
Dear Minghuai Wang, 

 We thank you for your time and consideration of our article, “A systematic evaluation 

of high-cloud controlling factors”. We feel that the comments left by both reviewer’s raised 

some interesting points, and we have addressed them as best as we can. We believe that the 

resulting manuscript is certainly improved, and reiterate our thanks to both anonymous 

reviewers. You will find our main changes and response to reviewers below. 

 Note that some of the figure numbers have changed since our individual replies to 

reviewer 1 and reviewer 2 (i.e. Figure 5 was Figure 6, Figure 8 was Figure 9). 

Reviewer 1 

We appreciate the reviewer's insightful and constructive feedback, which has greatly 

enhanced the quality of the manuscript. We believe that the document has been significantly 

strengthened as a result of their thought-provoking questions and valuable remarks. We have 

responded to their key points as follows: 

“In this paper, ridge regression is used to systematically evaluate the addition of five 

candidate cloud controlling factors (CCFs) to previously established core CCFs within 

large spatial domains to predict longwave high-cloud radiative anomalies. The results 

show that upper-tropospheric static stability is an important CCF for high clouds and 

longwave cloud feedback. All combinations of tested CCFs perform quite well for most 

locations at grid-cell scales, while differences between configurations for predicting 

globally-aggregated radiative anomalies are more pronounced. The authors found that 

spatial domain size is more important than the selection of CCFs for predicting local 

anomalies, and there is discrepancy between optimal domain sizes for local and 

globally-aggregated radiative anomalies. 

There are abundant technique details in the paper, and the method is potentially useful 

to evaluate the long-term high-cloud feedback. The paper might be accepted after 

addressing the following comments: 

Specific comments: 

1. In machine learning, the dataset used to test the performance of a machine-learning 

model should be independent from the dataset that is used to train the data. What is 

the training dataset and testing dataset for the metrics of Fig. 2? Ideally, the PI-

control or AMIP simulations might be used as the training dataset, and abrupt4xco2 

simulations might be used as the testing dataset.  

C1. We would like to reassure the reviewer that independent training and test datasets 

have been used throughout our analysis. We have used a rotating 2-year/18-year test/training 

dataset method to construct 20-years of predictions to compare against the full 20-year 

observed record. We have described our process with more clarity in the main text (line 296). 

We have also added a schematic (see Figure R1 below; this has been added to the 

supplementary, Fig. S2) that demonstrates our test/training process. This method is used 

consistently to determine the predictive skill shown in Figures 2 and S7 for both the observed 

and modelled data.  



“For Sect. 5.1, 5.2 and 5.4 we use sensitivities to predict a two years validation 

dataset. We repeat this process, rotating the withheld data every two years resulting in 

ten unique training-validation dataset combinations (see Supplementary Fig. S2 for 

a schematic of this process).  

We use historical observations and historical simulations to assess selections of cloud 

controlling factors instead of AMIP or Pi-control simulations. This is because sensitivities 

derived from historical, observed data have been used to constrain GCM simulated abrupt-

4xCO2 cloud feedback (e.g., Ceppi and Nowack, 2021; Myers et al., 2021, etc.,  see main text 

for others). It is thus important that the sensitivities themselves are validated on the historical 

time series. For the most analogous comparison between observations and atmosphere-ocean 

coupled models, we therefore also use historical CMIP simulations.  

 

R1. Schematic demonstrating the process of rotating test-training datasets. This will be 

included in the supplementary material. 

“For observations or historical simulations, the first several or more years might be 

used to train the ridge regression model, and the last several years might be used to 

test the performance of the model” 

C2. We have chosen to use our rotating test-training dataset method to reduce the 

sensitivity of our skill metrics to outliers. For example, if we test on only the last 2 years, and 



a single extreme is underestimated, the R2 score is affected strongly by the outlier (owing to a 

small sample size of 24 datapoints). Our validation procedure in general allows us to more 

robustly estimate and compare the relative performance of the various controlling factor 

selections. 

