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Abstract

Clouds strongly modulate the top-of-the-atmosphere energy budget and are a major source of uncertainty
in climate projections. “Cloud Controlling Factor” (CCF) analysis derives relationships between large-scale
meteorological drivers and cloud-radiative anomalies, which can be used to constrain cloud feedback. However,
the choice of meteorological CCFs is crucial for a meaningful constraint. While there is rich literature investigating
ideal CCF setups for low-level clouds, there is a lack of analogous research explicitly targeting high clouds. Here,
we use ridge regression to systematically evaluate the addition of five candidate CCFs to previously established
core CCFs within large spatial domains to predict longwave high-cloud radiative anomalies: upper-tropospheric
static stability (Sy7), sub-cloud moist static energy, convective available potential energy, convective inhibition,
and upper-tropospheric wind shear (AUs,,). We identify an optimal configuration for predicting high-cloud
radiative anomalies that includes Sy and AU;,,, and show that spatial domain size is more important than the
selection of CCFs for predictive skill. We also find an important discrepancy between the optimal domain sizes
required for predicting local and globally-aggregated radiative anomalies. Finally, we scientifically interpret the
ridge regression coefficients, where we show that S, captures physical drivers of known high-cloud feedbacks,
and deduce that inclusion of Sy into observational constraint frameworks may reduce uncertainty associated with
changes in anvil cloud amount as a function of climate change. Therefore, we highlight S, as an important CCF

for high clouds and longwave cloud feedback.
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1 Introduction

Changes in clouds are the primary source of uncertainty in the quantification of equilibrium climate
sensitivity (ECS) — the long-term global warming response to a doubling of atmospheric carbon dioxide
(Sherwood et al., 2020; Zelinka et al., 2022). Cloud-induced radiative anomalies (R) at the top-of-the-atmosphere
(TOA) refer to changes in the balance of incoming and outgoing radiation caused by interaction with clouds.
While most evidence suggests that the change in R at the TOA as a function of global warming likely has a positive
effect on Earth’s energy balance and thus amplifies warming (e.g., Ceppi and Nowack, 2021), the magnitude of
this global cloud feedback remains highly uncertain (Ceppi et al., 2017; Sherwood et al., 2020; Zelinka et al.,
2022).

Motivated by the role of clouds as a key uncertainty factor, much progress has been made towards
understanding the mechanisms that drive changes in R, considering different cloud types under both natural
unforced variability and long-term climate change. In particular, such work includes theoretical understanding of
cloud feedback processes (e.g., Zelinka and Hartmann, 2010; Rieck, Nuijens and Stevens, 2012; Bony et al.,
2016); idealized regional modelling studies (Siebesma et al., 2003; Bretherton, 2015); convection-permitting
global climate models (Rio et al., 2019); and climate model evaluation studies (Zelinka et al., 2022).

Here, we aim to systematically advance an alternative approach widely used for understanding and
constraining uncertainties in cloud variability and trends in the form of Cloud Controlling Factor (CCF) analysis.
Exploiting observed relationships between large-scale satellite cloud observations and meteorological predictor
variables, CCF analyses have, for example, been used to derive observational constraints on cloud-related
uncertainty estimates (Myers and Norris, 2016; Andersen et al., 2017, 2022; Fuchs, Cermak and Andersen, 2018;
Ceppi and Nowack, 2021; Myers et al., 2021). In particular, meteorological CCFs for low marine and boundary-
layer clouds have been widely assessed (Qu et al., 2015; Brient and Schneider, 2016; Klein et al., 2017; Scott et
al., 2020; Andersen et al., 2022), with typical frameworks including CCFs such as surface temperature (Tsf.),
temperature advection, estimated boundary layer inversion strength (EIS), vertical velocity, 700 hPa relative
humidity (RH-,,) and near-surface wind speed. However, comparatively less research has specifically targeted
the CCFs for high clouds, despite their significant — and highly uncertain — contributions towards the total
estimated feedback (Sherwood et al., 2020). A systematic comparison of CCF candidates for high clouds within

a range of spatial domains will therefore be the main subject of this paper.
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Figure 1. CMIP multi-model mean longwave cloud-radiative sensitivities for a sample 5°x 5° target grid box (center
2.5° N, 142.5° E, indicated by the black box) to surface temperature (T ), vertical velocity at 300 hPa (w3o), relative
humidity at 700 hPa and in the upper troposphere (RHoo and UTRH, respectively), wind shear at 300 hPa (AU3q0),
and upper-tropospheric static stability (Sy7) using a 21x11 domain of grid-boxes around the target (corresponding to
110° longitude x 55° latitude area, centered on the grid-box.). Radiative anomalies are normalized for a one-SD (o)
anomaly in the controlling factors, based on monthly variability.

Our work builds on a modification to a previous CCF approach, which was introduced by Ceppi and
Nowack (2021, hereafter CN21). CN21 used ridge regression for their analyses, which allowed them to consider
large spatial domains of CCF predictor patterns around target grid points in which cloud-radiative anomalies were
predicted, with an example shown in Fig. 1. This approach contrasts with previous CCF analyses using standard
multiple linear regression, which are constrained to a small number of predictors (typically < 10). This allowed
their analysis to be extended beyond specific cloud regimes. As shown in CN21, the consideration of larger-scale
CCF patterns led to improvements in predictive skill for both shortwave (SW) and longwave (LW) global cloud
feedback. The intuition behind using spatial patterns of CCFs is motivated by the synoptic-scale atmospheric
system within which the lifecycle of clouds — from formation to cessation — occurs, resulting in more robust
predictions of global cloud feedback. Non-local features, such as large-scale patterns of sea-surface temperature
anomalies and changes in the atmospheric circulation (e.g., convergence and divergence) are implicitly encoded
using large spatial domains, which are not included in scalar CCF analysis despite their relevance for the context
in which cloud development occurs (when considering monthly averaged data typically used for CCF analyses
(Klein et al., 2017)). Altogether, considering larger-scale patterns resulted in better out-of-sample predictions,
which consequentially tightened the cloud-induced uncertainty in general circulation model (GCM)-modelled
ECS.

However, the framework introduced by CN21 highlighted an important limitation. As the same set of
five CCFs were used for SW and LW analyses, their predictive skill was markedly stronger for global SW and
net feedback components than for LW. Given that LW feedback is largely driven by high clouds, while SW

feedback is instead predominantly driven by the oft-studied low clouds, we speculate the performance deficit may
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be — at least to a degree — a symptom of CCF choice. Indeed, Zelinka et al. (2022) specifically recommend that
the drivers of high cloud feedback must be targeted to reduce cloud-related uncertainty in ECS estimates.

To address these open questions, we use ridge regression to methodically assess candidate CCFs of high
clouds within a range of spatial scales, aiming to inform CCF choice for future observational constraints on the
ECS uncertainty. Here, we target LW cloud radiative anomalies (R;y,) as they are more directly associated with
high clouds than SW (and consequently, net) radiative anomalies. We briefly assess implications of CCF choices
on net anomalies, Rygr noting that, historically, LW and SW high-cloud radiative anomalies tend to offset each
other, resulting in little net signal (Rygr) for thick clouds over monthly timescales. We therefore restrict our
analysis to clouds with top pressures smaller than 680 hPa; future references to “R” are therefore specifically
emanating from these non-low clouds (see Sect. 3.1 for the dataset used). Though radiative effects from midlevel
clouds are also by definition included in our analysis, we collectively refer to radiative anomalies as “high”
henceforth for simplicity (Zelinka et al., 2016).

We systematically assess static stability in the upper troposphere (S;+), sub-cloud moist static energy
(m), convective available potential energy (CAPE), convective inhibition (CIN) and upper tropospheric wind
shear (AU for easterly shear) as CCFs based on their physical relationships with high-cloud properties or
convection, with an overview presented in Sect. 2. Aiming to inform choices for future observational constraint
analyses, we only suggest CCFs that are readily available (or easily calculated from measurable quantities).
Alternative variables, such as the radiatively-driven divergence, horizontal mass convergence, and gross moist
stability, may also capture high-cloud properties but their derivation requires numerical modelling and hence we
do not consider them here. Sections 3 and 4 discuss the data and methods we use, respectively, with combined
results and discussion presented in Sect. 5. We first discern which CCF combinations can best predict out-of-
sample grid-cell scale historical internal variability. We then investigate which combinations best predict out-of-
sample globally-aggregated R;,,. Based on the results of our statistical testing, we physically interpret the
coefficients for a single (optimal) configuration of CCFs, and assess whether the spatial pattern, magnitude and

variability of the cloud properties (i.e., cloud top pressure and cloud fraction) are accurately captured.

