four latitude bands of 30° each from 60°S to 60°N 

(4x4x3 = 48 elements). This results in n = 3579 total state vector elements.  
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We define 𝑲 = 𝜕𝒚/𝜕𝒙 as the 𝑚× 𝑛 Jacobian matrix describing the dependence of satellite observations on the state vector as 195 

simulated by GEOS-Chem. We calculate the Jacobian by perturbing each element of the state vector by 50% (for emissions) 

and 20% (for [OH]), resulting in 𝑛 + 1 = 3580 forward model runs. This calculation is insensitive to the magnitudes of the 

perturbations because the forward model is strictly linear in the relationship of concentrations to emissions, and the assumption 

of linearity is also acceptable for the relationship to OH concentrations in a 3-year simulation. Thus K fully defines GEOS-

Chem for the purpose of the inversion.  200 

 

The state vector elements are optimized in the inversion as scaling factors relative to prior estimates. We use the same prior 

estimates as Lu et al. (2021). Default prior anthropogenic emissions are from the EDGAR inventory v4.3.2 (Crippa et al., 

2018) and are superseded for the US by the gridded EPA inventory of Maasakkers et al. (2016) and globally for oil, gas, and 

coal by the GFEI inventory of Scarpelli et al. (2020). Prior anthropogenic emissions are assumed constant except for manure 205 

and rice for which we apply seasonal scaling factors (Maasakkers et al., 2016; Zhang et al., 2016). Prior wetland emissions are 

from WetCHARTS v1.0 with 0.5ox0.5o spatial resolution and monthly temporal resolution, spatially aggregated into 14 

subcontinental regions for use in inversions (Bloom et al., 2017). Additional prior emissions include the GFED inventory for 

fires at daily resolution (Randerson et al., 2017), and geologic sources from Etiope et al. (2019) scaled to the global total from 

Hmiel et al. (2020). Prior tropospheric OH concentrations (Figure 2) are archived monthly mean values from an older (version 210 

5) GEOS-Chem simulation on the 4ox5o grid (Wecht et al., 2014). The mass-weighted annual mean tropospheric OH 

concentration is 	[OH$$$$]  = 11.2	 ×	10(  molec. cm-3 consistent with the MCF-derived estimate from 2000 of [OH$$$$]  = 

10.8)*.,(-*... × 10( molec. cm-3 (Prinn et al., 2005). More recent versions of GEOS-Chem overestimate [OH$$$$] (Shah et al., 2023), 

as also seen in other current models (Stevenson et al., 2020).  

 215 

 
Figure 2. Mass-weighted tropospheric OH concentrations in GEOS-Chem (tropospheric columns) used as prior estimates for the 
inversions. Monthly mean values for January and July are shown.  

 

Deleted: and including the partitioning220 

Deleted: consistent with the

Deleted:  generation of



8 
 

2.3 Error estimates 

 The inversion requires specification of both observing system and prior error covariance matrices. The observing 

system error includes contributions from the measurement and from the forward model. We use the residual error method 225 

described in Heald et al. (2004) to derive it. We first split the observations into monthly 4°x5° grid cell subsets and compare 

observations within each subset to the GEOS-Chem simulation F(x) using prior values. We then assume that the model bias 

(𝑏 = 𝑭(𝒙𝑨) − 𝒚$$$$$$$$$$$$$) within each subset is due to error on the prior estimates, and that the residual represents the observing system 

error. We find in this manner mean observing system error standard deviations of 12 ppb for GOSAT and 22 ppb for AIRS, 

mostly contributed by the retrieval error with reported error standard deviations averaging 10 ppb for GOSAT and 16 ppb for 230 

AIRS. Our observing system error standard deviation for GOSAT is consistent with previous estimates (e.g. Lu et al., 2021; 

Qu et al., 2021; Zhang et al., 2021). We construct the observing system error covariance matrix assuming no error correlation 

between individual observations (diagonal matrix). 

