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Abstract 

Clouds strongly modulate the top-of-the-atmosphere energy budget and are a major source of uncertainty 

in climate projections. “Cloud Controlling Factor” (CCF) analysis derives relationships between large-scale 

meteorological drivers and cloud-radiative anomalies, which can be used to constrain cloud feedback. However, 

the choice of meteorological CCFs is crucial for a meaningful constraint. While there is rich literature investigating 15 

ideal CCF setups for low-level clouds, there is a lack of analogous research explicitly targeting high clouds. Here, 

we use ridge regression to systematically evaluate the addition of five candidate CCFs to previously established 

core CCFs within large spatial domains to predict longwave high-cloud radiative anomalies: upper-tropospheric 

static stability (SUT), sub-cloud moist static energy, convective available potential energy, convective inhibition, 

and upper-tropospheric wind shear. All combinations of tested CCFs predict historical, monthly variability well 20 

for most locations at grid-cell scales. Differences between configurations for predicting globally-aggregated 

radiative anomalies are more pronounced, where configurations including SUT outperform others. We show that 

for predicting local, historical anomalies, spatial domain size is more important than the selection of CCFs, finding 

an important discrepancy between optimal domain sizes for local and globally-aggregated radiative anomalies. 

Finally, we scientifically interpret the ridge regression coefficients, where we show that SUT captures physical 25 

drivers of known high-cloud feedbacks, and thus deduce that inclusion of SUT into observational constraint 

frameworks may reduce uncertainty associated with changes in anvil cloud amount as a function of climate 

change. Therefore, we highlight SUT as an important CCF for high clouds and longwave cloud feedback. 
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1 Introduction 30 

Changes in clouds are the primary source of uncertainty in the quantification of equilibrium climate 

sensitivity (ECS) – the long-term global warming response to a doubling of atmospheric carbon dioxide 

(Sherwood et al., 2020; Zelinka et al., 2022). Cloud-induced radiative anomalies (𝑅) at the top-of-the-atmosphere 

(TOA) refer to changes in the balance of incoming and outgoing radiation caused by interaction with clouds. 

While most evidence suggests that the change in 𝑅 at the TOA as a function of global warming likely has a positive 35 

effect on Earth’s energy balance and thus amplifies warming (e.g., Ceppi and Nowack, 2021), the magnitude of 

this global cloud feedback remains highly uncertain (Ceppi et al., 2017; Sherwood et al., 2020; Zelinka et al., 

2022). 

Motivated by the role of clouds as a key uncertainty factor, much progress has been made towards 

understanding the mechanisms that drive changes in 𝑅, considering different cloud types under both natural 40 

unforced variability and long-term climate change. In particular, such work includes theoretical understanding of 

cloud feedback processes (e.g., Zelinka and Hartmann, 2010; Rieck, Nuijens and Stevens, 2012; Bony et al., 

2016); idealized regional modelling studies (Siebesma et al., 2003; Bretherton, 2015); convection-permitting 

global climate models (Rio et al., 2019); and climate model evaluation studies (Zelinka et al., 2022). 

Here, we aim to systematically advance an alternative approach widely used for understanding and 45 

constraining uncertainties in cloud variability and trends in the form of Cloud Controlling Factor (CCF) analysis. 

Exploiting observed relationships between large-scale satellite cloud observations and meteorological predictor 

variables, CCF analyses have, for example, been used to derive observational constraints on cloud-related 

uncertainty estimates (Myers and Norris, 2016; Andersen et al., 2017, 2022; Fuchs, Cermak and Andersen, 2018; 

Ceppi and Nowack, 2021; Myers et al., 2021). In particular, meteorological CCFs for low marine and boundary-50 

layer clouds have been widely assessed (Qu et al., 2015; Brient and Schneider, 2016; Klein et al., 2017; Scott et 

al., 2020; Andersen et al., 2022), with typical frameworks including CCFs such as surface temperature (Tsfc), 

temperature advection, estimated boundary layer inversion strength (EIS), vertical velocity, 700 hPa relative 

humidity (RH) and near-surface wind speed. However, comparatively less research has specifically targeted the 

CCFs for high clouds, despite their significant – and highly uncertain – contributions towards the total estimated 55 

feedback (Sherwood et al., 2020). A systematic comparison of CCF candidates for high clouds within a range of 

spatial domains will therefore be the main subject of this paper. 
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Figure 1. CMIP multi-model mean longwave cloud-radiative sensitivities for a sample 5◦× 5◦ target grid box (7.5° S, 

132° E, indicated by the black box) to surface temperature (Tsfc), vertical velocity at 300 hPa (𝝎𝟑𝟎𝟎), relative humidity 60 
at 700 hPa and in the upper troposphere (RH700 and UTRH, respectively), wind shear at 300 hPa (∆𝑼𝟑𝟎𝟎), and upper-

tropospheric static stability (𝑺𝑼𝑻) using a 21x11 domain of grid-boxes around the target (corresponding to 110° 

longitude x 55° latitude area, centered on the grid-box.). Radiative anomalies are normalized for a one-SD (σ) anomaly 

in the controlling factors, based on monthly variability. 

Our work builds on a modification to a previous CCF approach, which was introduced by Ceppi and 65 

Nowack (2021, hereafter CN21). CN21 used ridge regression for their analyses, which allowed them to consider 

large spatial domains of CCF predictor patterns around target grid points in which cloud-radiative anomalies were 

predicted, with an example shown in Fig. 1. This approach contrasts with previous CCF analyses using standard 

multiple linear regression, which are constrained to a small number of predictors (typically < 10). This allowed 

their analysis to be extended beyond specific cloud regimes. As shown in CN21, the consideration of larger-scale 70 

CCF patterns led to improvements in predictive skill for both shortwave (SW) and longwave (LW) global cloud 

feedback. The intuition behind using spatial patterns of CCFs is motivated by the synoptic-scale atmospheric 

system within which the lifecycle of clouds – from formation to cessation – occurs, resulting in more robust 

predictions of global cloud feedback. Non-local features, such as large-scale patterns of sea-surface temperature 

anomalies and changes in the atmospheric circulation (e.g., convergence and divergence) are implicitly encoded 75 

using large spatial domains, which are not included in scalar CCF analysis despite their relevance for the context 

in which cloud development occurs (when considering monthly averaged data typically used for CCF analyses 

(Klein et al., 2017)). Altogether, considering larger-scale patterns resulted in better out-of-sample predictions, 
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which consequentially tightened the cloud-induced uncertainty in general circulation model (GCM)-modelled 

ECS. 80 

However, the framework introduced by CN21 highlighted an important limitation. As the same set of 

five CCFs were used for SW and LW analyses, their predictive skill was markedly stronger for global SW and 

net feedback components than for LW. Given that LW feedback is largely driven by high clouds, while SW 

feedback is instead predominantly driven by the oft-studied low clouds, we speculate the performance deficit may 

be – at least to a degree – a symptom of CCF choice. Indeed, Zelinka et al. (2022) specifically recommend that 85 

the drivers of high cloud feedback must be targeted to reduce cloud-related uncertainty in ECS estimates. 

To address these open questions, we use ridge regression to methodically assess candidate CCFs of high 

clouds within a range of spatial scales, aiming to inform CCF choice for future observational constraints on the 

ECS uncertainty. Here, we target LW cloud radiative anomalies (𝑅𝐿𝑊) as they are more directly associated with 

high clouds than SW (and consequently, net) radiative anomalies. We briefly assess implications of CCF choices 90 

on net anomalies, 𝑅𝑁𝐸𝑇 noting that, historically, LW and SW high-cloud radiative anomalies tend to offset each 

other, resulting in little net signal (𝑅𝑁𝐸𝑇) for thick clouds over monthly timescales.  We therefore restrict our 

analysis to clouds with top pressures smaller than 680 hPa; future references to “𝑅” are therefore specifically 

emanating from these non-low clouds (see Sect. 3.1 for the dataset used). Though radiative effects from midlevel 

clouds are also by definition included in our analysis, we collectively refer to radiative anomalies as “high” 95 

henceforth for simplicity (Zelinka et al., 2016).   

We systematically assess static stability in the upper troposphere (𝑆𝑈𝑇), sub-cloud moist static energy 

(𝑚), convective available potential energy (CAPE), convective inhibition (CIN) and upper tropospheric wind 

shear (𝛥𝑈 for easterly shear) as CCFs in on the basis of their physical relationships with high-cloud properties or 

convection, with an overview presented in Sect. 2. Aiming to inform choices for future observational constraint 100 

analyses, we only suggest CCFs that are readily available (or easily calculated from measurable quantities). 

Alternative variables, such as the radiatively-driven divergence, horizontal mass convergence, and gross moist 

stability, may also capture high-cloud properties but their derivation requires numerical modelling and hence we 

do not consider them here. Sections 3 and 4 discuss the data and methods we use, respectively, with combined 

results and discussion presented in Sect. 5. We first discern which CCF combinations are able to best predict out-105 

of-sample grid-cell scale historical internal variability. We then investigate which combinations best predict out-

of-sample globally-aggregated 𝑅𝐿𝑊. Based on the results of our statistical testing, we physically interpret the 

coefficients for a single (deemed “optimal” by our analysis) configuration of CCFs, and assess whether the spatial 

pattern, magnitude and variability of the cloud properties (i.e., cloud top pressure and cloud fraction) are 

accurately captured. 110 

2 High-Cloud Controlling Factors 

Ubiquitously present over the tropics, cirrus, cirrostratus and deep convective clouds are responsible for 

the largest annual-mean changes in global TOA LW flux (Chen et al., 2000). Tropical cirrus clouds develop 

through one of two mechanisms: outflow from deep convective cores, or in-situ ice formation that is not associated 

with convection (Gasparini et al., 2023; Kärcher, 2017). The former, referred to as “anvil cirrus” together with a 115 

mature cumulonimbus core, form tropical anvil clouds. “Thick” cirrus are both effective absorbers of upwelling 
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LW radiation and also efficient reflectors of incident SW radiation. Over time, dynamical, radiative and 

microphysical processes can spread the thick anvil cirrus, extending anvil lifetime and resulting in larger cloud 

cover than the initial convective core (Luo and Rossow, 2004; Gasparini et al., 2023). Such processes can result 

in the formation of “thin” cirrus clouds, characterised by a relatively smaller SW cloud radiative forcing compared 120 

to LW (Jensen et al., 1994; McFarquhar et al., 2000). Though deep convective clouds presently have relatively 

small abundance (compared to other cloud types), their local radiative effects are large (Chen et al., 2000), and 

therefore changes to their frequency of occurrence can have substantial impacts on cloud feedback. Despite this, 

most previous CCF analyses focused on low-cloud regimes so that the selection and design of CCFs were mainly 

motivated by meteorological situations driving cloud formation and cessation in those cloud regimes (Klein et al., 125 

2017).  