“2. R-square and r are highly relevant metrics, so I suggest using only one of them in 

the main text.” 

 C3. We have expunged plots showing combined metrics so that Pearson 𝑟 is the only 

metric shown in the main text.  R2 and RMSE are briefly discussed in Section 5.1 and shown 

in the supplementary (Fig. S4/S5). This is to show that low R2 doesn’t necessarily mean low 

Pearson 𝑟 or high RMSE.  

3. The none-local effect of CCF on high cloud amount might be further explored and 

discussed. The dependence of model performance to domain size might be associated with 

cloud transferring between adjacent grid boxes. In addition, previous studies suggest that 

the surface temperature in the tropics has significant impact on subtropical high cloud 

amount, is this process associated with the domain size dependence? 

C4. We have included further analysis and discussion regarding the non-local effect of 

CCF on high-cloud radiative anomalies. To summarise: 

• Composite sensitivities have been analysed  (with 2 shown in the supplementary 

Fig. S6 and shown below, and Figure R2). Composite sensitivities are 

constructed by  domain-averaging independent local 21x11 sensitivities, where 

the target grid-cell matches some criteria (e.g., averaging all local sensitivities 

for Central Pacific tropical ascent grid-cells). 

• Explained value fraction (EVF) has been assessed at 3 different domain sizes 

(also included in Fig. S6). 

We have visually inspected composite sensitivities in conjunction with the EVF plots 

(see R2 and Fig. S6 shown below). Doing so, we find an emergent distinction between more 

“local” (such as UTRH, ω300 and RH700) and more “non-local” (such as Tsfc, ΔU300 and SUT) 

predictors. We find that our “local” predictors have decreasing EVF with domain size, whilst 

for non-local predictors the EVF increases with domain size. We also notice the non-local 

predictors have more spatially coherent patterns beyond the target grid-cell (e.g. wind shear in 

R2(b)), whereas for local predictors, the sensitivities appear noisier (much like “salt and 

pepper” noise) away from the target grid-cell, with largest magnitude concentrated close to the 

target grid-cell. 

We propose that, while increasing domain size incorporates non-local contributions 

from Tsfc, SUT, and ΔU300, the larger domain adds potentially less relevant information for the 

more localised UTRH, ω300 and RH700 (also contributing a large proportion of the local EVF). 

The resultant predictive skill is thus a trade-off between additional relevant information (e.g., 

from Tsfc) and additional less-relevant information (e.g., from UTRH) which increases the 

domain size and thus the dimensions of the model. We have referenced the findings of this 

analysis in the bullet point list starting at line 412:  

“ 



• There is an emergent distinction between “local” and “non-local” predictors. 

For example, EVF for UTRH decreases with increasing domain size and, 

accordingly, we find that local UTRH sensitivities typically have strong 

magnitudes close to target grid-cell, with noisy, spatially incoherent coefficients 

further afield (see Fig. S6a-b for an example); thus, we describe UTRH as a 

“local” CCF (similarly for 𝜔300 and 𝑅𝐻700). 

• EVF for 𝑇𝑠𝑓𝑐, ∆𝑈300, and 𝑆𝑈𝑇 increases with domain size (i.e., “non-local” 

predictors), and each contribute a greater proportion of the globally-

aggregated predictions compared to local predictions (Fig. S6c-d). 

• Predictive skill is likely a trade-off between adding relevant information from 

“non-local” CCFs while adding superfluous information from “local” CCFs; 

i.e., too distant information does not provide additional predictive skill, at least 

to the degree that it would outweigh the corresponding increase in 

dimensionality of the regression problem. 

• For globally-aggregated predictions, 𝜔300 is the least important predictor 

(compared to the second most important for local predictions), thus explaining 

why the choice of pressure level of 𝜔 is less relevant at global scales (shown in 

Fig. 4) than locally. 

” 

We have also included a new section in the supplementary material that discusses the 

discrepancies in domain size in more detail (Section S3), and we also agree that there are 

several mechanisms that may cause non-local dependence on the CCFs. For example, increased 

static stability to the east of a target grid-cell may be advected locally, or indeed an adjacent 

cloud transferring grid-cells. This is included explicitly in Section S3.  

