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10 Abstract

1 Agroforestry is considered an important strategy for mitigating against, and adapting to, climate change.
12 Questions yet remain regarding the potential impacts of different tree species on water/carbon cycling at dif-
13 ferent locations, scales and under different climatic conditions. There is an urgent need for numerical models
14 capable of quantifying agroforestry impacts on a host ecosystem services including carbon sequestration and
15 soil water/river flow regulation. A key challenge in modelling agroforestry systems is that they depend heavily
1 on soil moisture as the main driver of many biogeochemical processes. Soil moisture itself is highly variable
17 with soil properties (and therefore with location) but also with depth. Given that target sites for agroforestry
18 are often ungauged, location-specific agroforestry modelling must inevitably rely only on data available from
19 satellites and/or nearby weather stations which do not typically cover the subsurface, i.e., there is an incom-
20 mensurability between data-availability and system complexity. To overcome this, we propose RSEEP, a
21 new ecohydrological model that only requires rainfall, potential evapotranspiration, and surface soil moisture
22 for its calibration. We demonstrate RSEEP’s capability in water cycling for a site in Scotland where soil
23 moisture observations are available for different depths and vegetation types. We then couple RSEEP to the
24 well-known RothC soil carbon model to (i) test RothC’s sensitivity to water cycling method, and to (ii) simu-
25 late water-carbon dynamics of three different silvo-pastoral agroforestry systems (all at 400 stems/ha density)
2 in Scotland; these systems are: with evergreen conifer (Scots Pine), deciduous conifer (Hybrid Larch), and
27 deciduous broadleaf (Sycamore) trees. We find that not including more accurate soil moisture accounting
28 methods in RothC can significantly overestimate soil carbon stocks. Under the current future climate pathway
29 (RCP6.0), 40 years after planting trees, above+below ground carbon storage can be 2-5 times (100-250 t/ha)
30 higher under silvo-pasture than under pasture depending on species, with Larch having the highest potential
31 and Sycamore the lowest. Larch also exhibits the highest potential for preserving soil moisture under drier
32 conditions, but Pine shows the highest potential for river flow regulation under both wet and dry conditions
33 at our site. The choice of species is therefore important and should be made site-specifically and based on
3 the ecosystem service and management priorities/objectives. Examining our scenarios under drought- and
35 flood-relevant conditions and scales is a logical next step.

« 1 Introduction

s Climate change mitigation polices typically revolve around reducing carbon emissions and increasing its se-
s questration, while climate change adaptation policies tend to focus on increasing land productivity under the
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s expected adverse future temperature and precipitation patterns (e.g., IPCC 2023). However, the two agendas
« overlap significantly because carbon and water cycles are closely linked (Gentine et al., 2019). Agroforestry,
4« the practice of growing trees/shrubs in association with crops/pasture and/or livestock (Nair et al., 2021), can
«2 provide many benefits including carbon sequestration and soil water regulation (Smith et al., 2013). This is why
« agroforestry is recognised as a potential solution to help meaningfully, and simultaneously approach mitigation
« and adaptation (Noordwijk et al., 2011, Duguma al., 2014a,b).

s While more common in tropical latitudes, agroforestry practices are yet to be widely adopted in regions
s  with temperate, humid climates (Smith et al., 2013, Den Herderet al., 2017, Garcia de Jalon et al., 2018, Sollen-
« Norrlin et al., 2020), e.g., Scotland. The barriers to wider adoption typically fall within one of three categories;
s alack of (i) adequate policies to promote and enable agroforestry (Mosquera-Losada et al., 2018), (ii) practical
s skills in establishing/maintaining trees, or awareness of their potential economic benefits (Abdul-Salam al.,
s 2022), and (iii) sufficient evidence of effectiveness (Smith et al., 2012). The latter is partly due to the time/cost
st associated with pilot agroforestry experiments resulting in very few examples being yet available of complete
2 cycles of systems through to tree harvest (Smith et al., 2012), and partly due to the complexities inherent in
s3  tree-soil-atmospheric systems (Menichetti et al., 2020) making them difficult to assess using numerical models,
s« which in turn poses as a barrier to reporting agroforestry’s contribution to climate policies (Hiibner al., 2021,
s Cardinael al., 2021).

56 One of the reasons for the difficulty in modelling agroforestry is the presence of trees and their interaction
s»  with soil moisture. It is generally accepted that most trees have the ability to shift their water source from
ss  shallow to deeper layers under drier conditions Liste & White 2008, Dawson 1996, 1993, Emerman & Dawson
ss 1996, Caldwell & Richards 1989. For systems involving trees, this makes it particularly important to estimate
s soil moisture and root water uptake at different depths (see, e.g., Smith et al. 2021). This importance is further
& accentuated when considering climate change and that the tendency of soils to store and emit carbon strongly
e depends on soil moisture (amongst other factors, Falloon & Betts 2010, Falloon et al. 2011, Gottschalk et al.
e 2012, Moyano et al. 2012, Jebari et al. 2021). For these reasons, part of our focus here is on how to estimate soil
e moisture at different depths in a simple, parsimonious manner, while the other part is on exploring agroforestry
s impacts on water and carbon. On an aside, note that profile soil moisture estimation is an old problem in
e hydrology that goes back decades (Liu & Yang, 2022). In fact, soil moisture has been described as the most
ez challenging variable to estimate (Mishra et al., 2020), so while we are motivated by its particular importance in
e agroforestry systems, our parsimonious approach to estimating soil moisture is likely to be of interest in other
s applications.

70 The difficulty in modelling soil moisture stems mainly from a lack of data to constrain the additional param-
= eters that would be needed to develop a depth-dependent model of the soil (i.e., not from inadequate understand-
= ing of the physical processes themselves Li et al. 2023). Today, satellite datasets are readily available to force,
7 calibrate, and validate (eco)hydrological models in the top 5-10 cm layer of the soil, but similar below-ground
7+ datasets are limited to sparse, point-measurements often at sites that are not suitable/targets for the intended
»s application (Li et al., 2021, Duethmann al., 2022, Wang et al., 2023). This makes reliable, location-specific
7 predictions a real challenge. To boost temperate agroforestry uptake, we would argue that location-specific
77 predictions are essential to help stakeholders in their decision making.

78 To this end, we developed RSEEP, a simple, parsimonious, conceptual ecohydrological model to Retrieve
7o Soil-moisture and Estimate Ecohydrological Partitioning. RSEEP is a three-parameter model that encompasses
s the main soil-tree-atmospheric interactions but only requires rainfall, potential evapotranspiration and surface
e soil moisture information for its calibration. In a data-rich site in Scotland where detailed profile soil moisture
@ observations are available, we show RSEEP’s strengths and weaknesses in estimating profile soil moisture. In
& a nearby data-limited pilot agroforestry site, where soil moisture observation is limited to the top of the soil
s profile, we then couple RSEEP with the widely used RothC soil carbon model, and used the coupled model to:
s (i) examine the impact of a different soil moisture accounting procedure on RothC’s carbon storage/emission
e estimates; and (ii) quantify the impacts of different agroforestry scenarios in North East Scotland and under the
&7 current future climate projection pathway (RCP6, until to 2080).
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» 2 Study sites

e Our study considers two separate sites as shown in Figure 1: the pilot agroforestry experimental site in Glen-
% saugh, Scotland, and the Cruickshank Botanic Garden located in Aberdeen, Scotland. Cruickshank Botanic
o1 Garden is a data-rich site in terms of soil moisture data availability at different depths, so it is used here to
« test and highlight the strengths and weaknesses of our proposed model (RSEEP) in retrieving profile soil mois-
s ture. The agroforestry site at Glensaugh, is a data-limited site with regard to soil-moisture information because
o datasets cover only the near-surface (i.e., 6 cm depth) zone. However, Glensaugh also provides before/after
s (agroforestry) soil carbon/biomass datasets. Thus, by coupling RSEEP with RothC (a soil carbon model, will
9 be introduced in section 3.2.1) in this data-limited site we aim explore an agroforestry scenario.

« 2.1 Cruickshank Botanic Garden

9 Cruickshank Botanic Garden is owned by the University of Aberdeen, located in North East Scotland. Geo-
9 logically, the bedrock in the area is composed of metamorphic psammite and semipelite, in contact with the
o Aberdeen granite to the West and conglomerates and sandstones to the East. The bedrock is overlain by glacial
w1 till, sands and gravel deposits. Soils are typically mineral podzols and brown soils. The climate of Aberdeen is
w2 temperate/boreal oceanic with average precipitation of 850 mm/yr. Monthly mean temperatures range from 3
e °Cin January to 14 °C in July/August (Stevenson et al., 2023). Ecohydrological monitoring began in December
¢ 2020 and involved soil moisture measurement at five different depths (namely 10cm, 20cm, 40cm, 60cm, and
s 100cm below the surface) and under three different species: evergreen conifer (Abies korena; 30 years old and 6
s m tall), larger deciduous tree (Fagus sylvatica; 60 years old and 10 m tall), and grassland site, which contained
w7 a variety of species associated with this habitat, such as Taraxacum spp., to a height of ca. 0.4 m. The three sites
we had similar soil properties being an undifferentiated silty-clay-loam subsoil, with distinct organic-rich topsoil.
1o Following Stevenson et al. (2023), evergreen conifer is assumed to have a time invariant Leaf Area Index (L,,)
o value of 7 m?*/m2. For the time-variant canopies, a trapezoidal shape was employed, in the absence of repeated
m L, measurements. The timing of rises, peaks and decreases of this trapezoid were directly guided by field
1z observations and sapflux measurements where available, resulting in an initial value on 1st March of 1.5 m?%/m?
s for the larger deciduous tree which remained constant before rising to 6 m2/m? between 12th May and 17th
na July. The grassland timeseries followed the same temporal pattern but rose from 1.5 to 4.

ws 2.2 The Glensaugh agroforestry experiment

ns  Glensaugh is a 1100 ha research farm owned and operated by the James Hutton Institute and is located ~56
w7 km south West of Aberdeen, Scotland. The farm contains an experimental agroforestry site. The silvopasture
1 experiment was established on permanent improved grazed pasture in spring of 1988. It is composed of three
1e  main blocks, A, B and C (see Figure 1 b). Three species of trees were planted in 1988 and replicated in each
20 block, at 100, 200, 400, and 2500 stems/ha densities. However, we only consider the 400 stems/ha case in
21 this study. Species are: (1) Deciduous broadleaf (Acer pseudoplantanus, or Sycamore), (2) Deciduous conifer
122 (Larix eurolepis, or Hybrid Larch, hereafter referred to as Larch), and (3) Evergreen conifer (Pinus sylvestris,
12s or Scots Pine, hereafter referred to as Pine). Also, separately on each block, an open patch of grazed pasture
2« covered primarily with lolium perenne, or rye grass (hereafter referred to as Grass) is monitored as control.