 

Prior error standard deviations for non-wetland emissions are assumed to be 50% of emissions for each 4ox5o grid cell with no 235 

error covariance between grid cells, as in previous studies (Maasakkers et al., 2019; Zhang et al., 2021). The effect of this prior 

error is reflected in the averaging kernel sensitivities. For wetland emissions, we calculate the full prior error covariance matrix 

between all 14 regions and 36 months from the WetCHARTs model ensemble following Bloom et al. (2017), and then shrink 

the off-diagonal terms following Schäfer and Strimmer (2005) to ensure that the matrix is positive definite. Prior error estimates 

for the OH elements of the state vector are derived in Section 3.  240 

2.4 Forward Model 

We use the GEOS-Chem version 12.7.1 CH4 simulation (DOI: 10.5281/zenodo.3676008) on a 4°x5° grid with 47 vertical 

layers as forward model for the inversion. Atmospheric transport is driven by the Modern-Era Retrospective Analysis, version 

2 (MERRA-2) assimilated meteorological fields for 2013-2015 from the NASA Global Modeling and Assimilation Office. In 

addition to the tropospheric OH fields optimized in the inversion (Section 2.2), minor methane sinks in GEOS-Chem include 245 

stratospheric loss prescribed with 2-D oxidant fields (Murray et al., 2013), oxidation by tropospheric Cl following Wang et al. 

(2019), and soil uptake from the MeMo inventory (Murguia-Flores et al., 2018). Initial conditions for January 1, 2013 come 

from the GOSAT-optimized posterior simulation of Lu et al. (2021) and are globally unbiased with respect to GOSAT and 

adjusted AIRS observations as described in Section 2.1.  

2.5 Inversion 250 

We perform three inversions: “GOSAT-only” optimized with GOSAT observations, “AIRS-only” optimized with AIRS 

observations, and “GOSAT+AIRS” optimized with both. The equations below are for the inversion using both GOSAT and 
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AIRS observations. Because we assume no error correlations between the instruments, an inversion with only one instrument 

can be derived by removing all terms pertaining to the other instrument.  255 

 

We minimize a Bayesian cost function that accounts for the distance from the prior estimate (𝒙0) and the satellite observations 

(𝒚), weighted by the inverse of the prior (𝑺0) and observing system (𝑺$) error covariance matrices, and including an additional 

regularization factor (γ). Observing system components from GOSAT and AIRS are denoted by subscripts. Assuming normal 

errors, and further assuming no correlation between GOSAT and AIRS errors, the cost function is given by:  260 

 

𝑱(𝒙) = (𝒙 − 𝒙0)&𝑺0)1(𝒙 − 𝒙0) 

+γ23456(𝒚7$80& −𝑲7$80&𝒙)&	𝑺$,7$80&)1 (𝒚7$80& −𝑲7$80&𝒙) 

+γ5:;4(𝒚0<=8 −𝑲0<=8𝒙)&	𝑺$,0<=8)1 (𝒚0<=8 −𝑲0<=8𝒙) 

 

 

(2) 

  

We can then solve min(J(x)) analytically by setting 𝜕𝐽 𝜕𝑥	 = 0⁄  and obtain the posterior solution 𝒙, (Rodgers, 2000):  

 

𝒙, = 𝒙0 + 𝑮7$80&(𝒚7$80& −𝑲7$80&𝒙0) + 𝑮0<=8(𝒚0<=8 −𝑲0<=8𝒙0) 

 

(3) 

where 𝒙, is the posterior estimate for the state vector and 𝑮0<=8 and 𝑮7$80& are the gain matrices:  

  265 

𝑮0<=8 = 𝑺0𝑲0<=8&
L𝑲0<=8𝑺0𝑲0<=8

& +
1

γ5:;4
𝑺$,0<=8M

)1

 

𝑮7$80& = 𝑺0𝑲7$80&
&

L𝑲7$80&𝑺0𝑲7$80&
& +

1
γ23456

𝑺$,7$80&M

)1

 

 

(4) 

 

The analytical solution also yields a closed-form expression for the posterior error covariance matrix 𝑺. characterizing the 

normal error on 𝒙, : 

 

𝑺. = Nγ23456𝑲7$80&
& 𝑺$,7$80&)1 𝑲7$80& + γ5:;4𝑲0<=8

& 𝑺$,0<=8)1 𝑲0<=8 + 𝑺0)1O
)1

 (5) 

 270 

We can also derive the averaging kernel matrix 𝜕𝒙,/𝜕𝒙 that describes the sensitivity of the posterior estimate to the true state:  
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𝑨 = 𝑰𝒏 − 𝑺.𝑺0)1  (6) 

 

The trace of the averaging kernel gives us the Degrees of Freedom for Signal (DOFS), which describes the number of pieces 

of independent information derived from the inversion.  275 

 

For some of our applications we will aggregate state vector elements into a reduced state vector xred using a summation matrix 

W: 

 

𝒙,𝒓𝒆𝒅 = 𝑾𝒙, (7) 