2 High-Cloud Controlling Factors

Ubiquitously present over the tropics, cirrus, cirrostratus and deep convective clouds are responsible for
the largest annual-mean changes in global TOA LW flux (Chen et al., 2000). Tropical cirrus clouds develop
through one of two mechanisms: outflow from deep convective cores, or in-situ ice formation that is not associated
with convection (Gasparini et al., 2023; Kércher, 2017). The former, referred to as “anvil cirrus” together with a
mature cumulonimbus core, form tropical anvil clouds. “Thick” cirrus are both effective absorbers of upwelling
LW radiation and also efficient reflectors of incident SW radiation. Over time, dynamical, radiative and
microphysical processes can spread the thick anvil cirrus, extending anvil lifetime and resulting in larger cloud
cover than the initial convective core (Luo and Rossow, 2004; Gasparini et al., 2023). Such processes can result
in the formation of “thin” cirrus clouds, characterised by a relatively smaller SW cloud radiative forcing compared
to LW (Jensen et al., 1994; McFarquhar et al., 2000). Though deep convective clouds presently have relatively
small abundance (compared to other cloud types), their local radiative effects are large (Chen et al., 2000), and

therefore changes to their frequency of occurrence can have substantial impacts on cloud feedback. Despite this,
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most previous CCF analyses focused on low-cloud regimes so that the selection and design of CCFs were mainly
motivated by meteorological situations driving cloud formation and cessation in those cloud regimes (Klein et al.,
2017).

In CN21, a compromise was sought by considering classic CCFs such as Ty, EIS, and RH;, (relative
humidity at 700 hPa), but by also using the vertical velocity at 500 hPa (wsq,) and upper-tropospheric relative
humidity (UTRH, the vertically averaged relative humidity in the 200 hPa layer below the tropopause) as
predictors in an attempt to additionally target high clouds. In the following, we will build on the CN21 CCF set-
up, specifically targeting modifications and additions that are more likely to represent state variables important
for the aforementioned high clouds. One-by-one we will motivate these CCF candidates physically and formally
define, then test the prediction results of possible CCF combinations for high clouds in Sect. 5.

An overview of all CCFs considered and their scientific motivations is summarised in Table 1. We keep
Tsfc, RH790 , UTRH, and w (at variable pressure levels) in all configurations, which we refer to as the “core”
CCEFs, as they jointly explain a large portion of historical variability in R;,,, and are each physically related to
high-cloud formation. The large-scale distribution of tropical deep clouds is closely tied to the distribution of sea
surface temperatures (SSTs) and upper-tropospheric relative humidity (Bony et al., 1997; Li et al., 2014), with
research indicating that lower free-tropospheric relative humidity regulates the mean height of convective outflow
(Sherwood et al., 2004). Vertical velocities (o) indicate regions of subsidence or ascent, with enhanced ascending
motion supporting thicker, higher cloud layers (Ge et al., 2021). Andersen et al. (2023) find that the magnitude of
(local) sensitivity to o is largest at 300 hPa, hence we test vertical velocity at both 300 hPa and 500 hPa (used in
CNZ21) in this study.

Estimated boundary-layer inversion strength (EIS) is not typically regarded a controlling factor for high
clouds specifically, despite its wide use in general and low-cloud CCF analyses. This results in relatively little
literature interpreting high-cloud sensitivities to ES. Despite this, CN21 used only the T, and EIS sensitivities
to observationally constrain global cloud feedback for both SW and LW components. These sensitivities are
suitably decoupled from the clouds, and still achieve good (albeit poorer than SW and net) predictions for global
LW feedback. We therefore suggest five candidate CCFs as replacements for EIS that more directly represent
convective processes or high-cloud formation, that are also sufficiently external to the clouds themselves and may
be similarly used in constraints.

We list candidate CCFs (and EIS) and discuss them in turn below, with the exact definitions provided in
Sect. 3.2:

e Static stability is the vertical gradient of potential temperature, measuring the stratification of
the atmosphere (Grise et al., 2010). Upper-tropospheric static stability is robustly (negatively)
correlated with upper-level cloud incidence over much of the global ocean (Li et al., 2014) and
has been observationally linked with changes in tropical anvil cloud fraction through the “anvil
iris” thermodynamic mechanism (Bony et al., 2016; Saint-Lu et al., 2020, 2022). We expect
increases in local upper tropospheric static stability to result in local reductions in high cloud
fraction, with suppressed vertical motion;

e Moist static energy characterises the energy of an air parcel in a moist environment,
considering its internal energy (latent and sensible heat) and potential energy due to its

elevation. Sub-cloud moist static energy (i) may affect cloud formation, as higher levels of m
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signify increased potential for uplift and condensation. Additionally, when buoyant air from the
boundary layer fills the free troposphere, it can inhibit initiation of convection in colder regions,
setting a threshold that hinders further upward movement (Srinivasan and Smith, 1996; Zhang
and Fueglistaler, 2020). We suggest that high m increases local high-cloudiness, while in
contrast, we hypothesize that non-local m can either decrease (due to convective thresholds) or
increase cloudiness (depending on horizontal transport);

Convective available potential energy (CAPE) is a measure of deep instability, describing the
amount of energy available for an air parcel to rise freely through the atmosphere. CAPE offers
insights into the onset, genesis and scale of atmospheric deep convection, and has been
described as the fuel for a thunderstorm (Donner and Phillips, 2003; Jensen and Delgenio, 2006;
Riemann-Campe et al., 2009). We speculate increased CAPE suggests an environment
conducive to sustaining deep convection, and thus more high cloud;

Convective inhibition (CIN), a form of conditional instability and CAPE’s opposing
parameter, is a measure of the amount of energy required for a parcel to overcome a stable layer
of air and initiate the development of deep convection. A large absolute value of CIN may
indicate a stable atmosphere, and thus unfavourable conditions for the development of deep
convective clouds (Louf et al., 2019). Note that high CIN is a required precursor for the buildup
of CAPE. Once CIN has been overcome, conditions are favourable for deep convection;

Wind shear, defined here as the vertical change in horizontal wind speed, is an important
dynamical characteristic of the upper troposphere. Wind shear influences the organisation of
convective storms and mesoscale convective systems in various ways, though understanding its
relationship with cloud properties has proved historically challenging (Anber et al., 2014).
However, studies suggest that wind shear can increase cloud-top turbulence, spread and stretch
clouds horizontally through the advection of air at different levels and speeds, and hasten cirrus
cloud dissipation (Lin and Mapes, 2004; Marsham and Dobbie, 2005; Jensen et al., 2011). We
speculate wind shear mainly affects high-cloud fraction;

Estimated inversion strength (EIS) describes the strength of the boundary layer and is a
dominant control for low-clouds (Wood and Bretherton, 2006; Andersen et al., 2022, 2023) and
is widely used in general CCF analysis (CN21, (Klein et al., 2017). However, EIS is not
considered a driver of high-cloud incidence, but CN21 suggested that EIS may function as a

proxy for factors relating to deep convection.

Note that several candidate CCFs are not independent. For example, high values of CIN are required for

a buildup of CAPE, and a stable boundary layer may be represented by both high CIN and high EIS.



Table 1. High-cloud controlling factors used in CN21 and proposed here, physical explanations connecting them to

200 high clouds or convection, and the key studies supporting them. References to “clouds” in this table are for high clouds
only. EIS is not a core CCF, and therefore for conciseness we include EIS under the “Candidate CCFs” subheading.
Cloud controlling factor Physical explanation Key studies

Core cloud controlling factors
Surface temperature (T ) Warming surface temperature heats atmospheric (Bony et al., 1997; Zelinka
column; large-scale distribution of clouds is tied to and Hartmann, 2011;
atmospheric profile of temperature; anvil clouds Fueglistaler, 2019)
approximately rise with isotherms.
Free-tropospheric relative Regulates mean height of convective outflow. (Sherwood et al., 2004)
humidity (RH,q0)
Upper-tropospheric relative Tropical clouds tied to spatial distribution of (Bony etal., 1997; Lietal.,
humidity (UTRH) UTRH and lifetime of anvil clouds. A reciprocal 2014)
relationship may exist; UTRH modulated by
detrainment.
Vertical pressure velocity (w) Indicates regions of ascent and subsidence. (Geetal., 2021)
Enhanced ascending motion supports thicker clouds.
Candidate CCFs
Estimated boundary layer Limited literature; perhaps serves as a proxy for CN21
inversion strength (E1S) deep convective processes; strength of boundary
layer inhibits convection.

