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Abstract10

Agroforestry is considered an important strategy for mitigating against, and adapting to, climate change.11

Questions yet remain regarding the potential impacts of different tree species on water/carbon cycling at dif-12

ferent locations, scales and under different climatic conditions. There is an urgent need for numerical models13

capable of quantifying agroforestry impacts on a host ecosystem services including carbon sequestration and14

soil water/river flow regulation. A key challenge in modelling agroforestry systems is that they depend heavily15

on soil moisture as the main driver of many biogeochemical processes. Soil moisture itself is highly variable16

with soil properties (and therefore with location) but also with depth. Given that target sites for agroforestry17

are often ungauged, location-specific agroforestry modelling must inevitably rely only on data available from18

satellites and/or nearby weather stations which do not typically cover the subsurface, i.e., there is an incom-19

mensurability between data-availability and system complexity. To overcome this, we propose RSEEP, a20

new ecohydrological model that only requires rainfall, potential evapotranspiration, and surface soil moisture21

for its calibration. We demonstrate RSEEP’s capability in water cycling for a site in Scotland where soil22

moisture observations are available for different depths and vegetation types. We then couple RSEEP to the23

well-known RothC soil carbon model to (i) test RothC’s sensitivity to water cycling method, and to (ii) simu-24

late water-carbon dynamics of three different silvo-pastoral agroforestry systems (all at 400 stems/ha density)25

in Scotland; these systems are: with evergreen conifer (Scots Pine), deciduous conifer (Hybrid Larch), and26

deciduous broadleaf (Sycamore) trees. We find that not including more accurate soil moisture accounting27

methods in RothC can significantly overestimate soil carbon stocks. Under the current future climate pathway28

(RCP6.0), 40 years after planting trees, above+below ground carbon storage can be 2-5 times (100-250 t/ha)29

higher under silvo-pasture than under pasture depending on species, with Larch having the highest potential30

and Sycamore the lowest. Larch also exhibits the highest potential for preserving soil moisture under drier31

conditions, but Pine shows the highest potential for river flow regulation under both wet and dry conditions32

at our site. The choice of species is therefore important and should be made site-specifically and based on33

the ecosystem service and management priorities/objectives. Examining our scenarios under drought- and34

flood-relevant conditions and scales is a logical next step.35

1 Introduction36

Climate change mitigation polices typically revolve around reducing carbon emissions and increasing its se-37

questration, while climate change adaptation policies tend to focus on increasing land productivity under the38
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expected adverse future temperature and precipitation patterns (e.g., IPCC 2023). However, the two agendas39

overlap significantly because carbon and water cycles are closely linked (Gentine et al., 2019). Agroforestry,40

the practice of growing trees/shrubs in association with crops/pasture and/or livestock (Nair et al., 2021), can41

provide many benefits including carbon sequestration and soil water regulation (Smith et al., 2013). This is why42

agroforestry is recognised as a potential solution to help meaningfully, and simultaneously approach mitigation43

and adaptation (Noordwijk et al., 2011, Duguma al., 2014a,b).44

While more common in tropical latitudes, agroforestry practices are yet to be widely adopted in regions45

with temperate, humid climates (Smith et al., 2013, Den Herderet al., 2017, Garcia de Jalon et al., 2018, Sollen-46

Norrlin et al., 2020), e.g., Scotland. The barriers to wider adoption typically fall within one of three categories;47

a lack of (i) adequate policies to promote and enable agroforestry (Mosquera-Losada et al., 2018), (ii) practical48

skills in establishing/maintaining trees, or awareness of their potential economic benefits (Abdul-Salam al.,49

2022), and (iii) sufficient evidence of effectiveness (Smith et al., 2012). The latter is partly due to the time/cost50

associated with pilot agroforestry experiments resulting in very few examples being yet available of complete51

cycles of systems through to tree harvest (Smith et al., 2012), and partly due to the complexities inherent in52

tree-soil-atmospheric systems (Menichetti et al., 2020) making them difficult to assess using numerical models,53

which in turn poses as a barrier to reporting agroforestry’s contribution to climate policies (Hübner al., 2021,54

Cardinael al., 2021).55

One of the reasons for the difficulty in modelling agroforestry is the presence of trees and their interaction56

with soil moisture. It is generally accepted that most trees have the ability to shift their water source from57

shallow to deeper layers under drier conditions Liste & White 2008, Dawson 1996, 1993, Emerman & Dawson58

1996, Caldwell & Richards 1989. For systems involving trees, this makes it particularly important to estimate59

soil moisture and root water uptake at different depths (see, e.g., Smith et al. 2021). This importance is further60

accentuated when considering climate change and that the tendency of soils to store and emit carbon strongly61

depends on soil moisture (amongst other factors, Falloon & Betts 2010, Falloon et al. 2011, Gottschalk et al.62

2012, Moyano et al. 2012, Jebari et al. 2021). For these reasons, part of our focus here is on how to estimate soil63

moisture at different depths in a simple, parsimonious manner, while the other part is on exploring agroforestry64

impacts on water and carbon. On an aside, note that profile soil moisture estimation is an old problem in65

hydrology that goes back decades (Liu & Yang, 2022). In fact, soil moisture has been described as the most66

challenging variable to estimate (Mishra et al., 2020), so while we are motivated by its particular importance in67

agroforestry systems, our parsimonious approach to estimating soil moisture is likely to be of interest in other68

applications.69

The difficulty in modelling soil moisture stems mainly from a lack of data to constrain the additional param-70

eters that would be needed to develop a depth-dependent model of the soil (i.e., not from inadequate understand-71

ing of the physical processes themselves Li et al. 2023). Today, satellite datasets are readily available to force,72

calibrate, and validate (eco)hydrological models in the top 5-10 cm layer of the soil, but similar below-ground73

datasets are limited to sparse, point-measurements often at sites that are not suitable/targets for the intended74

application (Li et al., 2021, Duethmann al., 2022, Wang et al., 2023). This makes reliable, location-specific75

predictions a real challenge. To boost temperate agroforestry uptake, we would argue that location-specific76

predictions are essential to help stakeholders in their decision making.77

To this end, we developed RSEEP, a simple, parsimonious, conceptual ecohydrological model to Retrieve78

Soil-moisture and Estimate Ecohydrological Partitioning. RSEEP is a three-parameter model that encompasses79

the main soil-tree-atmospheric interactions but only requires rainfall, potential evapotranspiration and surface80

soil moisture information for its calibration. In a data-rich site in Scotland where detailed profile soil moisture81

observations are available, we show RSEEP’s strengths and weaknesses in estimating profile soil moisture. In82

a nearby data-limited pilot agroforestry site, where soil moisture observation is limited to the top of the soil83

profile, we then couple RSEEP with the widely used RothC soil carbon model, and used the coupled model to:84

(i) examine the impact of a different soil moisture accounting procedure on RothC’s carbon storage/emission85

estimates; and (ii) quantify the impacts of different agroforestry scenarios in North East Scotland and under the86

current future climate projection pathway (RCP6, until to 2080).87
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2 Study sites88

Our study considers two separate sites as shown in Figure 1: the pilot agroforestry experimental site in Glen-89

saugh, Scotland, and the Cruickshank Botanic Garden located in Aberdeen, Scotland. Cruickshank Botanic90

Garden is a data-rich site in terms of soil moisture data availability at different depths, so it is used here to91

test and highlight the strengths and weaknesses of our proposed model (RSEEP) in retrieving profile soil mois-92

ture. The agroforestry site at Glensaugh, is a data-limited site with regard to soil-moisture information because93

datasets cover only the near-surface (i.e., 6 cm depth) zone. However, Glensaugh also provides before/after94

(agroforestry) soil carbon/biomass datasets. Thus, by coupling RSEEP with RothC (a soil carbon model, will95

be introduced in section 3.2.1) in this data-limited site we aim explore an agroforestry scenario.96

2.1 Cruickshank Botanic Garden97

Cruickshank Botanic Garden is owned by the University of Aberdeen, located in North East Scotland. Geo-98

logically, the bedrock in the area is composed of metamorphic psammite and semipelite, in contact with the99

Aberdeen granite to the West and conglomerates and sandstones to the East. The bedrock is overlain by glacial100

till, sands and gravel deposits. Soils are typically mineral podzols and brown soils. The climate of Aberdeen is101

temperate/boreal oceanic with average precipitation of 850 mm/yr. Monthly mean temperatures range from 3102

oC in January to 14 oC in July/August (Stevenson et al., 2023). Ecohydrological monitoring began in December103

2020 and involved soil moisture measurement at five different depths (namely 10cm, 20cm, 40cm, 60cm, and104

100cm below the surface) and under three different species: evergreen conifer (Abies korena; 30 years old and 6105

m tall), larger deciduous tree (Fagus sylvatica; 60 years old and 10 m tall), and grassland site, which contained106

a variety of species associated with this habitat, such as Taraxacum spp., to a height of ca. 0.4 m. The three sites107

had similar soil properties being an undifferentiated silty-clay-loam subsoil, with distinct organic-rich topsoil.108

Following Stevenson et al. (2023), evergreen conifer is assumed to have a time invariant Leaf Area Index (LAL )109

value of 7 m2/m2. For the time-variant canopies, a trapezoidal shape was employed, in the absence of repeated110