In CN21, a compromise was sought by considering classic CCFs such as Tsfc, EIS, and RH700 (relative 

humidity at 700 hPa), but by also using the vertical velocity at 500 hPa (ω500) and upper-tropospheric relative 

humidity (UTRH, the vertically averaged relative humidity in the 200 hPa layer below the tropopause) as 

predictors in an attempt to additionally target high clouds. In the following, we will build on the CN21 CCF set-130 

up, specifically targeting modifications and additions that are more likely to represent state variables important 

for the aforementioned high clouds. One-by-one we will motivate these CCF candidates physically and formally 

define, then test the prediction results of possible CCF combinations for high clouds in Sect. 5.  

An overview of all CCFs considered and their scientific motivations is summarised in Table 1. We keep 

Tsfc, RH700, UTRH, and ω (at variable pressure levels) in all configurations, which we refer to as the “core” CCFs, 135 

as they jointly explain a large portion of historical variability in 𝑅𝐿𝑊, and are each physically related to high-cloud 

formation. The large-scale distribution of tropical deep clouds is closely tied to the distribution of SSTs and upper-

tropospheric relative humidity (Bony et al., 1997; Li et al., 2014), with research indicating that lower free-

tropospheric relative humidity regulates the mean height of convective outflow (Sherwood et al., 2004). Vertical 

velocities (ω) indicate regions of subsidence or ascent, with enhanced ascending motion supporting thicker, higher 140 

cloud layers (Ge et al., 2021). Andersen et al. (2023) find that the magnitude of (local) sensitivity to ω is largest 

at 300 hPa, hence we test vertical velocity at both 300 hPa and 500 hPa (used in CN21) in this study.  

Estimated boundary-layer inversion strength (EIS) is not typically regarded a controlling factor for high 

clouds specifically, despite its wide use in general and low-cloud CCF analyses. This results in relatively little 

literature interpreting high-cloud sensitivities to EIS. Despite this, CN21 used only the Tsfc and EIS sensitivities 145 

to observationally constrain global cloud feedback, for both SW and LW components. These sensitivities are 

suitably decoupled from the clouds, and still achieve good (albeit poorer than SW and net) predictions for global 

LW feedback. We therefore suggest five candidate CCFs as replacements for EIS that more directly represent 

convective processes or high-cloud formation, that are also sufficiently external to the clouds themselves and may 

be similarly used in constraints.  150 

We list candidate CCFs (and EIS) and discuss them in turn below, with the exact definitions provided in 

Sect. 3.2:  

• Static stability is the vertical gradient of potential temperature, measuring the stratification of 

the atmosphere (Grise et al., 2010). Upper-tropospheric static stability is robustly (negatively) 

correlated with upper-level cloud incidence over much of the global ocean (Li et al., 2014) and 155 

has been observationally linked with changes in tropical anvil cloud fraction through the “anvil 
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iris” thermodynamic mechanism (Bony et al., 2016; Saint-Lu et al., 2020, 2022). We expect 

increases in local upper tropospheric static stability to result in local reductions in high cloud 

fraction, with suppressed vertical motion; 

• Moist static energy characterises the energy of an air parcel in a moist environment, 160 

considering its internal energy (latent and sensible heat) and potential energy due to its 

elevation. Sub-cloud moist static energy (𝑚) may affect cloud formation, as higher levels of 𝑚 

signify increased potential for uplift and condensation. Additionally, when buoyant air from the 

boundary layer fills the free troposphere, it can inhibit initiation of convection in colder regions, 

setting a threshold that hinders further upward movement (Srinivasan and Smith, 1996; Zhang 165 

and Fueglistaler, 2020). We suggest that high 𝑚 increases local high-cloudiness, while in 

contrast, we speculate that non-local 𝑚 can either decrease (due to convective thresholds) or 

increase cloudiness (depending on horizontal transport); 

• Convective available potential energy (CAPE) is a measure of deep instability, describing the 

amount of energy available for an air parcel to rise freely through the atmosphere. CAPE offers 170 

insights into the onset, genesis and scale of atmospheric deep convection, and has been 

described as the fuel for a thunderstorm (Donner and Phillips, 2003; Jensen and Delgenio, 2006; 

Riemann-Campe et al., 2009). We speculate increased CAPE suggests an environment 

conducive to sustaining deep convection, and thus more high cloud; 

• Convective inhibition (CIN), a form of conditional instability and CAPE’s opposing 175 

parameter, is a measure of the amount of energy required for a parcel to overcome a stable layer 

of air and initiate the development of deep convection. A large absolute value of CIN may 

indicate a stable atmosphere, and thus unfavourable conditions for the development of deep 

convective clouds (Louf et al., 2019). Note that high CIN is a required precursor for the buildup 

of CAPE. Once CIN has been overcome, conditions are favourable for deep convection; 180 

• Wind shear, defined here as the vertical change in horizontal wind speed, is an important 

dynamical characteristic of the upper troposphere. Wind shear influences the organisation of 

convective storms and mesoscale convective systems in various ways, though understanding its 

relationship with cloud properties has proved historically challenging (Anber et al., 2014). 

However, studies suggest that wind shear can increase cloud-top turbulence, spread and stretch 185 

clouds horizontally through the advection of air at different levels and speeds, and hasten cirrus 

cloud dissipation (Lin and Mapes, 2004; Marsham and Dobbie, 2005; Jensen et al., 2011). We 

speculate wind shear mainly affects high-cloud fraction; 

• Estimated inversion strength (EIS) describes the strength of the boundary layer and is a 

dominant control for low-clouds (Wood and Bretherton, 2006; Andersen et al., 2022, 2023) and 190 

is widely used in general CCF analysis (CN21, (Klein et al., 2017). However, EIS is not 

considered a driver of high-cloud incidence, but CN21 speculated that EIS may function as a 

proxy for factors relating to deep convection. 

Note that several candidate CCFs are not independent. For example, high values of CIN are required for 

a buildup of CAPE, and a stable boundary layer may be represented by both high CIN and high EIS.  195 
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Table 1. High-cloud controlling factors used in CN21 and proposed here, physical explanations connecting them to 

high clouds or convection, and the key studies supporting them. References to “clouds” in this table are for high clouds 

only. EIS is not a core CCF, and therefore for conciseness we include EIS under the “Candidate CCFs” subheading.  

Cloud controlling factor Physical explanation Key studies 

Core cloud controlling factors   

   Surface temperature (Tsfc)    Warming surface temperature heats atmospheric 

column; large-scale distribution of clouds is tied to 

atmospheric profile of temperature; anvil clouds 

approximately rise with isotherms. 

   (Bony et al., 1997; Zelinka 

and Hartmann, 2011) 

   Free-tropospheric relative 

humidity (RH700) 

   Regulates mean height of convective outflow.    (Sherwood et al., 2004) 

   Upper-tropospheric relative 

humidity (UTRH) 

   Tropical clouds tied to spatial distribution of 

UTRH and lifetime of anvil clouds. A reciprocal 

relationship may exist; UTRH modulated by 

detrainment. 

   (Bony et al., 1997; Li et al., 

2014) 

   Vertical pressure velocity (ω)    Indicates regions of ascent and subsidence. 

Enhanced ascending motion supports thicker clouds. 

   (Ge et al., 2021) 

   

Candidate CCFs   

   Estimated boundary layer 

inversion strength (EIS) 

   Limited literature; perhaps serves as a proxy for 

deep convective processes; strength of boundary 

layer inhibits convection. 

   CN21 

   Upper-

tropospheric 

static stability 

(𝑆𝑈𝑇) 

     

 

   Static stability associated with radiatively driven 

convergence; anvil altitude and amount collocate 

with peak convergence. 

(Zelinka and Hartmann, 

2010; Li et al., 2014; Bony et 

al., 2016; Saint-Lu et al., 

2020, 2022) 

   Convective Available Potential 

Energy (CAPE) 

   Measure of deep instability; indicates energy 

available for convection. 

   (Donner and Phillips, 2003; 

Jensen and Delgenio, 2006; 

Chakraborty et al., 2016; 

Louf et al., 2019) 

   Convective Inhibition (CIN)    Shallow instability; indicates the energy required to 

leave stable boundary layer. 

   (Louf et al., 2019) 

   Sub-cloud moist static energy 

(𝑚) 

  Moisture content of sub-cloud atmosphere fuels 

convection. 

   (Zhang and Fueglistaler, 

2020) 

   Upper-tropospheric wind shear 

(∆𝑈300) 

   Influences organisation of convective storms; 

affects cloud-top turbulence and mesoscale anvil 

formation; affects cloud cover. 