Upper- Static stability associated with radiatively driven (Zelinka and Hartmann,
tropospheric convergence; anvil altitude and amount collocate 2010; Li et al., 2014; Bony et
static stability with peak convergence. al., 2016; Saint-Lu et al,
(Sur) 2020, 2022)

Convective Available Potential Measure of deep instability; indicates energy (Donner and Phillips, 2003;
Energy (CAPE) available for convection. Jensen and Delgenio, 2006;
Chakraborty et al., 2016;
Loufetal., 2019)
Convective Inhibition (CIN) Shallow instability; indicates the energy required to (Louf et al., 2019)
leave stable boundary layer.
Sub-cloud moist static energy Moisture content of sub-cloud atmosphere fuels (Zhang and Fueglistaler,
(m) convection. 2020)
Upper-tropospheric wind shear Influences organisation of convective storms; (Lin and Mapes, 2004;
(AU300) affects cloud-top turbulence and mesoscale anvil Marsham and Dobbie, 2005;
formation,; affects cloud cover. Jensen et al., 2011)
3 Data
We use monthly-mean (unless explicitly mentioned otherwise) cloud property and CCF data, re-gridded
to a common 5°x5° resolution. At these spatial and temporal scales, we expect the clouds to be approximately in
205  equilibrium with their environment (Klein et al., 2017). To represent observed cloud-radiative data, we use
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combined Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals from both Aqua and Terra
instruments, identified as MCDO6COSP (Pincus et al., 2023). These retrievals are included as part of the CFMIP
Observation Simulator Package (COSP, where CFMIP refers to the Cloud Feedback Model Intercomparison
Project), which facilitates the evaluation of models against observations in a consistent manner (Bodas-Salcedo
et al., 2011). For climate model data, we use eighteen GCMs that have run the International Satellite Cloud
Climatology Project (ISCCP) simulator (Zelinka et al., 2012a) from the Coupled Model Intercomparison Project
phases 5 and 6 (CMIP5/6). For a full list of CMIP models used in this research, see Supplementary Material Sect.
S1. For the meteorological CCFs we use ERADS reanalysis data at monthly resolution, except for CAPE and CIN
which we first calculate using daily air temperature and relative humidity profiles, and then take the monthly
mean. We use reanalysis data as a proxy for direct observations; henceforth, when “observed” results are
discussed, we refer to predictions made for observed radiative anomalies using ERA5 meteorological CCFs.

We restrict the CMIP datasets to twenty years, aligned with the length of available observational record,
though with slightly different time periods. For observations, data is available from July 2002 to June 2022. For
the CMIP models, we use historical data from January 1981 to December 2000. We use this period because it is
close to the present-day climate, under the constraint of availability of historical CMIP data (and noting that only
a small set of models provide satellite simulator output for the RCP and SSP scenarios). For predictions of
observed and modelled R, we restrict our analysis from 60°S — 60°N. As is commonplace in CCF analysis, the
seasonal cycles (climatological averages of each month) have been removed from the CCFs and radiative
anomalies (Myers et al., 2021; Andersen et al., 2022). Prior to analysis, predictor variables are scaled to unit

variance and zero mean to weight signals equally in the optimisation process (Scott et al., 2020, CN21).

3.1 Cloud property histograms

Our analysis is based on histograms of cloud fraction as a joint function of cloud top pressure (CTP) and
cloud optical depth (7). Cloud-radiative kernels are used to convert binned cloud amount anomalies into top-of-
atmosphere radiative flux anomalies, and to partition these into contributions from changes in cloud top pressure
(CTP), cloud fraction (CF), and optical depth (z), with a small residual contribution (Zelinka et al., 20123, b,
2016). The cloud-radiative kernels we use here were first introduced in Zelinka et al. (2012a), with an improved
decomposition method presented in Zelinka et al. (2016). Note that the same kernels (developed using ERA5
Interim temperature, humidity and ozone profiles) are used to decompose both the observed and modelled

radiative anomalies. Cloud-radiative kernels are available from https://github.com/mzelinka/cloud-radiative-

kernels.

3.2 Meteorological cloud controlling factors

Static stability is calculated using an interpolated monthly air temperature, T, and pressure, p, profile.
The CMIP and ERA5 T — p profiles are interpolated to 100 vertical levels using cubic spline interpolation from
standard pressure levels. The static stability, S,,, at pressure level p is hence calculated using
_ R¢T, AT
P Cp dp
where C is the specific heat at constant pressure, and R, the gas constant. We define upper tropospheric static

)

stability, S;7, as an average over the interpolated pressure levels from the tropopause height in pressure units plus
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50 hPa and plus 200 hPa, where the monthly-mean tropopause is calculated using the standard WMO definition
(Reichler et al., 2003). We interpolate the T — p profile as standard pressure levels are too coarse to accurately
calculate the second term in Eq. (1). We vary the exact pressure levels that we average S, over to ensure that our
definition accounts for the zonal distribution of tropopause height.

Moist static energy, CAPE and CIN are calculated using the Metpy V1.3.1 Python package (May and
Bruick, 2019). Moist static energy is calculated at standard pressure levels using monthly air temperature and
relative humidity datasets. To approximate sub-cloud moist static energy, m, we average moist static energy from
the surface to (and including) 700 hPa. We use MetPy’s “most unstable” CAPE and CIN function, which we
calculate for all available CMIP models and ERA5. This involves calculating the most unstable air parcel from
the temperature and humidity profiles, and hence calculating CAPE and CIN using this parcel. CAPE and CIN
are first calculated using daily temperature, humidity and pressure values at standard CMIP pressure levels and
then averaged for each month. Of the eighteen CMIP models, daily datasets for atmospheric temperature and
humidity are only readily available for fourteen of the models (see Sect. S1 in Supplementary Material).

Free-tropospheric vertical wind shear is calculated as the difference in 925 hPa and 300 hPa easterly
wind speeds, U, standardised by the change in geopotential height, z, where

Uspo — U
e @
with subscripts referring to the pressure levels for each variable (Chakraborty et al., 2016). Both easterly and
northerly wind shear have been assessed, though we only discuss easterly shear here as overall performance
metrics are relatively consistent between the directions of shear.

Tsfc, W300, Wsoo AN RH5, are directly observable or modelled quantities. We define E1S and UTRH
consistently with CN21. EIS is a measure of lower-tropospheric stability, defined relative to the temperature-
dependent moist adiabatic lapse rate (Wood and Bretherton, 2006) over global oceans. Over land, this is simply
defined as the difference between the potential temperature at 700 hPa and the surface (Klein and Hartmann,
1993). UTRH is the vertically averaged relative humidity within the 200 hPa-layer below the tropopause (again
defined using the WMO standard definition). Monthly-mean climatologies for all CCFs can be found in Fig. S1.

4 Method
4.1 Ridge regression

We use ridge regression to estimate sensitivities of cloud-radiative anomalies to changes in surrounding
meteorological CCFs within two-dimensional spatial domains. While still being a linear least-squares regression
approach, the inclusion of an L2-regularization penalty term means that the method can more effectively deal with
high-dimensional regression problems than unregularized multiple linear regression (Hoerl and Kennard, 1970;
CN21; Nowack et al., 2021). This, in turn, allows us to consider larger domains of CCFs as predictors in the first
place, leading to improved generalized predictive skill. The spatial domain within which CCFs are used to predict
R at a central grid-cell, r, is referred to by the number of grid-cells in a longitude x latitude space (i.e., a 7x3
domain corresponds to 35° longitude x 15° latitude, see also Fig. 1). Five domain sizes are tested: 1x1, 7x3, 11x5,
15x9 and 21x11.

Statistical cross-validation is used to optimise the regression fit by minimising the cost function,
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which puts a penalty on overly large regression coefficients, c;; where n is the number of datapoints; X; , is the i-
th CCF at time t; M is the number of dimensions in the model (i.e., for a 7x3 domain using five unique CCFs,
M =7x3 x5 = 105); r the central-grid cell, and o the regularisation parameter.

The first term in Eq. (3) is the ordinary least squares regression error. We classically approximate R(r)

by a linear function of anomalies in the set of M cloud controlling factors,

dR(r) ~ " 9R() dx
i=1
We refer to
B OR(1) ©)
0;(r) = X,

as the sensitivities, 0;(r), of R(r) to anomalies in the i-th CCF. See Fig. 1 for an example of the spatial pattern of
for six CCFs using a 21x11 domain.

Using fivefold cross-validation, we determine the optimal value for the regularization parameter, a,
where the second term on the right-hand side of Eq. (3) is the L2-regularization penalty. We split the timeseries
into five ordered time slices and optimise o by fitting EQ. (3) to each of four slices at a time. Optimal « is hence
found by evaluating predictions on the fifth time slice using the R? score independently for each location in the
observed and modelled datasets.

For Sect. 5.1, 5.2 and 5.4 we use sensitivities to predict a two-year validation dataset. We repeat this
process, rotating the withheld data every two years resulting in ten unique training-validation dataset combinations
(see Supplementary Fig. S2 for a schematic of this process). Each of the ten two-year validation datasets are
subsequently concatenated, resulting in a continuous twenty-year timeseries predicted “out-of-sample”. The
rotation of training-validation datasets results in no datapoint having been predicted using the same dataset that
the model was trained on. Standard performance metrics (Pearson r correlation coefficient, R? score, and root
mean squared error, RMSE) are calculated using the concatenated predictions and the original twenty-year dataset.

For Sect. 5.3, we use the sensitivities estimated from a full twenty-year dataset to visualise spatial distributions.