“Note that there are several mechanisms that may be associated with non-local 

sensitivities, including remote SST pattern effects for deep convection (Fueglistaler, 2019), the 

transferral of cloud from one grid-cell to another within the resolved time interval, or 

upstream/downstream advection of the meteorological drivers”. 

 

“Minor Comments: 

It is recommended to check all instances of italicized text in the manuscript to ensure 

consistency throughout the text: 

Line 99: delete the preposition “in”. 

Line 275: what is the variable “r”? 



Line 287: where the second term on the right-hand side of Eq. (3) ... 

Figure 1: The latitude and longitude coordinates should be marked on the map (and 

similarly for the subsequent figures). 

Table 1: The formatting needs to be unified. For example, there are excessive gaps 

between certain words, and the sixth row of the table ("Key studies") lacks a space 

before it. Moreover, the last row ("Key studies") has a period, while the other rows do 

not.” 

Thank you for pointing out the above corrections, which we have implemented.   

“Figure 9: I suggest adding an additional panel to compare the results with the CN21 

method (i.e., CCFs containing only T_sfc, RH_700, UTRH, and ω_300). This 

comparison will better highlight the advantages of the new method.” 

C5. Thank you for your suggestion. We have broadened the discussion on Figure 9 to 

more directly compare against alternative configurations. Though we have chosen to not 

include an additional panel in Figure 9 (now Figure 8) showing CN (as visually, the spatial 

distribution of the radiative anomalies are similar between EIS and SUT + ΔU300), we have 

assessed the absolute prediction error for a range of configurations during El Niño (where we 

calculate error = predicted anomaly – observed anomaly, and total tropical absolute error is the 

absolute sum of all tropical error). We look at the absolute anomaly to avoid rewarding 

configurations that produce compensating positive and negative prediction errors which cancel 

when averaging. We have also included an additional panel (panel (c)) showing the spatial 

distribution of the anomalies. 

We find that EIS (ω500 – the CN configuration) has the highest absolute prediction error 

for RLW, RLW,CF and RLW,CTP. In fact, including EIS actually increases the absolute anomaly 

relative to just the core CCFs. Conversely, configuration SUT (with no shear) has the lowest 

absolute error for RLW,CF and RLW,CTP. For RLW and RLW,CTP, SUT is followed by SUT + ΔU300. 

These findings are mentioned in line 663:  

“We also find that configurations 𝑆𝑈𝑇 and 𝑆𝑈𝑇 + ∆𝑈300 predicts the tropical mean El 

Niño 𝑅𝐿𝑊,𝐶𝑇𝑃 with the smallest absolute error (not shown)”. 



 

 

Figure S6. Composite spatial sensitivities using the 21x11 domain and configuration 𝑺𝑼𝑻 + ∆𝑼𝟑𝟎𝟎 (with additional core 

CCFs 𝑻𝒔𝒇𝒄, RH700, UTRH, and ω300) in (a) tropical ascent grid-cells (defined by climatological mean EIS < 1 K, and 

ω500 < 0 hPa s-1) in the East Pacific (130°W to 80°W) and (b) North Atlantic (60°W to 10°E, latitudes north of 30°N) 

midlatitude clouds (climatological mean EIS > 1 K, and ω500 < 1.5x10-4 hPa s-1). Panel (c) shows the global mean EVF 

as a function of cloud controlling factor and domain size for local predictions. Note that the global mean EVF has only 

been weighted based on latitude, and not as a function of 𝑹𝑳𝑾 standard deviation. Panel (d) shows the EVF for globally-

aggregated predictions.  