   (Lin and Mapes, 2004; 

Marsham and Dobbie, 2005; 

Jensen et al., 2011). 

3 Data 200 

We use monthly-mean (unless explicitly mentioned otherwise) cloud property and CCF data, re-gridded 

to a common 5°x5° resolution. At these spatial and temporal scales, we expect the clouds to be approximately in 

equilibrium with their environment (Klein et al., 2017). To represent observed cloud-radiative data, we use 

combined Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals from both Aqua and Terra 
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instruments, identified as MCD06COSP (Pincus et al., 2023). These retrievals are included as part of the CFMIP 205 

Observation Simulator Package (COSP, where CFMIP refers to the Cloud Feedback Model Intercomparison 

Project), which facilitates the evaluation of models against observations in a consistent manner (Bodas-Salcedo 

et al., 2011). For climate model data, we use eighteen GCMs that have run the International Satellite Cloud 

Climatology Project (ISCCP) simulator (Zelinka et al., 2012a) from the Coupled Model Intercomparison Project 

phases 5 and 6 (CMIP5/6). For a full list of CMIP models used in this research, see Supplementary Material Sect. 210 

S1. For the meteorological CCFs we use ERA5 reanalysis data at monthly resolution, with the exception of CAPE 

and CIN which we first calculate using daily air temperature and relative humidity profiles, and then take the 

monthly mean. We use reanalysis data as a proxy for direct observations; henceforth, when “observed” results are 

discussed, we refer to predictions made for observed radiative anomalies using ERA5 meteorological CCFs. 

We restrict the CMIP datasets to twenty years, aligned with the length of available observational record, 215 

though with slightly different time periods. For observations, data is available from July 2002 to June 2022. For 

the CMIP models, we use historical data from January 1981 to December 2000. We use this period because it is 

close to the present-day climate, under the constraint of availability of historical CMIP data (and noting that only 

a small set of models provide satellite simulator output for the RCP and SSP scenarios). For predictions of 

observed and modelled 𝑅𝐿𝑊, we restrict our analysis from 60°S – 60°N. As is commonplace in CCF analysis, the 220 

seasonal cycles (climatological averages of each month) have been removed from the CCFs and radiative 

anomalies (Myers et al., 2021; Andersen et al., 2022). Prior to analysis, predictor variables are scaled to unit 

variance and zero mean to weight signals equally in the optimisation process (Scott et al., 2020, CN21).  

3.1 Cloud property histograms 

Our analysis is based on histograms of cloud fraction as a joint function of cloud top pressure (CTP) and 225 

cloud optical depth (𝜏). Cloud-radiative kernels are used to convert binned cloud amount anomalies into top-of-

atmosphere radiative flux anomalies, and to partition these into contributions from changes in cloud top pressure 

(𝐶𝑇𝑃), cloud fraction (𝐶𝐹), and optical depth (𝜏), with a small residual contribution (Zelinka et al., 2012a, b, 

2016). The cloud-radiative kernels we use here were first introduced in Zelinka et al. (2012a), with an improved 

decomposition method presented in Zelinka et al. (2016). Note that the same kernels (developed using ERA5 230 

Interim temperature, humidity and ozone profiles) are used to decompose both the observed and modelled 

radiative anomalies. Cloud-radiative kernels are available from https://github.com/mzelinka/cloud-radiative-

kernels. 

3.2 Meteorological cloud controlling factors  

Static stability is calculated using monthly air temperature (𝑇𝑝) at CMIP standard pressure levels, 𝑝,   235 

𝑆𝑝   =  
𝑅𝐶𝑇𝑝

𝐶 𝑝
  −  

𝑑𝑇 

𝑑𝑝
 

where 𝑆𝑝 is the static stability at pressure 𝑝, 𝐶 is the specific heat at constant pressure, and 𝑅𝐶 the gas constant. 

We define upper tropospheric static stability, 𝑆𝑈𝑇 , at the standard pressure level closest to the tropopause height 

plus 50 hPa in pressure units, where the monthly-mean tropopause is calculated using the standard WMO 

definition (Reichler et al., 2003). This is to ensure that our definition of 𝑆𝑈𝑇  accounts for the zonal distribution of 240 

tropopause height.  

1

. 

(1) 
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Moist static energy, CAPE and CIN are calculated using the Metpy V1.3.1 Python package (May and 

Bruick, 2019). Moist static energy is calculated at standard pressure levels using monthly air temperature and 

relative humidity datasets. To approximate sub-cloud moist static energy, 𝑚, we average moist static energy from 

the surface to (and including) 700 hPa. We use MetPy’s “most unstable” CAPE and CIN function, which we 245 

calculate for all available CMIP models and ERA5. This involves calculating the most unstable air parcel from 

the temperature and humidity profiles, and hence calculating CAPE and CIN using this parcel. CAPE and CIN 

are first calculated using daily temperature, humidity and pressure values at standard CMIP pressure levels and 

then averaged for each month. Of the eighteen CMIP models, daily datasets for atmospheric temperature and 

humidity are only available for fourteen of the models (see Sect. S1 in Supplementary Material).  250 

Free-tropospheric vertical wind shear is calculated as the difference in 925 hPa and 300 hPa easterly 

wind speeds, 𝑈, standardised by the change in geopotential height, 𝑧, where 

∆𝑈300 =
𝑈300 − 𝑈925

𝑧300 − 𝑧925

 

with subscripts referring to the pressure levels for each variable  (Chakraborty et al., 2016). Both easterly and 

northerly wind shear have been assessed, though we only discuss easterly shear here as overall performance 255 

metrics are relatively consistent between the directions of shear.  

Tsfc, ω300, ω500 and RH700 are directly observable or modelled quantities. We define EIS and UTRH 

consistently with CN21. EIS is a measure of lower-tropospheric stability, defined relative to the temperature-

dependent moist adiabatic lapse rate (Wood and Bretherton, 2006) over global oceans. Over land, this is simply 

defined as the difference between the potential temperature at 700 hPa and the surface (Klein and Hartmann, 260 

1993). UTRH is the vertically averaged relative humidity within the 200 hPa-layer below the tropopause (again 

defined using the WMO standard definition). Monthly-mean climatologies for all CCFs can be found in Fig. S1. 

4 Method 

4.1 Ridge regression 

We use ridge regression to estimate sensitivities of cloud-radiative anomalies to changes in surrounding 265 

meteorological CCFs within two-dimensional spatial domains. While still being a linear least-squares regression 

approach, the inclusion of an L2-regularization penalty term means that the method can more effectively deal with 

high-dimensional regression problems than unregularized multiple linear regression (Hoerl and Kennard, 1970; 

CN21; Nowack et al., 2021).  This, in turn, allows us to consider larger domains of CCFs as predictors in the first 

place, leading to improved generalized predictive skill. The spatial domain within which CCFs are used to predict 270 

𝑅 at a central grid-cell, 𝑟, is referred to by the number of grid-cells in a longitude x latitude space (i.e., a 7x3 

domain corresponds to 35° longitude x 15° latitude, see also Fig. 1).  Five domain sizes are tested: 1x1, 7x3, 11x5, 

15x9 and 21x11. 

Statistical cross-validation is used to optimise the regression fit by minimising the cost function, 

𝐽𝑟𝑖𝑑𝑔𝑒 =  ∑ (𝑅(𝑟)𝑡 −  ∑ 𝑐𝑖𝑋𝑖,𝑡

𝑀

𝑖=1

)

2

+  𝛼 ∑ 𝑐𝑖
2

𝑀

𝑖=1

𝑛

𝑡=1

 275 (3) 

(2) 
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which puts a penalty on overly large regression coefficients, 𝑐𝑖; where 𝑛 is the number of datapoints; 𝑋𝑖,𝑡 is the 𝑖-

th CCF at time 𝑡; 𝑀 is the number of dimensions in the model (i.e., for a 7x3 domain using five unique CCFs, 

𝑀 = 7 𝑥 3 𝑥 5 =  105); and α the regularisation parameter. 

The first term in Eq. (3) is the ordinary least squares regression error. We classically approximate 𝑅(𝑟) 

by a linear function of anomalies in the set of 𝑀 cloud controlling factors,   280 

𝑅(𝑟) ≈  ∑
𝜕𝑅(𝑟)

𝜕𝑋𝑖

 𝜕𝑋𝑖 .

𝑀

𝑖=1

 

We refer to  

𝛩𝑖(𝑟) =  
𝜕𝑅(𝑟)

𝜕𝑋𝑖

 

as the sensitivities, 𝛩𝑖(𝑟), of 𝑅(𝑟) to anomalies in the 𝑖-th CCF. Again, see Fig. 1 for an example of the spatial 

pattern of for six CCFs using a 21x11 domain.   285 

 Using fivefold cross-validation, we determine the optimal value for the regularization parameter, α, 

where the second term in Eq. (3) is the L2-regularization penalty. We split the timeseries into five ordered time 

slices and optimise α by fitting Eq. (3) to each of four slices at a time. Optimal α is hence found by evaluating 

predictions on the fifth time slice using the R2 score independently for each location in the observed and modelled 

datasets.  290 

For Sect. 5.1, 5.2 and 5.4 we use sensitivities to subsequently predict two years of withheld data. We 

rotate the withheld dataset every two years, resulting in ten unique training-validation dataset combinations. 

Predictions are subsequently concatenated, resulting in a continuous twenty-year timeseries predicted “out-of-

sample”, with no datapoint having been predicted using the same dataset that the model was trained on. Standard 

performance metrics (Pearson 𝑟 correlation coefficient, R2 score, and root mean squared error, RMSE) are 295 

calculated using the concatenated predictions and the original twenty-year dataset. For Sect. 5.3, we use the 

sensitivities estimated from the full twenty-year dataset to visualise spatial distributions.  