LAL measurements. The timing of rises, peaks and decreases of this trapezoid were directly guided by field111

observations and sapflux measurements where available, resulting in an initial value on 1st March of 1.5 m2/m2
112

for the larger deciduous tree which remained constant before rising to 6 m2/m2 between 12th May and 17th113

July. The grassland timeseries followed the same temporal pattern but rose from 1.5 to 4.114

2.2 The Glensaugh agroforestry experiment115

Glensaugh is a 1100 ha research farm owned and operated by the James Hutton Institute and is located ∼56116

km south West of Aberdeen, Scotland. The farm contains an experimental agroforestry site. The silvopasture117

experiment was established on permanent improved grazed pasture in spring of 1988. It is composed of three118

main blocks, A, B and C (see Figure 1 b). Three species of trees were planted in 1988 and replicated in each119

block, at 100, 200, 400, and 2500 stems/ha densities. However, we only consider the 400 stems/ha case in120

this study. Species are: (1) Deciduous broadleaf (Acer pseudoplantanus, or Sycamore), (2) Deciduous conifer121

(Larix eurolepis, or Hybrid Larch, hereafter referred to as Larch), and (3) Evergreen conifer (Pinus sylvestris,122

or Scots Pine, hereafter referred to as Pine). Also, separately on each block, an open patch of grazed pasture123

covered primarily with lolium perenne, or rye grass (hereafter referred to as Grass) is monitored as control.124

All plots are grazed from April to October by sheep and, since 2010, occasionally by cattle (Chandler et125

al., 2018). The understory of the Pine and Grass plots are covered with pasture. In the Larch plots, much of126

the understorty is covered by a dense litter layer, but the plots are still used by sheep/cattle for shelter. The127

understory in the Sycamore plots are characterised by patches of bare ground and litter that vary in extent128

seasonally (Beckert et al., 2015, Chandler et al., 2018). Altitude across the site ranges from 140 m to 205 m.129

Mean annual rainfall and temperature at Glensaugh are 1168 mm and 8 oC, respectively (Chandler et al., 2018).130

The soils at the site are freely drained cultivated humus-iron podzols and brown earths (Beckert et al., 2015)131

developed primarily on glacial drifts. Median sand content is: 76%, 75%, 69% and 76%; silt: 20%, 21%, 24%132

and 21%; and clay: 4%, 4%, 7% and 3%, for Grass, Pine, Larch and Sycamore, respectively.133
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Figure 1: Our two study sites: (a) location of the sites. (b) Glensaugh pilot agroforestry experiment. (c) Botanic
Garden is used to test the soil-moisture retrieval performance of RSEEP. (d) Volumetric moisture content at
the 6cm depth (V MC06) for each species at Glensaugh; shaded bands show the variation between the different
blocks (A, B, and C in panel b). (e-f) CHESS-SCAPE dataset showing the current future climate trajectory
(RCP6.0) at Glensaugh.

Soil carbon measurements are available on each plot (i.e., species-block combination) in 2012 (=24 years134

after trees were planted). To control for inter-plot differences (in e.g., topography, slope, aspect, soil texture,135

organic content, etc.), for each species we only consider the average value of soil carbon across the three blocks136

(see Table 1). Soil carbon was also measured on multiple points across the site in 1987 (i.e., before trees were137

planted). Since no trees were present in 1987, we use the average value across the entire site to represent the138

conditions before the experiment for all scenarios (see Table 1). But since the details of the management practice139

is unavailable, we calculate the impact of planting trees on pasture relative to the pasture base-case, to control140

for unknown effects (more details in section 3.2.4). For the tree sites, plot-average Diameter at Breast Height141
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(DBH , breast height = 1.3 meters) was recorded in 2012 (Beckert et al., 2015). Also, the year in which each142

species reached the height of 1.3m (on average) was recorded between 1992-1994 (Nwaigbo, 1996), which is143

also shown in Table 1.144

Table 1: Average soil carbon (C) and biomass measurements at Glensaugh. DBH =average Diameter at Breast
Height.

Species C in 1987 C in 2012 Height reaching 1.3m DBH in 2012
Grass 52 tC/ha 67 tC/ha - -
Sycamore 52 tC/ha 74 tC/ha 1993 24.5 cm
Pine 52 tC/ha 78 tC/ha 1994 36.22 cm
Larch 52 tC/ha 81 tC/ha 1992 38.45 cm

Within each plot, hourly volumetric moisture content at the 6cm depth (V MC06) is recorded between145

January-December 2022, which is subsequently converted to daily timesteps (see Figure 1 d). There is no146

soil moisture information available for deeper layers. Note that similar to soil carbon data, when calibrating our147

model (RSEEP, will be introduced in section 3.1.1), we use the soil moisture timeseries averaged across the three148

blocks to account for inter-block variability. Local climate data are available between 2015-2022 from the Envi-149

ronmental Change Network (ECN) weather station located a few hundred meters from the agroforestry site. For150

predictions after 2022, and before 2015, we use the CHESS-SCAPE dataset (Robinson et al., 2023) which pro-151

vides high-resolution (1km-scale) projections between 1980-2080 of multiple climate scenarios for the United152

Kingdom. We only consider the current trajectory, i.e., the RCP6.0 for the 1-km tile in which Glensaugh is153

located (RCP=representative concentration pathway, and the number refers to the resulting radiative forcing by154

the end of the 21st century in watts per square metre). CHESS-SCAPE provides four different parameterisations155

(EM01:04, see Figure 1 e-g). We utilise all four in our study as a measure of climate data uncertainty. Finally,156

to correct for biases in the data we multiply the rainfall (R), temperature (T ) and Penamn-Monteith potential157

evapotranspiration (PET ) timeseries obtained from CHESS-SCAPE by appropriate correction factors (which are158

equal to average of ECN values between 2015-2022, divided by the average CHESS-SCAPE data for the same159

period). These correction coefficients were 1.13, 0.89, and 0.85, for rainfall, temperature and Penman-Monteith160

potential evapotranspiration, respectively.161

3 Methods162

3.1 Soil moisture retrieval for ecohydrological modelling163

In the past, various techniques of different complexities have been used to retrieve profile soil moisture from164

the available data, e.g., statistical (Kostov & Jackson, 1993, Srivastava et al., 1997), physically-based (van Dam165

& Feddes, 2000, Sadeghi et al., 2016), empirical (Srivastava et al., 1997), neural networks (Pan et al., 2017),166

wavelet transform (Qin et al., 2018). While the choice of model has been partly influenced by application, it has167

been mainly constrained by data availability. For large-scale applications in particular, parsimonious methods168

requiring fewer inputs are logically preferred. Among such methods, the exponential filter (EF) (e.g., Tobin et169

al. 2017), and the principle of maximum entropy (POME) (e.g., Singh 2010) have generated the most interest170

in recent years (Mishra et al., 2020). Between the two models, POME tends to have a better overall perfor-171

mance (Mishra et al., 2020) but at the cost of requiring additional information/assumptions about the average172

soil moisture content. EF, while much simpler to implement, has been criticised for many of its underlying as-173

sumptions including no evapotranspiration and constant hydraulic conductivity/porosity, as well as its generally174

poor performance at deeper layers (Albergel et al., 2008, Mishra et al., 2020).175

Here, as part of the ecohydrological modelling requirement for agroforestry applications, we developed176

RSEEP, a model to Retrieve Soil-moisture and Estimate Ecohydrological Partitioning. RSEEP is a simple,177

parsimonious conceptual ecohydrological model coupled with a retrieval algorithm that does not require infor-178

mation about the bulk soil moisture content, while also relaxing the assumptions of no evapotranspiration and179

constant hydraulic conductivity/porosity. Although RSEEP requires calibration, it only uses datasets which can180
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be easily derived from satellite products, specifically, surface soil moisture, rainfall, and potential evapotran-181

spiration. Finally, while we demonstrate RSEEP’s performance in retrieving soil moisture at different depths,182

performance comparison with other soil moisture retrieval methods is beyond our scope.183

3.1.1 Description of RSEEP184

For tractability, input (calibration) parameters are marked with ˆ to distinguish them from model coefficients and185

variables. There are only three parameters that require calibration: (1) d̂, the exponent of porosity decay with186

depth, (2) K̂0, the average soil saturated hydraulic conductivity, and (3) p̂, the exponent of soil water-potential187

decay with saturation (as a measure of the ease/difficulty with which water can be extracted from the soil at188

different saturation levels). Units of all parameters/variables are shown in square brackets throughout the paper.189

The schematic of the model is shown in Figure 2. Maximum canopy storage is, Scmax [m], is related to Leaf Area190

Index, LAI [−], Kozak et al. (2007):191

Scmax =
0.2LAI

1000
(1)

In each timestep, the Penman-Monteith potential evapotranspiration rate for grass (i.e., the reference crop),192

PETg
[m/day], is modified to account for the additional evapotranspiration of the tree species. This modification193

factor, MET , is taken to be:194

MET = 1+

(
LAI −LAIg

LAI +LAIg

)
(2)

where LAI [−] and LAIg
are the Leaf Area Indices of the species under study and grass, respectively. Thus195

the species potential evapotranspiration will be:196

PET = MET PETg
(3)