  

Reviewer 2 

We are grateful for the reviewer's perceptive and constructive feedback, which has 

substantially enhanced this manuscript. We are confident that this research has been 

strengthened following their beneficial comments. Our responses to their principal points are 

outlined below: 

“In this manuscript, the authors use ridge regression to extend the work of CN21 to analyse 

LW cloud radiative anomalies in the form of Cloud Controlling Factor (CCF), i.e. 

relationships between large-scale satellite cloud observations and meteorological 

predictors. Logically, they focus on high clouds. They define a set of four “core CCFs” and 

of about ten “candidate CCFs”. The authors present the method, variables and data in the 

first four sections, followed by the results in the fifth. I'm not expert enough in their ridge 

regression method to give a relevant opinion on the statistical validity of their work, and I 

consider it relevant.  

The skills metrics for the various indicators are examined in sections 5.1 and 5.2, in 

particular on the basis of Figures 2 and 5. I find this part of the manuscript particularly 

problematic. The most systematic and robust variation of these CCFs is as a function of 

the size of the domains considered, and this aspect is little discussed” 

C6. There is indeed robust variation of predictive skill with domain size, we have since 

expanded our discussion into the evolution of skill with domain, though we are keen to keep 

R2. Composite spatial sensitivities smoothed using a Gaussian filter (σ = 2) to reduce non-local 

noise. The 21x11 domain and configuration 𝑺𝑼𝑻 + ∆𝑼𝟑𝟎𝟎 has been used (with additional core 

CCFs 𝑻𝒔𝒇𝒄, RH700, UTRH, and ω300) for (a) tropical ascent grid-cells (defined by climatological 

mean EIS < 1 K, and ω500 < 0 hPa s-1) in the East Pacific (130°W to 80°W) and (b) North 

Atlantic (60°W to 10°E, latitudes north of 30°N) midlatitude clouds (climatological mean EIS 

> 1 K, and ω500 < 1.5x10-4 hPa s-1). These regions are the same shown in Figure S6. 

 



the focus on differences between the CCFs. To address this comment, we have included a new 

figure in the supplementary (Fig. S6) and expanded Section 5.1.1 with the following additions: 

• Composite sensitivities have been analysed (with 2 shown in the supplementary 

Fig. S6 and shown below, and Figure R2). Composite sensitivities are 

constructed by  domain-averaging independent local 21x11 sensitivities, where 

the target grid-cell matches some criteria (e.g., averaging all local sensitivities 

for West Pacific tropical ascent grid-cells). 

• Explained value fraction (EVF) has been assessed at 3 different domain sizes 

(also included in Fig. S6). 

Composite sensitivities (see R2 and Fig. S6) have been visually inspected, where we 

find that there appears to be a distinction between more “local” (such as UTRH) and more 

“non-local” (such as Tsfc) predictors. We find that the local predictors have largest magnitude 

concentrated close to the target grid-cell and a decreasing EVF with domain size.  Conversely, 

“non-local” predictors have increasing EVF and more spatially coherent patterns beyond the 

target grid-cell. For local predictors, the sensitivities appear noisier away from the target grid-

cell – there appears to be much “salt and pepper” style noise.  



  

 

 

Figure S6. Composite spatial sensitivities using the 21x11 domain and configuration 𝑺𝑼𝑻 + ∆𝑼𝟑𝟎𝟎 (with additional core 

CCFs 𝑻𝒔𝒇𝒄, RH700, UTRH, and ω300) in (a) tropical ascent grid-cells (defined by climatological mean EIS < 1 K, and 

ω500 < 0 hPa s-1) in the East Pacific (130°W to 80°W) and (b) North Atlantic (60°W to 10°E, latitudes north of 30°N) 

midlatitude clouds (climatological mean EIS > 1 K, and ω500 < 1.5x10-4 hPa s-1). Panel (c) shows the global mean EVF 

as a function of cloud controlling factor and domain size for local predictions. Note that the global mean EVF has only 

been weighted based on latitude, and not as a function of 𝑹𝑳𝑾 standard deviation. Panel (d) shows the EVF for globally-

aggregated predictions.  

