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Abstract

Clouds strongly modulate the top-of-the-atmosphere energy budget and are a major source of uncertainty
in climate projections. “Cloud Controlling Factor” (CCF) analysis derives relationships between large-scale
meteorological drivers and cloud-radiative anomalies, which can be used to constrain cloud feedback. However,
the choice of meteorological CCFs is crucial for a meaningful constraint. While there is rich literature investigating
ideal CCF setups for low-level clouds, there is a lack of analogous research explicitly targeting high clouds. Here,
we use ridge regression to systematically evaluate the addition of five candidate CCFs to previously established
core CCFs within large spatial domains to predict longwave high-cloud radiative anomalies: upper-tropospheric
static stability (SyrSur), sub-cloud moist static energy, convective available potential energy, convective

inhibition, and upper-tropospheric wind shear_(AUs;,).— Al-combinations—of-tested-CCFs—predict-historical;

others—We identify an optimal configuration for predicting high-cloud radiative anomalies that includes S;+_and

AU, and show that forpredicting-local—historical-anomalies—spatial domain size is more important than the
selection of CCFs for predictive skill. We also find; finding-an important discrepancy between the optimal domain

sizes required for predicting local and globally-aggregated radiative anomalies. Finally, we scientifically interpret
the ridge regression coefficients, where we show that S,Sur captures physical drivers of known high-cloud
feedbacks, and thus-deduce that inclusion of S;,,Sur into observational constraint frameworks may reduce
uncertainty associated with changes in anvil cloud amount as a function of climate change. Therefore, we highlight

SyrSur as an important CCF for high clouds and longwave cloud feedback.
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1 Introduction

Changes in clouds are the primary source of uncertainty in the quantification of equilibrium climate
sensitivity (ECS) — the long-term global warming response to a doubling of atmospheric carbon dioxide
(Sherwood et al., 2020; Zelinka et al., 2022). Cloud-induced radiative anomalies (R) at the top-of-the-atmosphere
(TOA) refer to changes in the balance of incoming and outgoing radiation caused by interaction with clouds.
While most evidence suggests that the change in R at the TOA as a function of global warming likely has a positive
effect on Earth’s energy balance and thus amplifies warming (e.g., Ceppi and Nowack, 2021), the magnitude of
this global cloud feedback remains highly uncertain (Ceppi et al., 2017; Sherwood et al., 2020; Zelinka et al.,
2022).

Motivated by the role of clouds as a key uncertainty factor, much progress has been made towards
understanding the mechanisms that drive changes in R, considering different cloud types under both natural
unforced variability and long-term climate change. In particular, such work includes theoretical understanding of
cloud feedback processes (e.g., Zelinka and Hartmann, 2010; Rieck, Nuijens and Stevens, 2012; Bony et al.,
2016); idealized regional modelling studies (Siebesma et al., 2003; Bretherton, 2015); convection-permitting
global climate models (Rio et al., 2019); and climate model evaluation studies (Zelinka et al., 2022).

Here, we aim to systematically advance an alternative approach widely used for understanding and
constraining uncertainties in cloud variability and trends in the form of Cloud Controlling Factor (CCF) analysis.
Exploiting observed relationships between large-scale satellite cloud observations and meteorological predictor
variables, CCF analyses have, for example, been used to derive observational constraints on cloud-related
uncertainty estimates (Myers and Norris, 2016; Andersen et al., 2017, 2022; Fuchs, Cermak and Andersen, 2018;
Ceppi and Nowack, 2021; Myers et al., 2021). In particular, meteorological CCFs for low marine and boundary-
layer clouds have been widely assessed (Qu et al., 2015; Brient and Schneider, 2016; Klein et al., 2017; Scott et
al., 2020; Andersen et al., 2022), with typical frameworks including CCFs such as surface temperature (T sf€),
temperature advection, estimated boundary layer inversion strength (EISE}S), vertical velocity, 700 hPa relative
humidity (RH-,,) and near-surface wind speed. However, comparatively less research has specifically targeted
the CCFs for high clouds, despite their significant — and highly uncertain — contributions towards the total
estimated feedback (Sherwood et al., 2020). A systematic comparison of CCF candidates for high clouds within

a range of spatial domains will therefore be the main subject of this paper.
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Figure 1. CMIP multi-model mean longwave cloud-radiative sensitivities for a sample Sox 5¢ target grid box (center
2.5° N, 142.5° E, indicated by the black box) to surface temperature (T Fst), vertical velocity at 300 hPa (w3qo),
relative humidity at 700 hPa and in the upper troposphere (RH;oo and UTRH, respectively), wind shear at 300 hPa
(AU3¢0), and upper-tropospheric static stability (Syr) using a 21x11 domain of grid-boxes around the target
(corresponding to 110° longitude x 55° latitude area, centered on the grid-box.). Radiative anomalies are normalized
for a one-SD () anomaly in the controlling factors, based on monthly variability.

Our work builds on a modification to a previous CCF approach, which was introduced by Ceppi and
Nowack (2021, hereafter CN21). CN21 used ridge regression for their analyses, which allowed them to consider
large spatial domains of CCF predictor patterns around target grid points in which cloud-radiative anomalies were
predicted, with an example shown in Fig. 1. This approach contrasts with previous CCF analyses using standard
multiple linear regression, which are constrained to a small number of predictors (typically < 10). This allowed
their analysis to be extended beyond specific cloud regimes. As shown in CN21, the consideration of larger-scale
CCF patterns led to improvements in predictive skill for both shortwave (SW) and longwave (LW) global cloud
feedback. The intuition behind using spatial patterns of CCFs is motivated by the synoptic-scale atmospheric
system within which the lifecycle of clouds — from formation to cessation — occurs, resulting in more robust
predictions of global cloud feedback. Non-local features, such as large-scale patterns of sea-surface temperature
anomalies and changes in the atmospheric circulation (e.g., convergence and divergence) are implicitly encoded
using large spatial domains, which are not included in scalar CCF analysis despite their relevance for the context
in which cloud development occurs (when considering monthly averaged data typically used for CCF analyses
(Klein et al., 2017)). Altogether, considering larger-scale patterns resulted in better out-of-sample predictions,
which consequentially tightened the cloud-induced uncertainty in general circulation model (GCM)-modelled
ECS.

However, the framework introduced by CN21 highlighted an important limitation. As the same set of
five CCFs were used for SW and LW analyses, their predictive skill was markedly stronger for global SW and
net feedback components than for LW. Given that LW feedback is largely driven by high clouds, while SW
feedback is instead predominantly driven by the oft-studied low clouds, we speculate the performance deficit may
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be — at least to a degree — a symptom of CCF choice. Indeed, Zelinka et al. (2022) specifically recommend that
the drivers of high cloud feedback must be targeted to reduce cloud-related uncertainty in ECS estimates.

To address these open questions, we use ridge regression to methodically assess candidate CCFs of high
clouds within a range of spatial scales, aiming to inform CCF choice for future observational constraints on the
ECS uncertainty. Here, we target LW cloud radiative anomalies (Ryy,) as they are more directly associated with
high clouds than SW (and consequently, net) radiative anomalies. We briefly assess implications of CCF choices
on net anomalies, Ry noting that, historically, LW and SW high-cloud radiative anomalies tend to offset each
other, resulting in little net signal (Rygr) for thick clouds over monthly timescales.- We therefore restrict our
analysis to clouds with top pressures smaller than 680 hPa; future references to “R” are therefore specifically
emanating from these non-low clouds (see Sect. 3.1 for the dataset used). Though radiative effects from midlevel
clouds are also by definition included in our analysis, we collectively refer to radiative anomalies as “high”
henceforth for simplicity (Zelinka et al., 2016).

We systematically assess static stability in the upper troposphere (Syr), sub-cloud moist static energy
(m), convective available potential energy (CAPE), convective inhibition (CIN) and upper tropospheric wind
shear (AU for easterly shear) as CCFs in-on-the-basis-ofbased on their physical relationships with high-cloud
properties or convection, with an overview presented in Sect. 2. Aiming to inform choices for future observational
constraint analyses, we only suggest CCFs that are readily available (or easily calculated from measurable
quantities). Alternative variables, such as the radiatively-driven divergence, horizontal mass convergence, and
gross moist stability, may also capture high-cloud properties but their derivation requires numerical modelling
and hence we do not consider them here. Sections 3 and 4 discuss the data and methods we use, respectively, with
combined results and discussion presented in Sect. 5. We first discern which CCF combinations are-able-tocan
best predict out-of-sample grid-cell scale historical internal variability. We then investigate which combinations
best predict out-of-sample globally-aggregated R, . Based on the results of our statistical testing, we physically
interpret the coefficients for a single (optimal) {deemed—eptimal™by-ouranalysis}-configuration of CCFs, and
assess whether the spatial pattern, magnitude and variability of the cloud properties (i.e., cloud top pressure and

cloud fraction) are accurately captured.