Rainfall, R [m/day], is added to the canopy store and if storage exceeds Scmax , throughfall is generated:197

QT HF =

{
0 , Sc ≤ Scmax

Sc−Scmax , Sc > Scmax

(4)

Actual canopy evaporation, AEVc
[m/day], is also subtracted from the canopy store:198

AEVc
=

{
PET , Sc ≥ PET

Sc , Sc < PET

(5)

where Sc [m] is an internal model variable which tracks the water stored in the canopy at any given time. The199

remaining potential evapotranspiration is then partitioned into potential evaporation for the soil compartment,200

PEVs
[m/day] and potential transpiration for the soil, PT Rs

[m/day]:201

PEVs
= ( 1−SCF )(PET −AEVc

) (6)

PT Rs
= SCF (PET −AEVc

) (7)

SCF [−] in Eq. 7 is the so-called Surface Cover Fraction (a measure of how much light the canopy structure202

allows to pass through or reflects back out), and is derived based on the Beer-Lambert equation (see Van Dijk203

& Bruijnzeel 2001):204

SCF = 1− exp( −rELAI ) (8)

where rE [−] is radiation extinction coefficient which is set to 0.3 for grass and 0.7 for mature tree stands205

(Van Dijk & Bruijnzeel, 2001).206
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Figure 2: (a) Schematic of RSEEP’s stores and fluxes. (b-c) Schematic of the layers within the soil compartment.
R: rainfall; AEV c : actual canopy evaporation; Sc: canopy storage; QT HF ; throughfall; AT Rs ; actual transpiration;
AEV s : actual soil evaporation; Ss: soil water storage; QY LD : water yield; and Zmax : max soil depth.

In the soil compartment, from Jarvis et al. (2002), we derived the following hydraulic conductivity modifier207

(will be applied to Eq. 22), which relates changes in hydraulic conductivity to the changes in maximum porosity208

(e.g., due to changes in organic content):209

∆K̂0 = 0.66

(
φmaxt −φmaxt0

φmaxt +φmaxt0

)
(9)

where φmaxt and φmaxt0
are the ‘current’ (at time=t) and ‘old’ (at time=t0) maximum porosity (i.e., at the210

surface). The model then requires values for soil profile depth, zmax [m], as well as φmax [−]. The former can211

be taken from observations or soil maps. The latter is calculated directly from the soil moisture observation212

at/near the surface (to which the model is calibrated) using the following equation, which accounts for the fact213

that porosity at the surface is likely to be higher than the value at an observation depth below the surface (note214

that d̂ is always ≥1):215

φmax = φ
1
d̂
obs +∆φmax (10)

φobs is the porosity at the depth at which volumetric moisture content (VMC) data is available, and is taken216

to be equal to the maximum VMC value (i.e., during the wettest part of the record where the soil is assumed217

to have reached saturation). ∆φmax [−] approximates the change in porosity with organic content O which is218

derived by differentiating a generalised porosity-soil carbon relationship (Robinson et al., 2022):219

∆φmax = 0.1224
(

Ot −Ot0
Ot +Ot0

)
(11)

The above function increases porosity as O increases, and vice versa. Here again, if O is unknown, or220

is expected to remain unchanged, Ot and Ot0 can be set to be equal to one another which would result in221

∆φ(OC) = 0. Porosity is assumed to vary with depth using (Chen et al., 2020):222

φ =
φmax

(
1+ z

d̂

)d̂
(12)

The model keeps track of the total soil water storage, Ss [m] in each time step. Ss is first divided into nL [−]223

number of layers with equal maximum storage values, SLmax
(Figure 2b). To calculate an appropriate nL value,224
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the thickness of the uppermost layer is set to 2 cm, for which SLmax
can be calculated by integrating the porosity225

profile (note that the model was found to be insensitive to uppermost layer thicknesses <2 cm, hence our choice):226

I1(z) =
∫

φ(z)dz = φmax

(
d̂

1− d̂

)(
d̂ + z

d̂

)1−d̂

(13)

SLmax
=
(

1
0.02

)
I1(z)

∣∣∣∣
0.02

0
(14)

Similarly the maximum storage of the soil profile is given by:227

Ssmax =
(

1
zmax

)
I1(z)

∣∣∣∣
zmax

0
(15)

The number of layers is then given by (rounded to the nearest integer):228

nL =
Ssmax

SLmax

(16)

This way, all the layers will have the same maximum storage (SLmax
), which is necessary to remain mass229

conservative when distributing bulk soil moisture to different depths. Note that because porosity decreases230

with depth (see Figure 2a), the ‘equi-storage’ layers will have different thicknesses (Figure 2c) denoted at the231

boundaries of each layer by zBi
, which can be back calculated by rearranging Eq.13:232

zBi = exp(X)− d̂ ; X =
(

1
1− d̂

)
ln

(
[1− d̂]sBi

d̂φmax

)
+ ln(d̂) (17)

where sBi
is the cumulative sum of storage in the downward direction. Mid-point depth for each layer233

is calculated as the average depth within the boundaries zi = (zBi
+ zBi+1

)/2. The increase in thickness with234

depth reflects the fact that soil moisture tends to become less responsive with depth, reducing the need for finer235

discretisation. Total soil storage, Ss, is distributed among the different layers according to a weight function:236

wi =
(

Ss

Ssmax

)( SLi

SLmax

)
+
(

1− Ss

Ssmax

)(
zi

zmax

)
; i = 1,2, ...,nL (18)

To ensure the weights always sum to one (to conserve mass):237

Wi =
wi

∑
nL
i=1 wi

(19)

which leads to the following layer-wise storage:238

SLi
= WiSs (20)

Thus, according to Eq. 18, in the limit that the soil is fully saturated (i.e., Ss
Ssmax

= 1), all layers will be239

allocated equal storage (equal to their maximum storage SLmax
). However, as the soil becomes drier (and Ss

Ssmax
<240

1), deeper layers will be allocated more storage than shallow layers to reflect the fact that shallower layers tend241

to dry faster. This allocation preference towards the deeper layers intensifies as the soil becomes progressively242

drier. Also, note that the zi
zmax

is a non-linear weight, the non-linearly of which increases with d̂ [−] (exponent243

of porosity decay with depth).244

Groundwater recharge, QRCH [m/day], is approximated using a Darcy-type flux, i.e., unsaturated hydraulic245

conductivity multiplied by a pressure head gradient (pressure head across the soil thickness):246

QRCH = Ku

(
Ss

zmax

)
(21)
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where unsaturated hydraulic conductivity is assumed to deviate from the saturated conductivity according247

to (Iorgulescu & Musy, 1997) (note, again, that parameters with ˆ symbol are calibration parameters):248

Ku = (K̂0 +∆K̂0)
(

Ss

Ssmax

)p̂

(22)

where p̂ [−] is a decay exponent representing the decrease in soil water potential (as measure of the249

ease/difficulty with which water can be extracted from the soil) with saturation, and ∆K̂0 is given by Eq. 9.250

Groundwater recharge here assumes that a water parcel needs to travel the entire thickness of the soil column251

before it can reach the water table and flow out of the system. Thus, at or below field capacity (e.g., in inter-252

storm periods) where water table tends to be lower, this assumption is more reasonable. But during intra-storm253

periods water tables can be at or near the surface, meaning that not only the travel distance to the water table is254

shorter, but also the flow occurs through the more permeable topsoil during those periods. Therefore, ground-255

water recharge as represented here underestimates the amount of water that leaves the system during a storm.256

Being 1D, our model is not capable of lateral flow routing, whether as near-surface through-flow or as overland257

flow. However, to account for the portion of the flow that occurs below the time resolution of our model (i.e.,258

daily), and is absent from the QRCH term, the following procedure is implemented. In each timestep, after QT HF259

is added to the soil, if storage exceeds maximum soil storage, fast near surface through flow, QNSF [m/day] is260

generated which leaves the system immediately (because it flows on time-scales much shorter than daily):261

QNSF =

{
Ss−Ssmax , Ss > Ssmax

0 , Ss ≤ Ssmax

(23)

Note that QNSF does not include subsurface preferential/macro-pore flow because such effects are expected to262

be captured in the K̂0 parameter during calibration, i.e., significant macro-pore flow is expected to significantly263

increase the bulk soil saturated hydraulic conductivity, so this effect should be included in QRCH . Total flow264

leaving the soil unit, or water yield, is given by:265

QY LD = QNSF +QRCH (24)

Total potential transpiration is distributed to different layers according to a weight function. However, this266

weight function differs for short-rooted plants and deeper-rooted species, to reflect the ability of deeper rooted267

species to adjust their water source according to water availability. The weight function is defined as:268

xi =





(
zmax−z

zmax

)
, short-rooted

(
Ss

Ssmax

)(
zmax−z

zmax

)
+
(

1− Ss
Ssmax

)( SLi
SLmax

)
, deeper-rooted

(25)

According to Eq. 25, in the case of short-rooted plants, potential transpiration of top layers is higher than269

lower layers, irrespective of the soil wetness level. In contrast, deeper-rooted species will give higher weights to270

top layers if soil is closer to saturated (i.e., Ss
Ssmax

≈ 1), but will prefer wetter (lower) layers as the soil becomes271

drier (i.e., Ss
Ssmax

< 1). Thus, layer-wise actual transpiration is then given by (note that the weight function is272

normalised to ensure that the total PT Rs
value is conserved):273

AT Rsi
= Xi

( SLi

SLmax

)p̂

PT Rs
(26)

where274

Xi =

(
xi

∑
nL
i=1 xi

)
(27)