 



 

We propose that an increasing domain size can incorporate more relevant non-local 

contributions for CCFs such as Tsfc, SUT, and ΔU300, whilst also adding potentially less relevant 

information for more localised CCFs such as UTRH, ω300 and RH700 (which we find contribute 

a large proportion of the local EVF). Thus, predictive skill is a trade-off between additional 

relevant non-local context (e.g., from Tsfc) and the inclusion of less-relevant information (e.g., 

from UTRH), increasing the domain size and thus the dimensions of the model. We have 

referenced the findings of this analysis in the bullet point list starting at line 417: 

“ 

• There is an emergent distinction between “local” and “non-local” predictors. 

For example, EVF for UTRH decreases with increasing domain size and, 

accordingly, we find that local UTRH sensitivities typically have strong 

magnitudes close to target grid-cell, with noisy, spatially incoherent coefficients 

further afield (see Fig. S6a-b for an example); thus, we describe UTRH as a 

“local” CCF (similarly for 𝜔300 and 𝑅𝐻700). 

• EVF for 𝑇𝑠𝑓𝑐, ∆𝑈300, and 𝑆𝑈𝑇 increases with domain size (i.e., “non-local” 

predictors), and each contribute a greater proportion of the globally-

aggregated predictions compared to local predictions (Fig. S6c-d). 

R2.. Composite spatial sensitivities smoothed using a Gaussian filter (σ = 2) to reduce non-

local noise. The 21x11 domain and configuration 𝑺𝑼𝑻 + ∆𝑼𝟑𝟎𝟎 has been used (with additional 

core CCFs 𝑻𝒔𝒇𝒄, RH700, UTRH, and ω300) for (a) tropical ascent grid-cells (defined by 

climatological mean EIS < 1 K, and ω500 < 0 hPa s-1) in the East Pacific (130°W to 80°W) and 

(b) North Atlantic (60°W to 10°E, latitudes north of 30°N) midlatitude clouds (climatological 

mean EIS > 1 K, and ω500 < 1.5x10-4 hPa s-1). These regions are the same shown in Figure S6. 

 



• Predictive skill is likely a trade-off between adding relevant information from 

“non-local” CCFs while adding superfluous information from “local” CCFs; 

i.e., too distant information does not provide additional predictive skill, at least 

to the degree that it would outweigh the corresponding increase in 

dimensionality of the regression problem. 

• For globally-aggregated predictions, 𝜔300 is the least important predictor 

(compared to the second most important for local predictions), thus explaining 

why the choice of pressure level of 𝜔 is less relevant at global scales (shown in 

Fig. 4) than locally. 

” 

We have also included a new section in the supplementary material that discusses the 

discrepancies in domain size in more detail (Section S3). 

 

“Most of the discussion focuses on the variation of the metrics according to the CCF. But, 

for the same size of domain, these variations are extremely small, of the order of 1% for the 

RMSE of local predictions, of 10% for the Pearson number of the integrated value of 

predictions, i.e. often of the order of the last digit given. There is no discussion as to 

whether this level of precision is relevant. Some variations may be different depending on 

the size of the domain. “ 

C7. We agree with the reviewer’s comment; the changes in skill between the configurations 

indeed might on first sight appear small (although it is important to highlight again that 

predictive skill becomes increasingly hard to gain as the baseline performance is increased 

towards perfect scores), and thus determining the statistical relevance of these changes is 

important. Therefore, in addition to showing the metrics for the single 20-year observed time 

series (which we showed in main text Fig. 2) we have since statistically tested the differences 

in predictive skill between the configurations at the optimal domains for local (7x3) and 

globally-aggregated (21x11) predictions using the Kruskal-Wallis test. To ensure statistical 

testing between configurations is robust, we construct a distribution of predictive skill using 

100 bootstrapped samples. All references to statistical testing in this response (C2) consider 

observations only (C3 looks at the CMIP models). 



 

Figure R3. Schematic showing the process followed for constructing distributions of predictive 

skill. 