5 Results and Discussion

Here we present results for the CCF analyses for R;,,, including a systematic assessment and
intercomparison of possible CCF configurations and domain sizes. “CCF configuration” refers to the combination
of meteorological variables used to predict R;,. Configurations are labelled based on which of the proposed CCFs
(shown in Tab. 1) are used in addition to the following core retained factors Tf., w309, RH700, and UTRH (i.e.,
configuration Sy refers to predictions made using T, w300, RH700, UTRH and Syr ). Where appropriate, we
additionally point to the corresponding Ry gy results in the Supplementary Material.

We first compare CCF configurations using standard performance metrics for time series predictions.
Since we learn separate CCF functions to predict R, at each 5° x 5° grid-point, we briefly evaluate prediction
performance of those functions individually, which we refer to as “local” predictions. We then average local

performance metrics near-globally (i.e., for all available predictions, 60°S — 60°N inclusive), henceforth simply

10
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referred to as “globally” averaged, with grid-cells weighted by the cosine of their latitude. We also average metrics
in the tropical ascent regions, which we define as grid-cells with observed climatological EIS < 1 K, wsy < 0 hPa
s%, and latitude equatorward of 30° (Medeiros and Stevens, 2011).

Using the CCF framework, an observational constraint on global cloud feedback can be made using local
R, predictions under a forcing (such as 4xCQ,) that are aggregated globally and normalised by the change in
global mean surface temperature. Though we do not predict feedback here, we instead assess which CCF
configuration best estimates the globally-aggregated R, by spatially averaging each local prediction and target
value globally (and in tropical ascent regions) first, and then calculating the performance metrics. Henceforth,
note a distinction between globally averaged metrics for local predictions (e.g., Fig. 2a-b) and metrics for globally-
aggregated R, (e.g., Fig. 2c-d).

11
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Figure 2. Matrices showing Pearson r for predictions made for the observed RLw time series at each domain size using
different “CCF configurations”. A “CCF configuration” refers to the selection of cloud controlling factors used to
predict Ruw. Each configuration uses Tgs., RH799, UTRH and w3go (With the exception of the first column, where
ws0ois used instead) and a candidate CCF(s) (e.g., Sut), which is used to label each column. Predictions are made locally,
with the Pearson r averaged (a) globally and (b) in tropical ascent regions defined as grid-cells with observed
climatological EIS < 1 K, wggo < 0 hPa s. Metrics are weighted by the cosine of latitude and monthly standard
deviation of RLw of each grid-cell (see Supplementary Material S2). Pearson r is also shown for aggregated predictions,
(c) globally and (d) in the tropical ascent regions, and compared to similarly aggregated observations. All predictions
are made using ridge regression, except for rows 1x1 (MLR), 7x3 (MLR) and 11x5 (MLR) in panels (a) and (b), which
are made using multiple linear regression. Note different scales for each colorbar.

We first assess CCF configuration skill for local predictions, with results shown in Fig. 2a-b (with
columns c-d showing globally-aggregated results). Using ridge regression, we confirm that all configurations
predict out-of-sample local Ry, well at all domain sizes (with correlation matrices qualitatively consistent using
R? and RMSE, not shown). To demonstrate the strengths of ridge regression while using collinear predictors in

high dimensions, we briefly compare our results to the traditional multiple linear regression (MLR) approach.

Using a 1x1 domain, there is little difference in skill between predictions made with MLR and ridge regression.
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Beyond 7x3, MLR coefficients become unstable, resulting in predictions that are not correlated with the observed
(e.g., 11x5; results for larger domain sizes are not shown).

(a) Local Riw (7x3 domain)
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Figure 3. Box and whisker plots (left panels) showing the distribution of observed predictive skill based on 100
bootstrapped samples of Ry, for a selection of the CCF configurations. Crosses show the means, notches show the
medians, and circles show the outliers. A “CCF configuration” refers to the selection of cloud controlling factors used
to predict RLw, where each configuration uses Tf, RH799, UTRH and wzq (with the exception of the first box and

whisker, where wsg is used instead) and a candidate CCF(s) (e.g., Syr), which is used to label each configuration. The
right panels show the shapes of the distributions using a kernel density estimator. The top panels (a) show the
distributions for local predictions at the 7x3 optimal domain size (analogous to Fig. 2a) and the bottom panels (b) show
the distributions for the 21x11 globally-aggregated optimal domain size (analogous to Fig. 2c). EIS (w3q) iS
highlighted in black to facilitate easier comparison between configurations.

We find local performance only slightly depends on the CCF configuration, with EIS (wsq,) exhibiting
the weakest performance (note that EIS (wsg,) is the configuration used in CN21). This is likely because a large
proportion of the monthly variability is already explained using only T, w309, RH700 and UTRH without the
inclusion of additional CCFs (i.e., for 7x3, R? = 0.64 using core CCFs, compared with R? = 0.69 using EIS (w3q,)

in addition). Though changes in local skill (when globally averaged) between the CCF configurations are subtle,
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we find qualitatively consistent results for the CMIP models reaffirming that changes are robust. Predictive skill
is instead more dependent on domain size, with metrics peaking at the 7x3 domain. We investigate this
dependency on domain size in more detail in Section 5.1.1.

In line with Andersen et al. (2023) (though note high-cloud radiative anomalies are not isolated in their
study), we find the single largest improvement in R;y, predictive skill is achieved through changing w from 500
hPa to 300 hPa, reflected by a large positive shift in the distributions shown in Fig. 3a. This suggests w5,, more
effectively predicts deep convective and cirrus cloud radiative effects than wsg, as we would expect (Ge et al.,
2021). We do find that this results in a slight drop in performance for Rygr (Fig. S3) which likely is because 500
hPa instead better targets midlevel clouds which drive a shortwave contribution to Rygr that is not present for
R,,,. However, comparing across configurations using the same vertical velocity reveals qualitatively similar
heatmaps for Ryzr and R, (note m performs slightly better for Ry than R;y,). An additional prominent shift
to the distribution arises through the inclusion of AU .

Given that raising the vertical pressure velocity results in a strong positive shift, we henceforth choose
to replace wsqo With w40, and compare further candidate CCF configurations with EIS (w50,) as a new baseline
for comparison (highlighted in black in Fig. 3). At the optimal 7x3 domain, we find configuration Sy + AUsq,
to reproduce observed local R;,, with the highest skill, and we hence show the spatial distributions for predictive
skill in Fig. S4.

To quantify whether differences between configurations are statistically significant for the observed
anomalies, we generate a distribution of Pearson r values using bootstrapping (Davison and Hinkley, 1997). We
randomly sample the observed data (with replacement) 100 times, creating datasets equivalent in length to 18
years. Any remaining months are used as a validation dataset, where r is determined against predicted values.
This process results in a distribution of 100 r values for each configuration, providing an estimate of predictive
skill uncertainty, with a selection of the configurations shown in Fig. 3. The non-parametric Kruskal-Wallis test
is hence used to identify statistical differences between all of the distributions. We find highly significant
differences between all of the configurations (p < 1073°). Accounting for its highest global median 7, we pairwise
test the predictive skill distribution for Sy + AU;4, With all other configurations (using an adjusted significance
level of 0.5 % to account for multiple hypothesis testing). We find statistical similarity with only m 4+ AU;,, and
AU;00 (p = 0.06 and p = 0.01, respectively).

We now focus on predictive performance for the globally-aggregated R, time-series, with results
shown in Fig. 2c-d and Fig. 3b. While local prediction performance peaks at 7x3 and is followed by a drop in
skill, we find a discrepancy with the globally-aggregated performance, which instead increases with domain size.
For some configurations, r continues to increase beyond 21x11, though this begins to tail off (not shown). The
relationship between domain size and predictive skill now aligns with the findings of CN21, where they show that
the correlation between observed and predicted global cloud feedback increases with domain size. However, as
domain size increases, so too do the model dimensions and thus the complexity. Owing to the trade-off between
small improvements at even larger domain sizes and increased complexity, we restrict our analysis to 21x11 and
below, and discuss globally-aggregated results using the 21x11 domain.

Here we find more marked improvements in predictive skill for most of the CCF configurations
compared to EIS (wsq,), With performance again strongly dependent on domain size (Fig. 2c-d). However, we

now find that changing the pressure level of w no longer results in a substantial positive shift of the skill
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distributions, though inclusion of AU, still results in improvements (Fig. 3b). We also note that performance
metrics for globally-aggregated R, ,, are comparatively worse than the globally-averaged local metrics. This is in
line with accumulation of local errors and reduced variability in the globally-aggregated anomalies. In a
comparison of all globally-aggregated distributions shown in Fig. 3b, there is evidence showing statistical
differences at the 5 % significance level (with p < 107%°). Here, m + AUsqo has the highest median r. In a
pairwise comparison of m + AU;,, with each other distribution, we find statistical differences with all
configurations except Syr + AUsoe (p = 0.02) and AUs;y, (p = 0.03), again using an adjusted 0.5 %
significance level owing to multiple statistical tests.