Total actual transpiration from the soil is the sum of layer-wise transpiration values:275
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AT Rs =
nL

∑
i=1

AT Rsi (28)

Similarly, total soil potential evaporation is also distributed amongst the layers non-uniformly, because only276

uppermost layers experience evaporation. To reflect this, we use an exponential function:277

PEVsi
(z) =

(
2

1+ exp(αz)

)
PEVs

(29)

which assumes potential soil evaporation equals PEVs
at the surface (z = 0), but rapidly decreases with278

increasing z (depth), in such a way that it is nearly zero at around the 5 cm depth (this can be adjusted by279

changing α in the above equation which is set to α = 500 in our case). Note that the above equation is a280

continuous function of depth and for average layer-wise potential evapotranspiration it needs to be integrated281

across layer boundaries:282

I2(z) =
∫

PEVsi
(z)dz =

(
2z− 2

α
log [exp(αz)+1]

)
PEVs

(30)

Thus, average layer-wise potential evapotranspiration will be:283

PEVsi
=

(
1

zBi+1
− zBi

)
I2(z)

∣∣∣∣
zBi+1

zBi

(31)

Actual layer-wise soil evaporation, AEVsi [m/day], is then calculated from layer-wise potential evaporation:284

AEVsi = PEVsi

( SLi

SLmax

)p̂

(32)

Finally, total actual soil evaporation is the sum of layer-wise actual evaporation values:285

AEVs
=

nL

∑
i=1

AEVsi (33)

This concludes the model fluxes depicted in Figure 2 a. To summarise, RSEEP requires rainfall (R) and286

total potential evapotranspiration (PET ) timeseries’ to run. It also requires surface soil moisture timeseries for287

its calibration (will be discussed in 3.1.2), all of which are obtainable from satellite datasets.288

3.1.2 Calibration procedure at Cruickshank Botanic Garden289

First, using a sensitivity analysis, suitable ranges for individual model parameters were determined. In the ab-290

sence of any prior information regarding the distribution of individual parameters we sampled 10,000 parameter-291

sets uniformly and randomly from their respective ranges (a ‘parameter-set’ = one combination of d̂, K̂0 and292

p̂). Note that we found our calibration procedure to be insensitive to finer sampling of the parameter space.293

The model was run 10,000 times, and the volumetric moisture content (VMC) at the 10 cm depth (V MC10)294

was extracted from the model, and compared against the observed record at the same depth and for the cal-295

ibration period (i.e., January-December 2021, see Fig. 4 a1/b1/c1). The observed V MC10 for the remaining296

part of the record (i.e., January-December 2022) was used for blind validation testing. At all other depths297

(i.e., 20, 40, 60 and 100 cm, see a2-5, b2-5, and c2-5) the entire record (i.e., January 2021-January 2023) was298

used for blind validation testing. Finally, based on the observed VMC timeseries at the five depths, we derived299

and observation-based estimate of total soil moisture (yellow solid lines in a6, b6, and c6) by calculating the300

weighted-average of the five observed VMCs and multiplying it by the soil thickness (which is set to be 1.2m, so301

that the observation-based estimate of total soil moisture does not extend far beyond the measurement depths,302

i.e., one meter). These weights are taken to be proportional to the layer thickness that each measurement is303
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Figure 3: Ranges and distributions of model parameters (a) at Cruickshank Botanic Garden, and (b) at Glen-
saugh; NKGE= normalised KGE. (c) Tree diameter-age curves at Glensaugh.

assumed to represent, which are, 0-15 cm, 15-30 cm, 30-50 cm, 50-80 cm, and 80-120 cm, for VCM10, VCM20,304

VCM40, VCM60, and VCM100, respectively.305

For performance metric, we used the Kling-Gupta Efficiency (KGE) because it includes correlation, vari-306

ability bias as well as mean bias:307

KGE = 1−
√

(r−1)2 +
(

σsim

σobs
−1
)2

+
(

µsim

µobs
−1
)2

(34)

where r is the linear correlation coefficient between the simulated (sim) and observed (obs) records, σ is308

standard deviation, and µ is mean. Rather than the best model, the top 1% of the models in terms of their KGE309

values during the calibration period (i.e., at the 10cm depth and for the January-December 2021, see a1, b1310

and c1) were retained as ‘acceptable’, to provide some measure of parameter variability. Although, many other311

potential sources of uncertainty remain which are difficult to quantify in ecohydrological modelling in general,312

and in predicting soil moisture in particular. We discuss the sources of uncertainty in section 6.313

3.2 Coupling RSEEP to a soil carbon model314

3.2.1 Rothamsted carbon model315

The Rothamsted carbon model (RothC, Coleman & Jenkinson 2014) distinguishes five soil organic matter pools;316

decomposable and resistant plant material (DPM [tC/ha] and RPM [tC/ha]), humified soil organic material317

(HUM [tC/ha]), soil microbial biomass (BIO [tC/ha]) and an inert organic matter pool (IOM [tC/ha]). Plant318

inputs to the soil partition into DPM and RPM according to a DPM/RPM ratio (RDR ) which is assumed to be319
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0.25 for tree sites, and 0.67 for grass/pasture sites (Ražauskaitė et al., 2020). Each active organic matter pool320

(Y) decomposes according to a first order exponential equation of the form:321

dY = Y × (1− exp(−k.a.b.c.t)) (35)

where k [1/yr] is the decomposition rate constant for pool Y (equal to 10, 0.3, 0.66 and 0.02 for DPM, RPM,322

BIO and HUM, respectively), a [−] is a temperature rate modifier, b [−] is a soil moisture rate modifier, c [−]323

is soil cover rate modifier, and t is time-scale which is set to 1
365 (i.e., daily) in our study. In each timstep, the324

decomposed material of each pool (dY ) is then distributed among the CO2, HUM and BIO pools according to325

pre-determined fractions (see Coleman & Jenkinson 2014 for details). Thus, the only unknowns in RothC are326

the initial (equilibrium) values for each pool (i.e., at t = 0) as well as the annual plant inputs at equilibrium327

(IA0 [tC/ha]). To calculate these, it is commonly assumed that prior to any interventions (tree planting in our328

case) the soil has been in a state of equilibrium where its organic carbon content remains constant with time (in329

our case this would be 52 tC/ha, see table 1). By running RothC for 10,000 years using fixed climate data (i.e.,330

the 2015-2022 data is looped), and through a minimisation process, the initial values for each pool as well as the331

IA0 that would result in 52 tC/ha of soil organic content at time t = 0 can be found (see Coleman & Jenkinson332

2014 for more details). Equilibrium daily plant inputs (ID0 ) are then calculated from the annual plant inputs:333

ID0 = fLAI IA0 (36)

where334

fLAI =
RLAI

max(RLAI )
(37)

and335

RLAI =

{
0 ; − ∂

∂t LAI (t) < 0
− ∂

∂t LAI (t) ; − ∂
∂t LAI (t)≥ 0

(38)

This equation assumes that maximum plant inputs occur at the same time as maximum rate of reduction in336

LAI occurs. In addition, when LAI increases with time or remains constant, plant inputs to the soil are assumed337

to be zero according to this equation. Finally, RothC also requires soil cover (which is set to zero for bare soil338

and 1 otherwise) as an input to determine the value of c in Eq. 35. We set soil cover to 1 when LAI > min(LAI )339

and 0 otherwise.340

At a given time, the total soil organic carbon (TOC [tC/ha]) is the sum of the values in the five pools.341

Percentage soil organic matter can then be calculated from:342

O [%] =
1000×TOC

Azmax BD
×100 (39)

where A [m2] is land area, zmax [m] is soil thickness, and BD [kg/m3] is soil bulk density. Thus, when linking343

RSEEP with RothC, changes in organic content with time will be fed into Eqs. 9 and 11 to account for changes344

in soil water retentiveness due to organic content change. On the other hand, note that RothC in its original345

from applies a simple soil moisture accounting procedure in which total soil moisture deficit is assumed to be346

given by:347

DSM = R−PET (40)

where R[m] is rainfall, and PET [m/day] is the Penman-Monteith potential evapotranpiration rate. SMD [m]348

is capped at:349

DSMmax
= 0.0043(20+1.3Pclay +0.01P2

clay
)zmax (41)
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where Pclay [%] is clay content. Field capacity is assumed to be D f ield = 0.444×DSMmax
. However, when350

linking RothC with RSEEP this entire procedure is overwritten, and DSM is calculated directly from RSEEP’s351

output, namely: DSM = Ssmax −Ss (see section 3.1.1).352

Finally, note that RothC’s original soil moisture rate modifier (b) remains equal to its maximum value (i.e.,353

1) when DSM < D f ield and decreases toward its minimum (i.e., 0.2) as DSM increases above D f ield . Therefore,354

in its original form, RothC ignores reductions in decomposition rate under waterlogged conditions (i.e., when355

oxygen is limited), and instead it only considers reductions in decomposition rate under dry conditions (i.e.,356

when water is limited). For this reason, in this study we used a slightly different soil moisture rate modifier357