We separately train the ridge regression model using 216 months (equivalent to 18 years) 

of bootstrapped data (with replacement) and validate against any remaining months of the 20-

year dataset. Training the model using only 216 months out of the total 240 ensures there are 

always at least 24 months of unseen data for validation (though typically this is around 80 due 

to repeated months in the training dataset), thus providing separate test and training datasets. 

This is repeated n = 100 times for each configuration. The 216 bootstrapped samples used to 

train the model are determined using the same random seed for each n-th iteration so that the 

same training datasets are used for comparison between each CCF configuration. The Pearson 

r is hence determined 100 times for each configuration from each test dataset with predicted 

values. This results in a distribution of the predictive skill for each configuration. A schematic 

of this process is shown above (R3).   



We then perform a Kruskal-Wallis test for the 10 different configurations, locally and 

globally, to determine whether the distributions are statistically similar. 

R4. LHS: Boxplots showing the distribution of Pearson r values from 100 bootstrapped samples 

(where samples are a random 216 months) and validated against the remaining unseen months. 

Horizontal dashed line shows the mean value for configuration EIS (w300). RHS shows the 

PDF for each distribution, fit using kernel density estimation. 

Shown above is the distribution for all configurations (R4). We have added a new 

Figure to the main text (Figure 3) that shows a selection of configurations, demonstrating the 

evolution of predictive skill with CCF at a single domain dimension (see below). We first look 

at results for the observed cloud-radiative anomalies. For local predictions with 7x3 predictor 

dimensionality, there is a clear shift in the distributions changing 𝜔500 to 𝜔300. An additional 

shift occurs through the inclusion of shear. For local predictions, the Kruskal-Wallis test shows 

that there is sufficient evidence to suggest that the distributions of predictive skill are different 



(𝑝 < 10−30). Following this, we perform pairwise Kruskal-Wallis tests against the 

configuration with the highest median (SUT + ΔU300). SUT + ΔU300 is only statistically similar 

to configurations m + ΔU300 and ΔU300 at the 0.5 % (𝑝 =  0.005) significance level (smaller 

significance level to account for multiple statistical testing, following the Bonferroni 

correction: with 𝑝 = 0.06 and 𝑝 = 0.01, respectively). This has been included in Sect 5.1: 

“To quantify whether differences between configurations are statistically significant 

for the observed anomalies, we generate a distribution of Pearson 𝑟 values using 

bootstrapping (Davison and Hinkley, 1997). We randomly sample the observed data 

(with replacement) 100 times, creating datasets equivalent in length to 18 years. Any 

remaining months are used as a validation dataset, where 𝑟 is determined against 

predicted values. This process results in a distribution of 100 𝑟 values for each 

configuration, providing an estimate of predictive skill uncertainty, with a selection of 

the configurations shown in Fig. 3. The non-parametric Kruskal-Wallis test is hence 

used to identify statistical differences between all of the distributions. We find highly 

significant differences between all of the configurations (𝒑 < 𝟏𝟎−𝟑𝟎). Accounting 

for its highest global median 𝑟, we pairwise test the predictive skill distribution for 

𝑆𝑈𝑇 + ∆𝑈300 with all other configurations (using an adjusted significance level of 0.5 

% to account for multiple hypothesis testing). We find statistical similarity with only 

𝒎 + ∆𝑼𝟑𝟎𝟎 and  ∆𝑼𝟑𝟎𝟎 (𝒑 = 𝟎. 𝟎𝟔 and 𝒑 = 𝟎. 𝟎𝟏, respectively).” 

And for globally-aggregated anomalies, also in Sect. 5.1: 



“Here we find more marked improvements in predictive skill for most of the CCF 

configurations compared to 𝐸𝐼𝑆 (𝜔500), with performance again strongly dependent on 

domain size (Fig. 2c-d). However, we now find that changing the pressure level of 𝜔 no 

longer results in a substantial positive shift of the skill distributions, though inclusion of 

∆𝑈300 still results in improvements (Fig. 3b). We also note that performance metrics for 

globally-aggregated 𝑅𝐿𝑊 are comparatively worse than the globally-averaged local metrics. 