Neither CAPE nor CIN improve predictive skill at either scale compared to alternative candidate CCFs
for most domain sizes. CAPE and CIN have been included as a CCF for their links to deep convection, which is
not frequent outside of the warm tropics, resulting in being particularly poor predictors in the high-latitude
extratropics (Fig. S4; for CMIP see S5). Additionally, literature hints at a potentially non-linear relationship
between CAPE, CIN and high-cloudiness that would not be captured by the linear ridge regression. For example,
in high-CAPE environments it is thought that there may generally be enough CAPE for convection to occur,
indicating that the exact magnitude of CAPE is less important than passing a threshold for the onset of deep
convection (Sherwood, 1999). The distribution of predictive skill also suggests there is a more complex
relationship between CAPE (and CIN, not shown) and R, . Given that the distributions are calculated using
randomly resampled datasets through bootstrapping with replacement, datapoints will be repeated. This reduces

the diversity of the training data, which can result in poorer generalization of more complex or noisy relationships.

5.1.1 CCF importance at different spatial scales

We investigate the evolution of predictive skill with domain size for local and globally-aggregated
predictions. Owing to the linearity of ridge regression, we can partition the predicted local R,y signal into

contributions from each CCF, such that (for example)
Ry = RLW(TSfC) + RLW(RH700) +-+ RLW(AU300): (6)
where RLW(Tst) is the component of R, predicted using only T, within the specified domain size and so on

for each CCF in the configuration. For each CCF, we calculate the explained variance fraction (EVF) for R, at
each grid-cell. Equation (6) is repeated for the global R, predictions, where local predictions are first globally-
aggregated for each CCF and then summed. CCFs with higher EVFs are referred to as more “important” for the
predicted values (i.e., UTRH is typically the most important predictor for both local and globally-aggregated
predictions (shown in Fig. 4)). Note that it is plausible that this may show bidirectional causality, where the
presence of high cloud influences UTRH by modulating the moisture content in the upper troposphere (i.e.,
outflow from convective anvils), though our analysis cannot separate the direction.

The interaction between domain size, cloud controlling factors, and predictive skill is complex. We
summarise key points below:

e There is an emergent distinction between “local” and “non-local” predictors. For example, EVF
for UTRH decreases with increasing domain size and, accordingly, we find that local UTRH
sensitivities typically have strong magnitudes close to target grid-cell, with noisy, spatially
incoherent coefficients further afield (see Fig. S6a-b for an example); thus, we describe UTRH

as a “local” CCF (similarly for wso and RHy¢g).
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e EVFfor Tys, AUsq0, and Sy increases with domain size (i.e., “non-local” predictors), and each

contribute a greater proportion of the globally-aggregated predictions compared to local
420 predictions (Fig. S6¢c-d).

o  Predictive skill is likely a trade-off between adding relevant information from “non-local” CCFs
while adding superfluous information from “local” CCFs; i.e., too distant information does not
provide additional predictive skill, at least to the degree that it would outweigh the
corresponding increase in dimensionality of the regression problem.

425 e For globally-aggregated predictions, wsq is the least important predictor (compared to the
second most important for local predictions), thus explaining why the choice of pressure level

of w is less relevant at global scales (shown in Fig. 4) than locally.

45°S

45°E
Global mean local EVF = 13.3% Global mean local EVF = 17.2%
Global EVF = 16.0% Global EVF = 19.3%

135°E 135°W 45°W

Global mean local EVF = 17.6% Global mean local EVF = 17.9%
Global EVF = 13.1% Global EVF = 12.4%

45°E 135°E 135°E

Global mean local EVF = 20.9% Global mean local EVF = 13.2%
Global EVF = 25.0% Global EVF = 14.2%

Figure 4. Maps showing the explained variance fraction (EVF) as a percentage for local predictions of R,y using a
21x11 domain and using configuration § + AU3zqq (With Tgs., RH799, UTRH and w3gg). “Global mean local EVF”
refers to the global mean EVF from local predictions, weighted by the cosine of each grid-cell’s latitude. “Global
EVF” refers to the EVF for each CCF’s contribution to the globally-aggregated Ry .

Our first three points involve the interaction between increasing model dimensions and the addition of

potentially relevant context provided by the larger spatial domain. We discuss these points in more detail in

430 Supplementary Material, Sect. S3. Addressing the last point, we note that several studies point to thermodynamic
changes dominating over dynamical effects for global cloud feedback, likely because dynamical effects cancel

out at sufficiently large scales (Bony et al., 2004; Xu and Cheng, 2016; Byrne and Schneider, 2018). Conversely,

thermodynamic and dynamical feedbacks have more comparable importance at more local scales. We find our
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results broadly analogous to this. The relatively large EVF for w at local scales (17.9 %, the second highest in
Fig. 4) explains why replacing wgoo With w30 results in a positive shift to the skill distributions (Fig. 3a). In
contrast, globally-aggregated EVF for w5, is comparatively smaller (12.4 %, the lowest value in Fig. 4). This
points to the cancellation of large-scale dynamically driven signals when globally-aggregated, thus explaining
why there is little difference between the performance of wsq, and wsq, in Fig. 2c-d, despite resulting in a large
improvement for a single CCF change at local scales. Finally, given that w, an important “local” predictor, cancels
out at globally-aggregated scales, the “non-local” predictors — such as Tz, — contribute a larger proportion of the
total predicted Ry, thus explaining — at least in part — the discrepancy between globally-aggregated and local

anomalies.

5.2 Predictive skill on CMIP models

Now, we briefly present results for the CCF configurations using the CMIP5/6 models. Key questions
are whether the CCF approach performs similarly between models and observations, and if there are any obvious
discrepancies that could point towards the analysis framework being less applicable than in observations.
Performance metrics are first calculated locally for each GCM. Independently for each GCM, local metrics are
meaned globally and in tropical ascent regions. The multi-model median result is then taken, with results
analogous to Fig. 2a-b shown in Fig. S7a-b. Finally, we aggregate predictions (globally and in tropical ascent
regions) independently for each GCM. The predicted global and tropical ascent-aggregated time series are
compared against the similarly aggregated target values. Again, note a distinction between globally averaged,

local performance metrics, and globally-aggregated R, throughout this discussion.

17



455

460

(a) Globally Aggregated (b) Tropical Ascent Aggregated

" * L CanEsSM2

. CanESM5
CNRM-CMB-1
CNRM-ESM2-1
GFDL-CM4
HadGEM3-GC31-LL
HadGEM2-ES
UKESM1-0-LL
IPSL-CMGA-LR
IPSL-CM5A-LR
IPSL-CM5A-MR
. ° - v MIROC-ESM
+  MIROC-ES2L
0.80 - < MIROCS
v T »  MIROC6E
T v 4 & MPI-ESM-LR
0.4 " A " MRI-ESM2-0
0.75 . MRI-CGCM3
— Multi-model median

0.95

T

0.8

H ol i+
olos-o:
oo < -

e o 50 &

¥
L]

el i
H ue apor
]

mpe o

Epe @i dha >
]
[ ]

0.7

e | o 4n we
I 2
T T
2 4 e
.

- Eprde - o @
c el |- GBe
e ol $rI@

S

3

s B joBe 0 @
¢ ¥ ee

o

[=)]
Pearson r

o

o

w

®

Pearson r
e ¢ s H & & & » <«

N N \S‘ (0 & q“’ > . & . S ‘ & ‘ N \S‘
At S et ot s
& @ & e & & &K

> EIS (w300)

0.8 x . - o
:x x X g + + **?ai: 3 **'x . i % Sur+ BUsgs
x -] o - o ) X
. 5 = : ® . ’ . t & 4 + <

Pearson r
o o
o~ o
]
x
.
)
— M
x
oo M
x
3 S
e—

0.2 g5
W @\‘) ,L.'\ 6,'& ‘;\D‘ wg\ (9\!\ ™ » (‘,b ,1', ‘1\’5 ¢
(’—00@6 (p(\?f’ 5(,6‘1\ \,\L QOVC 'Qm' L)\y\\" é\@b (l‘;\‘)? @@V“ OCIQ’ («,9@\@0 @?‘ %6“\ \q&“\ ‘C‘C')(" \\«\06
PR ‘,\3 ~<\3 & ° & \QC:\' W W & v
G
2
(d) Tropically Aggregated Skill Distribution
a = = =
0.9 x = E oy == = w E o W = ,-Ix
x xg___' Ex :x.xp o ¥ 1 xIx
0.8 g o t 3

=] o

o xlx

Pearson r

o o
L= ~
oM
x
[x2
e
X —
TE—

) Ao o WG oF 0 v 5 6 & 0 O e
R L B WY @ o N BRed” (O (9“ pr
A W © JoiNes c,\" O’\ oo S Salits SR L Y. SR e
O c,@“'*\x?’é W @@ @ N aE S
N

Q\’b

Figure 5. Pearson r scores for (a) globally- and (b) tropical ascent-aggregated predictions made at the 21x11 domain
size using different “CCF configurations”. A “CCF configuration” refers to the selection of cloud controlling factors
used to predict Ruw. Each configuration uses T, RH799, UTRH and w3qo (With the exception of the first column,
where wsgg is used instead) and a candidate CCF(s) (e.g., Sut). The multi-model median Pearson r is shown from the
14 CMIP models where CAPE and CIN is calculated. The bootstrapped (n = 100) predictive skill distributions for
EIS (w300) and Sy + AU3qo are shown at the optimal 21x11 domain size for (c) globally-aggregated predictions and
(d) tropical-ascent aggregated predictions.