 280 

and derive the corresponding averaging kernel (𝑨𝒓𝒆𝒅) and posterior error covariance (𝑺.𝒓𝒆𝒅) for the aggregated solution:  

 

𝑨𝒓𝒆𝒅 = 𝑾𝑨𝑾∗ (8) 

 

𝑺.𝒓𝒆𝒅 = 𝑾𝑺.𝑾𝑻 (9) 

 

where 𝑾∗ is the Moore-Penrose pseudoinverse of 𝑾. 285 

 

The regularization factor γ is intended to avoid overfitting to observations caused by not accounting for error covariance in the 

observing system (matrix SO). We determine the appropriate value for γ using the technique described in Lu et al. (2021). The 

sum of prior terms in  the posterior value of the cost function, 𝑱𝑨(𝒙,) = (𝒙, − 𝒙0)&𝑺0
)1(𝒙, − 𝒙0), should follow a chi-square 

distribution with expected value 𝑱𝑨(𝒙,) = 𝑛, and we adjust γ to achieve this. We determine γ23456 and γ5:;4 separately using 290 

GOSAT-only and AIRS-only inversions. We find in this manner γ23456 = 0.2 and γ5:;4 = 0.1. To provide equal weight to 

[OH] and methane emissions in the cost function, we follow Maasakkers et al. (2019) and scale the OH prior error covariance 

matrix 𝑺𝑨,𝑶𝑯 by the ratio of the number of emission state vector elements to OH state vector elements, or 3531/48, before 

inserting them into the full prior error matrix 𝑺𝑨.   
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3 Construction of prior error covariance matrix for OH concentrations 

GOSAT observations of methane have been used in inversions to infer the global mean tropospheric OH concentration, its 

interannual variability, and its interhemispheric difference (Maasakkers et al., 2019; Qu et al., 2021, 2024; Zhang et al., 2021). 

Here we explore how much information satellite observations can actually provide on OH concentrations by including in the 

state vector the OH concentrations in individual years (2013-2015), four latitudinal bands, and four seasons, for a total of 48 300 

state vector elements (Section 2.2) for which we can diagnose posterior error correlations and information content. This 

requires accounting for prior error correlations between these different elements, as represented in a 48×48 matrix SA,OH. 

 

We construct the prior error covariance matrix for OH in the following manner. First, we specify the error statistics for global 

annual mean mass-weighted tropospheric OH concentrations,	[OH$$$$]. This includes a systematic error of 10% within the MCF 305 

constraint (Prinn et al., 2005) and an interannual variability error that we estimate to be 5% on the basis of interannual 

variability of model and MCF-derived [OH$$$$] reported by Holmes et al. (2013). Thus the prior error covariance matrix for [OH$$$$] 

in our three simulation years (2013-2015), in unit of fractional error variances and covariances, is given by a 3×3 matrix 

𝑺𝑨,𝑶𝑯$$$$$$$ = (𝜎FGH): 

 310 

𝑺𝑨,𝑶𝑯$$$$$$$ = Z

0.05H + 0.1H 0.1H 0.1H
0.1H 0.05H + 0.1H 0.1H
0.1H 0.1H 0.05H + 0.1H[

 (10) 

 

where the off-diagonal terms enforce the assumption of a 10% systematic error (perfectly correlated across all years). The OH 

interannual variability is assumed not to be correlated across years. 

 

Prior error correlations between OH concentrations in different latitudinal bands and seasons should account for our current 315 

knowledge of the OH distribution. We use for this purpose monthly mean output for one year from the ensemble of 11 

independent ACCMIP global atmospheric chemistry models reported in Naik et al. (2013). All ACCMIP models include the 

same anthropogenic emissions of NOx, CO, and NMVOCs. They have different natural emissions, chemical mechanisms, and 

meteorology. Global distributions of OH concentrations in each ACCMIP model were presented previously in Zhang et al. 

(2018). For each ACCMIP model, we calculate the mass-weighted integral of OH concentrations vertically up to 200 hPa for 320 

each 30° latitude band for each season. We then compute the variances and covariances between each latitude band and season 

across the ensemble of ACCMIP models. The resulting 16x16 covariance matrix for the ACCMIP models 𝑺𝑨,𝑨𝑴	is taken as 

the error covariance matrix in the spatial-seasonal distribution of OH for the inversion, with error standard deviations 

represented by a diagonal matrix 𝑫.  