2 High-Cloud Controlling Factors

Ubiquitously present over the tropics, cirrus, cirrostratus and deep convective clouds are responsible for
the largest annual-mean changes in global TOA LW flux (Chen et al., 2000). Tropical cirrus clouds develop
through one of two mechanisms: outflow from deep convective cores, or in-situ ice formation that is not associated
with convection (Gasparini et al., 2023; Kércher, 2017). The former, referred to as “anvil cirrus” together with a
mature cumulonimbus core, form tropical anvil clouds. “Thick” cirrus are both effective absorbers of upwelling
LW radiation and also efficient reflectors of incident SW radiation. Over time, dynamical, radiative and
microphysical processes can spread the thick anvil cirrus, extending anvil lifetime and resulting in larger cloud
cover than the initial convective core (Luo and Rossow, 2004; Gasparini et al., 2023). Such processes can result
in the formation of “thin” cirrus clouds, characterised by a relatively smaller SW cloud radiative forcing compared
to LW (Jensen et al., 1994; McFarquhar et al., 2000). Though deep convective clouds presently have relatively

small abundance (compared to other cloud types), their local radiative effects are large (Chen et al., 2000), and
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therefore changes to their frequency of occurrence can have substantial impacts on cloud feedback. Despite this,
most previous CCF analyses focused on low-cloud regimes so that the selection and design of CCFs were mainly
motivated by meteorological situations driving cloud formation and cessation in those cloud regimes (Klein et al.,
2017).

In CN21, a compromise was sought by considering classic CCFs such as T sf, EISEIS, and RH, (700
(relative humidity at 700 hPa), but by also using the vertical velocity at 500 hPa (wsq,) and upper-tropospheric
relative humidity (UTRH, the vertically averaged relative humidity in the 200 hPa layer below the tropopause) as
predictors in an attempt to additionally target high clouds. In the following, we will build on the CN21 CCF set-
up, specifically targeting modifications and additions that are more likely to represent state variables important
for the aforementioned high clouds. One-by-one we will motivate these CCF candidates physically and formally
define, then test the prediction results of possible CCF combinations for high clouds in Sect. 5.

An overview of all CCFs considered and their scientific motivations is summarised in Table 1. We keep
TspeFster RH700 RH700, UTRH, and w (at variable pressure levels) in all configurations, which we refer to as the
“core” CCFs, as they jointly explain a large portion of historical variability in Ry, and are each physically related
to high-cloud formation. The large-scale distribution of tropical deep clouds is closely tied to the distribution of

sea surface temperatures (SSTs) and upper-tropospheric relative humidity (Bony et al., 1997; Li et al., 2014), with

research indicating that lower free-tropospheric relative humidity regulates the mean height of convective outflow
(Sherwood et al., 2004). Vertical velocities (o) indicate regions of subsidence or ascent, with enhanced ascending
motion supporting thicker, higher cloud layers (Ge et al., 2021). Andersen et al. (2023) find that the magnitude of
(local) sensitivity to o is largest at 300 hPa, hence we test vertical velocity at both 300 hPa and 500 hPa (used in
CN21) in this study.

Estimated boundary-layer inversion strength (EISELS) is not typically regarded a controlling factor for
high clouds specifically, despite its wide use in general and low-cloud CCF analyses. This results in relatively
little literature interpreting high-cloud sensitivities to EISEFS. Despite this, CN21 used only the Ty Fs. and
EIS ElS-sensitivities to observationally constrain global cloud feedback for both SW and LW components. These
sensitivities are suitably decoupled from the clouds, and still achieve good (albeit poorer than SW and net)
predictions for global LW feedback. We therefore suggest five candidate CCFs as replacements for E1S EIS-that
more directly represent convective processes or high-cloud formation, that are also sufficiently external to the
clouds themselves and may be similarly used in constraints.

We list candidate CCFs (and EISELS) and discuss them in turn below, with the exact definitions provided
in Sect. 3.2:

e Static stability is the vertical gradient of potential temperature, measuring the stratification of
the atmosphere (Grise et al., 2010). Upper-tropospheric static stability is robustly (negatively)
correlated with upper-level cloud incidence over much of the global ocean (Li et al., 2014) and
has been observationally linked with changes in tropical anvil cloud fraction through the “anvil
iris” thermodynamic mechanism (Bony et al., 2016; Saint-Lu et al., 2020, 2022). We expect
increases in local upper tropospheric static stability to result in local reductions in high cloud
fraction, with suppressed vertical motion;

e Moist static energy characterises the energy of an air parcel in a moist environment,
considering its internal energy (latent and sensible heat) and potential energy due to its
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elevation. Sub-cloud moist static energy (m) may affect cloud formation, as higher levels of m
signify increased potential for uplift and condensation. Additionally, when buoyant air from the
boundary layer fills the free troposphere, it can inhibit initiation of convection in colder regions,
setting a threshold that hinders further upward movement (Srinivasan and Smith, 1996; Zhang
and Fueglistaler, 2020). We suggest that high m increases local high-cloudiness, while in
contrast, we speculate-hypothesize that non-local m can either decrease (due to convective
thresholds) or increase cloudiness (depending on horizontal transport);

Convective available potential energy (CAPE) is a measure of deep instability, describing the
amount of energy available for an air parcel to rise freely through the atmosphere. CAPE offers
insights into the onset, genesis and scale of atmospheric deep convection, and has been
described as the fuel for a thunderstorm (Donner and Phillips, 2003; Jensen and Delgenio, 2006;
Riemann-Campe et al., 2009). We speculate increased CAPE suggests an environment
conducive to sustaining deep convection, and thus more high cloud;

Convective inhibition (CIN), a form of conditional instability and CAPE’s opposing
parameter, is a measure of the amount of energy required for a parcel to overcome a stable layer
of air and initiate the development of deep convection. A large absolute value of CIN may
indicate a stable atmosphere, and thus unfavourable conditions for the development of deep
convective clouds (Louf et al., 2019). Note that high CIN is a required precursor for the buildup
of CAPE. Once CIN has been overcome, conditions are favourable for deep convection;

Wind shear, defined here as the vertical change in horizontal wind speed, is an important
dynamical characteristic of the upper troposphere. Wind shear influences the organisation of
convective storms and mesoscale convective systems in various ways, though understanding its
relationship with cloud properties has proved historically challenging (Anber et al., 2014).
However, studies suggest that wind shear can increase cloud-top turbulence, spread and stretch
clouds horizontally through the advection of air at different levels and speeds, and hasten cirrus
cloud dissipation (Lin and Mapes, 2004; Marsham and Dobbie, 2005; Jensen et al., 2011). We
speculate wind shear mainly affects high-cloud fraction;

Estimated inversion strength (EISELS) describes the strength of the boundary layer and is a
dominant control for low-clouds (Wood and Bretherton, 2006; Andersen et al., 2022, 2023) and
is widely used in general CCF analysis (CN21, (Klein et al., 2017). However, EIS EtS-is not
considered a driver of high-cloud incidence, but CN21 speculated-suggested that E1S EfS-may

function as a proxy for factors relating to deep convection.

Note that several candidate CCFs are not independent. For example, high values of CIN are required for
a buildup of CAPE, and a stable boundary layer may be represented by both high CIN and high EISEIS.
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Table 1. High-cloud controlling factors used in CN21 and proposed here, physical explanations connecting them to
high clouds or convection, and the key studies supporting them. References to “clouds” in this table are for high clouds
only. EIS ElS-is not a core CCF, and therefore for conciseness we include EIS E{S-under the “Candidate CCFs”

subheading.

Cloud controlling factor

Physical explanation

Key studies

Core cloud controlling factors

Surface temperature (T s Fsic)

Free-tropospheric relative
humidity (RH;¢0)

Upper-tropospheric relative
humidity (UTRH)

Vertical pressure velocity (w)

Candidate CCFs
Estimated boundary layer
inversion strength (E1SELS)

Upper-
tropospheric
static stability
(Sur)
Convective Available Potential
Energy (CAPE)

Convective Inhibition (CIN)

Sub-cloud moist static energy
(m)

Upper-tropospheric wind shear
(AUSOO)

Warming surface temperature heats atmospheric
column; large-scale distribution of clouds is tied to
atmospheric profile of temperature; anvil clouds
approximately rise with isotherms.

Regulates mean height of convective outflow.

Tropical clouds tied to spatial distribution of
UTRH and lifetime of anvil clouds. A reciprocal
relationship may exist; UTRH modulated by
detrainment.

Indicates regions of ascent and subsidence.

Enhanced ascending motion supports thicker clouds.

Limited literature; perhaps serves as a proxy for
deep convective processes; strength of boundary
layer inhibits convection.

Static stability associated with radiatively driven
convergence; anvil altitude and amount collocate

with peak convergence.

Measure of deep instability; indicates energy

available for convection.

Shallow instability; indicates the energy required to
leave stable boundary layer.

Moisture content of sub-cloud atmosphere fuels
convection.

Influences organisation of convective storms;
affects cloud-top turbulence and mesoscale anvil
formation; affects cloud cover.

(Bony et al., 1997; Zelinka
and Hartmann, 2011;

Fueglistaler, 2019)

(Sherwood et al., 2004) «

(Bony etal., 1997; Lietal., <
2014)

(Geetal., 2021)

CN21 <

(Zelinka and
2010; Li et al., 2014; Bony et
al., 2016; Saint-Lu et al.,
2020, 2022)

(Donner and Phillips, 2003;
Jensen and Delgenio, 2006;
Chakraborty et al., 2016;
Louf et al., 2019)

(Louf et al., 2019)

Hartmann, <«

A

'S

A

(Zhang and Fueglistaler,
2020)

(Lin and Mapes, 2004; <
Marsham and Dobbie, 2005;
Jensen et al., 2011)-

3 Data

We use monthly-mean (unless explicitly mentioned otherwise) cloud property and CCF data, re-gridded

to a common 5°x5° resolution. At these spatial and temporal scales, we expect the clouds to be approximately in

equilibrium with their environment (Klein et al., 2017). To represent observed cloud-radiative data, we use
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combined Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals from both Aqua and Terra
instruments, identified as MCDO6COSP (Pincus et al., 2023). These retrievals are included as part of the CFMIP
Observation Simulator Package (COSP, where CFMIP refers to the Cloud Feedback Model Intercomparison
Project), which facilitates the evaluation of models against observations in a consistent manner (Bodas-Salcedo
et al., 2011). For climate model data, we use eighteen GCMs that have run the International Satellite Cloud
Climatology Project (ISCCP) simulator (Zelinka et al., 2012a) from the Coupled Model Intercomparison Project
phases 5 and 6 (CMIP5/6). For a full list of CMIP models used in this research, see Supplementary Material Sect.
S1. For the meteorological CCFs we use ERAS reanalysis data at monthly resolution, with-the-exception-efexcept
for CAPE and CIN which we first calculate using daily air temperature and relative humidity profiles, and then
take the monthly mean. We use reanalysis data as a proxy for direct observations; henceforth, when “observed”
results are discussed, we refer to predictions made for observed radiative anomalies using ERA5 meteorological
CCFs.