5 Results and Discussion  

Here we present results for the CCF analyses for 𝑅𝐿𝑊, including a systematic assessment and 

intercomparison of possible CCF configurations. “CCF configuration” refers to the combination of meteorological 300 

variables used to predict 𝑅𝐿𝑊. Configurations are labelled based on which of the proposed CCFs (shown in Table 

1) are used in addition to the following core retained factors Tsfc, ω300, RH700, and UTRH (i.e., configuration 

𝑆𝑈𝑇 refers to predictions made using Tsfc, ω300, RH700, UTRH and 𝑆𝑈𝑇 ). Where appropriate, we additionally point 

to the corresponding 𝑅𝑁𝐸𝑇 results in the Supplementary Material.  

In the following, we compare CCF configurations using standard performance metrics for time series 305 

predictions. Since we learn separate CCF functions to predict 𝑅𝐿𝑊 at each 5° x 5° grid-point, we first evaluate the 

prediction performance of those functions individually, which we refer to as “local” predictions. We then average 

local performance metrics near-globally (i.e., for all available predictions, 60°S – 60°N inclusive), henceforth 

simply referred to as “globally” averaged, with grid-cells weighted by the cosine of their latitude. We also average 

metrics in the tropical ascent regions, which we define as grid-cells with observed climatological EIS < 1 K, ω500 310 

< 0 hPa s-1, and latitude equatorward of 30° (Medeiros and Stevens, 2011).  

3

. 

(4) 

(5) 
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We note that not all regions are equally cloudy, which leads to differently high levels of variance in 𝑅𝐿𝑊 

and, thus, signals for the regression to learn from. As a result, performance metrics tend to be lower in subsidence 

regions where there are few high clouds. For the global performance averages, we have addressed this issue by 

weighting grid-cells based upon their climatological mean 𝑅𝐿𝑊 in addition to the cosine of their latitude, to avoid 315 

penalising average metrics from low scores in regions with relatively little signal.  

Using the CCF framework, an observational constraint on global cloud feedback can be made using local 

𝑅𝐿𝑊 predictions under a forcing (such as 4xCO2) that are aggregated globally and normalised by the change in 

global mean surface temperature. Though we do not predict feedback here, we instead assess which CCF 

configuration best estimates the globally-aggregate 𝑅𝐿𝑊 by spatially averaging each local prediction and target 320 

value globally (and in tropical ascent regions) first, and then calculating the performance metrics. Henceforth, 

note a distinction between globally averaged metrics for local predictions (e.g., Fig. 2a-b) and metrics for globally-

aggregated 𝑅𝐿𝑊 (e.g., Fig. 2c-d).  

5.1 Predictive skill on observations 

We first assess CCF configuration skill for local predictions, with results shown in Fig. 2a-b (with 325 

columns c-d showing globally-aggregated results). Using ridge regression, all configurations predict out-of-

sample local 𝑅𝐿𝑊 well. This is reflected by local predictions that are strongly correlated to the observed values, 

with Pearson 𝑟 exceeding 0.75 and R2 scores larger than 0.60, at all domain sizes (shown in Fig. S2). To 

demonstrate the strengths of ridge regression while using collinear predictors in high dimensions, we briefly 

compare our results to the traditional multiple linear regression (MLR) approach. Using a 1x1 domain, there is 330 

little difference in skill between predictions made with MLR and ridge regression. However, while the predictive 

skill of ridge regression improves with increasing domain size and thus, the number of dimensions in the model, 

the opposite is true for MLR. Beyond 7x3, MLR coefficients become unstable, resulting in increasingly poor 

performance, and therefore these results are not shown.  

We find local performance to depend both on the CCF configuration, with 𝐸𝐼𝑆 (𝜔500) exhibiting the 335 

weakest performance, and, more prominently, on domain size (Fig. 2a-b) (note that 𝐸𝐼𝑆 (𝜔500) is the 

configuration used in CN21). Correlation matrices are qualitatively consistent between the performance metrics, 

though improvements are more pronounced for RMSE (at local scales) than for Pearson 𝑟 and R2 (likely owing to 

strict upper and lower limits for these metrics). We therefore show the RMSE in Fig. 2, with  R2 and Pearson 𝑟 

shown in Fig. S2. Though changes in local skill (when globally averaged) between the configurations are subtle, 340 
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we reaffirm that they are indeed robust in Sect. 5.2, showing qualitatively consistent results for the CMIP models. 

In this section, we will discuss configurations for the optimal domain size for local predictions (7x3).  

In line with Andersen et al. (2023), we find the largest improvement in 𝑅𝐿𝑊 predictive skill is achieved 

through changing ω from 500 hPa to 300 hPa (columns 1 and 2 of Fig. 2a-b). This suggests ω300 is indeed an 

important predictor for deep convective and cirrus cloud radiative effects (Ge et al., 2021). We do, however, find 345 

that this results in a slight drop in performance for 𝑅𝑁𝐸𝑇 (Fig. S3). We speculate that this is because 500 hPa 

instead better targets midlevel clouds which drive a shortwave contribution to 𝑅𝑁𝐸𝑇 that is not present for 𝑅𝐿𝑊. 

However, comparing across configurations using the same vertical velocity reveals that the best performing 

configurations for 𝑅𝑁𝐸𝑇 generally align with 𝑅𝐿𝑊 and owing to its strong longwave performance, for 

configurations henceforth we choose to replace ω500 with ω300.  350 

When globally averaged, changes to the local performance metrics beyond changing the vertical pressure 

velocity are small (Fig. 2a-b, and Fig. S2). This is likely because a large proportion of the monthly variability is 

already explained using only Tsfc, ω300, RH700 and UTRH without the inclusion of additional CCFs (i.e., for 7x3, 

R2 = 0.64 using core CCFs, compared with R2 = 0.69 using 𝐸𝐼𝑆 (𝑤300) in addition). In the tropical ascent regions, 

improvements are highest using 𝑆𝑈𝑇 +  𝑚, though more generally any configuration using 𝑆𝑈𝑇 . This is reflected 355 

Figure 2. Matrices showing skill metrics for predictions made for the observed RLW time series at each domain size 

using different “CCF configurations”. A “CCF configuration” refers to the selection of cloud controlling factors used 

to predict RLW. Each configuration uses Tsfc, RH700, UTRH and ω300 (with the exception of the first column, where ω500 

is used instead) and a candidate CCF(s) (e.g., SUT), which is used to label each column. Predictions are made locally, 

with the RMSE averaged (a) globally and (b) in tropical ascent regions defined as grid-cells with observed 

climatological EIS < 1 K, ω500 < 0 hPa s-1. Metrics are weighted by the cosine of latitude and monthly standard deviation 

of RLW of each grid-cell. Pearson 𝒓 is also shown for aggregated predictions, (c) globally and (d) in the tropical ascent 

regions, and compared to similarly aggregated observations. All predictions are made using ridge regression, except 

for row 1x1 (MLR) and 7x3 (MLR) in panels (a) and (b), which are made using multiple linear regression. Note 

different scales for each colorbar, with darker regions indicating higher skill (lower RMSE, higher Pearson 𝒓). 
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by the spatial distribution of the performance metrics, where any configuration including 𝑆𝑈𝑇  sees improvements 

to the skill metrics over the tropics. We additionally find more prevalent improvements in the extratropics using 

∆𝑈300 (spatial distributions shown in Fig. S4). 

Figure 3 shows an example of the performance metrics’ spatial distributions for the configuration 𝑆𝑈𝑇 +

 ∆𝑈300. The 𝑟 and R2 are largest in the tropics where high clouds are ubiquitous and there is a large standard 360 

deviation in monthly 𝑅𝐿𝑊, resulting in a strong signal for the regression model to learn from. Lower scores are 

present in the subsidence regions and the Southern Ocean. Despite low R2 scores in subsidence regions, the 

Pearson 𝑟 is generally high. By contrast, the RMSE is typically much smaller here than in the tropical ascent 

regions, where local R2 approaches unity. At first this may seem counterintuitive; however, the magnitude of the 

𝑅𝐿𝑊 signal in the tropical ascent regions is much larger than in subsidence regions. This means that, although a 365 

Figure 3. Skill metrics (from top to bottom: Pearson 𝒓, R2 score, and RMSE) for local predictions of observed 𝑹𝑳𝑾 time 

series using the configuration 𝑺𝑼𝑻 +  𝜟𝑼𝟑𝟎𝟎 (with Tsfc, RH700, UTRH and ω300), with CCFs within a spatial domain of 

21x11. Grey contours show the tropical ascent regions, defined as grid-cells with observed climatological EIS < 1 K, 

ω500 < 0 hPa s-1, and latitude equatorward of 30° (Medeiros and Stevens, 2011).  Note different scales for each colorbar, 

with dark regions showing “better” skill metrics.  

https://doi.org/10.5194/egusphere-2024-226
Preprint. Discussion started: 5 February 2024
c© Author(s) 2024. CC BY 4.0 License.



14 
 

greater proportion of the tropical ascent monthly variability is captured (represented by the high R2), the absolute 

difference between the observed and predicted signals may be larger than in subsidence regions where the RMSE 

is constrained by the small signal. This suggests that it is the small 𝑅𝐿𝑊 signal that is predominantly responsible 

for the low R2 scores and not poor model setup. In the Southern Ocean, we additionally speculate that poorer 

performance may be attributable to a reduced quality of reanalysis data, arising from fewer observations available 370 

for assimilation (Mallet et al., 2023).  

Neither CAPE nor CIN improve local predictive skill when globally averaged compared to alternative 

candidate CCFs. This appears partially due to being particularly poor predictors in the high-latitude extratropics. 