125 All plots are grazed from April to October by sheep and, since 2010, occasionally by cattle (Chandler et
126 al., 2018). The understory of the Pine and Grass plots are covered with pasture. In the Larch plots, much of
27 the understorty is covered by a dense litter layer, but the plots are still used by sheep/cattle for shelter. The
12 understory in the Sycamore plots are characterised by patches of bare ground and litter that vary in extent
120 seasonally (Beckert et al., 2015, Chandler et al., 2018). Altitude across the site ranges from 140 m to 205 m.
1 Mean annual rainfall and temperature at Glensaugh are 1168 mm and 8 °C, respectively (Chandler et al., 2018).
11 The soils at the site are freely drained cultivated humus-iron podzols and brown earths (Beckert et al., 2015)
122 developed primarily on glacial drifts. Median sand content is: 76%, 75%, 69% and 76%; silt: 20%, 21%, 24%
1s  and 21%; and clay: 4%, 4%, 7% and 3%, for Grass, Pine, Larch and Sycamore, respectively.
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Figure 1: Our two study sites: (a) location of the sites. (b) Glensaugh pilot agroforestry experiment. (c) Botanic
Garden is used to test the soil-moisture retrieval performance of RSEEP. (d) Volumetric moisture content at
the 6cm depth (VMCyg) for each species at Glensaugh; shaded bands show the variation between the different
blocks (A, B, and C in panel b). (e-f) CHESS-SCAPE dataset showing the current future climate trajectory
(RCP6.0) at Glensaugh.

134 Soil carbon measurements are available on each plot (i.e., species-block combination) in 2012 (=24 years
15 after trees were planted). To control for inter-plot differences (in e.g., topography, slope, aspect, soil texture,
16 organic content, etc.), for each species we only consider the average value of soil carbon across the three blocks
w7 (see Table 1). Soil carbon was also measured on multiple points across the site in 1987 (i.e., before trees were
e planted). Since no trees were present in 1987, we use the average value across the entire site to represent the
13 conditions before the experiment for all scenarios (see Table 1). But since the details of the management practice
1o 1s unavailable, we calculate the impact of planting trees on pasture relative to the pasture base-case, to control
1w for unknown effects (more details in section 3.2.4). For the tree sites, plot-average Diameter at Breast Height
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w2 (Dy,, breast height = 1.3 meters) was recorded in 2012 (Beckert et al., 2015). Also, the year in which each
us  species reached the height of 1.3m (on average) was recorded between 1992-1994 (Nwaigbo, 1996), which is
14 also shown in Table 1.

Table 1: Average soil carbon (C) and biomass measurements at Glensaugh. D, =average Diameter at Breast

Height.
Species Cin 1987 Cin2012 Height reaching 1.3m | D,,, in 2012
Grass 52tC/ha 67 tC/ha - -
Sycamore 52tC/ha 74 tC/ha 1993 24.5 cm
Pine 521tC/ha 78 tC/ha 1994 36.22 cm
Larch 52tC/ha 811C/ha 1992 38.45cm
145 Within each plot, hourly volumetric moisture content at the 6cm depth (VMCyg) is recorded between

s January-December 2022, which is subsequently converted to daily timesteps (see Figure 1 d). There is no
17 soil moisture information available for deeper layers. Note that similar to soil carbon data, when calibrating our
us  model (RSEEP, will be introduced in section 3.1.1), we use the soil moisture timeseries averaged across the three
19 blocks to account for inter-block variability. Local climate data are available between 2015-2022 from the Envi-
150 ronmental Change Network (ECN) weather station located a few hundred meters from the agroforestry site. For
w1 predictions after 2022, and before 2015, we use the CHESS-SCAPE dataset (Robinson et al., 2023) which pro-
152 vides high-resolution (1km-scale) projections between 1980-2080 of multiple climate scenarios for the United
s Kingdom. We only consider the current trajectory, i.e., the RCP6.0 for the 1-km tile in which Glensaugh is
s located (RCP=representative concentration pathway, and the number refers to the resulting radiative forcing by
155 the end of the 21st century in watts per square metre). CHESS-SCAPE provides four different parameterisations
1w (EMO1:04, see Figure 1 e-g). We utilise all four in our study as a measure of climate data uncertainty. Finally,
57 to correct for biases in the data we multiply the rainfall (R), temperature (7') and Penamn-Monteith potential
s evapotranspiration (P, ) timeseries obtained from CHESS-SCAPE by appropriate correction factors (which are
150 equal to average of ECN values between 2015-2022, divided by the average CHESS-SCAPE data for the same
e period). These correction coefficients were 1.13, 0.89, and 0.85, for rainfall, temperature and Penman-Monteith
et potential evapotranspiration, respectively.

« 3 Methods

e 3.1 Soil moisture retrieval for ecohydrological modelling

e« In the past, various techniques of different complexities have been used to retrieve profile soil moisture from
s the available data, e.g., statistical (Kostov & Jackson, 1993, Srivastava et al., 1997), physically-based (van Dam
e & Feddes, 2000, Sadeghi et al., 2016), empirical (Srivastava et al., 1997), neural networks (Pan et al., 2017),
7 wavelet transform (Qin et al., 2018). While the choice of model has been partly influenced by application, it has
s been mainly constrained by data availability. For large-scale applications in particular, parsimonious methods
o requiring fewer inputs are logically preferred. Among such methods, the exponential filter (EF) (e.g., Tobin et
o al. 2017), and the principle of maximum entropy (POME) (e.g., Singh 2010) have generated the most interest
i in recent years (Mishra et al., 2020). Between the two models, POME tends to have a better overall perfor-
72 mance (Mishra et al., 2020) but at the cost of requiring additional information/assumptions about the average
s soil moisture content. EF, while much simpler to implement, has been criticised for many of its underlying as-
w7 sumptions including no evapotranspiration and constant hydraulic conductivity/porosity, as well as its generally
s poor performance at deeper layers (Albergel et al., 2008, Mishra et al., 2020).

176 Here, as part of the ecohydrological modelling requirement for agroforestry applications, we developed
7 RSEEP, a model to Retrieve Soil-moisture and Estimate Ecohydrological Partitioning. RSEEP is a simple,
s parsimonious conceptual ecohydrological model coupled with a retrieval algorithm that does not require infor-
s mation about the bulk soil moisture content, while also relaxing the assumptions of no evapotranspiration and
10 constant hydraulic conductivity/porosity. Although RSEEP requires calibration, it only uses datasets which can
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w1 be easily derived from satellite products, specifically, surface soil moisture, rainfall, and potential evapotran-
w2 spiration. Finally, while we demonstrate RSEEP’s performance in retrieving soil moisture at different depths,
s performance comparison with other soil moisture retrieval methods is beyond our scope.

w 3.1.1 Description of RSEEP

s For tractability, input (calibration) parameters are marked with “ to distinguish them from model coefficients and
ws variables. There are only three parameters that require calibration: (1) d, the exponent of porosity decay with
wr  depth, (2) Ko, the average soil saturated hydraulic conductivity, and (3) p, the exponent of soil water-potential
s decay with saturation (as a measure of the ease/difficulty with which water can be extracted from the soil at
e different saturation levels). Units of all parameters/variables are shown in square brackets throughout the paper.
w0 The schematic of the model is shown in Figure 2. Maximum canopy storage is, S, [m], is related to Leaf Area
1w Index, L, [—], Kozak et al. (2007):

> Al

Cmax

0.2L
emas = Ta00) (D
1000
192 In each timestep, the Penman-Monteith potential evapotranspiration rate for grass (i.e., the reference crop),

198 PETg [m/day], is modified to account for the additional evapotranspiration of the tree species. This modification

ws  factor, M, is taken to be:

L,—L
My =14 @)
L+ LAIg
185 where L,, [—] and L AL ATE the Leaf Area Indices of the species under study and grass, respectively. Thus

s the species potential evapotranspiration will be:

Py = METPETg 3)
107 Rainfall, R [m/day], is added to the canopy store and if storage exceeds S, , throughfall is generated:
0 s 8e < 8e
— max 4
QTHF {SC - Scmax ) SC > Sl‘ma,\‘ ( )
198 Actual canopy evaporation, A, [m/day], is also subtracted from the canopy store:
P, Sc > P,
AEV — ET » MC¢ — T ET (5)
¢ Se S <P,

199 where S, [m] is an internal model variable which tracks the water stored in the canopy at any given time. The
200 remaining potential evapotranspiration is then partitioned into potential evaporation for the soil compartment,

w1 Py, [m/day] and potential transpiration for the soil, Py, [m/day]:
PEV: :(17SCF )(PET*AEVC) (6)
PTRS = SCF (PET 7AEVC) )
202 S [—]in Eq. 7 is the so-called Surface Cover Fraction (a measure of how much light the canopy structure

23 allows to pass through or reflects back out), and is derived based on the Beer-Lambert equation (see Van Dijk
24 & Bruijnzeel 2001):
Sep =1—exp(—reL,,) (8)

205 where rg [—] is radiation extinction coefficient which is set to 0.3 for grass and 0.7 for mature tree stands
26 (Van Dijk & Bruijnzeel, 2001).
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Figure 2: (a) Schematic of RSEEP’s stores and fluxes. (b-c) Schematic of the layers within the soil compartment.
R: rainfall; A, : actual canopy evaporation; S.: canopy storage; Q,,; throughfall; A, ; actual transpiration;
A, actual soil evaporation; S;: soil water storage; Q,,,: water yield; and Z,, : max soil depth.