We restrict the CMIP datasets to twenty years, aligned with the length of available observational record,
though with slightly different time periods. For observations, data is available from July 2002 to June 2022. For
the CMIP models, we use historical data from January 1981 to December 2000. We use this period because it is
close to the present-day climate, under the constraint of availability of historical CMIP data (and noting that only
a small set of models provide satellite simulator output for the RCP and SSP scenarios). For predictions of
observed and modelled R, we restrict our analysis from 60°S — 60°N. As is commonplace in CCF analysis, the
seasonal cycles (climatological averages of each month) have been removed from the CCFs and radiative
anomalies (Myers et al., 2021; Andersen et al., 2022). Prior to analysis, predictor variables are scaled to unit

variance and zero mean to weight signals equally in the optimisation process (Scott et al., 2020, CN21).

3.1 Cloud property histograms

Our analysis is based on histograms of cloud fraction as a joint function of cloud top pressure (CTP) and
cloud optical depth (7). Cloud-radiative kernels are used to convert binned cloud amount anomalies into top-of-
atmosphere radiative flux anomalies, and to partition these into contributions from changes in cloud top pressure
(CTP), cloud fraction (CF), and optical depth (z), with a small residual contribution (Zelinka et al., 2012a, b,
2016). The cloud-radiative kernels we use here were first introduced in Zelinka et al. (2012a), with an improved
decomposition method presented in Zelinka et al. (2016). Note that the same kernels (developed using ERA5
Interim temperature, humidity and ozone profiles) are used to decompose both the observed and modelled

radiative anomalies. Cloud-radiative kernels are available from https://github.com/mzelinka/cloud-radiative-

kernels.

3.2 Meteorological cloud controlling factors

Static stability is calculated using an interpolated monthly air temperature, 7'} and pressure, p, profile;

. The CMIP and ERAS5 T — p profiles are interpolated to 100 vertical Jevels using cubic spline interpolatio~ *-~—

standard pressure levels. The static stability, S,,, at pressure level p_is hence calculated usingSs-is
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where where-S;—is-the-static-stability-at-pressurep—C is the specific heat at constant pressure, and R, the gas
constant. We define upper tropospheric static stability, Sy, at-as an average over the interpolated the-standard

pressure levels elosest-from te-the-the tropopause height in pressure units plus 50 hPa and plus 200 hPain-pressure
units, where the monthly-mean tropopause is calculated using the standard WMO definition (Reichler etal., 2003).

We interpolate the T — p_profile as standard pressure levels are too coarse to accurately calculate the second term

in Eq. (1). Fhis-We vary the exact pressure levels that we average S, over is-to ensure that our definition efSy;

accounts for the zonal distribution of tropopause height.

Moist static energy, CAPE and CIN are calculated using the Metpy V1.3.1 Python package (May and
Bruick, 2019). Moist static energy is calculated at standard pressure levels using monthly air temperature and
relative humidity datasets. To approximate sub-cloud moist static energy, m, we average moist static energy from
the surface to (and including) 700 hPa. We use MetPy’s “most unstable” CAPE and CIN function, which we
calculate for all available CMIP models and ERA5. This involves calculating the most unstable air parcel from
the temperature and humidity profiles, and hence calculating CAPE and CIN using this parcel. CAPE and CIN
are first calculated using daily temperature, humidity and pressure values at standard CMIP pressure levels and
then averaged for each month. Of the eighteen CMIP models, daily datasets for atmospheric temperature and
humidity are only readily available for fourteen of the models (see Sect. S1 in Supplementary Material).

Free-tropospheric vertical wind shear is calculated as the difference in 925 hPa and 300 hPa easterly
wind speeds, U, standardised by the change in geopotential height, z, where

Usgo — U
U = e @

with subscripts referring to the pressure levels for each variable (Chakraborty et al., 2016). Both easterly and
northerly wind shear have been assessed, though we only discuss easterly shear here as overall performance
metrics are relatively consistent between the directions of shear.

Tsfer @300, Wsgo aNd RH,qq are directly observable or modelled quantities. We define E1S ElS-and
UTRH consistently with CN21. EIS EtS-is a measure of lower-tropospheric stability, defined relative to the
temperature-dependent moist adiabatic lapse rate (Wood and Bretherton, 2006) over global oceans. Over land,
this is simply defined as the difference between the potential temperature at 700 hPa and the surface (Klein and
Hartmann, 1993). UTRH is the vertically averaged relative humidity within the 200 hPa-layer below the
tropopause (again defined using the WMO standard definition). Monthly-mean climatologies for all CCFs can be
found in Fig. S1.

4 Method
4.1 Ridge regression

We use ridge regression to estimate sensitivities of cloud-radiative anomalies to changes in surrounding
meteorological CCFs within two-dimensional spatial domains. While still being a linear least-squares regression
approach, the inclusion of an L2-regularization penalty term means that the method can more effectively deal with
high-dimensional regression problems than unregularized multiple linear regression (Hoerl and Kennard, 1970;
CN21; Nowack et al., 2021). This, in turn, allows us to consider larger domains of CCFs as predictors in the first

place, leading to improved generalized predictive skill. The spatial domain within which CCFs are used to predict
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R at a central grid-cell, r, is referred to by the number of grid-cells in a longitude x latitude space (i.e., a 7x3
domain corresponds to 35° longitude x 15° latitude, see also Fig. 1). Five domain sizes are tested: 1x1, 7x3, 11x5,
15x9 and 21x11.

Statistical cross-validation is used to optimise the regression fit by minimising the cost function,

n M 2 M
Jriage = Z <R(r)t - Z CiXi,t> + aZciZ 3

t=1 i=1 i=1
which puts a penalty on overly large regression coefficients, c¢;; where n is the number of datapoints; X; , is the i-
th CCF at time t; M is the number of dimensions in the model (i.e., for a 7x3 domain using five unique CCFs,
M =7x3x5= 105); r_the central-grid cell, and a the regularisation parameter.
The first term in Eq. (3) is the ordinary least squares regression error. We classically approximate R(r)

by a linear function of anomalies in the set of M cloud controlling factors,

dR(r) > OR() adx, @
r) = i
£, ox,
We refer to
oR
0,(r) = a)((t) ®)

as the sensitivities, ;(r), of R(r) to anomalies in the i-th CCF. See Fig. 1 for an example of the spatial pattern of
for six CCFs using a 21x11 domain.
Using fivefold cross-validation, we determine the optimal value for the regularization parameter, o,

where the second term on the right-hand side ofir Eq. (3) is the L2-regularization penalty. We split the timeseries

into five ordered time slices and optimise a by fitting Eq. (3) to each of four slices at a time. Optimal o is hence
found by evaluating predictions on the fifth time slice using the R? score independently for each location in the
observed and modelled datasets.

For Sect. 5.1, 5.2 and 5.4 we use sensitivities to predict a subsequenthy-prediet-two--years of-withheld
datavalidation dataset. We repeat this process, rotating the retate—the—withheld dataset every two years;

resultingresulting—_in ten unique training-validation dataset combinations_(see Supplementary Fig. S2 for a

schematic of this process). Each of the ten two-year validation datasets Predictions-are subsequently concatenated,

resulting in a continuous twenty-year timeseries predicted “out-of-sample”.; The rotation of training-validation

datasets with-neresults in no -datapoint having- having been predicted using the same dataset that the model was

trained on. Standard performance metrics (Pearson r correlation coefficient, R? score, and root mean squared
error, RMSE) are calculated using the concatenated predictions and the original twenty-year dataset. For Sect.

5.3, we use the sensitivities estimated from the-a full twenty-year dataset to visualise spatial distributions.

5 Results and Discussion

Here we present results for the CCF analyses for Ry, including a systematic assessment and
intercomparison of possible CCF configurations and domain sizes. “CCF configuration” refers to the combination
of meteorological variables used to predict R;,,,. Configurations are labelled based on which of the proposed CCFs
(shown in Tab. 1) are used in addition to the following core retained factors T .sf€, w3000, RH70, and UTRH
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(i.e., configuration Sy refers to predictions made using Tssc. w300, RHyog. Fstesa00RHz00-UTRH and Syr ).
Where appropriate, we additionally point to the corresponding Ry g results in the Supplementary Material.

In-the-fellowing~w\We first compare CCF configurations using standard performance metrics for time
series predictions. Since we learn separate CCF functions to predict Ry, at each 5° x 5° grid-point, we firstbriefly
evaluate prediction performance of those functions individually, which we refer to as “local” predictions. We then
average local performance metrics near-globally (i.e., for all available predictions, 60°S — 60°N inclusive),
henceforth simply referred to as “globally” averaged, with grid-cells weighted by the cosine of their latitude. We
also average metrics in the tropical ascent regions, which we define as grid-cells with observed climatological
EIS EIS< 1K, wsgo < 0 hPas?, and latitude equatorward of 30° (Medeiros and Stevens, 2011).