(Smith et al., 2010) that also decreases (from 1 toward 0.2) as soil oxygen levels decrease.358

3.2.2 Representing vegetation growth359

It is common to assume that tree-growth broadly follows an exponential function (Schelhaas et al., 2018). We360

assumed the following relationship between diameter at breast height, DBH [cm], and tree age t [yr]:361

DBH (t) = DBHmax

(
1− exp

(
−β̂[t− t̂0]

) )
(42)

where β [−] and t0 [yr] are parameters controlling the shape of the curve (to be determined via calibration),362

and DBHmax
[cm] is the maximum DBH for a given species; upper bound values for DBHmax

(for ages>150 years)363

is taken to be 140 cm for Hybrid Larch (Larsson-Stern, 2012), 120 cm for Scots Pine (Hall & Bunce, 2011) and364

145 cm for Sycamore (Hall & Bunce, 2011). Further, for the tree species at Glensaugh, there exists allometric365

equations of the form (assumes 45% organic content for biomass):366

ln(BA) = 0.45
(

PD

1000

)
(η+λ× ln(DBH )) (43)

to estimate above-ground biomass (BA[tC/ha]) from DBH , where PD [−] is the plantation density (=400367

stems/ha at Glensaugh) and η [−] and λ [−] are species-specific coefficients. η = -2.26, -2.029 and -2.455, for368

Hybrid Larch (Nan et al., 2012), Scots Pine (Lim & Cousens, 1986) and Sycamore (Bunce, 1968), respectively;369

and λ = 2.298, 2.289, and 2.354, respectively. Following Cairns et al. (1997), we also estimate below-ground370

biomass (BB [tC/ha]) from above-ground biomass (BA) using (also assumes 45% organic content for biomass):371

BB = 0.45
(

PD

1000

)
exp
(
−1.0587+ ln

(
1963.6

BA

PD
+0.2840

) )
(44)

The Leaf Area Index (LAI ) data, which is used by the ecohydrological model (see Eqs. 2, 8 and 1) is not372

available at the site. We thus use species-specific maximum LAI values obtained from the available literature: 5.7373

for Hybrid Larch (Gower et al., 1990), 2.73 for Scots Pine (Bealde et al., 1982), and 5.6 for Sycamore (Elsherif374

al., 2023), all between 70-90 years old, and 2 for Rye grass (Simon & Lemaire, 1987). We increased the tree375

LAI values by another 10% to account for the fact that they are not fully mature (i.e., not 150-200 years old).376

Similar to the botanic garden site (section 2.1), for the evergreen species (i.e., Pine) we assume a time invariable377

LAI , while for the two deciduous species (i.e., Larch and Sycamore) and grass a trapezoidal shape was employed378

with the minimum value set to 1.5 for trees and 1 for grass. The timing of rises, peaks and decreases of this379

trapezoid were also taken to be the same as those at the botanic garden site. Note that the maximum LAI values380

above assume mature species, meaning that they will be significant overestimation of LAI at the early stages of381

the agroforestry experiment (except for grass which had existed pre-agroforestry). To account for this, species382

LAI vary with time according to an age fraction, fage :383

LAI (t) = fage(t)LAI∞ +(1− fage(t))LAIg (45)

where LAI∞ is the leaf area index time series of mature species, LAIg is that of grass (for grass they are equal384

to one another), and:385

fage(t) =

{
1 ; for grass
DBH (t)
DBHmax

; for trees
(46)
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Eq. 45 varies tree LAI on a sliding scale between grass and fully grown trees depending on age. The same386

logic also applies to the rE [−] parameter (radiation extinction coefficient, see section 3.1.1):387

rE(t) = fage(t)rE∞ +(1− fage(t))rEg (47)

where rE∞ = 0.7 for trees (but =rEg for grass), and rEg = 0.3. Similarly, the DPM/RPM ratio (RDR , see388

section 3.1.1) varies with age according to:389

RDR(t) = fage(t)RDR∞ +(1− fage(t))×RDRg
(48)

where RDR∞ = 0.25 for trees (but =RDRg
= 0.67 for grass), and RDRg

= 0.67. Finally, non-equilibrium annual390

plant input to the soil at time t (IA(t) [tC/ha]), is needed to run the carbon model in ‘forward’ (future) mode391

(see section 3.2.1). At any given time, plant input is calculated using:392

IA(t) =

{
IA0 ; t < 1988
IA0 + fage(t)ÎA∞ ; t ≥ 1988

(49)

where IA0 [tC/yr] is the equilibrium input (at t=0) calculated by running RothC in ‘equilibrium’ mode393

(see section 3.2.1), and ÎA∞ [tC/ha] is a future equilibrium input (at t ∼ ∞, to be determined via calibration)394

representing a future state in which trees have reached maturation, i.e., their DBH has plateaued due to the395

exponential diameter-age curve in Eq. 42. In our case, this would occur c.a. after 200 years depending on the396

species (see Figure 3 c). For grass however, ÎA∞ would represent the additional organic carbon inputs due to397

introduction of grazing post-agroforestry in 1988, rather than vegetation growth/maturation. Thus, Eq. 49 will398

yield IA0 for the pre-agroforestry period, but increases plant input in the post-agroforestry period. Note that399

daily plant inputs are calculated from the annual values using Eq. 36.400

3.2.3 Calibration procedure at Glensaugh401

We apply the same calibration procedure that was used at the botanic garden site (section 3.1.2) to determine402

the values for the three calibrated RSEEP parameters (i.e., d̂, K̂0 and p̂). For forcing and check data, we use403

the 2022 dataset presented in Figure 1 d, and we set the tree ages (for LAL calculation in Eqs. 45 and 42) to 34404

years (=2022-1988). This approach results in 100 (i.e., top 1% of 10,000) RSEEP parameter-sets per species.405

Parameter ranges and distributions at Glensaugh are shown in Figure 3 b. KGE performance in the top 1% of406

the models ranged between 0.68-0.83 for Pine, 0.7-0.74 for Larch, 0.68-0.74 for Sycamore, and 0.43-0.61 for407

Grass.408

Also recall from section 3.2.2 that there are three additional unknown parameters: β̂, t̂0 and ÎA∞ . To de-409

termine these parameters, we use a minimisation procedure that utilises the data in Table 1. For the RSEEP410

parameter-set that produces the closest predictions to the median of all RSEEP predictions, the minimisation411

process iteratively selects different values for these three parameters, runs the coupled model, and refines them,412

until: (i) the predicted soil carbon stocks matches the 2012 value in Table 1 as closely as possible (which would413

constrain ÎA∞ ); (ii) t̂0 captures the onset of tree heights reaching 1.3m (third column in Table 1) as closely as414

possible; (iii) and DBH (Eq. 42) matches the values in the last column as closely as possible (which would415

constrain β̂). Figure 3 c shows the resulting DBH curves for each tree species. Parameter values as well as past416

and future equilibrium inputs for the different species are listed in Table 2.417

3.2.4 Calculating the relative impacts of agroforestry at Glensaugh418

To disentangle the impact that trees have within the silvopastoral system, we first calculate the net change in419

the pasture (control) site across time by subtracting our model prediction for the quantity πp(t) (‘p’ for pasture)420

at any time t ≥ 1988, from its predicted value πp0 at time t = 1987, to give ∆πp(t) = πp(t)−πp0 as a function421

of time. Here we consider the following quantities as π: soil carbon stocks, and total carbon stocks (soil422

+ biomass carbon), canopy evaporation, soil evaporation, transpiration, soil water storage deficit, water yield423

(total outflow). We then repeat the same process for the silvopasture sites to obtain ∆πs(t) = πs(t)−πs0 . We then424
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Table 2: Fitted tree-growth parameters at Glensaugh. IA0 : range of equilibrium annual plant input to the soil at
t = 0, i.e., before trees were planted. ÎA∞ : equilibrium annual plant input at a future time, t → ∞, when trees
have reached maturation. β̂ and t̂0 are coefficients of tree growth curve in Eq. 42.