In the soil compartment, from Jarvis et al. (2002), we derived the following hydraulic conductivity modifier
(will be applied to Eq. 22), which relates changes in hydraulic conductivity to the changes in maximum porosity
(e.g., due to changes in organic content):

(©)]

ARy = 0.66 (q)”""" — Omasy >

¢max, + q)max,o

where ¢4y, and ¢m‘”tn are the ‘current’ (at time=¢t) and ‘old’ (at time=f() maximum porosity (i.e., at the
surface). The model then requires values for soil profile depth, z,,, [m], as well as ¢4 [—]. The former can
be taken from observations or soil maps. The latter is calculated directly from the soil moisture observation
at/near the surface (to which the model is calibrated) using the following equation, which accounts for the fact
that porosity at the surface is likely to be higher than the value at an observation depth below the surface (note
that d is always >1):

1
q)max = gbs + Aq)mwc (10)
Oops 1s the porosity at the depth at which volumetric moisture content (VMC) data is available, and is taken
to be equal to the maximum VMC value (i.e., during the wettest part of the record where the soil is assumed
to have reached saturation). Ad,,,x [—] approximates the change in porosity with organic content O which is
derived by differentiating a generalised porosity-soil carbon relationship (Robinson et al., 2022):

0, -0,
AOpax = 0.1224 11
q)Wl(lX <0’ + 0t0> ( )

The above function increases porosity as O increases, and vice versa. Here again, if O is unknown, or

is expected to remain unchanged, O; and Oy, can be set to be equal to one another which would result in
AO(OC) = 0. Porosity is assumed to vary with depth using (Chen et al., 2020):

q) _ q)max 5 (12)
Zz
(1+3)
The model keeps track of the total soil water storage, S [m] in each time step. Sy is first divided into n, [—]
number of layers with equal maximum storage values, S,  (Figure 2b). To calculate an appropriate n, value,

max
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s the thickness of the uppermost layer is set to 2 cm, for which §;  can be calculated by integrating the porosity
2s profile (note that the model was found to be insensitive to uppermost layer thicknesses <2 cm, hence our choice):

N ~ 1-d
(Z) = /q)(Z)dZ = Omax (&) (T) (13)

1 0.02
S, = I 14
Lmax (0 02) 1(Z) ( )
227 Similarly the maximum storage of the soil profile is given by:
1 Zmax
St = () 10 1s)
Zmux O
228 The number of layers is then given by (rounded to the nearest integer):
S
n, = —mer (16)
Lmax
220 This way, all the layers will have the same maximum storage (S, ), which is necessary to remain mass

20 conservative when distributing bulk soil moisture to different depths. Note that because porosity decreases
2 with depth (see Figure 2a), the ‘equi-storage’ layers will have different thicknesses (Figure 2c) denoted at the
=2 boundaries of each layer by z, , which can be back calculated by rearranging Eq.13:

= exp(X)—d x:( lj>1n<“fﬂsﬂ'>+1n(d> a7

1— d¢nzax

23 where s, is the cumulative sum of storage in the downward direction. Mid-point depth for each layer
2 1S calculated as the average depth within the boundaries z; = (ZB[ +25,, )/2. The increase in thickness with
25 depth reflects the fact that soil moisture tends to become less responsive with depth, reducing the need for finer
=6 discretisation. Total soil storage, Sy, is distributed among the different layers according to a weight function:

S S, S Zi .

Y G Y (VI P Di=12,., 18
" (Ssmax) (SL,W ) < Ssmar Znax l K {19

207 To ensure the weights always sum to one (to conserve mass):

Wi
Wi= 77— 19)
27L1 Wi
238 which leads to the following layer-wise storage:

S, = Wis; 20
239 Thus, according to Eq. 18, in the limit that the soil is fully saturated (i.e., YSS = 1), all layers will be

=0 allocated equal storage (equal to their maximum storage S; ). However, as the soil becomes drier (an

21 1), deeper layers will be allocated more storage than shallow layers to reflect the fact that shallower layersm tend
22 tO dry faster. This allocatlon preference towards the deeper layers mtens1ﬁes as the soil becomes progressively

21 I [—] (exponent
24 Of p0r0s1ty decay with depth)
25 Groundwater recharge, Q. [m/day], is approximated using a Darcy-type flux, i.e., unsaturated hydraulic
s conductivity multiplied by a pressure head gradient (pressure head across the soil thickness):
S
Oren = Ku (z : ) 21
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247 where unsaturated hydraulic conductivity is assumed to deviate from the saturated conductivity according
2 to (Iorgulescu & Musy, 1997) (note, again, that parameters with symbol are calibration parameters):

s S\
K, = (Ko +AKy) ( > ) (22)
Smax
209 where p [—] is a decay exponent representing the decrease in soil water potential (as measure of the

=0 ease/difficulty with which water can be extracted from the soil) with saturation, and AKy is given by Eq. 9.
1 Groundwater recharge here assumes that a water parcel needs to travel the entire thickness of the soil column
22 before it can reach the water table and flow out of the system. Thus, at or below field capacity (e.g., in inter-
23 storm periods) where water table tends to be lower, this assumption is more reasonable. But during intra-storm
24 periods water tables can be at or near the surface, meaning that not only the travel distance to the water table is
2ss  shorter, but also the flow occurs through the more permeable topsoil during those periods. Therefore, ground-
26 water recharge as represented here underestimates the amount of water that leaves the system during a storm.
27 Being 1D, our model is not capable of lateral flow routing, whether as near-surface through-flow or as overland
28 flow. However, to account for the portion of the flow that occurs below the time resolution of our model (i.e.,
20 daily), and is absent from the Q. term, the following procedure is implemented. In each timestep, after Q.
20 is added to the soil, if storage exceeds maximum soil storage, fast near surface through flow, Q. [m/day] is
2 generated which leaves the system immediately (because it flows on time-scales much shorter than daily):

Ss— Ssmux Sy > Ssmm
Onsr = ’ (23)
0 Sy < S
262 Note that Q.. does notinclude subsurface preferential/macro-pore flow because such effects are expected to

2s  be captured in the Ky parameter during calibration, i.e., significant macro-pore flow is expected to significantly
2 increase the bulk soil saturated hydraulic conductivity, so this effect should be included in Q. Total flow
s leaving the soil unit, or water yield, is given by:

Oyip = Qysr + Cren (24)

266 Total potential transpiration is distributed to different layers according to a weight function. However, this
27 weight function differs for short-rooted plants and deeper-rooted species, to reflect the ability of deeper rooted
28 species to adjust their water source according to water availability. The weight function is defined as:

< z’f‘”i_z) , short-rooted
X = max - s (25)
() () + (=) (52)  emons
269 According to Eq. 25, in the case of short-rooted plants, potential transpiration of top layers is higher than

a0 lower layers, irrespective of the soil wetness level. In contrast, deeper-rooted species will give higher weights to
= top layers if soil is closer to saturated (i.e., <5 ~ 1), but will prefer wetter (lower) layers as the soil becomes

Sfmux
Ss

2 drier (i.e., g~ < 1). Thus, layer-wise actual transpiration is then given by (note that the weight function is
s normalised to ensure that the total P, value is conserved):

RN
ATRs[ =X : Py, (26)
Limax
274 where
Xi
Xi=\ o — @n
< Ziil Xi )
275 Total actual transpiration from the soil is the sum of layer-wise transpiration values:
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.
ATRS = ZATRSI' (28)
i=1
276 Similarly, total soil potential evaporation is also distributed amongst the layers non-uniformly, because only

27 uppermost layers experience evaporation. To reflect this, we use an exponential function:

2
P =(——F P, 29
EVs; (2) (1+exp(0tz)) EVs (29)
278 which assumes potential soil evaporation equals P, at the surface (z = 0), but rapidly decreases with

279 increasing z (depth), in such a way that it is nearly zero at around the 5 cm depth (this can be adjusted by
z0 changing o in the above equation which is set to oo = 500 in our case). Note that the above equation is a
21 continuous function of depth and for average layer-wise potential evapotranspiration it needs to be integrated
22 across layer boundaries:

2
b(z) = /PEV” (z)dz = (21 “a log [exp(0iz) + 1]) Py, (30)
283 Thus, average layer-wise potential evapotranspiration will be:
— 1 “Biyy
PEV:[ = h(z) 31)
LBy T LB 2,
284 Actual layer-wise soil evaporation, A, [m/day], is then calculated from layer-wise potential evaporation:
_ N
Apyi = PEVS,- S : (32)
Lmax
285 Finally, total actual soil evaporation is the sum of layer-wise actual evaporation values:
n,
AEV; = ZAEV_yi (33)
i=1
286 This concludes the model fluxes depicted in Figure 2 a. To summarise, RSEEP requires rainfall (R) and

27 total potential evapotranspiration (P,,) timeseries’ to run. It also requires surface soil moisture timeseries for
28 its calibration (will be discussed in 3.1.2), all of which are obtainable from satellite datasets.