This is unsurprising; CAPE and CIN have been included as a CCF for their links to deep convection, which is not 

frequent outside of the warm tropics. Additionally, literature hints at a potentially non-linear relationship between 375 

CAPE, CIN and high-cloudiness that would not be captured by the linear ridge regression. For example, in high-

CAPE environments it is thought that there may generally be enough CAPE for convection to occur, indicating 

that the exact magnitude of CAPE is less important than passing a threshold for the onset of deep convection 

(Sherwood, 1999).  

We now assess predictive performance on the globally-aggregated 𝑅𝐿𝑊 time-series, with results shown 380 

in Fig. 2c-d. Here we use the Pearson 𝑟 to determine whether global trends are captured, though we again find 

that correlation matrices for each skill metric show qualitatively similar results (not shown). We again find 

improved skill for most of the CCF configurations compared to EIS (𝜔500) (i.e., the CN21 configuration), with 

performance also dependent on domain size for 𝑅𝐿𝑊 (Fig. 2c-d). While local prediction performance peaks at 7x3, 

we find a discrepancy with the globally-aggregated performance, which instead increases with domain size. For 385 

some configurations, 𝑟 continues to increase beyond 21x11, though this begins to tail off (not shown). The 

globally-aggregated results now align with the findings of CN21, where they show that the correlation between 

observed and predicted global cloud feedback increases with domain size. However, as domain size increases, so 

too do the number of dimensions in the model and thus the complexity. Owing to the trade-off between small 

improvements and increased complexity, we restrict our analysis to 21x11 and below, and henceforth discuss 390 

results using the 21x11 domain. 

We find that the performance metrics for globally-aggregated 𝑅𝐿𝑊 are comparatively worse than the 

globally-averaged local metrics. We suggest that this may be caused by accumulation of local errors, in addition 

to weaker variability in the globally-aggregated 𝑅𝐿𝑊 anomalies. However, while local predictions show only 

modest improvements between CCF configurations, we find more marked differences for the global predictions. 395 

Changing the pressure level of ω no longer results in the largest – if any – improvements. Instead, the addition of 

𝑆𝑈𝑇 +  ∆𝑈300 sees the largest leap in performance for global, and tropical ascent, predictions. This is generally 

consistent for 𝑅𝑁𝐸𝑇, where 𝑆𝑈𝑇  configurations outperform other candidate CCFs (see Fig. S3c-d).  

5.1.1 CCF importance at different spatial scales 

We suggest the discrepancy between optimal configurations may partially be caused by the relative 400 

significance of each CCF varying at different spatial scales. Owing to the linearity of ridge regression, we can 

partition the predicted local 𝑅𝐿𝑊 signal into contributions from each CCF, such that (for example) 

𝑅𝐿𝑊 = 𝑅𝐿𝑊(𝑇𝑠𝑓𝑐) + 𝑅𝐿𝑊(𝑅𝐻700) + ⋯ + 𝑅𝐿𝑊(∆𝑈300), 
(6) 
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where 𝑅𝐿𝑊(𝑇𝑠𝑓𝑐) is the component of 𝑅𝐿𝑊 predicted using only 𝑇𝑠𝑓𝑐  within the specified domain size (here we use 

21x11), and so on for each CCF in the configuration. For each CCF, we calculate the explained variance fraction 405 

(EVF) for 𝑅𝐿𝑊 at each grid-cell. Equation (6) can similarly be repeated for the global 𝑅𝐿𝑊 predictions, where local 

predictions are first globally-aggregated for each CCF and then summed. 

We find that the relative importance of the CCFs varies depending on whether predictions are assessed 

locally or globally-aggregated. Note that UTRH is consistently the most “important” predictor at both local and 

globally-aggregated scales. It is plausible that there is bidirectional causality, where the presence of high cloud 410 

influences UTRH by modulating the moisture content in the upper troposphere (i.e., outflow from convective 

anvils).  

Several studies point to thermodynamic changes dominating over dynamical effects for globally-

aggregated cloud feedback, likely because dynamical effects cancel out at sufficiently large scales (Bony et al., 

2004; Xu and Cheng, 2016; Byrne and Schneider, 2018). Conversely, thermodynamic and dynamical feedbacks 415 

have more comparable importance at more local scales. We find our results are broadly analogous to this. For 

configuration 𝑆𝑈𝑇 + ∆𝑈300, ω300 is the second most “important” predictor, contributing over 20 % of the 

variability in local 𝑅𝐿𝑊 predictions, shown in Fig. 4. However, the EVF for ω300 substantially decreases when 

globally-integrating  𝑅𝐿𝑊 to only 6.3 %. This additionally explains why there is little difference between the 

performance of ω300 and ω500 in Fig. 2c-d, despite resulting in the largest improvement (for a single CCF change) 420 

Figure. 4. Maps showing the explained variance fraction (EVF) as a percentage for local predictions of 𝑹𝑳𝑾 using a 

21x11 domain and using configuration 𝑺 + 𝜟𝑼𝟑𝟎𝟎 (with Tsfc, RH700, UTRH and ω300). “Global mean local EVF” refers 

to the global mean EVF from local predictions, weighted by the cosine of each grid-cell’s latitude. “Global EVF” refers 

to the EVF for each CCF’s contribution to the globally-aggregated 𝑹𝑳𝑾. 
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at local scales. On the contrary, we find that 𝑆𝑈𝑇  accounts for only 12.8 % of the local EVF (when globally 

averaged), making it the fourth (out of six) most “important” predictor. For global 𝑅𝐿𝑊 predictions, 𝑆𝑈𝑇  instead 

accounts for 25.6 % of the EVF. 

5.2 Predictive skill on CMIP models 

 425 

Now, we briefly present results for the CCF configurations using the CMIP5/6 models. Key questions 

are whether the CCF approach performs similarly between models and observations, and if there are any obvious 

discrepancies that could point towards the analysis framework being less applicable than in observations. 

Performance metrics are first calculated locally for each GCM. Independently for each GCM, local metrics are 

meaned globally and in tropical ascent regions. The multi-model median result is then taken, with results shown 430 

in Fig. 5a-b. Finally, we integrate predictions globally, and in tropical ascent regions, independently for each 

GCM. The predicted global and tropical ascent-aggregated time series are compared against the similarly 

aggregated target values, with multi-model medians shown in Fig. 5c-d. Again, note a distinction between globally 

averaged, local performance metrics, and globally-aggregated 𝑅𝐿𝑊 . 

Figure 5. Matrices showing the Pearson 𝒓 score between the observed RLW time series and predictions made at each 

domain size using different “CCF configurations”. A “CCF configuration” refers to the selection of cloud controlling 

factors used to predict RLW. Each configuration uses Tsfc, RH700, UTRH and ω300 (with the exception of the first column, 

where ω500 is used instead) and a candidate CCF(s) (e.g., SUT), which is used to label each column. The median has been 

calculated from 14 of the CMIP models (excluding the additional 4 without CAPE or CIN). Predictions are made 

locally, with the RMSE averaged (a) globally and (b) in tropical ascent regions, defined as grid-cells with observed 

climatological EIS < 1 K, ω500 < 0 hPa s-1. RMSE is weighted by the cosine of latitude and monthly standard deviation 

of RLW of each grid-cell. Predictions are hence aggregated (c) globally and (d) in the tropical ascent regions and 

compared to similarly aggregated observations using Pearson 𝒓. Here, all predictions are made using ridge regression. 

Note different scales for each colorbar, with darker regions indicating higher skill (lower RMSE, higher Pearson 𝒓). 
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CMIP results for local performance metrics (Fig. 5a-b) are largely analogous to the observations, with 435 

raising the pressure level of the vertical velocity resulting in the largest (though modest) improvement for 𝑅𝐿𝑊 

(but similarly decreasing skill for 𝑅𝑁𝐸𝑇) and an optimal domain of 7x3. Multi-model median Pearson 𝑟 and R2 

metrics are higher than in the observations, which may be expected due to intrinsic knowledge of the 

meteorological conditions embedded within the CMIP models. Slightly suppressed metrics for observed 𝑅𝐿𝑊 

could additionally be caused by a potential mismatch between the observed radiative anomalies and the reanalysis 440 

meteorological variables. This therefore results in metrics that are more consistent between CCF configurations 

than for the observed 𝑅𝐿𝑊. This is possibly due to the lower (higher) RMSEs (Pearson 𝑟 and R2
 scores) in the first 

place, which leaves less room for improvement. This is noticeable in Fig. 6, where models with poorer skill metrics 

(e.g., IPSL-CM5A-MR) show larger differences between CCF configurations than those with higher scores (e.g., 

MIROC5). Regardless, configurations 𝑚 + ∆𝑈300 and 𝑆𝑈𝑇 + ∆𝑈300 show the largest improvements to the 445 

predictive skill globally, and configurations containing 𝑆𝑈𝑇  in the tropical ascent regions.  

 Highlighting the uncertainties within the CMIP models themselves, there is a large spread in the global-

mean skill metrics shown in Fig. 6. For example, at the 7x3 domain, configuration 𝑆𝑈𝑇 +  𝛥𝑈300 spans global-

mean RMSE scores from 2.75 to 4.66 (and Pearson 𝑟 from 0.85 to 0.92, not shown). In the tropical ascent regions, 

there is larger spread in the skill metrics, with IPSL-CM5A-MR and IPSL-CM5A-LR highlighted as upper 450 

outliers. There is also a slight dependency on configuration regarding the inter-model spread of predictive skill, 

where we find that 𝑆𝑈𝑇  results in the lowest inter-model spread, and the upper outliers with the lowest RMSEs in 

tropical ascent regions.  