 325 
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Figure 3 shows the spatial and seasonal error correlation matrix 𝑹𝑨,𝑨𝑴 and the error standard deviations D calculated directly 

from the ACCMIP ensemble, such that 𝑺𝑨,𝑨𝑴 = 𝑫𝑹𝑨,𝑨𝑴𝑫. We find strong error correlations in the tropics for all seasons, 

indicating a commonality of effects driving [OH] differences between models. Error correlations are also strong between mid-

latitudes summer and the tropics, likely for the same reasons. Mid-latitude OH concentrations in other seasons show much 

weaker error correlations, implying that they are driven by different photochemistry and emissions as might be expected. 330 

Northern and southern midlatitudes are highly correlated in their respective winters.  

 

 
 
Figure 3: Error correlations for model OH concentrations in different latitude bands and seasons (denoted 𝑹𝑨,𝑨𝑴  in the text). 335 
Pearson’s error correlation coefficients are calculated for the ensemble of 11 different ACCMIP models. The mean and standard 
deviation of the ACCMIP ensemble for each latitude and season is inset above.  



13 
 

 

We replicate the 16×16 spatial-seasonal OH error covariance matrix SA,AM constructed from the ACCMIP data to create a 

48×48 error covariance matrix for the three years of our analysis, resulting in the block matrix:  340 

 

^

𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴
𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴
𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴 𝑺𝑨,𝑨𝑴_

 
 

(11) 

 

This matrix is low rank because it was constructed with information from only 11 models to estimate 48 state vector elements. 

We use the method of Schäfer and Strimmer (2005) to shrink the off-diagonal errors and produce a matrix that is positive 

definite and invertible. Schäfer and Strimmer (2005) show that their method produces a more accurate estimate of the true 345 

error covariance matrix (where accuracy is defined by comparison of the true and estimated eigenvalues). After off-diagonal 

shrinkage, matrices along the diagonal of the block matrix differ from those off-diagonal. We refer to the resulting 16x16 

covariance matrices of spatial-seasonal errors within years as 𝑺𝑨,𝑨𝑴′′, and between years as 𝑺𝑨,𝑨𝑴′.  Additionally, we refer to 

the error variances of the global mean [OH$$$$] for one year inferred from these matrices as 𝜎0JH ′′	and 𝜎0JH ′.  

 350 

We can then construct 𝑺𝑨,𝑶𝑯 from the regularized ACCMIP covariance matrices 𝑺𝑨,𝑨𝑴′′ and 𝑺𝑨,𝑨𝑴′ scaled by the annual mean 

error variances inferred from the MCF observations 𝜎FGH  (Eq. (10)) and the spatial-seasonal error variances inferred from the 

ACCMIP model 𝜎0JH ′′	and 𝜎0JH ′. We can formulate 𝑺𝑨,𝑶𝑯  as a block matrix, where each block is an appropriately scaled 

ACCMIP covariance matrix for one year, as shown:  

 355 

𝑺𝑨,𝑶𝑯 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜎H11
𝜎0JH ′′	

𝑺𝑨,𝑨𝑴′′
𝜎H1H
𝜎0JH ′

𝑺𝑨,𝑨𝑴′
𝜎H1K
𝜎0JH ′

𝑺𝑨,𝑨𝑴′

𝜎HH1
𝜎0JH ′

𝑺𝑨,𝑨𝑴′
𝜎HHH
𝜎0JH ′′	

𝑺𝑨,𝑨𝑴′′
𝜎HHK
𝜎0JH ′

𝑺𝑨,𝑨𝑴′

𝜎HK1
𝜎0JH ′

𝑺𝑨,𝑨𝑴′
𝜎HKH
𝜎0JH ′

𝑺𝑨,𝑨𝑴′
𝜎HKK
𝜎0JH ′′	

𝑺𝑨,𝑨𝑴′′
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (12) 

 

This enforces error variances and covariances for annual global mean OH concentrations identical to the values 𝜎FGH  from Eq. 

(10). 

 

We refer to Eq. (12) as the full-correlations error covariance matrix. We will also test the effect of simpler OH correlation 360 

assumptions on inversion results, while keeping the state vector the same. First is a no-correlations diagonal error covariance 

matrix that assumes no error correlation between years, seasons, or latitude bands. Second is a correlated years error covariance Deleted: diagonal errors for the OH concentration, with 
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matrix that includes error correlations between years but with no spatial-seasonal structure. We scale the correlated-years error 

covariance matrix such that the error (co)variances for [OH$$$$] are identical to 𝑺𝑨,𝑶𝑯$$$$$$$ in Eq. (10). We cannot do the same for the 365 

no-correlations error covariance matrix because it is diagonal; however we scale it such that the error variance of the three-

year average is identical to that represented by 𝑺𝑨,𝑶𝑯$$$$$$$. The variance of the three-year average is therefore identical for all three 

error covariance matrices.  