2 3.1.2 Calibration procedure at Cruickshank Botanic Garden

20 First, using a sensitivity analysis, suitable ranges for individual model parameters were determined. In the ab-
20 sence of any prior information regarding the distribution of individual parameters we sampled 10,000 parameter-
22 sets uniformly and randomly from their respective ranges (a ‘parameter-set’ = one combination of d, Ry and
23 P). Note that we found our calibration procedure to be insensitive to finer sampling of the parameter space.
20« The model was run 10,000 times, and the volumetric moisture content (VMC) at the 10 cm depth (VMCp)
205 was extracted from the model, and compared against the observed record at the same depth and for the cal-
26 ibration period (i.e., January-December 2021, see Fig. 4 al/bl/cl). The observed VMCjq for the remaining
27 part of the record (i.e., January-December 2022) was used for blind validation testing. At all other depths
28 (i.e., 20, 40, 60 and 100 cm, see a2-5, b2-5, and c2-5) the entire record (i.e., January 2021-January 2023) was
200 used for blind validation testing. Finally, based on the observed VMC timeseries at the five depths, we derived
a0 and observation-based estimate of total soil moisture (yellow solid lines in a6, b6, and c6) by calculating the
s weighted-average of the five observed VMCs and multiplying it by the soil thickness (which is set to be 1.2m, so
xz that the observation-based estimate of total soil moisture does not extend far beyond the measurement depths,
w3 1.e., one meter). These weights are taken to be proportional to the layer thickness that each measurement is
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(a) RSEEP's parameter ranges and distributions (b) RSEEP's parameter ranges and distributions
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(c) Fitted tree diameter-age curves at Glensaugh
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Figure 3: Ranges and distributions of model parameters (a) at Cruickshank Botanic Garden, and (b) at Glen-
saugh; Nxgr= normalised KGE. (c) Tree diameter-age curves at Glensaugh.

s« assumed to represent, which are, 0-15 cm, 15-30 cm, 30-50 cm, 50-80 cm, and 80-120 cm, for VCM o, VCM>,
as  VCMag, VCMgp, and VCMyp, respectively.

a06 For performance metric, we used the Kling-Gupta Efficiency (KGE) because it includes correlation, vari-
a7 ability bias as well as mean bias:

2 2
KGEI—\/(r—l)z—&-(GS""—l) +(“ﬂ—1) (34)
GCobs Mobs

308 where r is the linear correlation coefficient between the simulated (y;,) and observed (,ps) records, G is
a9 standard deviation, and u is mean. Rather than the best model, the top 1% of the models in terms of their KGE
s values during the calibration period (i.e., at the 10cm depth and for the January-December 2021, see al, bl
an and cl) were retained as ‘acceptable’, to provide some measure of parameter variability. Although, many other
sz potential sources of uncertainty remain which are difficult to quantify in ecohydrological modelling in general,
sz and in predicting soil moisture in particular. We discuss the sources of uncertainty in section 6.

s 3.2 Coupling RSEEP to a soil carbon model
ais 3.2.1 Rothamsted carbon model

s The Rothamsted carbon model (RothC, Coleman & Jenkinson 2014) distinguishes five soil organic matter pools;
a7 decomposable and resistant plant material (DPM [tC/ha] and RPM [tC/hal), humified soil organic material
ss (HUM [tC/hal), soil microbial biomass (BIO [tC/ha]) and an inert organic matter pool (/OM [tC/hal]). Plant
s inputs to the soil partition into DPM and RPM according to a DPM/RPM ratio (R,,;) which is assumed to be

11
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a0 0.25 for tree sites, and 0.67 for grass/pasture sites (RaZauskaité et al., 2020). Each active organic matter pool
a2 (Y) decomposes according to a first order exponential equation of the form:

dY =Y x (1 —exp(—k.a.b.c.t)) (35)

52 where k [1/yr] is the decomposition rate constant for pool Y (equal to 10, 0.3, 0.66 and 0.02 for DPM, RPM,
@ BIO and HUM, respectively), a [—] is a temperature rate modifier, b [—] is a soil moisture rate modifier, ¢ [—]
224 1S soil cover rate modifier, and ¢ is time-scale which is set to 3% (i.e., daily) in our study. In each timstep, the
a5 decomposed material of each pool (dY) is then distributed among the CO,, HUM and BIO pools according to
@ pre-determined fractions (see Coleman & Jenkinson 2014 for details). Thus, the only unknowns in RothC are
sr  the initial (equilibrium) values for each pool (i.e., at t = 0) as well as the annual plant inputs at equilibrium
ws (g, [tC/hal). To calculate these, it is commonly assumed that prior to any interventions (tree planting in our
a9 case) the soil has been in a state of equilibrium where its organic carbon content remains constant with time (in
x0 our case this would be 52 tC/ha, see table 1). By running RothC for 10,000 years using fixed climate data (i.e.,
s the 2015-2022 data is looped), and through a minimisation process, the initial values for each pool as well as the
s Iy, that would result in 52 tC/ha of soil organic content at time = 0 can be found (see Coleman & Jenkinson
s 2014 for more details). Equilibrium daily plant inputs (Ip,) are then calculated from the annual plant inputs:

Ipy = frada (36)
304 where
RLAI
=—" 37
Jua max(R,,,) 7
335 and
0 ; —2L,(1)<0
R, = 3 ) S (38)
_§LA1(t) s _ELAI([)ZO
36 This equation assumes that maximum plant inputs occur at the same time as maximum rate of reduction in

s L,, occurs. In addition, when L,, increases with time or remains constant, plant inputs to the soil are assumed
xs  to be zero according to this equation. Finally, RothC also requires soil cover (which is set to zero for bare soil
we and 1 otherwise) as an input to determine the value of ¢ in Eq. 35. We set soil cover to 1 when L,, > min(L,,)
s and O otherwise.

aat At a given time, the total soil organic carbon (TOC [tC/hal) is the sum of the values in the five pools.
s Percentage soil organic matter can then be calculated from:

0 o] = 1000XTOC 149 39)
Az,..BD
e |m] is soil thickness, and Bp [kg/m?] is soil bulk density. Thus, when linking
s RSEEP with RothC, changes in organic content with time will be fed into Egs. 9 and 11 to account for changes
xs  in soil water retentiveness due to organic content change. On the other hand, note that RothC in its original
ws from applies a simple soil moisture accounting procedure in which total soil moisture deficit is assumed to be
a7 given by:

o where A [m?] is land area, z,

Dy, =R—P,, (40)
o8 where R[m] is rainfall, and P,, [m/day] is the Penman-Monteith potential evapotranpiration rate. SMD [m|
xu 1S capped at:

Dy, =0.0043(20+1.3P,, +0.01P2 )z (41

clay clay/ “max
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350 where P, [%] is clay content. Field capacity is assumed to be D g = 0444 x D, . However, when
s linking RothC with RSEEP this entire procedure is overwritten, and D is calculated dlrectly from RSEEP’s

sz output, namely: Dy, =S, . —S; (see section 3.1.1).

353 Finally, note that RothC’s original soil moisture rate modifier (b) remains equal to its maximum value (i.e.,
s« 1) when Dy, < D el and decreases toward its minimum (i.e., 0.2) as Dy,, increases above D fietd* Therefore,
a5 1n its original form, RothC ignores reductions in decomposition rate under waterlogged conditions (i.e., when
s oxygen is limited), and instead it only considers reductions in decomposition rate under dry conditions (i.e.,
s7 when water is limited). For this reason, in this study we used a slightly different soil moisture rate modifier

ss  (Smith et al., 2010) that also decreases (from 1 toward 0.2) as soil oxygen levels decrease.

s 3.2.2 Representing vegetation growth

w0 It is common to assume that tree-growth broadly follows an exponential function (Schelhaas et al., 2018). We
% assumed the following relationship between diameter at breast height, Dy, [cm], and tree age ¢ [yr]:

Dy (1) = Dy, ( 1=exp (~Blr—]) ) 2)
362 where B [—] and 1y [yr] are parameters controlling the shape of the curve (to be determined via calibration),
ws and Dy, —[cm] is the maximum DBH for a given species; upper bound values for Dy, (for ages>150 years)

w4 1S taken to be 140 cm for Hybrid Larch (Larsson-Stern, 2012), 120 cm for Scots Pine (Hall & Bunce, 2011) and
s 145 cm for Sycamore (Hall & Bunce, 2011). Further, for the tree species at Glensaugh, there exists allometric
xs equations of the form (assumes 45% organic content for biomass):

P
In 4 D 4
n(B2) = 0.5 (125 ) (35 1n(Dy) @)
% to estimate above-ground biomass (B4 [tC/ha)) from D,,,, where Pp [—] is the plantation density (=400

s stems/ha at Glensaugh) and 1 [—] and A [—] are species-specific coefficients. | = -2.26, -2.029 and -2.455, for
%9 Hybrid Larch (Nan et al., 2012), Scots Pine (Lim & Cousens, 1986) and Sycamore (Bunce, 1968), respectively;
an and A = 2.298, 2.289, and 2.354, respectively. Following Cairns et al. (1997), we also estimate below-ground
e biomass (Bp [tC/hal) from above-ground biomass (B4) using (also assumes 45% organic content for biomass):

By
Bp =0.45 —1.0587 +1In | 1963.6— +0.2840 44
B (1000)exp( +n(9 PD+ )) (44)

ar2 The Leaf Area Index (L,,) data, which is used by the ecohydrological model (see Eqs. 2, 8 and 1) is not
o available at the site. We thus use species-specific maximum L,, values obtained from the available literature: 5.7
ar«  for Hybrid Larch (Gower et al., 1990), 2.73 for Scots Pine (Bealde et al., 1982), and 5.6 for Sycamore (Elsherif
ars  al., 2023), all between 70-90 years old, and 2 for Rye grass (Simon & Lemaire, 1987). We increased the tree
o L,, values by another 10% to account for the fact that they are not fully mature (i.e., not 150-200 years old).
a7 Similar to the botanic garden site (section 2.1), for the evergreen species (i.e., Pine) we assume a time invariable
s L,,, while for the two deciduous species (i.e., Larch and Sycamore) and grass a trapezoidal shape was employed
ars  with the minimum value set to 1.5 for trees and 1 for grass. The timing of rises, peaks and decreases of this
s trapezoid were also taken to be the same as those at the botanic garden site. Note that the maximum L, values
w1 above assume mature species, meaning that they will be significant overestimation of L,, at the early stages of
s the agroforestry experiment (except for grass which had existed pre-agroforestry). To account for this, species
s L,, vary with time according to an age fraction, f,

age

Ly () = foge O Lar. + (1= £, (£)) Las, (45)
384 where Ly, is the leaf area index time series of mature species, Lai, is that of grass (for grass they are equal
ss  to one another), and:
1 ;  for grass p
() = 4
f”’“( ) Dy (1) ; for trees (46)
BHmax

13
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386 Eq. 45 varies tree L,, on a sliding scale between grass and fully grown trees depending on age. The same
w7 logic also applies to the rg[—] parameter (radiation extinction coefficient, see section 3.1.1):