Species IA0 [tC/ha] ÎA∞ [tC/ha] β̂ [−] t̂0 [yr]
Grass 2.11:2.37 1.22 - -
Sycamore 2.33:2.66 32.98 0.0085 5
Pine 2.37:2.65 16.95 0.018 6
Larch 2.37:2.64 24.6 0.0144 4

calculated a percentage change relative to the conditions in 1987 using: %change = ∆πs(t)−∆πp(t)
πp0

×100. Finally,425

for each scenario there are 400 model predictions (100 RSEEP parameter-sets× 4 future climate models). When426

calculating the relative impacts, we thus consider all possible differences, i.e., 400× 400=160,000 between each427

silvopasture scenario at time t and the pasture case. The median of these 160,000 values are presented in Figure428

6, 20, 40 and 80 years after planting. The full range of model predictions are also shown in Tables A1, A2 and429

A3 in the Appendix.430

4 Results431

4.1 RSEEP’s soil moisture retrieval performance432

Figure 3 a shows the parameter distributions for each species at Cruickshank Botanic Garden, where x-axes433

are parameter ranges and y-axes are normalised KGE values. All parameters seem to have a well defined434

distribution indicating that the model has been sensitive to them. In interpreting the KGE values, note that KGE435

can range from −∞ (i.e., the worst possible fit) to 1 (i.e., perfect match between observation and prediction),436

however not all negative KGE values are necessarily indicative of ‘bad’ performance. When using mean flow (or437

soil moisture in our case) as benchmark Knoben et al. (2019) showed that models with KGE>-0.41 improve on438

the mean flow benchmark. Thus, here we also take KGE>-0.41 to be the threshold for acceptable performance,439

at least during the blind validation test. Also note that in Figure 4, the only information available to the model440

during calibration is constrained to within the first half of the record and to the 10 cm depth (marked by dashed441

red lines in panels a1, b1, and c1). The model is ‘blind’ to the second half of the record in a1, b1, and c1, as442

well as to the entire record in all other panels. Finally, in all panels, median KGE values of the top 1% models443

are reported with their minimum and maximum shown in brackets.444

Under the broadleaf tree, the model is able to provide very good fits to the observed soil moisture timeseries445

during the calibration period, indicated by the median (and min:max) KGE value of 0.81. Curve-fitting perfor-446

mance slightly worsens during the second half of the record (i.e., blind validation) at the 10 cm depth (panel447

a1), where median KGE is 0.67, though still considered good fit. The model maintains a similar goodness-of-fit448

level during the blind validation test at the 20cm depth (panel a2, KGE=0.68), but further deteriorates at the449

40cm depth (panel a3, median KGE=0.42). This trend continues at the 60cm and 100cm depths where median450

KGE values are 0.06 and -0.05, respectively. Although relative to the mean of record as benchmark (which451

would yield a KGE value of -0.41) these values are all considered improvements in predictive power, particu-452

larly because they broadly capture the soil moisture dynamics. Similar trends can be observed under the conifer453

tree (b1-b6). In the grassland case, the model performs well at all depths (with a median KGE=0.75 at 10cm454

depth and KGE=0.59 at 100cm depth).455

4.2 Sensitivity of RothC to soil moisture accounting method456

To test the impact of a different soil moisture representation on RothC’s carbon storage estimates, we compare457

RothC’s predictions when coupled with RSEEP versus when it is not. RothC without coupling uses rainfall458

minus potential evapotranspiration (or ‘effective rainfall’) to update its soil moisture in each time step, whereas459
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when coupled to RSEEP, that procedure is replaced by outputs directly from RSEEP. Figure 5 a1 shows the an-460

nual average Ss values resulting from the two models. Dashed lines represent the water storage capacities in each461

case. There is a stark difference in the magnitude of annual average storage between RothC and RothC+RSEEP.462

However, RothC is not necessarily affected by the absolute magnitude of storage, rather by its value relative463

to the maximum (see soil-moisture rate modifying factor in section 3.2.1). For this reason we also show the464

normalised Ss values in panel a2, where Ss values in panel b1 are divided by their respective maximum (dashed465

lines in panel b1).466

From a2, it can be seen that RothC+RSEEP predicts a drier soil when compared to RothC. From b3, drier467

soils under RothC+RSEEP lead to 28% lower soil carbon stock under Larch (by the end of the record in 2080468

and using the dotted lines); the same value is a 20.1, 9.2 and 5.6% lower carbon stock under Sycamore, Pine and469

Grass, respectively. Given that the median change in annual ‘effective rainfall’ (R−PET ) between 1980-2080 has470

been -190mm (i.e., a reduction), our results suggest that improving RothC’s soil moisture representation could471

reduce its carbon storage predictions by 0.15, 0.11, 0.05, and 0.03% per mm reduction in effective rainfall under472

Larch, Sycamore, Pine and Grass, respectively, or an average of 0.08%/mm across all sites.473

Figure 5: a1-a4: sensitivity of RothC to soil moisture treatment method at the Larch site. b1-b4: the associate
(eco)hydrological fluxes from the coupled RSEEP+RothC model; AEVc

= annual canopy evaporation, AEVs
= an-

nual soil evaporation, AT Rs
= annual transpiration, QY LD= annual water yield. Shaded bands represent modelling

+ climate data variability. Dotted lines are the median of all 400 model predictions (i.e., all combinations of the
100 RSEEP parameter-sets & the 4 versions of the future climate dataset). Dashed lines in a1 are maximum soil
water storage capacity.
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4.3 The relative environmental impacts at Glensaugh474

From Figure 6 a, under the current emission scenario (RCP6.0), total annual rainfall increases then decreases475

across the three time-slices, whereas potential evapotranspiration increases monotonically. Relative to the con-476

ditions before converting pasture to silvopasture, the 20th and 40th years are wetter because in those years477

rainfall increases more than evapotranspiration, whereas the 80th year is the driest of the set.478

From b1, soil carbon stocks generally increase with time under all scenarios. 20 yrs after conversion to479

Pine/Sycamore (but not Larch) silvopasture, soil carbon is reduced. This mimics the disturbance to the soil480

when trees are planted (see e.g., the zoomed panel in Figure 5 a3; which happens in our model by setting481

IA0 to zero from the onset of tree plantation until t = t̂0). When considering the total carbon stocks (in b2),482

which includes the above- and below-ground biomass estimates, all scenarios boost carbon storage relative to483

the pasture base-case, with Larch having the largest impact in all years, closely followed by Pine. Sycamore’s484

contribution to total carbon stocks after 20 years is relatively small (i.e., 13% compared to 87% and 65% for485

Larch and Pine, respectively), but it increases considerably 40 and 80 years after conversion; though remains486

around half the contributions of Larch and Pine. From b3, annual average soil water storage deficit increases487

with time as trees grow indicating drier soil. The amount by which conversion to silvopasture makes the soil488

drier is similar for all species until the 40-year mark, but at the 80-year, Pine leads to a significantly drier soil489

followed by Sycamore. Given that the 80th year is the driest year examined here, it is notable that the soil under490

Larch exhibits the smallest increase in storage deficit.491

From c1, canopy evaporation increases monotonically with time and in the order of Pine>Larch>Sycamore.492

From c2, soil evaporation decreases monotonically with time, despite the monotonically increasing atmospheric493

demand (a), which is related in our model to canopy closure. From c3, conversion to silvopasture dramatically494

increases transpiration and in the order of Pine>Larch>Sycamore. From d1, in terms of the total outflow from495

the soil unit, or water yield, conversion to silvopasture decreases annual water yield substantially and in the496

order of Pine>Larch>sycamore up until the 40-year mark, then in the order of Pine>Sycamore>Larch at the497

80th year.498

5 Discussion499

5.1 Strengths and weaknesses of RSEEP500

If soils can be assumed to have reached saturation during the wettest part of the record (which is a reasonable501

assumption at Cruickshank Botanic Garden), we can take the maximum observed soil moisture content at each502

depth to be equal to porosity at that depth. In that case, from Figure 4, the soil column under the broadleaf503

tree would have the following porosity profile: 0.43, 0.45, 0.46, 0.21 and 0.32, at 10cm, 20cm, 40cm, 60cm,504

and 100cm depths, respectively. Such a profile could indicates changes in soil composition with depths, which505

would explain the clearly different soil moisture dynamics at the different depths through, e.g., changes due to506

hydraulic conductivity (Gardner, 1983). It is also possible that the irregularity is due to presence of macropores507

caused by tree tap-roots (Demand et al., 2019) and/or earthworms (Rutgers et al., 2016). Whatever the cause,508

the underlying physical processes responsible for such behaviour are absent from our simple model. RSEEP509

assumes that both soil porosity and hydraulic conductivity monotonically decrease with depth, and is thus not510

equipped to capture deviations from these assumptions.511

Similar analysis applies to the conifer site while at the grassland site the model performs well at all depths512

(with a median KGE=0.75 at 10cm depth and KGE=0.59 at 100cm depth). This is not surprising because the513

maximum observed VMC values are: 0.48, 0.47, 0.46, 0.36, 0.24, at depths=10cm, 20cm, 40cm, 60cm and514

100cm, respectively, indicating that porosity and hydraulic conductivity here are more likely to be monotoni-515

cally decreasing functions of depth, just as it is assumed by RSEEP. While it is not particularly difficult to relax516

these assumptions in the model, the downside is additional calibration/uncertain parameters which would in turn517

require additional datasets to constrain. We have developed RSEEP with large-scale applicability in mind. At518

those scales, detailed below-ground information is simply not available for calibration of any additional model519

parameters. It is worth noting that despite the simple model structure, total soil storage behaviour (panel a6)520
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Figure 6: The environmental impacts of converting pasture to silvopasture at Glensaugh after 20, 40 and 80
years (calculated annually). Bars show median (of 160,000) model predictions. All percentages are relative
to their respective reference value (‘Ref.’) which represents the pasture base-case at time t = 0, i.e., in 1987.
The full range of annual values are shown in Table A1. The full range of values during the summer and winter
seasons are shown in Tables A2 and A3, respectively.
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is captured well, with median KGE well above the -0.41 threshold. This is noteworthy because in soil carbon521

turnover models such as RothC, it is often the total soil moisture (deficit) that is needed run the model.522