Using the CCF framework, an observational constraint on global cloud feedback can be made using local
R, predictions under a forcing (such as 4xCO.) that are aggregated globally and normalised by the change in
global mean surface temperature. Though we do not predict feedback here, we instead assess which CCF
configuration best estimates the globally-aggregated R, ,, by spatially averaging each local prediction and target
value globally (and in tropical ascent regions) first, and then calculating the performance metrics. Henceforth,
note a distinction between globally averaged metrics for local predictions (e.g., Fig. 2a-b) and metrics for globally-
aggregated R,y (e.g., Fig. 2c-d).

11
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5.1 Predictive skill on observations

(a) Global (Local Averages) (b) Tropical Ascent (Local Averages)
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Figure 2. Matrices showing skitbmetriesPearson r for predictions made for the observed Ruw time series at each domain
size using different “CCF configurations”. A “CCF configuration” refers to the selection of cloud controlling factors
used to predict Ruw. Each configuration uses Tsc, RH799RH700, UTRH and w3gges300 (with the exception of the first
column, where wsgowsee-is used instead) and a candidate CCF(s) (e.g., Sur), which is used to label each column.
Predictions are made locally, with the RMSE-Pearson r averaged (a) globally and (b) in tropical ascent regions defined
as grid-cells with observed climatological EIS E}S-< 1 K, wsgoes0e < 0 hPa s, Metrics are weighted by the cosine of
latitude and monthly standard deviation of RLw of each grid-cell_(see Supplementary Material S2). Pearson r is also
shown for aggregated predictions, (c) globally and (d) in the tropical ascent regions, and compared to similarly
aggregated observations. All predictions are made using ridge regression, except for rew-rowst 1x1 (MLR)_-ane-7x3
(MLR) and 11x5 (MLR) in panels (a) and (b), which are made using multiple linear regression. Note different scales
for each colorbar .- with-darker regions-indicating higher skill-lower RMSE -higher Pearson).

We first assessassess CCF configuration skill for local predictions, with results shown in Fig. 2a-b (with
columns c-d showing globally-aggregated results). Using ridge regression, we confirm that all configurations
predict out-of-sample local R, well at all domain sizes (with correlation matrices qualitatively consistent using
R? and RMSE, not shown)-{shewn-in-Fig—S2). To demonstrate the strengths of ridge regression while using
collinear predictors in high dimensions, we briefly compare our results to the traditional multiple linear regression

(MLR) approach. Using a 1x1 domain, there is little difference in skill between predictions made with MLR and
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ridge regression. Beyond 7x3, MLR coefficients become unstable, resulting in predictions that are not correlated

with the observed (e.g., 11x5; results for larger domain sizes are not shown).
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CAPE

70
mm— E|S (Ws00)
0.81 8 EIS (w300)
60 AUso0
8 m+ AUsgo
0.80 X X . 50 Sur + AUs00
_x_
40
= 8 | g ‘
g 8 o
, 20
0.78 o
o 10
0.77 1 § 8
o N\

D N 076 077 078 079 080 081 082 083
® o P S NG \VQQ Pearson r
< c)\\? C)\\? > > R4
X ¥
< < I\ o

Pearson r
(=]
~
(=)
Relative Frequency

cO

(b) Globally Aggregated Ruw (21x11 domain)

O (¢}

_ 5 \

0.6

0.5+ X %

Pearson r
o
=
X
Relative Frgeuency
w IS

X
o
0.31 2
1 o]
1

0.24

e} 0] == —

g > by & o o ol 0.2 03 0.4 0.5 0.6 0.7
& \@4?“ \\y“b N N Pearson r
3 o x x
< « o

Figure 3. Box and whisker plots (left panels) showing the distribution of observed predictive skill based on 100
bootstrapped samples of R,y _for a selection of the CCF configurations. Crosses show the means, notches show the
medians, and circles show the outliers. A “CCF configuration” refers to the selection of cloud controlling factors used
to predict Ruw, where each configuration uses Tss., RH799, UTRH and wszg0_(With the exception of the first box and
whisker, where wsgo_is used instead) and a candidate CCF(s) (e.q., Syr). which is used to label each configuration. The
right panels show the shapes of the distributions using a kernel density estimator. The top panels (a) show the
distributions for local predictions at the 7x3 optimal domain size (analogous to Fig. 2a) and the bottom panels (b) show
the distributions for the 21x11 globally-aggregated optimal domain size (analogous to Fig. 2c). EIS (w3go)_is
highlighted in black to facilitate easier comparison between configurations.

We find local performance only slightlyte depends beth-on the CCF configuration, with EIS (wsqo)
exhibiting the weakest performance (note that E1S (ws,)_is the configuration used in CN21).e- This is likely

because a large proportion of the monthly variability is already explained using only T ., w300, RH790.@nd UTRH
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without the inclusion of additional CCFs (i.e., for 7x3, R? = 0.64 using core CCFs, compared with R? = 0.69 using

EIS (ws00)_in addition). Though changes in local skill (when globally averaged) between the CCF configurations
are subtle, we find -in-Seet—5.2,showing-qualitatively consistent results for the CMIP models reaffirming that
changes are robust. Predictive skill is instead more dependent on domain size, with metrics peaking at the 7x3

domain. We investigate this dependency on domain size in more detail in Section 5.1.1.

In line with Andersen et al. (2023) (though note high-cloud radiative anomalies are not isolated in their

study), we find the single largest improvement in R;,, predictive skill is achieved through changing w_from 500

hPa to 300 hPa, reflected by a large positive shift in the distributions shown in Fig. 3a. This suggests w5, more

effectively predicts deep convective and cirrus cloud radiative effects than wsg,, as we would expect (Ge et al.,

2021). We do find that this results in a slight drop in performance for Rz (Fig. S3) which likely is because 500

hPa instead better targets midlevel clouds which drive a shortwave contribution to Ryy_that is not present for

R,w. However, comparing across configurations using the same vertical velocity reveals qualitatively similar

heatmaps for Ryzr_and R,y (note.m performs slightly better for Ry than R, ;). An additional prominent shift

to the distribution arises through the inclusion of AU;,.

(
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Given that raising the vertical pressure velocity results in a strong positive shift, we henceforth choose«— [ Formatted: Indent: First line: 1.27 cm

to replace wsgo With w30 and compare further candidate CCF configurations with E1S (w30,)_as a new baseline

for comparison (highlighted in black in Fig—3Fig. 3). we-confirm-thatishyt Thus—at At the optimal 7x3 domain,
we find configuration S, + AUs,,_to reproduce observed local R, ,, with the highest skill.} and we hence -

“Fheshow the spatial distributions ef-for predictive skill arehenee-in Fig. S4.

To_qguantify whether differences between configurations are statistically significant for the observed

anomalies, we generate a distribution of Pearson r values using bootstrapping (Davison and Hinkley, 1997). We

randomly sample the observed data (with replacement) 100 times, creating datasets equivalent in length to 18

years. Any remaining months are used as a validation dataset, where r_is determined against predicted values.

This process results in a distribution of 100 r_values for each configuration, providing an estimate of predictive

skill uncertainty, with a selection of the configurations shown in Fig. 3. The non-parametric Kruskal-Wallis test

is hence used to identify statistical differences between all of_the distributions. We find highly significant

differences between all of the configurations (p < 1073°). Accounting for its highest global median r, we pairwise

test the predictive skill distribution for S, + AU;q,_with all other configurations (using an adjusted significance

level of 0.5 % to account for multiple hypothesis testing). We find statistical similarity with only m + AU;,_and

AUsq0(p = 0.06and p = 0.01, respectively).

We now focus on predictive performance for the globally-aggregated R,,,_time-series, with results

shown in Fig. 2c-d and Fig. 3b. While local prediction performance peaks at 7x3 and is followed by a drop in

skill, we find a discrepancy with the globally-aggregated performance, which instead increases with domain size.
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For some configurations, r_continues to increase beyond 21x11, though this begins to tail off (not shown). The

relationship between domain size and predictive skill now aligns with the findings of CN21, where they show that

the correlation between observed and predicted global cloud feedback increases with domain size. However, as

domain size increases, so too do the model dimensions and thus the complexity. Owing to the trade-off between

small improvements at even larger domain sizes and increased complexity, we restrict our analysis to 21x11 and

below, and discuss globally-aggregated results using the 21x11 domain.

Here we find more marked improvements in predictive skill for most of the CCF configurations

compared to EIS (wsq0), With performance again strongly dependent on domain size (Fig. 2c-d). However, we

now find that changing the pressure level of w_no longer results in a substantial positive shift of the skill

distributions, though inclusion of AU, still results in improvements (Fig. 3b). We also note that performance

metrics for globally-aggregated R, are comparatively worse than the globally-averaged local metrics. This is in

line_with accumulation of local errors and reduced variability in the globally-aggregated anomalies. In a

comparison of all_globally-aggregated distributions shown in Fig. 3b, eachthere is evidence showing statistical

pairwise comparison _of m + AUjz,,_with each other distribution, we find statistical differences with all

configurations except Sy + AUsg_(p = 0.02)_and AUs,, (p = 0.03), again using an adjusted 0.5 %
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significance level owing to multiple statistical tests.