This is in line with accumulation of local errors and reduced variability in the globally-

aggregated anomalies. In a comparison of all globally-aggregated distributions shown Fig. 

3b, there is evidence showing statistical differences at the 5 % significance level (with 𝒑 <

𝟏𝟎−𝟒𝟎). Here, 𝑚 + ∆𝑈300 has the highest median 𝑟. In a pairwise comparison of 𝒎 +

∆𝑼𝟑𝟎𝟎 with each other predictive distribution, we find statistical differences with all 

configurations except  𝑺𝑼𝑻 +  ∆𝑼𝟑𝟎𝟎 (𝒑 = 𝟎. 𝟎𝟐) and  ∆𝑼𝟑𝟎𝟎  (𝒑 = 𝟎. 𝟎𝟑), here using the 

0.5 % significance level owing to multiple statistical tests.” 

 

Figure 3. Box and whisker plots (left panels) showing the distribution of Pearson 𝒓 values based on 100 bootstrapped 

samples of 𝑹𝑳𝑾 for a selection of the CCF configurations. Crosses show the means, notches show the medians, and 

circles show the outliers. A “CCF configuration” refers to the selection of cloud controlling factors used to predict RLW, 

where each configuration uses Tsfc, RH700, UTRH and ω300 (with the exception of the first box and whisker, where ω500 

is used instead) and a candidate CCF(s) (e.g., 𝑺𝑼𝑻), which is used to label each configuration. The right panels show the 

shapes of the distributions using kernel density estimation. The top panels (a) show the distributions for local 

predictions at the 7x3 optimal domain size (analogous to Fig. 2a) and the bottom panels (b) show the distributions for 

the 21x11 optimal domain size (analogous to Fig. 2c). 𝑬𝑰𝑺 (𝝎𝟑𝟎𝟎) is highlighted in black to facilitate easier comparison 

between configurations.   



“There is a lot of discussion about how these indicators evolve according to the CCFs, but 

this evolution between CCFs is difficult to see. Given that it is mainly the dependence on 

CCFs that is being discussed, why not plot the values for a single domain dimension (as 

in Figure 6)?” 

 

C8. Thank you for your comment. To facilitate the ease of viewing evolution of 

configuration skill with CCFs, we have since included Figure 3 which shows the bootstrapped 

distributions of predictive skill for the “optimal” domain dimensions (7x3 and 21x11), making 

Figure 5 (previously Figure 6). Pearson 𝒓 scores for (a) globally- and (b) tropical ascent-aggregated predictions made 

at the 21x11 domain size using different “CCF configurations”. A “CCF configuration” refers to the selection of cloud 

controlling factors used to predict RLW. Each configuration uses 𝑻𝒔𝒇𝒄, 𝑹𝑯𝟕𝟎𝟎, UTRH and 𝝎𝟑𝟎𝟎 (with the exception of 

the first column, where 𝝎𝟓𝟎𝟎 is used instead) and a candidate CCF(s) (e.g., SUT). The multi-model median Pearson 𝒓 is 

shown from the 14 CMIP models where CAPE and CIN is calculated. The bootstrapped (𝒏 =  𝟏𝟎𝟎) predictive skill 

distributions for EIS (𝝎𝟑𝟎𝟎) and 𝑺𝑼𝑻 + ∆𝑼𝟑𝟎𝟎 are shown at the optimal 21x11 domain size for (c) globally-aggregated 

predictions and (d) tropical-ascent aggregated predictions. 



it easier to see the evolution of predictive skill for a single domain dimension. We have also 

removed the CMIP correlation matrix from the main text and included this in the supplementary 

instead (Fig. S7), while adding 2 additional panels to Figure 6 to show the evolution between 

EIS (𝜔300) and SUT + ΔU300 individually for each CMIP model. We hope this better conveys 

the evolution of predictive skill between CCF configurations and also that predictive skill can 

be quite dependent on GCM. Given that the evolution of predictive skill with CCF 

configuration is quite dependent on GCM, we feel that the original heatmap (now Fig. S7) was 

not able to convey this complex information, and we believe our new Figure 6 better conveys 

that although median CMIP skill has very small variations, these variations are more 

pronounced at an induvial CMIP model level. 