TE(1) = fuge (75 + (1= fop (1)) 7E, 7

388 where rg_, = 0.7 for trees (but =rEg, for grass), and rg, = 0.3. Similarly, the DPM/RPM ratio (R, see
s section 3.1.1) varies with age according to:

Rp (1) = fuge (DR, + (1= fo (1)) X Ry, (48)

a0 where R),, = 0.25 for trees (but =R, = 0.67 for grass), and R, = 0.67. Finally, non-equilibrium annual

s plant input to the soil at time ¢ (I, (t) [tC/hal), is needed to run the carbon model in ‘forward’ (future) mode
s (see section 3.2.1). At any given time, plant input is calculated using:

la ;1< 1988
1, (t)= 0 o (49)
Lg+ fooe Ola 5 121988
050 where Iy, [tC/yr] is the equilibrium input (at t=0) calculated by running RothC in ‘equilibrium’ mode

s (see section 3.2.1), and [y, [tC/ha is a future equilibrium input (at ¢ ~ oo, to be determined via calibration)
s representing a future state in which trees have reached maturation, i.e., their D,, has plateaued due to the
s  exponential diameter-age curve in Eq. 42. In our case, this would occur c.a. after 200 years depending on the
w7 species (see Figure 3 c). For grass however, ., would represent the additional organic carbon inputs due to
s introduction of grazing post-agroforestry in 1988, rather than vegetation growth/maturation. Thus, Eq. 49 will
se yield Iy, for the pre-agroforestry period, but increases plant input in the post-agroforestry period. Note that
w0 daily plant inputs are calculated from the annual values using Eq. 36.

w0 3.2.3 Calibration procedure at Glensaugh

w2 We apply the same calibration procedure that was used at the botanic garden site (section 3.1.2) to determine
w3 the values for the three calibrated RSEEP parameters (i.e., cf, Ko and p). For forcing and check data, we use
«s  the 2022 dataset presented in Figure 1 d, and we set the tree ages (for L,, calculation in Eqs. 45 and 42) to 34
ws  years (=2022-1988). This approach results in 100 (i.e., top 1% of 10,000) RSEEP parameter-sets per species.
ws Parameter ranges and distributions at Glensaugh are shown in Figure 3 b. KGE performance in the top 1% of
«7 the models ranged between 0.68-0.83 for Pine, 0.7-0.74 for Larch, 0.68-0.74 for Sycamore, and 0.43-0.61 for
s Qrass.

409 Also recall from section 3.2.2 that there are three additional unknown parameters: G, fo and fy_. To de-
w0 termine these parameters, we use a minimisation procedure that utilises the data in Table 1. For the RSEEP
1 parameter-set that produces the closest predictions to the median of all RSEEP predictions, the minimisation
w2 process iteratively selects different values for these three parameters, runs the coupled model, and refines them,
«3 until: (i) the predicted soil carbon stocks matches the 2012 value in Table 1 as closely as possible (which would
414 constrain IAAw); (ii) 7y captures the onset of tree heights reaching 1.3m (third column in Table 1) as closely as
«is possible; (iii) and Dy, (Eq. 42) matches the values in the last column as closely as possible (which would
w6 constrain [3). Figure 3 ¢ shows the resulting D,,, curves for each tree species. Parameter values as well as past
«7 and future equilibrium inputs for the different species are listed in Table 2.

«s  3.2.4 Calculating the relative impacts of agroforestry at Glensaugh

«9  To disentangle the impact that trees have within the silvopastoral system, we first calculate the net change in
w0 the pasture (control) site across time by subtracting our model prediction for the quantity 7, (¢) (‘p’ for pasture)
«  at any time ¢ > 1988, from its predicted value 7, at time ¢ = 1987, to give Az, (t) = 7, (¢) — 7p, as a function
2 of time. Here we consider the following quantities as m: soil carbon stocks, and total carbon stocks (soil
w23+ biomass carbon), canopy evaporation, soil evaporation, transpiration, soil water storage deficit, water yield
w2+ (total outflow). We then repeat the same process for the silvopasture sites to obtain Am,(r) = ,(r) — m,,. We then

14
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Table 2: Fitted tree-growth parameters at Glensaugh. Iy : range of equilibrium annual plant input to the soil at
t =0, i.e., before trees were planted. I4_: equilibrium annual plant input at a future time, t — oo, when trees
have reached maturation. 3 and 7y are coefficients of tree growth curve in Eq. 42.

Species Iy, [tC/ha] Iy [tC/ha) B[] fo [yr]
Grass 2.11:2.37 1.22 - -
Sycamore 2.33:2.66 32.98 0.0085 5
Pine 2.37:2.65 16.95 0.018 6
Larch 2.37:2.64 24.6 0.0144 4

Amy(1)—Am, (1) .
TI x 100. Finally,

w2 for each scenario there are 400 model predictions (100 RSEEP parameter-sets x 4 future cli[r)nate models). When
«7 calculating the relative impacts, we thus consider all possible differences, i.e., 400 x 400=160,000 between each
w2 silvopasture scenario at time ¢ and the pasture case. The median of these 160,000 values are presented in Figure
w29 6,20, 40 and 80 years after planting. The full range of model predictions are also shown in Tables A1, A2 and
w0 A3 in the Appendix.

s calculated a percentage change relative to the conditions in 1987 using: %change =

« 4 Results

« 4.1 RSEEP’s soil moisture retrieval performance

«s  Figure 3 a shows the parameter distributions for each species at Cruickshank Botanic Garden, where x-axes
«w are parameter ranges and y-axes are normalised KGE values. All parameters seem to have a well defined
w5 distribution indicating that the model has been sensitive to them. In interpreting the KGE values, note that KGE
ws can range from —oo (i.e., the worst possible fit) to 1 (i.e., perfect match between observation and prediction),
w7 however not all negative KGE values are necessarily indicative of ‘bad’ performance. When using mean flow (or
ws  soil moisture in our case) as benchmark Knoben et al. (2019) showed that models with KGE>-0.41 improve on
w9 the mean flow benchmark. Thus, here we also take KGE>-0.41 to be the threshold for acceptable performance,
wo  at least during the blind validation test. Also note that in Figure 4, the only information available to the model
w1 during calibration is constrained to within the first half of the record and to the 10 cm depth (marked by dashed
w2 red lines in panels al, bl, and c1). The model is ‘blind’ to the second half of the record in al, bl, and cl, as
s well as to the entire record in all other panels. Finally, in all panels, median KGE values of the top 1% models
ws are reported with their minimum and maximum shown in brackets.

ws Under the broadleaf tree, the model is able to provide very good fits to the observed soil moisture timeseries
ws  during the calibration period, indicated by the median (and min:max) KGE value of 0.81. Curve-fitting perfor-
«7 mance slightly worsens during the second half of the record (i.e., blind validation) at the 10 cm depth (panel
s al), where median KGE is 0.67, though still considered good fit. The model maintains a similar goodness-of-fit
ws level during the blind validation test at the 20cm depth (panel a2, KGE=0.68), but further deteriorates at the
w0 40cm depth (panel a3, median KGE=0.42). This trend continues at the 60cm and 100cm depths where median
s KGE values are 0.06 and -0.05, respectively. Although relative to the mean of record as benchmark (which
2 would yield a KGE value of -0.41) these values are all considered improvements in predictive power, particu-
3 larly because they broadly capture the soil moisture dynamics. Similar trends can be observed under the conifer
e tree (b1-b6). In the grassland case, the model performs well at all depths (with a median KGE=0.75 at 10cm
w5 depth and KGE=0.59 at 100cm depth).

= 4.2 Sensitivity of RothC to soil moisture accounting method

w7 To test the impact of a different soil moisture representation on RothC’s carbon storage estimates, we compare
s RothC’s predictions when coupled with RSEEP versus when it is not. RothC without coupling uses rainfall
9 minus potential evapotranspiration (or ‘effective rainfall’) to update its soil moisture in each time step, whereas
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w0 when coupled to RSEEP, that procedure is replaced by outputs directly from RSEEP. Figure 5 al shows the an-
s nual average S, values resulting from the two models. Dashed lines represent the water storage capacities in each
«2 case. There is a stark difference in the magnitude of annual average storage between RothC and RothC+RSEEP.
w3 However, RothC is not necessarily affected by the absolute magnitude of storage, rather by its value relative
s+ to the maximum (see soil-moisture rate modifying factor in section 3.2.1). For this reason we also show the
«s normalised S, values in panel a2, where S, values in panel bl are divided by their respective maximum (dashed
s lines in panel bl).

467 From a2, it can be seen that RothC+RSEEP predicts a drier soil when compared to RothC. From b3, drier
s soils under RothC+RSEEP lead to 28% lower soil carbon stock under Larch (by the end of the record in 2080
w9 and using the dotted lines); the same value is a 20.1, 9.2 and 5.6% lower carbon stock under Sycamore, Pine and
a0 Grass, respectively. Given that the median change in annual ‘effective rainfall’ (R — P, ) between 1980-2080 has
s been -190mm (i.e., a reduction), our results suggest that improving RothC’s soil moisture representation could
«2 reduce its carbon storage predictions by 0.15, 0.11, 0.05, and 0.03% per mm reduction in effective rainfall under
s Larch, Sycamore, Pine and Grass, respectively, or an average of 0.08%/mm across all sites.
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Figure 5: al-a4: sensitivity of RothC to soil moisture treatment method at the Larch site. b1-b4: the associate
(eco)hydrological fluxes from the coupled RSEEP+RothC model; A, = annual canopy evaporation, A, = an-
nual soil evaporation, A, = annual transpiration, Q,, ,= annual water yield. Shaded bands represent modelling
+ climate data variability. Dotted lines are the median of all 400 model predictions (i.e., all combinations of the
100 RSEEP parameter-sets & the 4 versions of the future climate dataset). Dashed lines in al are maximum soil
water storage capacity.
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« 4.3 The relative environmental impacts at Glensaugh

s From Figure 6 a, under the current emission scenario (RCP6.0), total annual rainfall increases then decreases
a6 across the three time-slices, whereas potential evapotranspiration increases monotonically. Relative to the con-
47 ditions before converting pasture to silvopasture, the 20th and 40th years are wetter because in those years
w5 rainfall increases more than evapotranspiration, whereas the 80th year is the driest of the set.