The CMIP Pearson r correlation matrices are broadly analogous to the observed, where general patterns
found in Fig. 2 are also present in Fig. S7 . We once again find a discrepancy in optimal domain size, with local
performance peaking at 7x3 and globally-aggregated R;,, peaking at 21x11. Differences include higher multi-
model median skill metrics compared to the observations, which may be expected due to intrinsic knowledge of
the meteorological conditions embedded within the CMIP models. Additionally, suppressed metrics for observed
R, could be caused by slight mismatches between the observed radiative anomalies and the reanalysis
meteorological variables. This therefore results in metrics that are more consistent between CCF configurations

than for the observed R, . In addition, smaller differences between configurations may in part be caused by higher
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metrics in the first place, leaving less room for improvement. We also find that CAPE performs comparatively
better for the CMIP models than in the observations. This may be due to the way in which convection is
parameterised in GCMs, thus resulting in stronger modelled relationships between cloud-radiative anomalies and
CAPE than exist in the observations.

Highlighting uncertainties within the CMIP models themselves, there is a large spread in the skill metrics,
shown for aggregated predictions in Figure 5a-b. We find that changes to the globally-aggregated performance do
not imply similar changes to the tropical ascent-aggregated performance. For example, S, shows a slight decrease
in the global multi-model median r compared to EIS (w3q0), despite showing a positive shift for predictions
aggregated in the tropical ascent regions. Secondly, improvements to the multi-model median r do not imply that
each GCM shows improvements independently. For example, the multi-model median r for tropical ascent-
aggregated predictions made using configuration Sy has improved compared to configuration EIS (wsq0);
models such as MRI-CGCM3, GFDL-CM4 and IPSL-CM5A-MR have large leaps in Pearson r. Conversely,
MIROC-ESM, CanESMS5, and HadGEM2-ES show decreases. Opposing improvements and deteriorations of
predictive skill is partially responsible for relatively small change in multi-model r between the configurations
for the CMIP models.

In Section 5.1, we highlighted Sy + AU5, as a possible optimal configuration. Here we identify whether
differences between the CMIP-modelled predictive skill distributions for EIS (ws00) and Syr + AUso, are
statistically significant. In a pairwise Kruskal-Wallis test on the combined Pearson r scores from all 18 models
(n = 1800), we find a significantly higher predictive skill distribution for Sy 4+ AUsoq than EIS (w300) Withp <
10~ (distributions not shown). This is unsurprising; 15 of the 18 individual CMIP models have a higher median
r using Syr + AUsq, compared with EIS (w500)-

Despite a slightly lower multi-model median, we find that the globally-aggregated distributions for all
models combined are statistically similar at the 5 % significance level (shown in Fig. 5¢, p = 0.13). Here, only
half of the CMIP models have a higher median r using Sy + AU, compared with EIS (wso,). However, visual
inspection of the distributions for predictions aggregated in the tropical ascent regions (Fig. 5d) suggests that
improvements found using Sy + AUsq, instead of EIS (w3q0) are more pronounced than any deteriorations. In
summary, while the mean evolution of predictive skill within the CMIP models is broadly aligned with the
observations, there are nuances which likely depend on the parameterization within the models themselves (Li et
al., 2012; Qu et al., 2014, Rio et al., 2019). This leads to a slightly different evolution of predictive skill with

configuration between the CMIP models.

5.3 Physical interpretation of the cloud-radiative sensitivities

In addition to the statistical performance metrics, we study the spatial distribution and magnitude of the
sensitivities. Interpreting spatial sensitivities can be used in CCF analysis to justify predictor selection that is
grounded in physical reasoning and can be done for any of the CCF configurations (e.g., Andersen et al., 2023).
Though our analysis has identified two strong configurations, Sy + AUzeo and m + AU;,,, We only physically
interpret the sensitivities of Ry, to the CCFs in configuration S, + AU;q, in this section. We choose Sy +
AU, Over m + AU;,, based on the wider literature examining the relationship between high-cloud occurrence

and static stability (e.g. Li et al., 2014) and due to the link between static stability and changes in tropical anvil
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cloud fraction through the “anvil iris” thermodynamic mechanism (Bony et al., 2016; Saint-Lu et al., 2020, 2022).
We recommend similar physical interpretation of sensitivities be performed should alternative configurations be
used in similar CCF applications, such as constraining cloud feedback.
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Figure 6. Ry sensitivities (3 @;) to the cloud controlling factors in configuration Syr + AUsgq (also with Tgs., RH7qo,

UTRH and w3qg), derived using a 21x11 domain and defined for a one-standard deviation anomaly in each CCF (scaled
using ERA5 CCFs for visualisation purposes). To produce the maps, we sum all elements of the sensitivity vectors at
each point r. The column (a) shows observed sensitivities, and column (b) shows the multi-model mean. Column (c)
shows zonal average sensitivity for the observations (dashed line), the multi-model mean (dark solid line) and individual
CMIP model sensitivities. The Pearson r correlation coefficient for the zonal mean sensitivities is shown in the bottom
corner of each panel.

For each CCF in the configuration, we sum each contribution ©; within the entire spatial domain (e.g.,

Eqg. (5) for R;y,) and plot the total for each grid-cell. This is the spatial sensitivity of the cloud-radiative anomaly
to a given CCF, normalised for a one-standard deviation anomaly. Here, we derive the sensitivities using the full
twenty-year datasets (with no dataset rotation or bootstrapping). There are several studies interpreting
relationships between cloud-radiative anomalies and the core CCFs (e.g., CN21, Andersen et al., 2023), though
not explicitly for high clouds. Therefore, we first briefly interpret our sensitivities to the core CCFs, shown in Fig.
6a-d. We then assess the sensitivities for cloud properties (i.e., cloud top pressure and cloud fraction) before

interpreting sensitivities for the additional CCFs, Sy + AUsq,.
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The observed and multi-model mean spatial distributions for the core CCFs — T, w399, UTRH and
RH,,, — broadly align what we expect, and are qualitatively similar between the observations and multi-model
means. We note that the observed global median regularization parameter, o, lies towards the upper-end of the
inter-model spread (not shown). We speculate that the CCFs in the CMIP models typically capture the variability
in R;,, with greater skill than the observations, meaning less regularization is required on average. For all CCFs
except UTRH, the magnitude of the modelled sensitivities are smaller than the observed (tropical ascent
sensitivities shown in Fig. 7). It is known that (CMIP5) GCMs underestimate the frequency of tropical anvil cloud
and extratropical cirrus occurrence (Tsushima et al., 2013; Ceppi et al., 2017), and thus their radiative effects
which can also explain smaller sensitivities on average.

The Ry, — T, sensitivities (i.e., Eq. (5) summed for all X = Tsz.) shown in Fig. 6a, are generally small
in magnitude, with regions of positive sensitivity in the Central and East Pacific (responsible for a slight positive
peak in observed zonal mean sensitivity), and with negative (or, for the CMIP models, reduced magnitude)
sensitivity over the Maritime continent. The R, - UTRH sensitivities are ubiquitously positive and large in
magnitude, consistent with increasing high-cloudiness with humidity, though Fig. 6d shows that CMIP-modelled
sensitivities are consistently larger in magnitude than is observed. This is possibly due to stronger coupling
between upper-tropospheric humidity and cloud incidence in the CMIP models than in the observations, owing to
the parameterization of clouds in the models themselves (Li et al., 2012; Qu et al., 2014). The RH,, sensitivities
are also widely positive (though negative at high latitudes), with smaller magnitude than UTRH (as we would
expect for high clouds) with the largest magnitudes in the deep tropics. Indicating increased high-cloudiness with
increased ascent, the w3y, sensitivities are near-ubiquitously negative, with the strongest magnitudes broadly
aligning with the tropical ascent regions in both observations and the CMIP models.

We use the decomposition of R, into its linear sum of contributions from changes in cloud top pressure
(CTP), cloud fraction (CF), optical depth, and a small residual (with other components held fixed), to further
interpret our sensitivities (Zelinka et al., 2012a, b, 2016). We do not show optical depth sensitivities here, owing
to their small role in driving LW high-cloud radiative anomalies (see Fig. S10). LW radiative anomalies caused
by changes in the cloud properties are henceforth referred to using an additional subscript, i.e., Ry crp is the
contribution that changes in cloud top pressure (with no change in 7 or CF) have on the total R, ;. Sensitivities
for the decompositions can be found in the Fig. S8-S9. We average the domain-summed sensitivities in the tropical

ascent regions, shown in Fig. 7.
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Figure 7. Observed and CMIP sensitivities to the cloud controlling factors in configuration Sy + AUz (With T,
RH 49, UTRH and w3qg), derived using a 21x11 domain and defined for a one-standard deviation anomaly for each
CCF, averaged over all tropical ascent grid-cells for (a) Rw, (b) Ruw.cr, and (¢) Ruw.cte. The standard deviation
used to scale each CCF has been calculated from the observed CCFs.