Figure 6. Individual model mean RMSE for local predictions made at the optimal 7x3 domain size using different “CCF 

configurations”. A “CCF configuration” refers to the selection of cloud controlling factors used to predict RLW. Each 

configuration uses Tsfc, RH700, UTRH and ω300 (with the exception of the first column, where ω500 is used instead) and 

a candidate CCF(s) (e.g., SUT), averaged (a) globally and (b) in the tropical ascent regions, with RMSE weighted by 

each grid-cell’s latitude and standard deviation for each of the 18 CMIP models. The multi-model median RMSE is 

shown from the 14 CMIP models that have CAPE and CIN available. Note that smaller values of RMSE correspond 

to a “better” configuration, and RMSE is higher in the tropical ascent regions owing to larger signals (see Fig. S5). 

https://doi.org/10.5194/egusphere-2024-226
Preprint. Discussion started: 5 February 2024
c© Author(s) 2024. CC BY 4.0 License.



18 
 

The spatial distributions of the performance metrics are qualitatively very similar to the observations, 

with the highest 𝑟 and R2 in the tropical ascent regions, and lowest over the Southern Ocean and subsidence 455 

regimes (see Fig. S5). While much of the Southern Ocean R2 fell between 0.2 and 0.3 for the observations, the 

multi-model median R2
 generally exceeds 0.5 (though again, with outliers). This helps to support our attribution 

of lower predictive skill over the Southern Ocean in the observations, at least in part, to the known lower quality 

of reanalysis datasets in this region (Mallet et al., 2023).  

For predictions of globally-aggregated 𝑅𝐿𝑊, skill metrics are again higher for the CMIP models than for 460 

the observations, though performance similarly peaks at 21x11, and the general pattern of the correlation matrices 

shown in Fig. 5c-d is similar to Fig. 2c-d. Here, any configuration including 𝑆𝑈𝑇  predicts global 𝑅𝐿𝑊 with the 

highest correlation coefficient. For the CMIP results, CAPE performs comparatively better than the observations. 

We speculate that the improved performance of CAPE in the models relative to the observations may be due to 

the way in which convection is parameterised in models. This would thus result in stronger modelled relationships 465 

between cloud-radiative anomalies and CAPE than exist in the observations.  

Once again, the correlation matrices for 𝑅𝑁𝐸𝑇 generally follow 𝑅𝐿𝑊, though configuration 𝑆𝑈𝑇  (without 

an additional sixth CCF) performs best, with ∆𝑈300 performing worse at every domain size (Fig. S3c-d). We 

speculate that shear mostly reflects dynamically-driven cloud anomalies that compensate each other at large 

scales, and hence cause little global signal in 𝑅𝑁𝐸𝑇  (Byrne and Schneider, 2018). Given the robust performance 470 

in CMIP models and generally analogous performance between the CCF configurations, we reaffirm that this 

analysis framework is applicable for modelled radiative anomalies as well as observed.  

5.3 Physical interpretation of the cloud-radiative sensitivities  

In addition to the statistical performance metrics shown above, we study the spatial distribution and 

magnitude of the sensitivities. Interpreting spatial sensitivities can be used in CCF analysis to justify predictor 475 

selection that is grounded in physical reasoning and can be done for any of the CCF configurations (e.g., Andersen 

et al., 2023). In this section, we physically interpret the sensitivities of 𝑅𝐿𝑊 to the CCFs in configuration 𝑆𝑈𝑇 +

 𝛥𝑈300 using a 21x11 domain, derived from observations and CMIP models (shown in Fig. 7). For local 𝑅𝐿𝑊 

predictions, many of the configurations perform similarly. However, sensitivities derived in this type of 

framework are widely used to constrain global feedback, which leads us to put more emphasis on our results for 480 

globally-aggregated 𝑅𝐿𝑊 predictions (Fig. 2 and 5, c-d). Here, we found more marked differences between the 

configurations, with 𝑆𝑈𝑇 +  𝛥𝑈300 (at the optimal 21x11 domain size) superseding other configurations for 𝑅𝐿𝑊 

and performing well for 𝑅𝑁𝐸𝑇  (only behind configuration 𝑆𝑈𝑇). Though we only show spatial sensitivities for 

configuration 𝑆𝑈𝑇 +  𝛥𝑈300 here, for alternative configurations to be used in CCF applications, such as an 

observational constraint on cloud feedback, we recommend similar physical interpretation of their sensitivities be 485 

performed. 

For each CCF in the configuration, we sum each contribution 𝛩𝑖  within the entire spatial domain (e.g., 

Eq. (5) for 𝑅𝐿𝑊) and plot the total for each grid-cell. This is the spatial sensitivity of the cloud-radiative anomaly 

to a given CCF, normalised for a one-standard deviation anomaly. Here, we derive the sensitivities using the full 

twenty-year datasets (with no dataset rotation). There are several studies interpreting relationships between cloud-490 

radiative anomalies and the core CCFs (e.g., CN21, Andersen et al., 2023), though not explicitly for high clouds. 

https://doi.org/10.5194/egusphere-2024-226
Preprint. Discussion started: 5 February 2024
c© Author(s) 2024. CC BY 4.0 License.



19 
 

Therefore, we first briefly interpret our sensitivities to the core CCFs, shown in Fig. 7a-d. We then assess the 

sensitivities for cloud properties (i.e., cloud top pressure and cloud fraction) before interpreting sensitivities for 

the additional CCFs, 𝑆𝑈𝑇 +  𝛥𝑈300. 

The observed and multi-model mean spatial distributions for the core CCFs – Tsfc  , ω300, UTRH and RH700 495 

– broadly align what we expect, and are qualitatively similar between the observations and multi-model means. 

For all CCFs except UTRH, the magnitude of the modelled sensitivities are smaller than the observed (not shown 

globally, though tropical ascent means are shown in Fig. 8). We note that the observed global median 

regularization parameter, α, lies towards the upper-end of the inter-model spread, exceeded by only three models 

(CanESM5, CanESM2, and MIROC-ESM; see Fig. S6). We speculate that the CCFs in the CMIP models typically 500 

capture the variability in 𝑅𝐿𝑊 with greater skill than the observations, thus requiring less regularization. It is also 

known that (CMIP5) GCMs underestimate the frequency of tropical anvil cloud and extratropical cirrus 

occurrence (Tsushima et al., 2013; Ceppi et al., 2017), and thus their radiative effects. This may also be responsible 

Figure 7. 𝑹𝑳𝑾 sensitivities (∑ 𝜣𝒊) to the cloud controlling factors in configuration 𝑺𝑼𝑻 +  ∆𝑼𝟑𝟎𝟎 (also with Tsfc, RH700, 

UTRH and ω300), derived using a 21x11 domain and defined for a one-standard deviation anomaly in each CCF (scaled 

using ERA5 CCFs for visualisation purposes). To produce the maps, we sum all elements of the sensitivity vectors at 

each point 𝒓. The left column shows observed sensitivities, and the right shows the multi-model mean.  
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for smaller sensitivities on average. We also note that sensitivities do not explicitly imply causality, as certain 

relationships are known to be bidirectional (e.g., 𝑅𝐿𝑊 and UTRH). 505 

The 𝑅𝐿𝑊 - 𝑇𝑠𝑓𝑐  sensitivities (i.e., Eq. (5) summed for all 𝑋 = 𝑇𝑠𝑓𝑐), shown in Fig. 7a, are generally small 

in magnitude, with regions of positive sensitivity in the Central and East Pacific, and with negative (or, for the 

CMIP models, a reduced magnitude) sensitivity over the Maritime continent. The 𝑅𝐿𝑊 - UTRH sensitivities are 

ubiquitously positive, and large in magnitude, consistent with increasing high-cloudiness with humidity, though 

Fig. 7d suggests that CMIP-modelled sensitivities are larger in magnitude than is observed. We speculate that this 510 

may be due to stronger coupling between upper-tropospheric humidity and cloud incidence in the CMIP models 

than in the observations (perhaps owing to the parameterization of clouds in the models (Li et al., 2012; Qu et al., 

2014)). The RH700 sensitivities are also widely positive (though negative at high latitudes), with smaller magnitude 

than UTRH (as we would expect for high clouds) and the largest magnitudes in the deep tropics. Indicating 

increased high-cloudiness with increased ascent, the ω300 sensitivities are near-ubiquitously negative, with the 515 

strongest magnitudes broadly aligning with the tropical ascent regions in both observations and the CMIP models.  

We can also use the decomposition of 𝑅𝐿𝑊 into its linear sum of contributions from changes in cloud top 

pressure (𝐶𝑇𝑃), cloud fraction (𝐶𝐹), optical depth, and a small residual (with other components held fixed), to 

further interpret our sensitivities (Zelinka et al., 2012a, b, 2016). We do not show optical depth sensitivities here, 

owing to their small role in driving LW high-cloud radiative anomalies (see Fig. S9). LW radiative anomalies 520 

caused by changes in the cloud properties are henceforth referred to using an additional subscript, i.e., 𝑅𝐿𝑊,𝐶𝑇𝑃 is 

the contribution that changes in cloud top pressure (with no change in 𝜏 or 𝐶𝐹) have on the total 𝑅𝐿𝑊. Sensitivities 

for the decompositions can be found in the Fig. S7. We average the domain-summed sensitivities in the tropical 

ascent regions, shown in Fig. 8. 