479 From bl, soil carbon stocks generally increase with time under all scenarios. 20 yrs after conversion to
w0 Pine/Sycamore (but not Larch) silvopasture, soil carbon is reduced. This mimics the disturbance to the soil
1 when trees are planted (see e.g., the zoomed panel in Figure 5 a3; which happens in our model by setting
w2 Iy, to zero from the onset of tree plantation until r = fo). When considering the total carbon stocks (in b2),
w3 which includes the above- and below-ground biomass estimates, all scenarios boost carbon storage relative to
s+ the pasture base-case, with Larch having the largest impact in all years, closely followed by Pine. Sycamore’s
w5 contribution to total carbon stocks after 20 years is relatively small (i.e., 13% compared to 87% and 65% for
s Larch and Pine, respectively), but it increases considerably 40 and 80 years after conversion; though remains
4«7 around half the contributions of Larch and Pine. From b3, annual average soil water storage deficit increases
s Wwith time as trees grow indicating drier soil. The amount by which conversion to silvopasture makes the soil
s drier is similar for all species until the 40-year mark, but at the 80-year, Pine leads to a significantly drier soil
w0 followed by Sycamore. Given that the 80th year is the driest year examined here, it is notable that the soil under
s Larch exhibits the smallest increase in storage deficit.

402 From c1, canopy evaporation increases monotonically with time and in the order of Pine>Larch>Sycamore.
w3 From c2, soil evaporation decreases monotonically with time, despite the monotonically increasing atmospheric
w4 demand (a), which is related in our model to canopy closure. From c3, conversion to silvopasture dramatically
w5 increases transpiration and in the order of Pine>Larch>Sycamore. From d1, in terms of the total outflow from
w6 the soil unit, or water yield, conversion to silvopasture decreases annual water yield substantially and in the
w7 order of Pine>Larch>sycamore up until the 40-year mark, then in the order of Pine>Sycamore>Larch at the
s 80th year.

« 5 Discussion

o 5.1 Strengths and weaknesses of RSEEP

s If soils can be assumed to have reached saturation during the wettest part of the record (which is a reasonable
s assumption at Cruickshank Botanic Garden), we can take the maximum observed soil moisture content at each
sz depth to be equal to porosity at that depth. In that case, from Figure 4, the soil column under the broadleaf
s« tree would have the following porosity profile: 0.43, 0.45, 0.46, 0.21 and 0.32, at 10cm, 20cm, 40cm, 60cm,
ss and 100cm depths, respectively. Such a profile could indicates changes in soil composition with depths, which
ss  would explain the clearly different soil moisture dynamics at the different depths through, e.g., changes due to
s hydraulic conductivity (Gardner, 1983). It is also possible that the irregularity is due to presence of macropores
s caused by tree tap-roots (Demand et al., 2019) and/or earthworms (Rutgers et al., 2016). Whatever the cause,
s the underlying physical processes responsible for such behaviour are absent from our simple model. RSEEP
sio  assumes that both soil porosity and hydraulic conductivity monotonically decrease with depth, and is thus not
s equipped to capture deviations from these assumptions.

st Similar analysis applies to the conifer site while at the grassland site the model performs well at all depths
si3  (with a median KGE=0.75 at 10cm depth and KGE=0.59 at 100cm depth). This is not surprising because the
s« maximum observed VMC values are: 0.48, 0.47, 0.46, 0.36, 0.24, at depths=10cm, 20cm, 40cm, 60cm and
sis  100cm, respectively, indicating that porosity and hydraulic conductivity here are more likely to be monotoni-
sie  cally decreasing functions of depth, just as it is assumed by RSEEP. While it is not particularly difficult to relax
s these assumptions in the model, the downside is additional calibration/uncertain parameters which would in turn
sie  require additional datasets to constrain. We have developed RSEEP with large-scale applicability in mind. At
sie  those scales, detailed below-ground information is simply not available for calibration of any additional model
s0 parameters. It is worth noting that despite the simple model structure, total soil storage behaviour (panel a6)
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Figure 6: The environmental impacts of converting pasture to silvopasture at Glensaugh after 20, 40 and 80
years (calculated annually). Bars show median (of 160,000) model predictions. All percentages are relative
to their respective reference value (‘Ref.’) which represents the pasture base-case at time t = 0, i.e., in 1987.
The full range of annual values are shown in Table A1l. The full range of values during the summer and winter
seasons are shown in Tables A2 and A3, respectively.
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2t is captured well, with median KGE well above the -0.41 threshold. This is noteworthy because in soil carbon
sz turnover models such as RothC, it is often the total soil moisture (deficit) that is needed run the model.

528 Thus, these results suggest that (i) RSEEP can capture the dynamics of bulk soil moisture (rather than that at
s« specific depths) fairly well, even if the assumptions underlying the model do not strictly hold everywhere along
s2s the soil profile; (i) RSEEP can estimate soil moisture at specific depths fairly well in soils in which the model
26 assumptions are more likely to hold. Application of our model to different soil types/thicknesses and more sites
s> would provide more confidence that these conclusions generally hold.

= 5.2 Impact of soil moisture accounting procedure on RothC

s0  In section 4.2 we found that including the various ecohydrological water fluxes (i.e., RothC+RSEEP) in soil
s0  water balance estimation resulted in a lower soil carbon storage than estimates using RothC alone. Accordingly,
ssn performing a more elaborate soil moisture accounting, compared to RothC’s default setting, on average can
sz lead to a 0.08% lower soil carbon estimation per mm reduction in ‘effective rainfall’ (i.e., rainfall - potential
s evapotranspiration). While the impact of different soil-moisture decomposition rate modifying functions on
s« RothC’s performance has been extensively studied (e.g., Falloon et al. 2011, Bauer et al. 2008 and references
s therein), to our knowledge the impact of different soil moisture accounting procedures on RothC’s performance
s 1s untested. Thus, our results provide a first insight into the possible sensitivity of RothC-based soil carbon
sz estimates to the choice of soil moisture accounting method. Our results suggest that more elaborate accounting
s procedures (than RothC’s default) should be used where possible. They also indicate that a coupled water-carbon
s9  approach to soil carbon cycling could be important, particularly over longer time-scales and when considerable
so future changes to soil moisture regimes are likely. Testing RothC in conjunction with different soil moisture
s« treatments as well as at different sites would strengthen these findings.

s 5.3 Water-carbon dynamics of the silvopastoral experiment at Glensaugh
s 5.3.1 Carbon storage potential

s« Our pasture to silvopasture conversion scenarios initially reduce soil carbon stocks (figure 6b1) due to distur-
ss  bance of the soil at the onset of conversion, in line with observations globally (Guo &Gifford, 2002), and in the
s« UK (Upson et al., 2016). Our results suggest that 20 years after planting, soil carbon stocks are yet to recover to
s their pre-conversion levels under Pine and Sycamore, but if Larch is planted recovery could be faster. For t>=40
s years, all scenarios increase soil carbon substantially with Larch having the largest impact. Pine and Sycamore
s have similar impacts with Sycamore outperforming slightly. At the 40-year mark, we estimate that these scenar-
ss0 108 will have increased soil carbon by 66-107% relative to pasture, yielding an annual rate of change of +0.85 to
sst +1.4 t/ha/yr which is within the rather wide -10.6 to +5.1 t/ha/yr range reported for 30-40 year-old afforestation
sz cases across Scotland, and within the narrower -2 to +3.1 t/ha/yr range reported for afforestation on podzolic
sss  soils (Lilly et al., 2016). It is also within the 0.55 to 2 t/ha/yr range estimated for silvopasture globally (Lal,
e 2018).

555 When also considering biomass carbon, all scenarios positively impact carbon storage (even at the 20-
s year mark), with Larch having the largest impact closely followed by Pine, while Sycamore underperforms
ss7 by at least 50% in all the years examined here. This seems to be related to the growth-rates of these species
sss  observed at Glensaugh which are in the order of Larch>Pine>Sycamore (see Figure 3 c). It is notable that
o despite the significantly slower growth, Sycamore’s contribution to soil carbon is slightly higher than that of
so Pine. Through a meta-analysis, Vesterdal et al. (2012) report a higher carbon mineralisation under Sycamore
s+ than under conifers, and even most other broadleaves (except for Ash), with litterfall quality (foliar N, Ca and
ss2 Mg, and to some extent lignin concentrations) correlating best with carbon turnover, but they did not examine
ss  the possible effects of root litter inputs. Deciduous species are shown to have greater fine root biomass than
s« evergreen species (Finér et al., 2007) which could also be a contributing factor in Sycamore’s slightly higher
s soil carbon turnover (despite its significantly slower growth). While our model is not capable of capturing either
sss  Of these effects explicitly, it can capture them implicitly into its equilibrium plant input estimates. Equilibrium
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sz inputs estimated by our model are in the order of Sycamore>Larch>Pine (see Table 2) which seems consistent
ses  With the higher litterfall quality and/or fine root biomass of deciduous trees.