4 Results & discussion 

4.1 Quantifying emissions 370 

 
Figure 4. Difference between the global mean dry column mixing ratio (XCH4) simulated by GEOS-Chem and observed by GOSAT 
(left) and AIRS (right). Monthly mean results are shown for the 2013-2015 inversion period. The GEOS-Chem simulation is driven 
by either prior or posterior values for emissions and OH concentrations. Posterior values are from inversions using either GOSAT 
or AIRS observations or both. The 19 ppb correction applied to AIRS observations is to remove the bias with GOSAT (Sect 2.1).  375 

 

Figure 4 compares the global mean dry column mixing ratio (XCH4) simulated by GEOS-Chem and observed by GOSAT and 

AIRS. The prior simulation shows an increasing negative bias with time because of an incorrect balance between methane 

sources and sinks. All inversions (posterior solutions) are successful in correcting this bias, including its seasonality.  
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Figure 5. Optimized global distributions of 2013-2015 non-wetland methane emissions using GOSAT, AIRS, and GOSAT+AIRS 
observations. Prior emissions are shown in (a). The average posterior/prior ratios from 2013-2015 for inversions with each set of 
observations are shown in (b)-(d). Total emissions are inset in (a)-(d) with their error standard deviations. Averaging kernel 
sensitivities (diagonal elements of the averaging kernel matrix) averaged over 2013-2015 are shown in (e)-(g). The averaging kernel 385 
sensitivities represent the ability of the inversion to constrain the posterior solution independently from the prior estimate (1= fully, 
0 = not at all). The degrees of freedom for signal (DOFS) for the 1009 4°x5° grid cells averaged over 3 years are inset.  

 

The inversions optimize both methane emissions and OH concentrations. Figure 5 shows the prior non-wetland emissions and 

2013-2015 posterior/prior correction factors for all three inversions, as well as the averaging kernel sensitivities. The GOSAT-390 

only inversion (Figure 5b) shows upward corrections to the southern United States, Brazil, and East Africa, and downward 
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corrections to East Asia and parts of Russia, consistent with Zhang et al. (2021) who used similar prior estimates. The AIRS-

only inversion shows generally similar results but weaker averaging kernel sensitivities. Results from the AIRS-only inversion 

are consistent with those of the GOSAT-only inversion with the exception of strong upward corrections over Brazil, Argentina, 

and India, which together cause much higher global methane emissions in the AIRS-only solution than the two solutions 395 

constrained by GOSAT observations. The greater power of the GOSAT data to constrain emissions on the 4°x5° grid is 

measured by the DOFS (144 for GOSAT, 33 for AIRS). Adding AIRS observations to GOSAT increases the DOFS by only 

4%, indicating that the information on emissions from these two sensors has extensive overlap. The GOSAT+AIRS inversion 

results largely follow those of the GOSAT-only inversion but the global posterior emission estimate is lower than in either the 

GOSAT-only or AIRS-only inversions because of selected regions where AIRS has influence, such as to decrease emissions 400 

in China. 

 

We find small (<10 Tg a-1) changes from year to year for methane emissions in all solutions, and most of these changes are 

attributed to non-wetland emissions. This is consistent with the solutions in Yin et al. (2021) who find global methane 

emissions changes over 2013-2015 on the order of 1-2%.  405 
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 410 
Figure 6. Monthly mean 2013-2015 wetland emissions for the 14 WetCHARTs subcontinental regions as defined by Bloom et al. 
(2017). Prior emission estimates from the mean of the WetCHARTs inventory ensemble are compared to posterior emissions from 
the GOSAT, AIRS, and GOSAT+AIRS inversions. The degrees of freedom (DOFS) for signal aggregated to 14 regions x 12 months 
= 168 state vector elements are also given.  