Thus, these results suggest that (i) RSEEP can capture the dynamics of bulk soil moisture (rather than that at523

specific depths) fairly well, even if the assumptions underlying the model do not strictly hold everywhere along524

the soil profile; (ii) RSEEP can estimate soil moisture at specific depths fairly well in soils in which the model525

assumptions are more likely to hold. Application of our model to different soil types/thicknesses and more sites526

would provide more confidence that these conclusions generally hold.527

5.2 Impact of soil moisture accounting procedure on RothC528

In section 4.2 we found that including the various ecohydrological water fluxes (i.e., RothC+RSEEP) in soil529

water balance estimation resulted in a lower soil carbon storage than estimates using RothC alone. Accordingly,530

performing a more elaborate soil moisture accounting, compared to RothC’s default setting, on average can531

lead to a 0.08% lower soil carbon estimation per mm reduction in ‘effective rainfall’ (i.e., rainfall - potential532

evapotranspiration). While the impact of different soil-moisture decomposition rate modifying functions on533

RothC’s performance has been extensively studied (e.g., Falloon et al. 2011, Bauer et al. 2008 and references534

therein), to our knowledge the impact of different soil moisture accounting procedures on RothC’s performance535

is untested. Thus, our results provide a first insight into the possible sensitivity of RothC-based soil carbon536

estimates to the choice of soil moisture accounting method. Our results suggest that more elaborate accounting537

procedures (than RothC’s default) should be used where possible. They also indicate that a coupled water-carbon538

approach to soil carbon cycling could be important, particularly over longer time-scales and when considerable539

future changes to soil moisture regimes are likely. Testing RothC in conjunction with different soil moisture540

treatments as well as at different sites would strengthen these findings.541

5.3 Water-carbon dynamics of the silvopastoral experiment at Glensaugh542

5.3.1 Carbon storage potential543

Our pasture to silvopasture conversion scenarios initially reduce soil carbon stocks (figure 6b1) due to distur-544

bance of the soil at the onset of conversion, in line with observations globally (Guo &Gifford, 2002), and in the545

UK (Upson et al., 2016). Our results suggest that 20 years after planting, soil carbon stocks are yet to recover to546

their pre-conversion levels under Pine and Sycamore, but if Larch is planted recovery could be faster. For t>=40547

years, all scenarios increase soil carbon substantially with Larch having the largest impact. Pine and Sycamore548

have similar impacts with Sycamore outperforming slightly. At the 40-year mark, we estimate that these scenar-549

ios will have increased soil carbon by 66-107% relative to pasture, yielding an annual rate of change of +0.85 to550

+1.4 t/ha/yr which is within the rather wide -10.6 to +5.1 t/ha/yr range reported for 30-40 year-old afforestation551

cases across Scotland, and within the narrower -2 to +3.1 t/ha/yr range reported for afforestation on podzolic552

soils (Lilly et al., 2016). It is also within the 0.55 to 2 t/ha/yr range estimated for silvopasture globally (Lal,553

2018).554

When also considering biomass carbon, all scenarios positively impact carbon storage (even at the 20-555

year mark), with Larch having the largest impact closely followed by Pine, while Sycamore underperforms556

by at least 50% in all the years examined here. This seems to be related to the growth-rates of these species557

observed at Glensaugh which are in the order of Larch>Pine>Sycamore (see Figure 3 c). It is notable that558

despite the significantly slower growth, Sycamore’s contribution to soil carbon is slightly higher than that of559

Pine. Through a meta-analysis, Vesterdal et al. (2012) report a higher carbon mineralisation under Sycamore560

than under conifers, and even most other broadleaves (except for Ash), with litterfall quality (foliar N, Ca and561

Mg, and to some extent lignin concentrations) correlating best with carbon turnover, but they did not examine562

the possible effects of root litter inputs. Deciduous species are shown to have greater fine root biomass than563

evergreen species (Finér et al., 2007) which could also be a contributing factor in Sycamore’s slightly higher564

soil carbon turnover (despite its significantly slower growth). While our model is not capable of capturing either565

of these effects explicitly, it can capture them implicitly into its equilibrium plant input estimates. Equilibrium566
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inputs estimated by our model are in the order of Sycamore>Larch>Pine (see Table 2) which seems consistent567

with the higher litterfall quality and/or fine root biomass of deciduous trees.568

Observations at Glensaugh show that 24 years after conversion to silvopasture, the Pine site maintained569

a healthy-looking pasture whereas herbaceous vegetation had visibly suffered under the Larch and Sycamore570

plots due to canopy closure (Beckert et al., 2015). This may suggest that under the current management and571

plantation density at Glensaugh, silvopasture is likely to work well for a finite period of time, which could be572

extended if evergreen species are planted. This could impact management decisions on rotation length. Our soil573

carbon estimates provide insight at different points in time assuming that the management decision will be to574

maintain tree cover up to that point in time. Our results provide little insight regarding the aftermath of a fixed575

rotation management scenario in which trees are felled. Such scenarios should be investigated separately.576

Since the average rotation-length in Scotland is around 40 years (Lilly et al., 2016), we expect our predic-577

tions at the 40-year mark to be more meaningful in the context of Scottish agroforestry. We conclude that at578

Glensaugh and under the current emission scenario (RCP6.0) (i) a conifer silvopasture scenario is likely to out-579

perform a broadleaf scenario in terms of biomass carbon storage due to the significantly higher growth-rates of580

conifer species at this site; (ii) a deciduous silvopasture scenario at this site is likely to outperform an evergreen581

scenario in terms of soil carbon turnover due to higher litterfall quality and/or greater fine root carbon inputs.582

The two together seem consistent with the fact the deciduous conifer scenario has largest overall impact in terms583

of carbon storage at Glensaugh.584

5.3.2 Impacts on soil water availability585

Converting pasture to silvopasture at Glensaugh generally increases soil water storage deficit (figure 6b3), mean-586

ing that trees tend to make the soil drier over time and as they grow. This is expected given the significant587

increase in transpiration rates seen in panel c3. The direct correlation between transpiration (in c3) and storage588

deficit (in b3) is an indication that the drier soils are primarily a result of higher transpiration of trees, in line589

with experimental (e.g., Soulsby et al. 2017b) and modelling (e.g., Stevenson et al. 2023) studies in the region.590

This could have implications for water availability (e.g., for forage growth) during dry seasons. Note that the591

80th year is the driest year examined here, so it is notable that the soil under Larch silvopasture experiences592

the least amount of drying during this year (despite Larch and Sycamore having roughly the same amount of593

transpiration, see c3). Importantly, this effect seems to persist during the summer season (see b3 in Tables A2,594

where the soil under Larch is significantly less dry than that under Sycamore or Pine).595

This would be consistent with presence of a dense litter layer under Larch which has been observed to persist596

year-round at Glensaugh. Although the portion of the total evapotranspiration which a litter layer is expected597

to impact (i.e., soil evaporation) may not be large enough to favour this explanation here. Soils under Larch are598

also less sandy (by ca. 6-7%), more silty (by ca. 3-4%) and have a higher clay content (by ca. 3-4%) relative599

to the other sites, which is perhaps more likely to be the main driver of the simulated effect. It is also possible600

that measurement errors are responsible for the more damped topsoil moisture dynamics observed under Larch601

(see Figure 1 d) which is subsequently captured by our model as a physical effect. Nevertheless, relative to602

the other species at this site, Larch shows a notably greater potential in terms of preserving soil moisture under603

drier conditions. This suggests that the choice of species is likely to be important for soil water availability,604

particularly for forage growth in silvopastoral systems. Although we have used a bias-corrected future climate605

data which tends to smooth-out climatic extremes (whether wet or dry), so the significance of such effects under606

severe drought should be investigated separately.607

5.3.3 Implications for river flows608

In cases where significant inter-site differences in hydraulic conductivity exist, it is expected to be captured in609

the bulk soil saturated hydraulic conductivity parameter (K̂0) of our model during calibration. Chandler et al.610

(2018) measured K̂0 under the Pine and Sycamore silvopasture plots at Glensaugh and compared those to K̂0611

measurements under pasture. They found no significant difference between the three sites. They further found612

that woodland (2500 stems/ha without grazing, also at Glensaugh) showed a significant increase in K̂0 relative613

to pasture. They concluded that any potential increase in K̂0 under silvopasture at this site is likely countered614
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by topsoil compaction due to sheep/cattle weights. Our calibrated parameter ranges in Figure 3 show similar615

distributions for Grass (pasture), Pine, Sycamore as well as for Larch, where K̂0 values, although slightly lower616

under trees, show significant overlap, providing encouragement that our parameters may have captured soil617

properties relatively well despite the simple model structure.618

The p̂ parameter which controls the ease/difficulty with which water can be extracted from the soil (whether619

by means of flow or evapotranspiration) at different saturation levels, is <1 under Grass, Pine and Sycamore,620

indicating easier extraction even at lower saturations, but is >1 under Larch indicating the opposite. The ob-621

served topsoil moisture dynamics under Larch in Figure 1 d are noticeably more damped compared to the other622

three sites. As mentioned earlier, the ground under Larch is covered by a dense litter layer year-round, but it623

also has a higher clay/silt content. So the higher p̂ values under Larch could be reflecting either or both of these624

effects. In any case, it is encouraging that the model seems to be capturing physical effects that impact soil625

moisture and flow from the soil. Our modelling suggests that pasture to silvopasture conversion at Glensaugh626

would reduce the total annual outflows (i.e., water yield) from the soil most likely due to greater water loss to627

evapotranspiration, consistent with experimental (e.g., Soulsby et al. 2017b) and modelling (e.g., Stevenson et628

al. 2023) studies in the region.629

Purely from a process understanding perspective, a reduction in water yield can be considered a positive630

impact in terms of flood risk mitigation potential, particularly since these reductions seem to persist during the631

winter seasons (see Table A3 d1) with the evergreen species having a substantially larger impact, likely due to632

greater transpiration and reductions in near surface flows (Neill et al., 2021). While many numerical studies633

suggest that significant flood risk mitigation can be possible through increased tree cover at small-scale and un-634

der flood-relevant events (e.g., Nisbet & Thomas 2006, Monger et al. 2024), larger scale experimental evidence635

so far only supports such claims at smaller events not relevant for flooding (Birkinshaw et al., 2014, Fahey636