The R,y - Ty sensitivities average to approximately zero in the tropical ascent regions for the
observations (Fig. 7a) with good agreement globally between the CMIP models and observations (zonal-mean
r = 0.52). Figure 6a shows a distinct positive sensitivity present over the Pacific Ocean, which we ascribe to an
increase in high-cloud top pressure that is associated with warming sea surface temperature anomalies, thus
radiating heat to space at cooler temperatures. We find that the spatial pattern of R,y crp - Tsf. Sensitivities in the
tropics are widespread positive (Fig. S9), as we would expect (though more strongly positive in the models than
the observations). Accordingly, the observed Ry, crp - Tssc SENSitivities in the tropical ascent regions are positive,
with larger magnitude than the similarly averaged and opposite-signed Ry, cr - Tsf. Sensitivities (Fig. 7). This is
despite a much smaller monthly signal for observed Ryy crpthan Ryy cr. The modelled Ry crp - Tspc
sensitivities are stronger than the Ry, cr - Tss counterparts, resulting in the slightly more positive CMIP R, y,-
Tz sensitivities.

The Ry, - AU, Sensitivity, shown in Fig. 6f, is more challenging to interpret than the core CCFs (Anber
et al., 2014). This is partially due to the dynamic nature of wind shear; coefficients within the spatial domain
capture dynamic variability signals, which may result in a range of positive and negative sensitivities, therefore
cancelling in the summation over the 21x11 domain. There is also less agreement between the observed and multi-
model mean spatial distributions than all other CCFs, which may partially be caused by offset circulation cells in
the CMIP models, resulting in different local sensitivities and dynamic signals (zonal-mean r = —0.01). Here,
we suggest reasons for both positive and negative sensitivity. Over the Maritime Continent and Indian Ocean,
observed sensitivities are broadly negative. It is known that wind shear can hasten the dissipation of tropical
tropopause cirrus (Jensen et al., 2011) which would result in decreased cloudiness, and thus LW cooling.
Conversely, there are many regions where the sensitivity is positive (such as the Central Pacific) which indicates

LW warming with increased shear. This may be a result of shear spreading the high cloud, thus increasing cloud
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fraction (Lin and Mapes, 2004), and in turn reducing outgoing LW radiation. The role of wind shear may be
sensitive to the pressure level relative to the tropopause (Chakraborty et al., 2016; Nelson et al., 2022). Given that
we use the same shear height (i.e., the difference in 300 hPa and 925 hPa wind speeds) globally, it is likely that
the zonal distribution of tropopause heights may cause the differing relationships. Despite differences between
the spatial distributions, both observed and the multi-model mean sensitivities in the tropical ascent regions are
consistent with each other, and average to approximately zero. We suspect this may due to shear being important
for the organisation of convection, which is not represented in GCMs.

Finally, we address the S, sensitivities. Both the observed and multi-model mean R,y - Syr
sensitivities, shown in Fig. 6e, are predominantly negative in the tropics, with largest magnitudes over the Central
and West Pacific, and Maritime Continent (though more markedly so for the observations). Therefore, in the
absence of changes in the other CCFs, anomalies in high cloud associated with an increase in S, would result in
increased longwave emission to space over the tropics. This is what we expect, given the negative relationship
between upper-tropospheric cloud incidence and static stability over tropical oceans (Li et al., 2014).

The observed Ry cr - Syr sensitivities are negative across the tropics, most strongly in regions with
high R, ¢ Signals (see Fig. S8). This reveals that LW cooling arises — at least in part — from a reduction in high-
cloud fraction, qualitatively resembling the anvil iris mechanism (Bony et al., 2016; Saint-Lu et al., 2020). As
anvil clouds rise in response to global warming, their environment becomes more stable, owing to the dependency
of static stability on atmospheric pressure (Saint-Lu et al., 2020, 2022). In a more stable atmosphere, the vertical
pressure gradient associated with subsidence in clear-sky conditions is reduced. Owing to mass conservation, a
reduction in the subsidence pressure gradient results in a reduction in anvil cloud fraction, caused by a decrease
in horizontal convergence (Saint-Lu et al., 2020, 2022).

We find that the mean CMIP Ry, - Syr sensitivity in the tropical ascent regions is smaller in magnitude
than the observed, with considerable disagreement in sign (ranging from -1.0 to 0.44 Wm ¢ *; Fig. 7a). Most of
the total Ry, - Syr sensitivity arises from the CF component (Fig. 7b), where the CMIP model-mean approaches
zero, though has a similarly large range. Though it is thought to be small in magnitude, the anvil cloud area
feedback is subject to much uncertainty and underestimated by GCMs (Zelinka et al., 2022), consistent with our
results. CMIP models are known to predict a wide range of anvil cloud fraction feedbacks, including “unlikely”
very positive feedback (Zelinka et al., 2022) which is perhaps reflected by strong positive tropical Ry, - Syr
sensitivities for two GCMs (Fig. S8e). Given that static stability has been shown to robustly control high-cloud
fraction (Saint-Lu et al., 2022), and based on our results, we propose that the addition of Sy, into observational
constraint frameworks may reduce some of the uncertainty arising from the anvil fraction feedback.

We also find that the spatial distributions for the Ry crp - Syr observed and multi-model mean
sensitivities are broadly similar with zonal-mean correlation r = 0.60. For observations, the Ryy crp - Syr
sensitivity is negative in the West Pacific and Maritime Continent, indicating that an increase in Sy results in
LW cooling, arising from a change (i.e., a decrease) in cloud top pressure. Increased static stability results in
suppressed vertical motion, which in turn prevents cloud tops from rising as high as they might in a more unstable
environment (Zelinka and Hartmann, 2010, 2011; Saint-Lu et al., 2022). Negative sensitivities in the tropical
ascent regions are less prevalent for the models, with negative sensitivities more widespread in the subtropics.
This results in a smaller magnitude of the CMIP Ry, crp - Syr Sensitivities in the tropical ascent regions (Fig.
7c).
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As well as absorbing upwelling LW radiation, high clouds can reflect incident SW radiation depending
on their optical depth. While R, (and thus the sensitivities) is primarily driven by CF and CTP changes, Rygr iS
also driven by changes in optical depth, which predominantly affects SW radiative anomalies that we have not
directly assessed. Thus, the net high-cloud radiative anomaly is comprised of complex interplay between
competing LW and SW effects. The magnitude of the observed Rygr — Syr sensitivity is much smaller than the
R, — Syr component in the tropical ascent regions, though the spatial distribution is broadly similar (Fig. S11),
and negative in many high-cloud regions. This suggests that, assuming an increase in Sy with warming (Bony et
al., 2016), high-clouds exert a negative (though weak) net feedback. However, the observed CMIP-mean tropical
ascent Rygr cr — Syr Sensitivities average to approximately zero, indicating a very weak anvil cloud area feedback
with increasing S;. While a weak anvil cloud feedback may be expected (McKim et al., 2024), it is also thought
CMIP models tend to underestimate a negative anvil cloud fraction feedback (Zelinka et al., 2022). Additionally,
Zelinka et al. (2022) show that eight CMIP models (including six of those used in this research) predict an
“unlikely” positive feedback arising from changes in anvil cloud fraction. Therefore, the near-zero multi-model

sensitivities may also arise due to cancellation of local sensitivities between the models.
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5.4 Predicting radiative anomalies from cloud fraction and cloud top pressure changes

Based on the physical interpretation of the sensitivities, our results — combined with previous literature and theory —
thus far support the use of Sy, + AUy, in high-cloud controlling factor frameworks. We have shown that Sy + AUsq,
reproduces the local and globally-aggregated R, with high skill for observations, and performs well for the CMIP models.
Additionally, the sensitivities shown in Fig. 6 suggest that the mechanisms driving high-cloud feedback — rising free-
tropospheric clouds and reduction in anvil cloud fraction (Ceppi et al., 2017) — are captured by this selection of CCFs at the
21x11 domain. Finally, we question whether our approach captures the spatial pattern, temporal variability, and magnitude of
these properties.