Neither CAPE nor CIN improve predictive skill at either scale compared to alternative candidate CCFs+——

for most domain sizes. CAPE and CIN have been included as a CCF for their links to deep convection, which is

not frequent outside of the warm tropics, resulting in being particularly poor predictors in the high-latitude

extratropics (Fig. S4; for CMIP see S5). Additionally, literature hints at a potentially non-linear relationship

between CAPE, CIN and high-cloudiness that would not be captured by the linear ridge regression. For example

in high-CAPE environments it is thought that there may generally be enough CAPE for convection to occur,

indicating that the exact magnitude of CAPE is less important than passing a threshold for the onset of deep

convection (Sherwood, 1999). The distribution of predictive skill also suggests there is a more complex

relationship between CAPE (and CIN, not shown) and R;,,. Given that the distributions are calculated using

randomly resampled datasets through bootstrapping with replacement, datapoints will be repeated. This reduces

the diversity of the training data, which can result in poorer generalization of more complex or noisy relationships.

5.1.1 CCF importance at different spatial scales

We investigate We-suggest-the evolution of the-diserepaney-predictive skill with domain size for local
and globally-aggregated predictions. Hewever;-the EVEfor-eago substantialy-decreases-when-globally-integrating
Ry to-only 6.3 %. This additionally explains why there s Hitde difference between the performance of @gg0 and

es00-4-Fig—26-d-despiOwing to the linearity of ridge regression, we_can partition the predicted local R,y si@)al

into contributions from each CCF, such that (for example)

Ry = RLW(TSfC) + Riwri,00) T+ Riw(ausoo)
where RLW(TSfC) is the component of R, predicted using only T, within the specified domain size there-we-use
21x11)-and so on for each CCF in the configuration. For each CCF, we calculate the explained variance fraction
(EVF) for R, at each grid-cell. Equation (6) ean-is repeated for the global R,y predictions, where local

predictions are first globally-aggregated for each CCF and then summed. CCFs with higher EVFs are referred to
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as more “important” for the predicted values (i.e., UTRH is typically the most important predictor for both local

and globally-aggregated predictions (shown in Fig. 4)). Note that it is plausible that this may show bidirectional

causality, where the presence of high cloud influences UTRH by modulating the moisture content in the upper

troposphere (i.e., outflow from convective anvils), though our analysis cannot separate the direction.

The interaction between domain size, cloud controlling factors, and predictive skill is complex. We \e

-summarise key points

e There is an emergent distinction between “local” and “non-local” predictors. For example, EVF

for UTRH decreases with increasing domain size and, accordingly, we find that local UTRH

sensitivities typically have strong magnitudes close to target grid-cell, with noisy, spatially

incoherent coefficients further afield (see Fig. S6a-b for an example); thus, we describe UTRH

as a “local” CCF (similarly for wso0.and RH;qq).

e EVFfor Tz, AUsgg, and Syy increases with domain size (i.e., “non-local” predictors), and each

contribute a greater proportion of the globally-aggregated predictions compared to local

predictions (Fig. S6c-d).

e Predictive skill is likely a trade-off between adding relevant information from “non-local” CCFs

while adding superfluous information from “local” CCFs; i.e., too distant information does not

provide additional predictive skill, at least to the degree that it would outweigh the

corresponding increase in dimensionality of the regression problem.
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e For globally-aggregated predictions, wsq,_is the least important predictor (compared to the

second most important for local predictions), thus explaining why the choice of pressure level

of w_is less relevant at global scales (shown in Fig. 4) than locally.

45°E E 45°E 135°E

Global mean local EVF = 13.3% Global mean local EVF = 17.2%
Global EVF = 16.0% Global EVF = 19.3%

135°E
Global mean local EVF = 17.6% Global mean local EVF = 17.9%
Global EVF = 13.1% Global EVF = 12.4%

Sur

O T p: = 9 i o - e
45°E 135°E 135°E
Global mean local EVF = 20.9% Global mean local EVF = 13.2%
Global EVF = 25.0% Global EVF = 14.2%

Figure 4. Maps showing the explained variance fraction (EVF) as a percentage for local predictions of Ry, using a
21x11 domain and using configuration S + AUz (With Tz, RH799, UTRH and w3qo). “Global mean local EVF”
refers to the global mean EVF from local predictions, weighted by the cosine of each grid-cell’s latitude. “Global
EVEF” refers to the EVF for each CCF’s contribution to the globally-aggregated Ryy.

CIYUIT U, IVIGPD S1IUWILIY U IT SAPIGIITU VAIIGIIVE 11 QUUIULI |V ) @3 G ST LTHILAYT 1UI_1IULGI PISUILLIVIR UL ALy UdliY G
21x11 domain and using configuration § + AUggq (With Ts¢., RH799, UTRH and w3go). “Global mean local EVEF”
refers to the global mean EVF from local predictions, weighted by the cosine of each grid-cell’s latitude. “Global
EVE” refers to the EVF for each CCF’s contribution to the globally-aggregated Ry .

-«
Our first three points involve the interaction between increasing model dimensions and the addition of«

potentially relevant context provided by the larger spatial domain. We discuss these points in more detail in

Supplementary Material, Sect. S3. Addressing the last point, we note that
Given-thatseveral studies point to thermodynamic changes dominating over dynamical effects for global

cloud feedback, likely because dynamical effects cancel out at sufficiently large scales (Bony et al., 2004; Xu and

Cheng, 2016; Byrne and Schneider, 2018). Conversely, thermodynamic and dynamical feedbacks have more

comparable importance at more local scales. We find our results broadly analogous to this. The relatively large

EVF for w at local scales (17.9 %, the second highest in Fig. 4) explains why replacing wsgo With w5q,_results in

a positive shift to the skill distributions (Fig. 3a). In contrast, globally-aggregated EVF for w3, _is comparatively
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smaller (12.4 %, the lowest value in Fig. 4). This points to the cancellation of large-scale dynamically driven

signals when globally-aggregated, thus explaining why there is little difference between the performance of w5,

and wsgo_in Fig. 2c-d, despite resulting in a large improvement for a single CCF change at local scales. Finally,

given that w, an important “local” predictor, cancels out at globally-aggregated scales, the “non-local” predictors

such as T — contribute a larger proportion of the total predicted R, ,, thus explaining — at least in part — the

discrepancy between globally-aggregated and local anomalies.

5.2 Predictive skill on CMIP models

Now, we briefly present results for the CCF configurations using the CMIP5/6 models. Key questions
are whether the CCF approach performs similarly between models and observations, and if there are any obvious
discrepancies that could point towards the analysis framework being less applicable than in observations.
Performance metrics are first calculated locally for each GCM. Independently for each GCM, local metrics are
meaned globally and in tropical ascent regions. The multi-model median result is then taken, with results
analogous to Fig—2Fig. 2a-b shown in Fig. SxyzS7a-b. Finally, we integrate-aggregate predictions (globallyy; and
in tropical ascent regions); independently for each GCM. The predicted global and tropical ascent-aggregated time

series are compared against the similarly aggregated target values. Again, note a distinction between globally

averaged, local performance metrics, and globally-aggregated R, - throughout this discussion.

Figure 65. Matrices showing the Pearson r score between the observed Riw time series and predictions made at each
domain size using different “CCF configurations”. A “CCF configuration” refers to the selection of cloud controlling
factors used to predict RLw. Each configuration uses Tst, RH700, UTRH and waoo (with the exception of the first column,
where wsoo is used instead) and a candidate CCF(s) (e.g., Sut), which is used to label each column. The median has been
calculated from 14 of the CMIP models (excluding the additional 4 without CAPE or CIN). Predictions are made
locally, with the RMSE averaged (a) globally and (b) in tropical ascent regions, defined as grid-cells with observed
climatological EIS < 1 K, wso0< 0 hPa st. RMSE is weighted by the cosine of latitude and monthly standard deviation
of Ruw of each grid-cell. Predictions are hence aggregated (c) globally and (d) in the tropical ascent regions and
compared to similarly aggregated observations using Pearson r. Here, all predictions are made using ridge regression.
Note different scales for each colorbar, with darker regions indicating higher skill (lower RMSE, higher Pearson r).
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{a) Globally Aggregated (b) Tropical Ascent Aggregated
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Figure 65.- Pearson r scores for (a) globally- and (b) tropical ascent-aggregated predictions made at the 21x11 domain
size using different “CCF configurations”. A “CCF configuration” refers to the selection of cloud controlling factors
used to predict Ruw. Each configuration uses T, Fsicr RH79. RH700-UTRH and w;gow300 (with the exception of the

first column, where wsgq @soo-is used instead) and a candidate CCF(s) (e.g., Sut). The multi-model median Pearson r
is shown from the 14 CMIP models where that-have-CAPE and CIN is availablecalculated. The bootstrapped (n =
100) predictive skill distributions for EIS (w3gt300) and Syr + AU3zqg are shown at the optimal 21x11 domain sizes
for (c) globally-aggregated predictions_and (d) tropical-ascent aggregated predictions.-at-the-2ix11-demain—Glebal-

manan lnnal neadintivin clill dictrikitinne ran hn fanind in tha Cliinnlamantams Matavial Cin © s

The CMIP Pearson r correlation matrices are broadly analogous

to the observationsobserved, where general patterns withinfound in Fig. 2 are also present in Fig. S7 are. We once

again find a discrepancy in optimal domain size, with peak—in-local performance peaking at 7x3;— and and
predictive-skill-that-increases-with-demain-size—for-globally-aggregated R, ;- peaking at 21x11.: Differences

include higher multi-model median skill metrics compared to the observations, which may be expected due to

intrinsic_knowledge of the meteorological conditions embedded within the CMIP models. Additionally,

suppressed metrics for observed R;,,_could be caused by slight mismatches between the observed radiative

anomalies and the reanalysis meteorological variables. This therefore results in metrics that are more consistent
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between CCF configurations than for the observed R, . In addition, smaller differences between configurations

may in part be caused by higher metrics in the first place, leaving less room for improvement.

highest-cerrelation-coefficient:We also find that CAPE performs comparatively better for the CMIP models than

in the observations. This may be due to the way in which convection is parameterised in GCMs, thus resulting in

stronger modelled relationships between cloud--radiative anomalies and CAPE than exist in the observations.