 525 
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The 𝑅𝐿𝑊 - 𝑇𝑠𝑓𝑐  sensitivities average to approximately zero in the tropical ascent regions for both 

observations and CMIP models (Fig. 8a). However, Fig. 7a shows a distinct positive sensitivity present over the 

Pacific Ocean, which we ascribe to an increase in high-cloud top pressure that is associated with warming sea 

surface temperature anomalies, thus radiating heat to space at cooler temperatures. Indeed, we find that the  spatial 

pattern of 𝑅𝐿𝑊,𝐶𝑇𝑃 - 𝑇𝑠𝑓𝑐  sensitivities in this area are predominantly positive (Fig. 8c, Fig. S7), as we would expect. 530 

Accordingly, the mean 𝑅𝐿𝑊,𝐶𝑇𝑃 - 𝑇𝑠𝑓𝑐  sensitivity in the tropical ascent regions is positive, with larger magnitude 

than the similarly averaged and opposite-signed 𝑅𝐿𝑊,𝐶𝐹 - 𝑇𝑠𝑓𝑐  sensitivities (Fig. 8). This is despite a much smaller 

monthly signal for 𝑅𝐿𝑊,𝐶𝑇𝑃  than 𝑅𝐿𝑊,𝐶𝐹. 

The 𝑅𝐿𝑊 - ∆𝑈300 sensitivity, shown in Fig. 7f, is more challenging to interpret than the core CCFs (Anber 

et al., 2014). This is partially due to the dynamic nature of wind shear; coefficients within the spatial domain 535 

capture dynamic variability signals, which may result in a range of positive and negative sensitivities, therefore 

cancelling in the summation over the 21x11 domain. Nonetheless, we suggest reasons for both positive and 

negative sensitivity. There is also less agreement between the observed and multi-model mean spatial distributions 

than all other CCFs, which we speculate may partially be caused by offset circulation cells in the CMIP models, 

resulting in different local sensitivities and dynamic signals. Over the Maritime Continent and Indian Ocean, 540 

observed sensitivities are broadly negative. It is known that wind shear can hasten the dissipation of tropical 

tropopause cirrus (Jensen et al., 2011) which would result in decreased cloudiness, and thus LW cooling. 

Conversely, there are many regions where the sensitivity is positive (such as the Central Pacific) which indicates 

LW warming with increased shear. We speculate that this is a result of shear spreading the high cloud, thus 

increasing cloud fraction (Lin and Mapes, 2004), and in turn reducing outgoing LW radiation. The role of wind 545 

shear may be sensitive to the pressure level relative to the tropopause (Chakraborty et al., 2016; Nelson et al., 

2022). Given that we use the same shear height (i.e., the difference in 300 hPa and 925 hPa wind speeds) globally, 

Figure 8. Observed and CMIP sensitivities to the cloud controlling factors in configuration 𝑺𝑼𝑻 +  ∆𝑼𝟑𝟎𝟎 (with Tsfc, 

RH700, UTRH and ω300), derived using a 21x11 domain and defined for a one-standard deviation anomaly for each 

CCF, averaged over all tropical ascent grid-cells for (a) RLW, (b) RLW,CF, and (c) RLW,CTP.  The standard deviation 

used to scale each CCF has been calculated from the observed CCFs.  
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we speculate the zonal distribution of tropopause heights may cause the differing relationships. Despite 

differences between the spatial distributions, both observed and the multi-model mean sensitivities in the tropical 

ascent regions are consistent with each other, and average to approximately zero (Fig. 8), which we might suspect 550 

given that shear is important for the organisation of convection which is not represented in GCMs.  

Finally, we address the 𝑆𝑈𝑇  sensitivities. Both the observed and multi-model mean 𝑅𝐿𝑊 - 𝑆𝑈𝑇  

sensitivities, shown in Fig. 7e, are predominantly negative, with largest magnitudes over the Central and West 

Pacific, and Maritime Continent (though more markedly so for the observations). Therefore, in the absence of 

changes in the other CCFs, anomalies in high cloud associated with an increase in 𝑆𝑈𝑇  would result in increased 555 

longwave emission to space over the tropics. This is what we expect, given the negative relationship between 

upper-tropospheric cloud incidence and static stability over tropical oceans (Li et al., 2014).  

The  𝑅𝐿𝑊,𝐶𝐹 - 𝑆𝑈𝑇  sensitivities are also negative across the tropics (see Fig. S7), revealing that LW 

cooling arises – at least in part – from a reduction in high-cloud fraction, particularly in observations. This 

qualitatively resembles the anvil iris mechanism (Bony et al., 2016; Saint-Lu et al., 2020). As anvil clouds rise in 560 

response to global warming, their environment becomes more stable, owing to the dependency of static stability 

on atmospheric pressure (Saint-Lu et al., 2020, 2022). In a more stable atmosphere, the vertical pressure gradient 

associated with subsidence in clear-sky conditions is reduced.  Owing to mass conservation, a reduction in the 

subsidence pressure gradient results in a reduction in anvil cloud fraction, caused by a decrease in horizontal 

convergence (Saint-Lu et al., 2020, 2022).  565 

Though it is thought to be small in magnitude, the anvil cloud area feedback is subject to much 

uncertainty and considered to be underestimated by GCMs (Zelinka et al., 2022). Consistent with this, we find 

that the magnitude of the CMIP 𝑅𝐿𝑊 - 𝑆𝑈𝑇  sensitivities in the tropical ascent regions is substantially smaller than 

the observed (Fig. 8a). Indeed, the observed tropical ascent mean 𝑅𝐿𝑊 - 𝑆𝑈𝑇  sensitivity lies below the range of the 

individual CMIP-models’ sensitivities. A large fraction of the total 𝑅𝐿𝑊 - 𝑆𝑈𝑇  sensitivity arises from the 𝐶𝐹 570 

component (Fig. 8b), which is consistently underestimated by the CMIP models. This is unsurprising; CMIP 

models have been  shown to underestimate the negative anvil cloud fraction feedback (Zelinka et al., 2022). Given 

that static stability has been shown to robustly control high-cloud fraction (Saint-Lu et al., 2022), and based on 

our results, we therefore speculate that the addition of 𝑆𝑈𝑇  into observational constraint frameworks may reduce 

some of the uncertainty arising from the anvil fraction feedback.  575 

We also find that the spatial distributions for the 𝑅𝐿𝑊,𝐶𝑇𝑃 - 𝑆𝑈𝑇  observed and multi-model mean 

sensitivities are similar to each other, mostly negative, and largest in magnitude in the tropics. This suggests that 

an increase in 𝑆𝑈𝑇  results in LW cooling, arising from a change (i.e., a decrease) in cloud top pressure. Increased 

static stability results in suppressed vertical motion, which in turn prevents cloud tops from rising as high as they 

might in a more unstable environment (Zelinka and Hartmann, 2010, 2011; Saint-Lu et al., 2022). Though the 580 

spatial distributions are similar, the magnitude of the CMIP 𝑅𝐿𝑊,𝐶𝑇𝑃 - 𝑆𝑈𝑇  sensitivities are once again smaller than 

the observed in the tropical ascent regions (Fig. 8c).  

As well as absorbing upwelling LW radiation, high clouds can reflect incident SW radiation depending 

on their optical depth. While the 𝑅𝐿𝑊 (and thus the sensitivities) is primarily driven by 𝐶𝐹 and 𝐶𝑇𝑃 changes, 𝑅𝑁𝐸𝑇 

is also driven by changes in optical depth, which predominantly affects SW radiative anomalies that we have not 585 

directly assessed. Thus, the net high-cloud radiative anomaly is comprised of complex interplay between 

competing LW and SW effects. However, we note that the magnitude of the observed 𝑅𝑁𝐸𝑇 - 𝑆𝑈𝑇  sensitivity is 
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smaller in magnitude than the 𝑅𝐿𝑊 − 𝑆𝑈𝑇 component, though the spatial distribution is similar (Fig. S8). 

Therefore, assuming an increase in 𝑆𝑈𝑇  with warming (Bony et al., 2016), the observed sensitivity suggests that 

the stability iris mechanism is dominated by the LW response, and thus contributes a negative net feedback. In 590 

contrast, the magnitude of the multi-model mean 𝑅𝑁𝐸𝑇 - 𝑆𝑈𝑇  sensitivity is notably smaller in comparison to the 

other CCFs. The multi-model mean sensitivities therefore suggest little change in anvil cloud fraction with 

increasing 𝑆𝑈𝑇 , and therefore only a very small net cloud feedback. This again reflects the known underestimation 

of the negative anvil cloud fraction feedback in CMIP models (Zelinka et al., 2022). Additionally, Zelinka et al. 

(2022) show that eight CMIP models (including six of those used in this research) predict an “unlikely” positive 595 

feedback arising from changes in anvil cloud fraction. Therefore, the near-zero multi-model sensitivities may also 

arise due to cancellation of local sensitivities between the models. 
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5.4 Predicting radiative anomalies from cloud fraction and cloud top pressure changes 

Based on the physical interpretation of the sensitivities, our results – combined with previous literature and theory –  

thus far support the use of 𝑆𝑈𝑇 +  𝛥𝑈300 in high-cloud controlling factor frameworks. We have shown that 𝑆𝑈𝑇 +  𝛥𝑈300 600 

reproduces the globally-aggregated 𝑅𝐿𝑊 time series with the highest skill in both observations and CMIP models, and the 

sensitivities shown in Fig. 7 suggest that the mechanisms driving high-cloud feedback – rising free-tropospheric clouds and 

reduction in anvil cloud fraction (Ceppi et al., 2017) – are captured by this selection of CCFs. Therefore, we finally question 

whether our approach captures the spatial pattern, temporal variability, and magnitude of these properties. 