569 Observations at Glensaugh show that 24 years after conversion to silvopasture, the Pine site maintained
so  a healthy-looking pasture whereas herbaceous vegetation had visibly suffered under the Larch and Sycamore
sn plots due to canopy closure (Beckert et al., 2015). This may suggest that under the current management and
sz plantation density at Glensaugh, silvopasture is likely to work well for a finite period of time, which could be
s extended if evergreen species are planted. This could impact management decisions on rotation length. Our soil
s« carbon estimates provide insight at different points in time assuming that the management decision will be to
ss  maintain tree cover up to that point in time. Our results provide little insight regarding the aftermath of a fixed
s76  rotation management scenario in which trees are felled. Such scenarios should be investigated separately.

s77 Since the average rotation-length in Scotland is around 40 years (Lilly et al., 2016), we expect our predic-
s tions at the 40-year mark to be more meaningful in the context of Scottish agroforestry. We conclude that at
s Glensaugh and under the current emission scenario (RCP6.0) (i) a conifer silvopasture scenario is likely to out-
s0 perform a broadleaf scenario in terms of biomass carbon storage due to the significantly higher growth-rates of
ssr  conifer species at this site; (ii) a deciduous silvopasture scenario at this site is likely to outperform an evergreen
sz scenario in terms of soil carbon turnover due to higher litterfall quality and/or greater fine root carbon inputs.
sss  The two together seem consistent with the fact the deciduous conifer scenario has largest overall impact in terms
s« of carbon storage at Glensaugh.

ss  5.3.2 Impacts on soil water availability

sss  Converting pasture to silvopasture at Glensaugh generally increases soil water storage deficit (figure 6b3), mean-
s ing that trees tend to make the soil drier over time and as they grow. This is expected given the significant
s increase in transpiration rates seen in panel c¢3. The direct correlation between transpiration (in c3) and storage
s deficit (in b3) is an indication that the drier soils are primarily a result of higher transpiration of trees, in line
s0  with experimental (e.g., Soulsby et al. 2017b) and modelling (e.g., Stevenson et al. 2023) studies in the region.
sor  This could have implications for water availability (e.g., for forage growth) during dry seasons. Note that the
sz 80th year is the driest year examined here, so it is notable that the soil under Larch silvopasture experiences
ss  the least amount of drying during this year (despite Larch and Sycamore having roughly the same amount of
s transpiration, see c3). Importantly, this effect seems to persist during the summer season (see b3 in Tables A2,
sss  where the soil under Larch is significantly less dry than that under Sycamore or Pine).

59 This would be consistent with presence of a dense litter layer under Larch which has been observed to persist
s year-round at Glensaugh. Although the portion of the total evapotranspiration which a litter layer is expected
s to impact (i.e., soil evaporation) may not be large enough to favour this explanation here. Soils under Larch are
s9  also less sandy (by ca. 6-7%), more silty (by ca. 3-4%) and have a higher clay content (by ca. 3-4%) relative
w0 to the other sites, which is perhaps more likely to be the main driver of the simulated effect. It is also possible
st that measurement errors are responsible for the more damped topsoil moisture dynamics observed under Larch
«2 (see Figure 1 d) which is subsequently captured by our model as a physical effect. Nevertheless, relative to
w3 the other species at this site, Larch shows a notably greater potential in terms of preserving soil moisture under
¢ drier conditions. This suggests that the choice of species is likely to be important for soil water availability,
s particularly for forage growth in silvopastoral systems. Although we have used a bias-corrected future climate
s data which tends to smooth-out climatic extremes (whether wet or dry), so the significance of such effects under
7 severe drought should be investigated separately.

ws  5.3.3 Implications for river flows

w0 In cases where significant inter-site differences in hydraulic conductivity exist, it is expected to be captured in
eo  the bulk soil saturated hydraulic conductivity parameter (Ky) of our model during calibration. Chandler et al.
en (2018) measured Ky under the Pine and Sycamore silvopasture plots at Glensaugh and compared those to Ko
sz measurements under pasture. They found no significant difference between the three sites. They further found
o that woodland (2500 stems/ha without grazing, also at Glensaugh) showed a significant increase in Ky relative
e to pasture. They concluded that any potential increase in Ky under silvopasture at this site is likely countered
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ss by topsoil compaction due to sheep/cattle weights. Our calibrated parameter ranges in Figure 3 show similar
o distributions for Grass (pasture), Pine, Sycamore as well as for Larch, where Ky values, although slightly lower
s under trees, show significant overlap, providing encouragement that our parameters may have captured soil
s properties relatively well despite the simple model structure.

619 The p parameter which controls the ease/difficulty with which water can be extracted from the soil (whether
«0 by means of flow or evapotranspiration) at different saturation levels, is <1 under Grass, Pine and Sycamore,
1 indicating easier extraction even at lower saturations, but is >1 under Larch indicating the opposite. The ob-
22 served topsoil moisture dynamics under Larch in Figure 1 d are noticeably more damped compared to the other
s three sites. As mentioned earlier, the ground under Larch is covered by a dense litter layer year-round, but it
2« also has a higher clay/silt content. So the higher p values under Larch could be reflecting either or both of these
es effects. In any case, it is encouraging that the model seems to be capturing physical effects that impact soil
s moisture and flow from the soil. Our modelling suggests that pasture to silvopasture conversion at Glensaugh
s would reduce the total annual outflows (i.e., water yield) from the soil most likely due to greater water loss to
s evapotranspiration, consistent with experimental (e.g., Soulsby et al. 2017b) and modelling (e.g., Stevenson et
s20 al. 2023) studies in the region.

630 Purely from a process understanding perspective, a reduction in water yield can be considered a positive
s impact in terms of flood risk mitigation potential, particularly since these reductions seem to persist during the
sz winter seasons (see Table A3 d1) with the evergreen species having a substantially larger impact, likely due to
w3 greater transpiration and reductions in near surface flows (Neill et al., 2021). While many numerical studies
s« suggest that significant flood risk mitigation can be possible through increased tree cover at small-scale and un-
s der flood-relevant events (e.g., Nisbet & Thomas 2006, Monger et al. 2024), larger scale experimental evidence
ws SO far only supports such claims at smaller events not relevant for flooding (Birkinshaw et al., 2014, Fahey
s & Payne, 2017, Bathurst et al., 2020, Xiao et al., 2022), likely due to the limited effects of trees on transient
«s  storage particularly in low-energy, humid environments with shallow soils (Tetzlaff et al., 2007, Soulsby et al.,
s 2017a), which exhibit relatively small dynamic storage Geris et al. (2015b). In these environments soil type
s0 (Geris et al., 2015a) and geology (Peskett et al., 2021) are much stronger controls on runoff, especially in large
s events. Thus, while our results indicate that significant reductions in storm flow may result in smaller events, it
«2 seems less likely that significant flood risk mitigation benefits can be derived from silvopastoral practices under
s flood-relevant events in landscapes that can be represented by Glensaugh.

644 Similarly, reductions in water yield can be considered a negative impact in terms of river flow regulation
s during drier periods when river levels depend on groundwater contributions from adjacent soil units. Whether
« afforestation increases or decreases catchment baseflow is a subject of much debate. Many studies have found
s increased tree cover to increase baseflow, while many other studies report the opposite (e.g., see the review
s by Price 2011). The synthesis by Filoso et al. (2017) reflects the lack of consensus; it shows that 63% studies
s reported a decrease and 37% an increase or no change following afforestation under a wide range of climates and
0 soil/tree types. In our case, during the summer of the driest year examined here (where rainfall decreases by 6%
st and evapotranspiration increases by 19%, see Table A2 d1, at the 80th year) water yield under Pine silvopasture
2 (although 18% lower relative to pasture) is 7% higher relative to Sycamore silvopasture and 9% higher relative
s to Larch silvopasture. A 7-9% difference in water yield could be significant for river flow regulation under
s« drought conditions. However, again, because we have used bias-corrected future climate projections it is unclear
s from our results how much of the 7-9% boost estimated under Pine silvopasture would persist during a severe
e drought. Nevertheless, according to our results, in locations where river flow/level preservation is important
e7  (e.g., for Atlantic Salmon population/migration, Soulsby et al. 2024) yet sensitive to drought, the choice of
s species should perhaps be made on the basis of the least amount of reduction in water yield (see, e.g., Luo et
o al. 2024). We suggest that these effects are worth investigating separately, but would likely be important only if
s0 the scale of implementation is large.

= 6 Sources of uncertainty

sz In agroforestry research there is currently an incommensuratbility between data-availability and system-complexity.
sss  We have tried to devise a modelling approach around the data that is likely to be available now (e.g., surface and
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ss above-surface satellite data), but future advances in data collection could improve the situation (e.g., through
s remote subsurface monitoring) and warrant the use of more complex/complete approaches. Nevertheless uncer-
s tainties exist and impact numerical predictions at large. The main sources of uncertainty in our study were as
7 follows. (i) Calculation of carbon stock depends on factors such as bulk density, soil thickness and stoniness of
s the soil for which we used site average values; (ii) To estimate biomass carbon we used simple allometric equa-
so  tions originally developed for forest stands which tend to have a higher density than 400 stems/ha (and therefore
&0 have likely under-predicted biomass at our site); (iii) We used literature values for species-specific maximum
e tree diameters (e.g., after 200 years) which could have been over- or under-estimations at this site; (iv) In apply-
sz ing RothC we did not distinguish between the different soil layers due to lack of data which could have impacted
e carbon movement (and therefore estimates) across the soil; (v) By calibrating RSEEP to observed soil moisture
e« data in 2022 and then using those parameters to make past and future predictions, we implicitly assumed that
&5 model parameters are independent of calibration data; (vi) There could be significant measurement uncertainty
&6 in topsoil moisture and soil carbon data used to calibrated our models which we have not been able to fully
sz quantify; (vii) Our predictions were based on projected climate data which is uncertain; (viii) We assumed
e that grazing intensity/frequency has been uniform across all silvopasture sites and across time but there was
& not enough data to support this assumption; and (ix) We have tried to include the main plant-soil-atmospheric
0 interactions in our model, but we have not tested different model structures/complexities to find the best one.
s More importantly, perhaps, is the interactions of all the different components of uncertainty with one another
sz and how they manifest as the total (yet unknown) level of uncertainty that is inherent in any numerical study.
2 In an attempt to minimise the effects of the total uncertainty we calculated our impact estimates relative to the
ss« control site in all years, meaning that any biases that might have resulted from the combination of all uncertainty
sss  sources should be controlled for in our ‘relative’ impact estimates, on which we base our conclusions.