Highlighting uncertainties within the CMIP models themselves, there is a large spread in the skill metrics,

shown for aggregated predictions in Figure 5a-b. We find that changes to the globally-aggregated performance do

not imply similar changes to the tropical ascent-aggregated performance. For example, Sy shows a slight decrease

in the global multi-model median r compared to EIS (w30,), despite showing a positive shift for predictions

aggregated in the tropical ascent regions. Secondly, improvements to the multi-model median r do not imply that

each GCM shows improvements independently. For example, the multi-model median r for tropical ascent-

aggregated predictions made using configuration S;;_has improved compared to configuration EIS (w5q0);

models such as MRI-CGCM3, GFDL-CM4 and IPSL-CM5A-MR have large leaps in Pearson r. Conversely,
MIROC-ESM, CanESM5, and HadGEM2-ES show decreases. Opposing improvements and deteriorations of

predictive skill is partially responsible for relatively small change in multi-model r_between the configurations
for the CMIP models.

In Section 5.1, we highlighted S+ + AUs,.as a possible optimal configuration. Here we identify whether

differences between the CMIP-modelled predictive skill distributions for EIS (w300)_and Sy; + AUsq_are

statistically significant. In a pairwise Kruskal-Wallis test on the combined Pearson r scores from all 18 models

(n = 1800), we find a significantly higher predictive skill distribution for S, + AUsq, than EIS (w30) With p <

10~1* (distributions not shown). This is unsurprising; 15 of the 18 individual CMIP models have a higher median

r.using Syr + AUsqo_compared with EIS (w500).-
Despite a slightly lower multi-model median, we find that the globally-aggregated distributions for all

models combined are statistically similar at the 5 % significance level (shown in Fig. 5c, p = 0.13). Here, only

half of the CMIP models have a higher median r using Sy + AUz, _compared with EIS (w30,). However, visual

inspection of the distributions for predictions aggregated in the tropical ascent regions (Fig. 5d) suggests that

improvements found using S, + AU;q,_instead of EIS (w30,)_are more pronounced than any deteriorations. In

summary, while the mean evolution of predictive skill within the CMIP _models is broadly aligned with the

observations, there are nuances which likely depend on the parameterization within the models themselves (Li et
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al., 2012; Qu et al., 2014; Rio et al., 2019). This leads to a slightly different evolution of predictive skill with

configuration between the CMIP models.,

5.3 Physical interpretation of the cloud-radiative sensitivities

In addition to the statistical performance metrics-shewn-abeve, we study the spatial distribution and
magnitude of the sensitivities. Interpreting spatial sensitivities can be used in CCF analysis to justify predictor
selection that is grounded in physical reasoning and can be done for any of the CCF configurations (e.g., Andersen
etal., 2023). Though oOur analysis has identified two strong configurations,: Sy + AUsge and m + AUzgo.— 0
this-section;-we only physically interpret the sensitivities of Ry, to the CCFs in configuration Sy, + AUz in
this section. using—a domain—derived—from—observations—and—CMIP—meode hewn—in—Fig—6)—We
choose Sy + AUzq0- Over m + AUs, due-based te-on the wider literature en-examining the relationship between

high-cloud occurrence and static stability (e.g._Li et al., 2014) and due to the link between static stability and

changes in tropical anvil cloud fraction through the “anvil iris” thermodynamic mechanism (Bony et al., 2016;
Saint-Lu et al., 2020, 2022).

recommend similar physical interpretation of sensitivities be performed fer-should alternative configurations-te

be used in similar CCF applications, such as an-constraining ebservational-constraint-en-cloud feedback.; we

For each CCF in the configuration, we sum each contribution ©; within the entire spatial domain (e.g.,
Eq. (5) for R,,,,) and plot the total for each grid-cell. }-This is the spatial sensitivity of the cloud-radiative anomaly
to a given CCF, normalised for a one-standard deviation anomaly. Here, we derive the sensitivities using the full
twenty-year datasets (with no dataset rotation_or bootstrapping). There are several studies interpreting
relationships between cloud-radiative anomalies and the core CCFs (e.g., CN21, Andersen et al., 2023), though

not explicitly for high clouds. Therefore, we first briefly interpret our sensitivities to the core CCFs, shown in Fig-
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6aFig. 6a-d. We then assess the sensitivities for cloud properties (i.e., cloud top pressure and cloud fraction) before

interpreting sensitivities for the additional CCFs, Sy; + 4Usq,.

(a) Observed (b) CMIP (c) Zonal mean
sensitivities
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Figure 76. Ry sensitivities (¥ @;) to the cloud controlling factors in configuration Syr + AUszgg (also with Tz, Fste,
RH700RH70, UTRH and w3o®300), derived using a 21x11 domain and defined for a one-standard deviation anomaly
in each CCF (scaled using ERA5 CCFs for visualisation purposes). To produce the maps, we sum all elements of the
sensitivity vectors at each point r. The left-column (a) shows observed sensitivities, and the-column (b) right-shows the
multi-model mean. Column (c) shows zonal average sensitivity for the observations (dashed line), the multi-model mean
(dark solid line) and individual CMIP_model sensitivities. The Pearson r_correlation coefficient for the zonal mean
sensitivities is shown in the bottom corner of each panel.

The observed and multi-model mean spatial distributions for the core CCFs — Tf, w39, UTRH and

RH,,, — broadly align what we expect, and are qualitatively similar between the observations and multi-model

means. We note that the observed global median regularization parameter, . lies towards the upper-end of the

inter-model spread - (not

shown). We speculate that the CCFs in the CMIP models typically capture the variability in R, ,, with greater skill

than the observations, meaning less regularization is required on average. For all CCFs except UTRH, the

magnitude of the modelled sensitivities are smaller than the observed (tropical ascent sensitivitiesnet-shewn

globallytheugh-tropical-ascent-means are-shown in Fig—8Fig. 7). It is known that (CMIP5) GCMs underestimate

the frequency of tropical anvil cloud and extratropical cirrus occurrence (Tsushimaet al., 2013; Ceppi et al., 2017),
and thus their radiative effects which can also may-beresponsible-forexplain smaller sensitivities on average. We
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The Ry -— T sensitivities (i.e., EQ. (5) summed for all X = T); shown in Fig—7aFig. 6a, are
generally small in magnitude, with regions of positive sensitivity in the Central and East Pacific_(responsible for

a slight positive peak in observed zonal mean sensitivity), and with negative (or, for the CMIP models, a-reduced

magnitude) sensitivity over the Maritime continent. -The R, - UTRH sensitivities are ubiquitously positive; and
large in magnitude, consistent with increasing high-cloudiness with humidity, though Fig—7d-Fig. 6d suggests
shows that CMIP-modelled sensitivities are_consistently larger in magnitude than is observed. \WWe-speculate-that
thisThis is possibly-may-be due to stronger coupling between upper-tropospheric humidity and cloud incidence in
the CMIP models than in the observations, —(perhaps-owing to the parameterization of clouds in the models
themselves (Li etal., 2012; Qu et al., 2014)}. The RH,, sensitivities are also widely positive (though negative at
high latitudes), with smaller magnitude than UTRH (as we would expect for high clouds) anrd-with the largest
magnitudes in the deep tropics.- Indicating increased high-cloudiness with increased ascent, the w5, sensitivities
are near-ubiquitously negative, with the strongest magnitudes broadly aligning with the tropical ascent regions in
both observations and the CMIP models.

We ean-alse-use the decomposition of Ry, into its linear sum of contributions from changes in cloud top
pressure (CTP), cloud fraction (CF), optical depth, and a small residual (with other components held fixed), to
further interpret our sensitivities (Zelinka et al., 2012a, b, 2016). We do not show optical depth sensitivities here,
owing to their small role in driving LW high-cloud radiative anomalies (see Fig. S9510%). LW radiative anomalies
caused by changes in the cloud properties are henceforth referred to using an additional subscript, i.e., R,y crp IS
the contribution that changes in cloud top pressure (with no change in = or CF) have on the total R, . Sensitivities
for the decompositions can be found in the Fig. S89-S9167. We average the domain-summed sensitivities in the

tropical ascent regions, shown in Fig. 7.Fig-8-
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Figure 87. Observed and CMIP sensitivities to the cloud controlling factors in configuration Sy + AUszg (With T,
Fsier RH799RH700, UTRH and w30@s00), derived using a 21x11 domain and defined for a one-standard deviation
anomaly for each CCF, averaged over all tropical ascent grid-cells for (a) Ruw, (b) Riw.cr, and (c) Ruw.cte. The
standard deviation used to scale each CCF has been calculated from the observed CCFs.