The discussion is included in Sect. 5.2:  

“In Section 5.1, we highlighted 𝑆𝑈𝑇 + ∆𝑈300 as a possible optimal configuration. Here 

we identify whether differences between the CMIP-modelled predictive skill distributions 

for 𝐸𝐼𝑆 (𝜔300) and 𝑆𝑈𝑇 + ∆𝑈300 are statistically significant. In a pairwise Kruskal-Wallis 

test on the combined Pearson 𝑟 scores from all 18 models (𝑛 = 1800), we find a 

significantly higher predictive skill distribution for 𝑆𝑈𝑇 + ∆𝑈300 than 𝐸𝐼𝑆 (𝜔300) with 

𝑝 < 10−11 (distributions not shown). This is unsurprising; 15 of the 18 individual CMIP 

models have a higher median 𝑟 using 𝑆𝑈𝑇 + ∆𝑈300 compared with 𝐸𝐼𝑆 (𝜔300). 

Despite a slightly lower multi-model median, we find that the globally-aggregated 

distributions for all models combined are statistically similar at the 5 % significance level 

(shown in Fig. 6c, 𝑝 = 0.13). Here, only half of the CMIP models have a higher median 

𝑟 using 𝑆𝑈𝑇 + ∆𝑈300 compared with 𝐸𝐼𝑆 (𝜔300). However, visual inspection of the 

distributions for tropical ascent-aggregated predictions (Fig. 6d) suggests that 

improvements found using 𝑆𝑈𝑇 + ∆𝑈300 instead of 𝐸𝐼𝑆 (𝜔300) are more pronounced than 

any deteriorations. In summary, while the mean evolution of predictive skill within the 

CMIP models is broadly aligned with the observations, there are nuances which likely 

depend on the parameterization within the models themselves (Li et al., 2012; Qu et al., 

2014; (Rio et al., 2019). This leads to a slightly different evolution of predictive skill with 

configuration between the CMIP models” 

 

“These variations in performance according to the CCFs are generally very small, which 

leads the authors to make many suppositions but few assertions. The word "speculate" 

appears 15 times in the manuscript. Moreover, these small variations in performance 

according to the CCFs make many comments questionable in my opinion.” 

We have expunged several instances of “speculate” and supported our suppositions with 

additional analysis. This additional analysis includes: 

• The statistical testing of the differences between the configurations (see comments C6 

& C7) 

o We show statistical differences between candidate CCF configurations and 

confirm differences are robust. 

• Greater exploration of the domains-size discrepancy (see comments C1 and C5) 



o Increased discussion surrounding performance with domain size; we propose a 

trade-off in predictive skill exists between local and non-local CCFs (owing to 

increasing dimensions in the model). 

• Improved visualisation of the CMIP sensitivities and inclusion of correlation 

coefficients (see C9) 

“I have the same criticism of figure 7 and the associated comments. The observations are 

very noisy, as you would expect, which makes it difficult to compare the figures directly. It 

would therefore be necessary to highlight what is significant and what is not, to show 

zonal averages, smoother results, and so on.” 

C9. We again thank the reviewer for this helpful comment. We have added zonal average 

sensitivities alongside the spatial distributions, previously shown in Figure 6 (previously Figure 

7). We have added a similar panel to the Supplementary Figures S8 and S9. We have also 

included a correlation between the CMIP multi-model mean zonal sensitivity and the observed 

zonal sensitivity to more objectively discern whether the sensitivities are similar.   



 

“In summary, this manuscript deals with an important subject and uses an original method 

of analysis, but needs major revisions in order to make the text less descriptive, reach more 

conclusions and ensure that these are better supported” 

 We once again thank the reviewer for their thought provoking and helpful comments. We 

believe that the manuscript is much improved following their insightful questions and remarks.  
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