We predict twenty years of cloud-radiative anomalies induced by CF and CTP changes (with other components held
fixed) for both observations and CMIP models, again using rotating eighteen-year datasets. We globally aggregate the
predicted anomalies (e.g., as in Fig. 2c) and compare against similarly aggregated target values using the Pearson r correlation
coefficient. We do not assess optical depth-induced changes, owing to their small historical LW signal (see Fig. S10). Though
optical depth is important for historical SW (and consequently, net) radiative anomalies, the high-cloud optical depth feedback
is thought to be relatively small (Zelinka et al., 2022) and so we focus on CF and CTP. We place particular emphasis on the
observations here, as the El Nifio phase of the El Nifio-Southern Oscillation (ENSO) from July 2015 to June 2016 saw
anomalous warming in the East Pacific (see Fig. 8, top panel). ENSO is a dominant driver of natural ocean-atmosphere
variability, resulting in regional tropical temperature and circulation anomalies that are accompanied by changes in cloud
properties and the TOA radiation budget (Ceppi and Fueglistaler, 2021). Accordingly, July 2015 to June 2016 has one of the
most anomalously warm annual mean surface temperatures in the 20-year record. We only highlight this EI Nifio event for the
observed cloud properties, as it will be absent from the coupled historical simulations, and AMIP simulations do not reach
2016.

25



640

645

650

Out-of-sample globally-aggregated R, cr is well predicted by configuration Sy + AUsqe, With a correlation
coefficient of 0.63. The spatial distribution of the EI Nifio CF anomalies closely follows the R;,, distribution owing to its large
signal, and is reproduced accurately with a correlation coefficient of » = 0.93 (Fig. 8). There is a positive R, cr anomaly in
the East Pacific, overlapping the region of anomalous sea surface warming, indicating increased cloud fraction. Warmer SSTs
enhance convection, resulting in increased upward motion, and thus increased high cloudiness. In the West Pacific, the SST
anomaly is negative and smaller in magnitude, though there is a strong, negative R, cr anomaly, indicating a reduction in
cloud fraction. Owing to the shift in circulation, suppressed convection can result in anomalous subsidence, hence reducing
high cloudiness. Our configuration predicts R,y ¢ With slight negative error in the East Pacific, indicating an underestimation

of the increased cloud fraction. In the West Pacific, where there is an observed reduction in cloud fraction, our predictions

have little error.
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-l g R =
52 3% A5 0P 29 a2 209 415 1% 2% 425 4020
Wm=? AWM~

Figure 8. Observed mean El Nifio surface temperature anomaly (top) and radiative anomalies (panel (a)), averaged from July 2016
—June 2015 relative to the full twenty-year record. Predicted anomalies (panel (b)) made using a 21x11 domain and the configuration
Syr + AUzg (With Tgfe, RH799, UTRH and w3gp) for the El Nifio months. The difference (predicted — observed) is shown in the

panel (c). The Pearson r spatial correlation between (a) and (b) is shown in the bottom left of panel (b). Note different colorbar
ranges.

We also predict observed, globally-aggregated Ry, crp Well, though with slightly reduced correlation coefficients
compared to Ry, cr (r = 0.68). Figure 9b shows that the magnitudes of strong positive and negative anomalies are slightly
underestimated; this may be caused by a small signal for the regression model to learn from (see Fig. S10). Alternatively, this
may hint towards a non-linear relationship between cloud top pressure and the CCFs, which would not be captured by ridge

regression, and (in addition to CCF selection) could explain poorer skill for predicting LW cloud feedback (CN21). Regardless,
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the spatial distribution of predicted EIl Nifio R,y crp is again strongly correlated to the observed, here with = 0.80 (Figure
9a). Strong positive anomalies are present over the East Pacific, which we ascribe to arise in cloud top pressure due to enhanced
convection. As the atmosphere warms, a shift of the Ry, crp distribution towards higher values, particularly in the tropics,
may be expected owing to the rising of free-tropospheric clouds (Ceppi et al., 2017). We note that the globally-aggregated,
annual mean Ry, crp during this EI Nifio event is most extreme, positive anomaly in the observed twenty-year record, and is
reproduced with small absolute error (-0.01 Wm2). Accordingly, we predict the most positive Rygr crp annual anomaly with
similarly small absolute error and correlation coefficient (absolute error -0.01 Wm2, r = 0.57; see Fig. S12). This is consistent
with the extreme warmth during that period, and the associated rise of the tropopause. Despite potentially underestimating the
amplitude of the monthly variability, our method does an excellent job capturing the most extreme (positive) annual anomaly
out-of-sample (Fig. 9b). We also find that configurations Sy and Syr + AUz, predicts the tropical mean El Nifio Ry crp

with the smallest absolute error (not shown).
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Figure 9. Scatter plot showing the correlation between observed and predicted monthly globally-aggregated (a) Ry cr and (b)
Ry crp time series using configuration Syr + AUz (in addition to Tgr., RH799, UTRH, and wzgp) and a 21x11 domain. EI Nifio
months are shown using coloured circles, with the annual mean shown using a coloured square. Solid lines show y = x, and the
dashed lines show the line-of-best fit through the points. For Rygr cr and Rygr crp, see Fig. S12.

We additionally confirm that our framework predicts out-of-sample globally-aggregated Ry, cr and Ry crp With
good skill in the CMIP models, once again with slightly higher correlation coefficients than the observed (multi-model medians
of r = 0.75 and 0.77, respectively). To summarise, we have shown that the spatial distribution of the observed El Nifio
anomalies are captured well, including the most extreme positive Ry, crp annual anomaly, thus highlighting the strength of
our proposed configuration Sy + AUs,,. We reiterate that the S, sensitivities (Fig. 6e, Fig. S8e-S9¢e) are physically congruent

with previous literature, and appear to directly target the drivers of high-cloud feedback.

6 Conclusion

Few studies directly assess cloud controlling factors for high clouds despite their substantial contributions to cloud
feedback. Here, a selection of candidate cloud controlling factors (CCFs) have been used to predict high-cloud radiative
anomalies using ridge regression. We investigate five candidate CCFs: static stability in the upper troposphere, sub-cloud
moist static energy, wind shear, convective available potential energy and convective inhibition, using the additional “core”
meteorological drivers surface temperature, lower- and upper-tropospheric relative humidity, and upper-tropospheric vertical
pressure velocity in each configuration. CCFs are used within a two-dimensional spatial domain to predict out-of-sample

longwave cloud-radiative anomalies, R;,,. We assess configurations from local to globally-aggregated spatial scales, and
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physically interpret the spatial distribution of the sensitivities for the configuration Sy + AUsq,. Finally, we assess the skill
of Syr + AUsq, for predicting out-of-sample anomalies induced by changes in cloud top pressure and cloud fraction, including
the El Nifio event of 2015 — 2016.

We find that the optimal domain size and CCF combination is dependent on the temporal and spatial scales assessed,
and we summarise the most relevant findings here:

1. All configurations predict out-of-sample historical variability for both R;, (and Rygr) with good skill for
observations and CMIP models at local scales. A domain of 7x3 optimises local predictions, where we show that
ridge regression skill surpasses traditional multiple linear regression.

2. Converse to local predictions, predictive skill for globally-aggregated (i.e., a global spatial average) radiative
anomalies increases with domain size, peaking at 21x11. We suggest a trade-off between local and non-local
predictors is partially responsible for this domain size discrepancy between local and global predictions, though
unravelling this remains a key question for future research.

3. The main mechanisms driving high-cloud feedback — rising of free-tropospheric clouds and reduction of anvil cloud
fraction — appear to be captured by the core and candidate CCFs in the Sy + AUsq, configuration. The spatial
distributions of the R;,, sensitivities to the core CCFs and Sy are physically consistent with our understanding and
expectations, with observed and CMIP-modelled sensitivities qualitatively similar. There are larger differences
between observed and the multi-model mean AU, sensitivities, which are more complex to interpret than the core
CCFsand Syr.

4. Out-of-sample globally-aggregated anomalies induced by cloud top pressure and cloud fraction changes are predicted
well using Sy + AUsq,, in both observations and models. In particular, we obtain a quantitatively accurate out-of-
sample prediction of the observed extreme anomalies in R;y,, Ry cr and Ryy crp during the 2015 — 2016 El Nifio.
The corresponding spatial distributions are also predicted with high correlation coefficients (r > 0.80).

Our systematic evaluation of high-cloud controlling factors highlights Sy + AUz, as a possible optimal
configuration for CCF frameworks. Of course, our work is only the first attempt to assess candidates for high-cloud controlling
factors so we welcome future work on additional candidate factors that might not have been considered here. We have also
identified an important inconsistency regarding ideal domain size for CCF predictions on historical data locally, and globally
aggregated. Given the strong out-of-sample predictive power of our framework, in future work we will use our optimal CCF

configurations to constrain high-cloud feedback.

Data availability

ERAS meteorological reanalysis data is freely available from the Copernicus Climate Change Service (C3S) Climate
Data Store (Hersbach, H., et al, 2023a DOI: 10.24381/cds.f17050d7, Hersbach, H., et al., 2023b,
DOI: 10.24381/cds.6860a573 and Hersbach, H., et al., 2023c, DOI: 10.24381/cds.bd0915c6). Combined MODIS Aqua/Terra
data are also freely available and downloaded monthly (Bodas-Salcedo et al., 2011, DOI:
10.5067/MODIS/MCD06COSP_M3_MODIS.062). All CMIP5/6 data were obtained from the UK Center for Environmental
Data Analysis portal (https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/).
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