The Ry, - Tsp Fspe-sensitivities average to approximately zero in the tropical ascent regions for beth-the
observations anrd-CMHP-models-(Fig—8aFig. 7a) with good agreement globally between the CMIP models and

observations (zonal-mean r = 0.52).—Hewever; Fig-ure 7a-6a shows a distinct positive sensitivity present over

the Pacific Ocean, which we ascribe to an increase in high-cloud top pressure that is associated with warming sea

surface temperature anomalies, thus radiating heat to space at cooler temperatures. \We find that the spatial pattern

of Ry crp - Tssc Sensitivities in the tropics are widespread positive (Fig. S910), as we would expect (though -more

strongly positive in the models than the observations). tadeed-—we-find-that-the—spatial-pattern-6f Ryprrrp—Tore

ensitivities-in-this-area-are_predominantly_positive (Fig-—8c.Fig- —as-we-would-expect—Accordingly, the

observed mean-R,y crp - Tspe Sensitivitiesy in the tropical ascent regions is-are positive, with larger magnitude

than the similarly averaged and opposite-signed R,y cr - Tss Sensitivities (Fig—8Fig. 7). This is despite a much

smaller monthly signal for observed R,y crp than Ry cr. The modelled R,y crp - Tsp. sensitivities are stronger

than the R,y cr_- Tsy._CoOunterparts, resulting in the slightly more positive CMIP R, - T _sensitivities.

The R,y - AU3,, sensitivity, shown in Fig. 7f6f, is more challenging to interpret than the core CCFs
(Anber et al., 2014). This is partially due to the dynamic nature of wind shear; coefficients within the spatial
domain capture dynamic variability signals, which may result in a range of positive and negative sensitivities,
therefore cancelling in the summation over the 21x11 domain. Nenetheless,-we-suggest-reasons-for-beth-pesitive
and-negative—sensitivity—There is also less agreement between the observed and multi-model mean spatial
distributions than all other CCFs, which we-speculate-may partially be caused by offset circulation cells in the
CMIP models, resulting in different local sensitivities and dynamic signals_(zonal-mean r = —0.01). -

NonethelesswHere, we suggest reasons for both positive and negative sensitivity. Over the Maritime Continent

and Indian Ocean, observed sensitivities are broadly negative. It is known that wind shear can hasten the

dissipation of tropical tropopause cirrus (Jensen et al., 2011) which would result in decreased cloudiness, and thus
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LW cooling. Conversely, there are many regions where the sensitivity is positive (such as the Central Pacific)
which indicates LW warming with increased shear. \WWe-speculate that thisThis ismay be a result of shear spreading
the high cloud, thus increasing cloud fraction (Lin and Mapes, 2004), and in turn reducing outgoing LW radiation.
The role of wind shear may be sensitive to the pressure level relative to the tropopause (Chakraborty et al., 2016;
Nelson et al., 2022). Given that we use the same shear height (i.e., the difference in 300 hPa and 925 hPa wind
speeds) globally, we-speculate—theit is likely that the zonal distribution of tropopause heights may cause the
differing relationships. Despite differences between the spatial distributions, both observed and the multi-model
mean sensitivities in the tropical ascent regions are consistent with each other, and average to approximately zero
{Fig-8). -which-w\We-might suspect this may due to shear beinggiven-that -shear-is-important for the organisation

of convection, which is not represented in GCMs.

Finally, we address the Sy, sensitivities. Both the observed and multi-model mean R,y - Syr
sensitivities, shown in Fig—7eFig. 6e, are predominantly negative in the tropics, with largest magnitudes over the
Central and West Pacific, and Maritime Continent (though more markedly so for the observations). Therefore, in
the absence of changes in the other CCFs, anomalies in high cloud associated with an increase in Sy would result
in increased longwave emission to space over the tropics. This is what we expect, given the negative relationship

between upper-tropospheric cloud incidence and static stability over tropical oceans (Li et al., 2014).

The_observed- Ry, cr - Syr Sensitivities are alse-negative across the tropics, most strongly in regions
with high Ry, ¢r_signals -(see Fig. S9-and-Stl—respectivelyS87). This revealings that LW cooling arises — at

least in part — from a reduction in high-cloud fraction,—, particularly—in—observations—Fhis—qualitatively
reseemblinges the anvil iris mechanism (Bony et al., 2016; Saint-Lu et al., 2020). As anvil clouds rise in response

to global warming, their environment becomes more stable, owing to the dependency of static stability on
atmospheric pressure (Saint-Lu et al., 2020, 2022). In a more stable atmosphere, the vertical pressure gradient
associated with subsidence in clear-sky conditions is reduced.- Owing to mass conservation, a reduction in the
subsidence pressure gradient results in a reduction in anvil cloud fraction, caused by a decrease in horizontal
convergence (Saint-Lu et al., 2020, 2022).

that the magritude—meanef-the CMIP R,y - Syr sensitivities—sensitivity in the tropical ascent regions_-is

substantiathy-smaller in magnitude than the observed, with considerable disagreement in sign (ranging from -1.0
to 0.44 Wm o %; (Fig-8aFig. 7a). Indeed the-observed-tropical-ascent-mean-Ry—Syr—sensitivity lies below-th

indivi ~Most Atarge-fraction-of the total Ry, - Syr sensitivity arises
from the CF component (Fig. 8b7b), which-where the is-censistently-underestimated-by-the-CMIP model-mean

approaches zero, though has a similarly large range.s- Though it is thought to be small in magnitude, the anvil

cloud area feedback is subject to much uncertainty and underestimated by GCMs (Zelinka et al., 2022), consistent

with our results.Fhis -is-uasurprising-CMIP models have-been—shewnare known to underestimate-predict a wide
range of anvil cloud fraction the-negative-anvil-cloud—fraction—feedbacks, including “unlikely” very positive
feedback (Zelinka et al., 2022) which is perhaps reflected by strong positive tropical R;,, - Syr_sensitivities for
two medelsGCMs (Fig. S8e9). -Given that static stability has been shown to robustly control high-cloud fraction
(Saint-Lu et al., 2022), and based on our results, we therefore-speculatepropose that the addition of Sy into

observational constraint frameworks may reduce some of the uncertainty arising from the anvil fraction feedback.
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We also find that the spatial distributions for the R,y crp - Syr observed and multi-model mean
sensitivities are broadly similar with zonal-mean correlation r = 0.60similar-to-each-other-mesthy-negative,and
largest-in-magnitude-in-the-tropies. For observations, the R,y crp_- Syr_Sensitivity is negative in the West Pacific
and Maritime Continent, Fhis-suggestsindicating that an increase in Sy, results in LW cooling, arising from a

change (i.e., a decrease) in cloud top pressure. Increased static stability results in suppressed vertical motion,
which in turn prevents cloud tops from rising as high as they might in a more unstable environment (Zelinka and
Hartmann, 2010, 2011; Saint-Lu et al., 2022). Fheugh-Negative sensitivities in the tropical ascent regions are less
prevalent for the models, with negative sensitivities more widespread in the subtropics. the-spatial-distributions
are-similar-theThis results in a smaller magnitude of the CMIP Ry, crp - Syr Sensitivities are-once-again-smaker
than-the-observed-in the tropical ascent regions (Fig—8¢eFig. 7c).

As well as absorbing upwelling LW radiation, high clouds can reflect incident SW radiation depending

on their optical depth. While the-R,,, (and thus the sensitivities) is primarily driven by CF and CTP changes, Ryzr
is also driven by changes in optical depth, which predominantly affects SW radiative anomalies that we have not
directly assessed. Thus, the net high-cloud radiative anomaly is comprised of complex interplay between
competing LW and SW effects. However-we-note-that-theThe magnitude of the observed Ry gy ~— Syr sensitivity
is much smaller in-magnitude-than the R;;,, — Sy; component_in the tropical ascent regions, though the spatial

distribution is broadly similar (Fig. S8S121), and negative in many high-cloud regions. This suggests that,

assuming an increase in Sy with warming (Bony et al., 2016);, high-clouds exert a negative (though weak) net

feedback. i i i i i - —However, -the observed CMIP-mean

tropical ascent Ryr cr — Syr_Sensitivities average to approximately zero, indicating a very weak anvil cloud area

feedback with increasing S;-. While a weak anvil cloud feedback may be expected (McKim et al., 2024), it is

also thought CMIP models tend to underestimate a negative anvil cloud fraction feedback (Zelinka et al., 2022).

{Zelinka-et-al—2022)-Additionally, Zelinka et al. (2022) show that eight CMIP models (including six of those
used in this research) predict an “unlikely” positive feedback arising from changes in anvil cloud fraction.
Therefore, the near-zero multi-model sensitivities may also arise due to cancellation of local sensitivities between

the models:
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5.4 Predicting _radiative anomalies from cloud fraction and cloud top pressure changes

Based on the physical interpretation of the sensitivities, our results — combined with previous literature and theory —
thus far support the use of Sy + AUz in high-cloud controlling factor frameworks. We have shown that Sy + AUz,
reproduces the glebathylocal and globally-aggregated-aggregated R;y, time-series—with-with the-highest skill in—for beth
observations, and performs well for the CMIP models-. Additionally, tare-the sensitivities shown in Fig—7Fig. 6 suggest that
the mechanisms driving high-cloud feedback — rising free-tropospheric clouds and reduction in anvil cloud fraction (Ceppi et
al., 2017) — are captured by this selection of CCFs_at the 21x11 domain. Fherefoerewe-fFinally, we question whether our

approach captures the spatial pattern, temporal variability, and magnitude of these properties.