We predict twenty years of cloud-radiative anomalies induced by 𝐶𝐹 and 𝐶𝑇𝑃 changes (with other components held 605 

fixed) for both observations and CMIP models, again using rotating eighteen-year datasets. The monthly radiative anomalies 

are aggregated globally and in tropical ascent regions (e.g., as in Figs. 2 and 4, c-d) and compared against similarly aggregated 

target values using the Pearson 𝑟 correlation coefficient (to ensure trends are captured by our framework). We do not assess 

optical depth-induced changes, owing to their small historical LW signal (see Fig. S9). Though optical depth is important for 

historical SW (and consequently, net) radiative anomalies, the high-cloud optical depth feedback is thought to be relatively 610 

small (Zelinka et al., 2022) and so we focus on 𝐶𝐹 and 𝐶𝑇𝑃. We place particular emphasis on the observations here, as the El 

Niño phase of the El Niño-Southern Oscillation (ENSO) from July 2015 to June 2016 saw anomalous warming in the East 

Pacific (see Fig. 9, top panel). ENSO is a dominant driver of natural ocean-atmosphere variability, resulting in regional tropical 

temperature and circulation anomalies that are accompanied by changes in cloud properties and the TOA radiation budget 

(Ceppi and Fueglistaler, 2021). Accordingly, July 2015 to June 2016 has one of the most anomalously warm annual mean 615 

surface temperatures in the 20-year record. We only highlight this El Niño event for the observed cloud properties, as it will 

be absent from the coupled historical simulations, and AMIP simulations do not reach 2016. 
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Out-of-sample globally-aggregated 𝑅𝐿𝑊,𝐶𝐹 is predicted well using the 𝑆𝑈𝑇 +  𝛥𝑈300 configuration (Fig. 10a). The 

spatial distribution of the El Niño 𝐶𝐹 anomalies (shown in Fig. 9) is also well reproduced, with a correlation coefficient of 𝑟 = 620 

0.93. There is a positive 𝑅𝐿𝑊,𝐶𝐹  anomaly in the East Pacific, overlapping the region of anomalous sea surface warming, 

indicating increased cloud fraction. Warmer SSTs enhance convection, resulting in increased upward motion, and thus 

increased high cloudiness. In the West Pacific, the SST anomaly is negative and smaller in magnitude, though there is a strong, 

negative 𝑅𝐿𝑊,𝐶𝐹 anomaly, indicating a reduction in cloud fraction. Owing to the shift in circulation, suppressed convection can 

result in anomalous subsidence, hence reducing high cloudiness.  625 

We also predict observed, globally-aggregated 𝑅𝐿𝑊,𝐶𝑇𝑃 well, though with slightly reduced correlation coefficients 

compared to 𝑅𝐿𝑊,𝐶𝐹. Figure 10b shows that the magnitudes of strong positive and negative anomalies are slightly 

underestimated; this may be caused by a small signal for the regression model to learn from (see Fig. S9). This may 

alternatively hint towards a non-linear relationship between cloud top pressure and the CCFs, which would not be captured by 

Figure 9. Observed mean El Niño surface temperature anomaly (top) and radiative anomalies (left panels), averaged from July 

2016 – June 2015 relative to the full twenty-year record. Predicted anomalies (right panels) made using a 21x11 domain and the 

configuration 𝑺𝑼𝑻 + ∆𝑼𝟑𝟎𝟎 (with Tsfc, RH700, UTRH and ω300) for the El Niño months. 
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ridge regression. Regardless, the spatial distribution of predicted El Niño 𝑅𝐿𝑊,𝐶𝑇𝑃 is again strongly correlated to the observed, 630 

here with 𝑟 = 0.81 (shown in Fig. 9). Strong positive anomalies are present over the East Pacific, which we ascribe to a rise in 

cloud top pressure due to enhanced convection. As the atmosphere warms, a shift of the 𝑅𝐿𝑊,𝐶𝑇𝑃 distribution towards higher 

values, particularly in the tropics, may be expected owing to the rising of free-tropospheric clouds (Ceppi et al., 2017). We 

note that the globally-aggregated, annual mean 𝑅𝐿𝑊,𝐶𝑇𝑃 during this El Niño event is most extreme, positive anomaly in the 

observed twenty-year record, and is reproduced with small absolute error (0.003 Wm σ-2). This is consistent with the extreme 635 

warmth during that period, and the associated rise of the tropopause. Despite potentially underestimating the amplitude of the 

monthly variability, our method does an excellent job capturing the most extreme positive anomaly out-of-sample (globally-

aggregated shown in Fig. 10; for tropical ascent aggregation, see Fig. S10). 

 

We additionally confirm that our framework predicts out-of-sample globally-aggregated 𝑅𝐿𝑊,𝐶𝐹 and 𝑅𝐿𝑊,𝐶𝑇𝑃  with 640 

good skill in the CMIP models, once again with slightly higher correlation coefficients than the observed (multi-model medians 

of 0.81 and 0.78, respectively; see Fig. S11). Though we only show results for the 𝑆𝑈𝑇 +  𝛥𝑈300 configuration here, we have 

additionally assessed each configuration’s ability to capture both 𝑅𝐿𝑊,𝐶𝐹 and 𝑅𝐿𝑊,𝐶𝑇𝑃  for each month during the 2015 – 2016 

El Niño (see coloured circles in Fig. 10 scatterplots). In a comparison of the El Niño months alone, we find that any 

configuration including 𝑆𝑈𝑇  reproduces tropically averaged 𝑅𝐿𝑊,𝐶𝑇𝑃  and 𝑅𝐿𝑊,𝐶𝐹  anomalies with stronger positive correlations 645 

than alternative CCFs (not shown). We reiterate that the 𝑆𝑈𝑇  sensitivities (Fig. 7e, Fig. S7) are physically congruent with 

previous literature, and appear to directly target the drivers of high-cloud feedback. We have additionally shown that the spatial 

distribution of the observed El Niño anomalies are captured well, including the extreme positive 𝑅𝐿𝑊,𝐶𝑇𝑃 anomaly, thus 

highlighting the strength of 𝑆𝑈𝑇 , in particular, as a high-cloud controlling factor. 

6 Conclusion 650 

A selection of candidate cloud controlling factors (CCFs) has been used to predict high-cloud radiative anomalies 

using ridge regression. We investigate five candidate CCFs: static stability in the upper troposphere, sub-cloud moist static 

energy, wind shear, convective available potential energy and convective inhibition, using the additional “core” meteorological 

drivers surface temperature, lower- and upper-tropospheric relative humidity, and upper-tropospheric vertical pressure velocity 

in each configuration. CCFs are used within a two-dimensional spatial domain to predict out-of-sample longwave cloud-655 

radiative anomalies, 𝑅𝐿𝑊. We assess configurations from local to globally-aggregated spatial scales, and physically interpret 

Figure 10. Scatter plot showing the correlation between observed and predicted monthly globally-aggregated (a) 𝑹𝑳𝑾,𝑪𝑭 and (b) 

𝑹𝑳𝑾,𝑪𝑻𝑷 time series using configuration 𝑺𝑼𝑻 +  𝜟𝑼𝟑𝟎𝟎 (in addition to Tsfc, RH700, UTRH, and ω300) and a 21x11 domain. El Niño 

months are shown using coloured circles, with the annual mean shown using a coloured square. Solid lines show y = x, and the 

dashed lines show the line-of-best fit through the points. For results in the tropical ascent regions, see Fig. S10. 
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the spatial distribution of the sensitivities for the configuration 𝑆𝑈𝑇 + ∆𝑈300. Finally, we assess the skill of 𝑆𝑈𝑇 +  ∆𝑈300 for 

predicting out-of-sample anomalies induced by changes in cloud top pressure and cloud fraction, including the El Niño event 

of 2015 – 2016.  

We find that the optimal domain size and CCF combination is dependent on the temporal and spatial scales assessed, 660 

and we summarise the most relevant findings here: 

1. All configurations predict out-of-sample historical variability for both 𝑅𝐿𝑊 (and 𝑅𝑁𝐸𝑇) anomalies with good skill for 

observations and CMIP models at local scales. A domain of 7x3 optimises local predictions, where we show that 

ridge regression skill surpasses traditional multiple linear regression. 

2. Converse to local predictions, predictive skill for globally-aggregated radiative anomalies increases with domain size, 665 

peaking at 21x11. Unravelling this domain size discrepancy between local and global predictions remains a key 

question for future research. Differences between the configurations are more pronounced at global scales, and based 

on these results we identify 𝑆𝑈𝑇   +  Δ𝑈300 as an optimal configuration that performs well at all scales. 

3. The main mechanisms driving high-cloud feedback – rising of free-tropospheric clouds and reduction of anvil cloud 

fraction – appear to be captured by the sensitivities in the 𝑆𝑈𝑇   +  Δ𝑈300 configuration. The spatial distributions of 670 

the 𝑅𝐿𝑊 sensitivities to the core CCFs and 𝑆𝑈𝑇   are physically consistent with our understanding and expectations, 

with observed and CMIP-modelled sensitivities qualitatively similar. There are larger differences between observed 

and the multi-model mean Δ𝑈300 sensitivities, which are more complex to interpret than the core CCFs and 𝑆𝑈𝑇  . 

4. Out-of-sample globally-aggregated anomalies induced by cloud top pressure and cloud fraction changes are predicted 

well using 𝑆𝑈𝑇   +  Δ𝑈300, in both observations and models. In particular, we obtain a quantitatively accurate out-of-675 

sample prediction of the observed extreme anomalies in 𝑅𝐿𝑊, 𝑅𝐿𝑊,𝐶𝐹 and 𝑅𝐿𝑊,𝐶𝑇𝑃 during the 2015 – 2016 El Niño. 

The corresponding spatial distributions are also predicted with high correlation coefficients (𝑟 > 0.80).  

Our systematic evaluation of high-cloud controlling factors highlights 𝑆𝑈𝑇  as an important addition to CCF 

frameworks. Of course, our work is only the first attempt to assess candidates for high-cloud controlling factors so we welcome 

future work on additional candidate factors that might not have been considered here. We have also identified an important 680 

inconsistency regarding ideal domain size for CCF predictions on historical data locally, and globally aggregated. Given the 

strong out-of-sample predictive power of our framework, in future work we will use our optimal CCF configurations to 

constrain high-cloud feedback. 
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