 415 

Figure 6 shows inversion results for the seasonality of wetland emissions in the 14 subcontinental regions of the WetCHARTs 

inventory used as prior estimate. The seasonality and magnitude of the GOSAT and GOSAT+AIRS posterior estimates are 

consistent with Zhang et al. (2021), who used a similar wetland state vector but with more years of GOSAT data. Our posterior 

produces negative emissions in East Canada in the spring, which are also seen in the solution of Zhang et al. (2021). They 

attribute these negative emissions to potential soil sinks in the region. Remarkably, the AIRS-only inversion shows the same 420 

feature. The posterior global sum of non-wetland and wetland emissions in the GOSAT and GOSAT+AIRS inversions is lower 

than the prior estimate, even though the prior simulation is biased low (Figure 4). This is because of a compensating decrease 

in [OH$$$$], as analyzed below. 
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4.2 Quantifying global mean OH concentrations independently of emissions 

We now turn our attention to the ability of the satellite observations to constrain the global annual mean OH concentration, 

[OH$$$$], independently of emissions and for individual years. Let E denote the global annual mean methane emission rate. The 

annual rate of change in atmospheric methane mass, Δm/Δt, is given by 

 430 
Δ𝑚
Δ𝑡 = 𝐸 − 𝑘[𝑂𝐻$$$$]𝑚 − 𝐿 (13) 

 

where k is the rate constant for oxidation of methane by tropospheric OH with a suitable temperature kernel (Prather and 

Spivakovsky, 1990) and L is the sum of other minor sinks with 𝐿 ≪ 𝑘[OH$$$$]𝑚.  Considering that Δm/Δt is set by the observations 

used in the inversion, and that L is minor and not optimized, we see that corrections to E and [OH$$$$] are necessarily correlated. 

In order to constrain [OH$$$$] we need independent information on emissions. The lower-atmosphere gradients over land observed 435 

by GOSAT can provide that information, as pointed out by Zhang et al. (2021) and shown in Section 4.1, but the AIRS TIR 

measurements cannot and this is reflected in the low DOFS of Figures 5 and 6. We focus therefore on the GOSAT and 

GOSAT+AIRS observing configurations to evaluate their capability to constrain [OH$$$$] in individual years separately from 

emissions.  

 440 

Figure 7 shows the corrections to E and [OH$$$$] for individual years from the inversions. The inversions apply a systematic 

correction to [OH$$$$] in all three years, reflecting bias in the prior [OH], and a smaller interannual variability. The AIRS-only 

inversion has excessive [OH$$$$] to offset its poorly constrained and excessive global emission (Figure 5). The right panels show 

the rows of the reduced averaging kernel matrix summing emissions globally (Eq. (8)) and diagnosing the ability of the 

inversion to correct separately [OH$$$$] and E in individual years. We find that the averaging kernels for [OH$$$$] in individual years 445 

are strongly peaked, with no significant aliasing from emissions and only minor aliasing with [OH$$$$] for other years. We 

conclude that [OH$$$$] can be optimized for individual years and independently of emissions. Some smoothing of the inverse 

solution to [OH$$$$] across years is to be expected in view of the long lifetime of methane but we are still able to capture individual 

years and thus interannual variability of [OH$$$$]. GOSAT+AIRS provides only slightly more information than GOSAT alone. A 

similar averaging kernel analysis by (Maasakkers et al., 2019) for 2010-2015 GOSAT observations found that the observations 450 

could constrain the average [OH$$$$] over all years but not the interannual variability. In that study the emission trend was imposed 

to be linear, which would strongly detract from the ability to independently constrain interannual variability of [OH$$$$].   

Deleted: aliasing



19 
 

 

 455 

 
Figure 7. Ability of inversions using GOSAT and GOSAT+AIRS methane observations to quantify global annual mean tropospheric 
[𝐎𝐇%%%%%] for individual years and independently from emissions. (a) 2013-2015 percentage corrections to the [𝐎𝐇%%%%%] prior estimate. 
Posterior error standard deviations are shown as error bars. DOFS are shown inset (DOFS = 3 would imply perfect separate 
quantification of [𝐎𝐇%%%%%] in individual years). (b) Rows of the reduced averaging kernel matrix describing the ability of the observing 460 
system to separately quantify emissions (E) and [𝐎𝐇%%%%%] for the individual years. A perfect observing system would have an averaging 
kernel sensitivity of 1 for the reduced state vector element of interest (perfect characterization) and 0 for other elements (no 
sensitivity of the solution to other elements).  