We predict twenty years of cloud-radiative anomalies induced by CF and CTP changes (with other components held
fixed) for both observations and CMIP models, again using rotating eighteen-year datasets. We TFhe-menthly—radiative
anomalies-areglobally aggregated the predicted anomalies globally-and-in-tropical-ascentregions-(e.g., as in Figs. 2c-and-4,¢-
d) and compared against similarly aggregated target values using the Pearson r correlation coefficient. (to-ensure-trends-are
captured-by-ourframework)-We do not assess optical depth-induced changes, owing to their small historical LW signal (see
Fig. S95110). Though optical depth is important for historical SW (and consequently, net) radiative anomalies, the high-cloud
optical depth feedback is thought to be relatively small (Zelinka et al., 2022) and so we focus on CF and CTP. We place
particular emphasis on the observations here, as the EI Nifio phase of the EI Nifio-Southern Oscillation (ENSO) from July 2015
to June 2016 saw anomalous warming in the East Pacific (see Fig. 8, -top panel). ENSO is a dominant driver of natural ocean-
atmosphere variability, resulting in regional tropical temperature and circulation anomalies that are accompanied by changes
in cloud properties and the TOA radiation budget (Ceppi and Fueglistaler, 2021). Accordingly, July 2015 to June 2016 has
one of the most anomalously warm annual mean surface temperatures in the 20-year record. We only highlight this EI Nifio
event for the observed cloud properties, as it will be absent from the coupled historical simulations, and AMIP simulations do
not reach 2016.
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Out-of-sample globally-aggregated Ry cr is well predicted weH—by using—configuration the—Sy; +
AU -configuration-{Fig—10a) with a correlation coefficient of 0.63.- The spatial distribution of the EIl Nifio CF anomalies
closely follows the R, distribution owing to its large signal, and {shewn-in-Fig—9)-is also-wel-reproduced accurately -with a

correlation coefficient of r = 0.93 (Fig. 8). There is a positive R, ¢ anomaly in the East Pacific, overlapping the region of

anomalous sea surface warming, indicating increased cloud fraction. Warmer SSTs enhance convection, resulting in increased
upward motion, and thus increased high cloudiness. In the West Pacific, the SST anomaly is negative and smaller in magnitude,
though there is a strong, negative R, ¢ anomaly, indicating a reduction in cloud fraction. Owing to the shift in circulation,

suppressed convection can result in anomalous subsidence, hence reducing high cloudiness. Our configuration predicts R;y, ¢

with slight negative error in the East Pacific, indicating an underestimation of the increased cloud fraction. In the West Pacific,

where there is an observed reduction in cloud fraction, our predictions have little error.
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Figure 98. Observed mean El Nifio surface temperature anomaly (top) and radiative anomalies (panel (a)), averaged from July 2016
—June 2015 relative to the full twenty-year record. Predicted anomalies (panel (b)) made using a 21x11 domain and the configuration
Sur + AUzqq (With Tgpe, RH799, UTRH and w3q) for the EI Nifio months. The difference (predicted — observed) is shown in the

panel (c). The Pearson r spatial correlation between (a) and (b) is shown in the bottom left of panel (b). Note different colorbar
ranges.

We also predict observed, globally-aggregated R,y crp Well, though with slightly reduced correlation coefficients
compared t0 R,y cr_(r = 0.68).- Figure 9b Figure-10b-shows that the magnitudes of strong positive and negative anomalies
are slightly underestimated; this may be caused by a small signal for the regression model to learn from (see Fig. S9510%).
TFhis-may-aAlternatively, this may hint towards a non-linear relationship between cloud top pressure and the CCFs, which
would not be captured by ridge regression, and (in addition to CCF selection) could explain poorer skill for predicting LW
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cloud feedback (CN21).- Regardless, the spatial distribution of predicted EI Nifio R,y crp is again strongly correlated to the
observed, here with r = 0.80% (shewn-in-Figure 9aFig-9). Strong positive anomalies are present over the East Pacific, which
we ascribe to a rise in cloud top pressure due to enhanced convection. As the atmosphere warms, a shift of the R,y crp
distribution towards higher values, particularly in the tropics, may be expected owing to the rising of free-tropospheric clouds
(Ceppi et al., 2017). We note that the globally-aggregated, annual mean R, crp during this El Nifio event is most extreme,
positive anomaly in the observed twenty-year record, and is reproduced with small absolute error (-0.003-01 Wm-&?).
Accordingly, we predict the most positive Rygr crp_annual anomaly with similarly small absolute error and correlation

coefficient (absolute error -0.01 Wm™, r = 0.57; see Fig. S12). This is consistent with the extreme warmth during that period,

and the associated rise of the tropopause. Despite potentially underestimating the amplitude of the monthly variability, our
method does an excellent job capturing the most extreme (positive) pesitive—annual anomaly out-of-sample (glebathy-

aggregated-shown-in-Fig. 9bFig-10; i ion, g ).- We also find that configurations S, and
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Figure 109. Scatter plot showing the correlation between observed and predicted monthly globally -aggregated (a) Ry cr and (b)
Ryw,crp time series using configuration Sy + AUszgg (in addition to Tz, Fster RH799RH7w0, UTRH, and w3g) and a 21x11 domain.
El Nifio months are shown using coloured circles, with the annual mean shown using a coloured square. Solid lines show y = x, and
the dashed lines show the line-of-best fit through the points. For Rygr cr and Rygr crp, see Fig. S10S12.

Syr + AUzq_predicts the tropical mean EI Nifio R,y crp_With the smallest absolute error (not shown).

We additionally confirm that our framework predicts out-of-sample globally-aggregated R,y ¢ and Ry, crp With good skill

in the CMIP models, once again with slightly higher correlation coefficients than the observed (multi-model medians of r =

0.750-8+_and 0.7877, respectively;—see—Fig—Stt). To summarise, Fhough-we-only—showresults—forthe-Syr—+Atoyy

spatial distribution of the observed EI Nifio anomalies are captured well, including the most extreme positive Ry, orp_annual
anomaly, thus highlighting the strength of our proposed configuration Sy + AUs,,. —in-particularas-a-high-cloud-controlling
- pari Ni hs-alone-we-find-that-any-configuration-including-Syr—reproduces-tropically
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6 Conclusion

Few studies directly assess cloud controlling factors for high clouds despite their substantial contributions to cloud

feedback. Here, aA selection of candidate cloud controlling factors (CCFs) has-have been used to predict high-cloud radiative

anomalies using ridge regression. We investigate five candidate CCFs: static stability in the upper troposphere, sub-cloud
moist static energy, wind shear, convective available potential energy and convective inhibition, using the additional ““core”
meteorological drivers surface temperature, lower- and upper-tropospheric relative humidity, and upper-tropospheric vertical
pressure velocity in each configuration. CCFs are used within a two-dimensional spatial domain to predict out-of-sample
longwave cloud-radiative anomalies, R;,,. We assess configurations from local to globally-aggregated spatial scales, and
physically interpret the spatial distribution of the sensitivities for the configuration Sy + AUsq,. Finally, we assess the skill
of Syr + AUs,, for predicting out-of-sample anomalies induced by changes in cloud top pressure and cloud fraction, including
the EI Nifio event of 2015 — 2016.
We find that the optimal domain size and CCF combination is dependent on the temporal and spatial scales assessed,
and we summarise the most relevant findings here:
1. All configurations predict out-of-sample historical variability for both R, (and Rygr) anematies-with good skill for
observations and CMIP models at local scales. A domain of 7x3 optimises local predictions, where we show that

ridge regression skill surpasses traditional multiple linear regression.

I

Converse to local predictions, predictive skill for globally-aggregated (i.e., a global spatial average) radiative

anomalies increases with domain size, peaking at 21x11. We suggest a trade-off between local and non-local

predictors is partially responsible for this domain size discrepancy between local and global predictions, though

ubnravelling thi

insthis remains a key question
for future research.-

3.

The main mechanisms driving high-cloud feedback — rising of free-tropospheric clouds and reduction of anvil cloud

fraction — appear to be captured by the core and candidate CCFs sensitivities-in the Sy 4+ AUsq, configuration. The

spatial distributions of the R;, sensitivities to the core CCFs and Sy; are physically consistent with our

understanding and expectations, with observed and CMIP-modelled sensitivities qualitatively similar. There are

larger differences between observed and the multi-model mean AU, sensitivities, which are more complex to

interpret than the core CCFs and Sy .

4. Out-of-sample globally-aggregated anomalies induced by cloud top pressure and cloud fraction changes are predicted
well using Syr + AUsq,, in both observations and models. In particular, we obtain a quantitatively accurate out-of-
sample prediction of the observed extreme anomalies in Ryy, Ry cr and Ry crp during the 2015 — 2016 El Nifio.
The corresponding spatial distributions are also predicted with high correlation coefficients (= >> 0.80).

Our systematic evaluation of high-cloud controlling factors highlights Sy + AU, as an-a _possible impertant
addition-te-Coptimal configuration for CCF frameworks. Of course, our work is only the first attempt to assess candidates for
high-cloud controlling factors so we welcome future work on additional candidate factors that might not have been considered
here. We have also identified an important inconsistency regarding ideal domain size for CCF predictions on historical data
locally, and globally aggregated. Given the strong out-of-sample predictive power of our framework, in future work we will
use our optimal CCF configurations to constrain high-cloud feedback.
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Data availability

ERADS meteorological reanalysis data is freely available from the Copernicus Climate Change Service (C3S) Climate
Data Store (Hersbach, H., et al, 2023a DOIl: 10.24381/cds.f17050d7, Hersbach, H., et al, 2023b,
DOI: 10.24381/cds.6860a573 and Hersbach, H., et al., 2023c, DOI: 10.24381/cds.bd0915c6). Combined MODIS Aqua/Terra
data are also freely available and downloaded monthly (Bodas-Salcedo et al, 2011, DOI:
10.5067/MODIS/MCD06COSP_M3_MODIS.062). All CMIP5/6 data were obtained from the UK Center for Environmental
Data Analysis portal (https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/).
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