& Payne, 2017, Bathurst et al., 2020, Xiao et al., 2022), likely due to the limited effects of trees on transient637

storage particularly in low-energy, humid environments with shallow soils (Tetzlaff et al., 2007, Soulsby et al.,638

2017a), which exhibit relatively small dynamic storage Geris et al. (2015b). In these environments soil type639

(Geris et al., 2015a) and geology (Peskett et al., 2021) are much stronger controls on runoff, especially in large640

events. Thus, while our results indicate that significant reductions in storm flow may result in smaller events, it641

seems less likely that significant flood risk mitigation benefits can be derived from silvopastoral practices under642

flood-relevant events in landscapes that can be represented by Glensaugh.643

Similarly, reductions in water yield can be considered a negative impact in terms of river flow regulation644

during drier periods when river levels depend on groundwater contributions from adjacent soil units. Whether645

afforestation increases or decreases catchment baseflow is a subject of much debate. Many studies have found646

increased tree cover to increase baseflow, while many other studies report the opposite (e.g., see the review647

by Price 2011). The synthesis by Filoso et al. (2017) reflects the lack of consensus; it shows that 63% studies648

reported a decrease and 37% an increase or no change following afforestation under a wide range of climates and649

soil/tree types. In our case, during the summer of the driest year examined here (where rainfall decreases by 6%650

and evapotranspiration increases by 19%, see Table A2 d1, at the 80th year) water yield under Pine silvopasture651

(although 18% lower relative to pasture) is 7% higher relative to Sycamore silvopasture and 9% higher relative652

to Larch silvopasture. A 7-9% difference in water yield could be significant for river flow regulation under653

drought conditions. However, again, because we have used bias-corrected future climate projections it is unclear654

from our results how much of the 7-9% boost estimated under Pine silvopasture would persist during a severe655

drought. Nevertheless, according to our results, in locations where river flow/level preservation is important656

(e.g., for Atlantic Salmon population/migration, Soulsby et al. 2024) yet sensitive to drought, the choice of657

species should perhaps be made on the basis of the least amount of reduction in water yield (see, e.g., Luo et658

al. 2024). We suggest that these effects are worth investigating separately, but would likely be important only if659

the scale of implementation is large.660

6 Sources of uncertainty661

In agroforestry research there is currently an incommensuratbility between data-availability and system-complexity.662

We have tried to devise a modelling approach around the data that is likely to be available now (e.g., surface and663

22

https://doi.org/10.5194/egusphere-2024-2258
Preprint. Discussion started: 31 July 2024
c© Author(s) 2024. CC BY 4.0 License.



above-surface satellite data), but future advances in data collection could improve the situation (e.g., through664

remote subsurface monitoring) and warrant the use of more complex/complete approaches. Nevertheless uncer-665

tainties exist and impact numerical predictions at large. The main sources of uncertainty in our study were as666

follows. (i) Calculation of carbon stock depends on factors such as bulk density, soil thickness and stoniness of667

the soil for which we used site average values; (ii) To estimate biomass carbon we used simple allometric equa-668

tions originally developed for forest stands which tend to have a higher density than 400 stems/ha (and therefore669

have likely under-predicted biomass at our site); (iii) We used literature values for species-specific maximum670

tree diameters (e.g., after 200 years) which could have been over- or under-estimations at this site; (iv) In apply-671

ing RothC we did not distinguish between the different soil layers due to lack of data which could have impacted672

carbon movement (and therefore estimates) across the soil; (v) By calibrating RSEEP to observed soil moisture673

data in 2022 and then using those parameters to make past and future predictions, we implicitly assumed that674

model parameters are independent of calibration data; (vi) There could be significant measurement uncertainty675

in topsoil moisture and soil carbon data used to calibrated our models which we have not been able to fully676

quantify; (vii) Our predictions were based on projected climate data which is uncertain; (viii) We assumed677

that grazing intensity/frequency has been uniform across all silvopasture sites and across time but there was678

not enough data to support this assumption; and (ix) We have tried to include the main plant-soil-atmospheric679

interactions in our model, but we have not tested different model structures/complexities to find the best one.680

More importantly, perhaps, is the interactions of all the different components of uncertainty with one another681

and how they manifest as the total (yet unknown) level of uncertainty that is inherent in any numerical study.682

In an attempt to minimise the effects of the total uncertainty we calculated our impact estimates relative to the683

control site in all years, meaning that any biases that might have resulted from the combination of all uncertainty684

sources should be controlled for in our ‘relative’ impact estimates, on which we base our conclusions.685

7 Summary, conclusions and future work686

We propose RSEEP, a new model to Retrieve Soil-moisture and Estimate Ecohydrological Partitioning, which687

requires only rainfall, potential evapotranspiration, and surface soil moisture information to run, making it688

suitable for application in data-limited sites and in conjunction with the available satellite datasets. In a data-rich689

site, we showed that RSEEP can simulate bulk soil moisture dynamics well under different vegetation types.690

Further application of our model to different sites would test the generality of this finding. We also coupled691

RSEEP to RothC soil carbon model to test RothC’s sensitivity to soil moisture accounting procedure. A more692

elaborate soil moisture accounting (than RothC’s default) can lead to a 0.08% lower soil carbon estimation per693

mm reduction in ‘effective rainfall’ (i.e., rainfall - potential evapotranspiration). Our results suggest to use more694

elaborate accounting procedures where possible.695

We used RSEEP+RothC to simulate the water-carbon dynamics of three different silvopastoral agroforestry696

systems (all at 400 stems/ha plantation density) in North East Scotland and under the current global emission697

scenario (RCP6.0). These systems were: (1) evergreen conifer (Scots Pine) silvopasture, (2) deciduous conifer698

(Hybrid Larch) silvopasture, and (3) deciduous broadleaf (Sycamore) silvopasture. We found that: (i) 40 years699

after planting trees, total carbon storage (above+below ground) is anywhere between 2-5 times (∼100-250 t/ha)700

higher under silvopasture than under pasture depending on the choice of species. Deciduous species at this site701

showed a higher soil carbon turnover potential than evergreen species, but conifer species (whether deciduous or702

evergreen) outperformed broadleaf species in biomass carbon sequestration. (ii) Larch showed a notably greater703

potential in terms of preserving soil moisture under drier conditions. The choice of species is therefore likely704

to be important also for soil water availability under drought, particularly for forage growth in (and therefore705

longevity of) silvopastoral systems. (iii) Significant reductions in storm flow could be possible during the wet706

seasons, the amount of which was greatest under the native Scots Pine species. We found Pine to also result in707

notably smaller reductions in water yield during the dry seasons, making it the overall best choice at this site in708

terms of river flow regulation in wet and dry conditions. Although these effects are likely to be important only if709

the scale of implementation is large. (iv) The choice of species was important and should therefore be made on710

the basis of the ecosystem service priorities/objectives of the site. Finally, we have used a bias-corrected future711

climate data which tends to smooth-out climatic extremes (whether wet or dry). Examining our scenarios under712
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drought- and flood-relevant conditions and scales is a logical next step.713

8 Code/Data availability714

Model codes and data are publicly available to download from Goudarzi (2024).715
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12 Appendix: the full range of model predictions965

Table A1: The annual environmental impacts of converting pasture (P) to silvopasture (SP) at Glensaugh 20, 40
and 80 years after conversion. Green values=increase; red values= decrease; display format= median%(5th per-
centile: 95th percentile) of 160,000 model predictions. All percentages are relative to their respective reference
value at ‘+0 yrs’ which represents the pasture without trees base-case at time t = 0, i.e., in 1987.
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Table A2: The summer-time (Jun+Jul+Aug) environmental impacts of converting pasture (P) to silvopasture
(SP) at Glensaugh 20, 40 and 80 years after conversion. Green values=increase; red values= decrease; display
format= median%(5th percentile:95th percentile) of 160,000 model predictions. All percentages are relative to
their respective reference value at ‘+0 yrs’ which represents the pasture without trees base-case at time t = 0,
i.e., in 1987.
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Table A3: The winter-time (Dec+Jan+Feb) environmental impacts of converting pasture (P) to silvopasture
(SP) at Glensaugh 20, 40 and 80 years after conversion. Green values=increase; red values= decrease; display
format= median%(5th percentile:95th percentile) of 160,000 model predictions. All percentages are relative to
their respective reference value at ‘+0 yrs’ which represents the pasture without trees base-case at time t = 0,
i.e., in 1987.
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