 

4.3 Resolving spatial and seasonal patterns in OH concentrations 465 

We now investigate the ability of the methane observations to constrain the spatial and seasonal variations of OH 

concentrations. Figure 8 shows the corrections to OH concentrations from the inversion as a function of latitude, along with 

the corresponding rows of the averaging kernel matrix. We find that GOSAT and GOSAT+AIRS provide only weak constraints 

on the OH latitudinal distribution because prior errors from the ACCMIP ensemble are highly correlated (Figure 3). We are 

unable to resolve the midlatitudes, where averaging kernel rows show higher sensitivity to the adjacent tropical latitude band, 470 

and almost no sensitivity to the midlatitudes themselves. There is some information on the interhemispheric ratio of OH 

concentrations, with the inversion decreasing the NH/SH ratio from 1.11±0.08 in the prior estimate to 1.01±0.02 (for GOSAT) 
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and 1.04±0.01 (for GOSAT+AIRS). This is consistent with previous inversions of methane observations showing downward 475 

corrections in the NH/SH ratio (Zhang et al., 2021) and independent evidence from MCF observations that current model 

NH/SH ratios are too high (Naik et al., 2013; Patra et al., 2014). Nevertheless, we see from the averaging kernels that there is 

significant aliasing of the information between the northern and southern tropics, because errors are highly correlated across 

models (Figure 3). It could be that the ensemble of ACCMIP models exaggerates the error correlation on account of using the 

same anthropogenic emissions, but OH in the tropics is more sensitive to lightning, fires, and clouds which vary across the 480 

models.  

 

The seasonal cycle for [OH] is shown in Figure 9. We find from the averaging kernel matrix that the inversion provides 

significant information on the seasonality of [OH] in the two hemispheres, despite the smearing across latitudinal bands found 

in Figure 8. There is some aliasing between adjacent seasons but winter and summer are well separated, mainly for the tropics 485 

since there is little information from mid-latitudes (Figure 8). The GOSAT+AIRS inversion increases the amplitude of the 

seasonal cycle in both hemispheres. The posterior seasonal patterns from the GOSAT and GOSAT+AIRS inversions do not 

differ significantly from the prior estimates and thus support the prior estimates.  
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Figure 8. Ability of inversions of GOSAT, AIRS, and GOSAT+AIRS methane observations to resolve the latitudinal 
variability of OH concentrations. (a) Latitudinal distribution of mass-weighted tropospheric [OH] in the prior estimate 
(prior error standard deviation in shading) and in the posterior estimates. The NH/SH interhemispheric ratio and its 
error standard deviation are inset. (b) Rows of the reduced averaging kernel matrix describing the ability of the 495 
observing system to separately quantify [OH] in different latitudinal bands. A perfect observing system would have an 
averaging kernel sensitivity of 1 for the reduced state vector element of interest (perfect characterization) and 0 for 
other elements (no error correlation).  

 

  500 
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Figure 9.  Same as Figure 8 but for the seasonality of OH concentrations in each hemisphere.   
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We have found that the ability of the inversion to optimize spatial and temporal features of the OH distribution is limited by 

prior error correlations from the independent knowledge expressed by the ACCMIP models. We now examine the effect of 

these prior error correlations in sensitivity simulations for GOSAT-only inversions in which we either assume no error 505 

correlations between OH state vector elements (no-correlation inversion), or error correlations only for the interannual 

variability of [OH$$$$] (correlated-years inversion), as described by Eq. (10). Aggregated errors on [OH$$$$] are scaled to be the same 

in all inversions as described in Sect. 3. Fig. 10 shows the results for the GOSAT-only inversion. Constraints on [OH$$$$] are 

similar across all inversions, as would be expected since our base full-correlations inversion can effectively constrain that 

quantity for individual years. The inversions without error correlations show larger perturbations to the latitudinal distribution 510 

of [OH], with higher values at mid-latitudes and lower in the tropics, and a greater shift to the southern hemisphere. The spatial 

error correlations imposed by the ACCMIP models (Figure 3) suppress these changes in the base inversion. To the extent that 

the ACCMIP ensemble fairly represents error correlations on the OH distribution, ignoring that prior information would result 

in overfit to observations. The seasonality in each hemisphere is better constrained by the observing system because there is 

more contrast between summer and winter, with northern and southern tropics being opposite in seasonal phase. However, we 515 

find that ignoring seasonal error correlations in the no-correlation and correlated-years inversions results in opposite 

corrections to OH concentrations in spring and summer of the northern hemisphere which are in fact highly correlated in the 

ACCMIP models (Figure 3).  
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 525 

 

 
Figure 10. Sensitivity of [OH] inversion results to the prior error correlations imposed for interannual, seasonal, and latitudinal 
variability. Results are shown for the 2013-2015 GOSAT-only inversion, for our base inversion with full error correlations from the 
ACCMIP ensemble (same results as in Figures 7-9) and for inversions with no [OH] error correlations or with [OH] error 530 
correlations for individual years only.  Panels show (a) annual mean [𝐎𝐇%%%%%] for individual years, (b) 2013-2015 latitudinal distribution, 
and (c, d) 2013-2015 seasonal variations for the northern and southern hemispheres.  Prior error standard deviations are shown as 
shading. The correlated-years and no-correlation inversions show the same latitudinal and seasonal variations of [OH].   

 

 535 
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5 Conclusions 

We examined the ability of satellite observations of atmospheric methane to quantify different features of the tropospheric OH 540 

distribution including global multi-year mean, interannual variability in the global mean, interhemispheric ratio, intra-

hemispheric latitudinal variation, and seasonality. The work was motivated by the need to find a replacement proxy for 

tropospheric OH as methylcholoroform (MCF) concentrations fall below detectable levels, and to explore how much 

information can be extracted from the satellite observations. 

 545 

We used for this purpose a 3-year (2013-2015) analytical inversion of GOSAT (SWIR) and AIRS (TIR) satellite observations. 

SWIR observations have near-unit sensitivity for the whole atmospheric column but are limited to daytime and (mainly) land. 

TIR observations are sensitive mainly to the middle/upper troposphere but include nighttime and oceans.  

 

Several previous inversions investigated the ability of satellite observations of methane to quantify the OH distribution but did 550 

not properly account for prior error correlations in that distribution. Here we provide detailed accounting of this error 

correlation including for global mean OH and interannual variability using MCF, and for spatial and seasonal variations using 

the ACCMIP ensemble of 11 global atmospheric chemistry models. We find strong prior error correlations between latitude 

bands and seasons.  

 555 

Optimizing OH concentrations from satellite observations of methane requires independent information on emissions and the 

SWIR observations are essential for that purpose. We find that a GOSAT-only inversion can effectively constrain global mean 

OH and its interannual variability independently of emissions, thus providing information comparable to MCF. Adding AIRS 

observations to the inversion does not significantly improve the constraint. Retrievals combining SWIR and TIR information 

from the same instrument, such as GOSAT-2 (Kuze et al., 2022; Suto, 2022), could possibly improve the constraint by 560 

separating lower and upper tropospheric contributions to the methane column.  This would need to be examined in future work. 

We conducted the inversion for only three years (2013-2015) to demonstrate the capability for constraining OH interannual 

variability. (Qu et al., 2024) recently conducted an inversion of the full GOSAT record from 2011 to 2022 to quantify the OH 

interannual variability over that 13-year period. 

 565 

The ability of the inversion to resolve the latitudinal variability of OH is very limited because of strong error correlation across 

latitudes in the ACCMIP ensemble. Not accounting for this error correlation would result in overfit to observations. There is 

in particular no information on OH at mid-latitudes. The inversion provides some information on the interhemispheric OH 

ratio, and this is important for interpreting the corresponding gradient in methane observations (East et al., 2024). There is also 

some information on seasonality of OH concentrations, and the inversion confirms the prior seasonality from the ACCMIP 570 

models.  
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Acquiring finer regional-scale information on OH is of great interest but the long lifetime of methane likely limits the 

information that it can provide to the global scale, even with improved satellite instruments. Satellite observations of shorter-

lived species driving OH chemistry including H2O, O3, CO, NO2, and HCHO provide fine-scale information on OH through 575 

chemical data assimilation (Miyazaki et al., 2020), but the results may be biased by errors in the chemical mechanisms (Travis 

et al., 2020; Shah et al., 2023). The global-scale information on OH concentrations available from methane observations can 

be used for independent evaluation of such data assimilation products.  

6 Data Availability 

The GOSAT methane retrievals version 9.0 are available at https://dx.doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb 580 

(Parker and Boesch, 2020). The AIRS methane retrievals are available at 

https://disc.gsfc.nasa.gov/datasets/TRPSDL2CH4AIRSFS_1/summary (Kulawik et al., 2021). Oil, gas, and coal emissions 

from the GFEIv1.0 inventory are available at 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HH4EUM&version=1.0 (Scarpelli et al., 2020). 

Methane emissions from EDGAR v4.3.2  are available at https://edgar.jrc.ec.europa.eu/dataset_ghg432 (Crippa et al., 2018). 585 

Wetland emissions from WetCHARTs v1.0 are available at https://doi.org/10.3334/ORNLDAAC/1502 (Bloom et al., 2017). 

The OH fields from the ACCMIP ensemble of models is available at 

https://catalogue.ceda.ac.uk/uuid/ded523bf23d59910e5d73f1703a2d540 (Shindell et al., 2011).  
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