= 7 Summary, conclusions and future work

s7  We propose RSEEP, a new model to Retrieve Soil-moisture and Estimate Ecohydrological Partitioning, which
s requires only rainfall, potential evapotranspiration, and surface soil moisture information to run, making it
s suitable for application in data-limited sites and in conjunction with the available satellite datasets. In a data-rich
o site, we showed that RSEEP can simulate bulk soil moisture dynamics well under different vegetation types.
s Further application of our model to different sites would test the generality of this finding. We also coupled
s2  RSEEP to RothC soil carbon model to test RothC’s sensitivity to soil moisture accounting procedure. A more
s elaborate soil moisture accounting (than RothC’s default) can lead to a 0.08% lower soil carbon estimation per
s« mm reduction in ‘effective rainfall’ (i.e., rainfall - potential evapotranspiration). Our results suggest to use more
s elaborate accounting procedures where possible.

696 We used RSEEP+RothC to simulate the water-carbon dynamics of three different silvopastoral agroforestry
sz systems (all at 400 stems/ha plantation density) in North East Scotland and under the current global emission
s scenario (RCP6.0). These systems were: (1) evergreen conifer (Scots Pine) silvopasture, (2) deciduous conifer
ss (Hybrid Larch) silvopasture, and (3) deciduous broadleaf (Sycamore) silvopasture. We found that: (i) 40 years
70  after planting trees, total carbon storage (above+below ground) is anywhere between 2-5 times (~100-250 t/ha)
701 higher under silvopasture than under pasture depending on the choice of species. Deciduous species at this site
72 showed a higher soil carbon turnover potential than evergreen species, but conifer species (whether deciduous or
s evergreen) outperformed broadleaf species in biomass carbon sequestration. (ii) Larch showed a notably greater
74 potential in terms of preserving soil moisture under drier conditions. The choice of species is therefore likely
75  to be important also for soil water availability under drought, particularly for forage growth in (and therefore
76 longevity of) silvopastoral systems. (iii) Significant reductions in storm flow could be possible during the wet
77 seasons, the amount of which was greatest under the native Scots Pine species. We found Pine to also result in
7e notably smaller reductions in water yield during the dry seasons, making it the overall best choice at this site in
7 terms of river flow regulation in wet and dry conditions. Although these effects are likely to be important only if
70 the scale of implementation is large. (iv) The choice of species was important and should therefore be made on
71 the basis of the ecosystem service priorities/objectives of the site. Finally, we have used a bias-corrected future
7z climate data which tends to smooth-out climatic extremes (whether wet or dry). Examining our scenarios under
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na  drought- and flood-relevant conditions and scales is a logical next step.

~ 8 Code/Data availability

75 Model codes and data are publicly available to download from Goudarzi (2024).
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12 Appendix: the full range of model predictions

Table Al: The annual environmental impacts of converting pasture (P) to silvopasture (SP) at Glensaugh 20, 40
and 80 years after conversion. Green values=increase; red values= decrease; display format= median%(5th per-
centile: 95th percentile) of 160,000 model predictions. All percentages are relative to their respective reference
value at ‘+0 yrs’ which represents the pasture without trees base-case at time r = 0, i.e., in 1987.

P : Pasture
SP: Silvopasture +0yrs +20 yrs +40 yrs +80 yrs
Climate (a)
R 1059 mm/yr +15% (14:16) +21% (15:31) +12% (11:13)
Perg 331 mm/yr +4%  (3:5) +7%  (7:8) +19% (18:19)
R-Perg 729 mm/yr +11%  (10:35) +27%  (2:36) +7% (2:15)
Storage dynamics
Soil carbon/ha (b1)
P ----> Pine SP -14%  (-21:-7) +66%  (50:81) +208% (189:246)
P ----> Larch SP 52t +4%  (-3:12) +107% (88:119) +286% (264:329)
P ----> Syca. SP -12%  (-18:-4) +70% (52:82) +222% (206:258)
Soil + biomass carbon/ha (b2)
P ----> Pine SP +65% (59:71) +498% (482:512) +1515%  (1497:1551)
P ----> Larch SP 52t +87% (80:94) +517% (499:529) +1599%  (1579:1640)
P ----> Syca. SP +13% (7:20) +216% (198:228) +844% (828:877)
Storage deficit (annual average) (b3)
P ----> Pine SP +26% (-67:139) +88%  (14:177) +230% (90:399)
P ----> Larch SP 17 mm +19% (-29:124) +65%  (5:119) +113% (16:215)
P --—-> Syca. SP +17% (-48:124) +59%  (-11:120) +159% (33:296)
Green water fluxes
Canopy evaporation (c1)
P ----> Pine SP +26% (22:34) +57%  (51:67) +83% (75:98)
P ----> Larch SP 66 [mm/yr] +17%  (12:25) +38%  (28:44) +67% (54:87)
P ----> Syca. SP +11% (7:18) +28% (19:33) +55% (42:73)
Soil evaporation (c2)
P ----> Pine SP -16%  (-25:-7) -42%  (-49:-35) -71% (-82:-62)
P ----> Larch SP 25 [mm/yr] -14%  (-21:-8) 35%  (-42:-28) -65% (-76:-58)
P ----> Syca. SP -9% (-17:-1) -26%  (-34:-19) -59% (-69:-51)
Transpiration (c3)
P —---> Pine SP +62% (36:93) +141% (114:170) +221%  (176:286)
P ----> Larch SP 83 [mm/yr] +50% (31:73) +103% (79:131) +153% (114:200)
P --—-> Syca. SP +36% (15:62) +87% (61:119) +167% (128:222)
Total ET (c4)
P ----> Pine SP +38% (25:52) +82% (67:97) +127%  (100:158)
P ----> Larch SP 174 [mm/yr] +29% (18:38) +57% (46:72) +89% (65:114)
P ----> Syca. SP +20% (9:32) +47%  (36:64) +92% (67:119)
Blue water fluxes
Annual water yield (d1)
P ----> Pine SP -6% (-27:14) -13%  (-42:13) -20% (-30:-11)
P ----> Larch SP 885 [mm/yr] 5% (-25:15) 9%  (-38:17) -15% (-25:-5)
P ----> Syca. SP -4% (-24:16) -8% (-37:18) -15% (-25:-6)

* soil thickness = 0.5 m
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Table A2: The summer-time (Jun+Jul+Aug) environmental impacts of converting pasture (P) to silvopasture
(SP) at Glensaugh 20, 40 and 80 years after conversion. Green values=increase; red values= decrease; display
format= median%(5th percentile:95th percentile) of 160,000 model predictions. All percentages are relative to
their respective reference value at ‘+0 yrs’ which represents the pasture without trees base-case at time ¢ = 0,

ie.,in 1987.
P : Pasture
SP: Silvopasture +0yrs +20 yrs +40 yrs +80 yrs
Climate (a)
R 254 mm/lJA 3% (-9:12) +18%  (-7:40) -6% (-44:5)
Perg 128 mm/lIA +3%  (-7:17) +8%  (-4:17) +19% (8:31)
R-Perg 126 mm/lA -11%  (-23:18) +30%  (-35:87) -24% (-131:2)
Storage dynamics
Soil carbon/ha (b1)
P ----> Pine SP -16%  (-22:-9) +63%  (46:78) +202%  (184:241)
P -—-> Larch SP 52t +2%  (-4:10) +102% (83:115) +279%  (257:322)
P --—> Syca. SP -13%  (-20:-6) +66%  (48:79) +215%  (199:252)
Soil + biomass carbon/ha (b2)
P ----> Pine SP +64% (58:70) +494% (479:509) +1509%  (1491:1546)
P -—-> Larch SP 52t +85% (79:92) +513% (495:525) +1592%  (1572:1634)
P ----> Syca. SP +11%  (5:19) +212% (195:224) +837% (822:871)
storage deficit (summer average) (b3)
P ----> Pine SP +21% (-170:289) +87% (-48:293) +271% (-33:881)
P -—-> Larch SP 23 mm +26% (-125:251) +73%  (-48:219) +143% (-153:587)
P -——-> Syca. SP +19% (-149:254) +59% (-74:216) +221% (-99:765)
Green water fluxes
Canopy evaporation (c1)
P --—> Pine SP +15% (3:28) +32% (13:48) +34% (3:80)
P ----> Larch SP 20 [mm/JJA] +25% (13:44) +56%  (44:67) +101% (70:156)
P --—-> Syca. SP +17% (5:33) +40% (30:52) +82% (52:132)
Soil evaporation (c2)
P ----> Pine SP -16% (-35:4) -38%  (-52:-22) -61% (-77:-44)
P ----> Larch SP 9 [mm/JA] -17%  (-30:-5) -45%  (-51:-25) -77% (-85:-59)
P -——-> Syca. SP -12%  (-27:5) -35%  (-42:-15) -74% (-82:-57)
Transpiration (c3)
P ----> Pine SP +47% (9:95) +109% (60:148) +164% (106:229)
P ----> Larch SP 40 [mm/JJA] +60% (24:89) +113% (70:156) +139% (93:188)
P ----> Syca. SP +41% (3:80) +100% (49:145) +173% (119:235)
Total ET (c4)
P ----> Pine SP +30% (7:56) +65% (41:87) +95% (62:130)
P ----> Larch SP 69 [mm/JIA] +38% (19:54) +75%  (52:100) +100%  (68:135)
P -—--> Syca. SP +27% (5:49) +63% (37:91) +114% (82:148)
Blue water fluxes
Summer water yield (d1)
P ----> Pine SP -9% (-27:27) -21%  (-89:46) -18% (-48:31)
P ----> Larch SP 207 [mm/JA] -7% (-27:27) -18%  (-92:48) -27% (-64:22)
P ----> Syca. SP -5% (-25:30) -15%  (-89:52) -25% (-61:24)

* soil thickness = 0.5 m
** JJA=Jun + Jul + Aug
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Table A3: The winter-time (Dec+Jan+Feb) environmental impacts of converting pasture (P) to silvopasture
(SP) at Glensaugh 20, 40 and 80 years after conversion. Green values=increase; red values= decrease; display
format= median%(5th percentile:95th percentile) of 160,000 model predictions. All percentages are relative to
their respective reference value at ‘+0 yrs’ which represents the pasture without trees base-case at time ¢ = 0,
i.e., in 1987.

P : Pasture
SP: Silvopasture +0yrs +20 yrs +40 yrs +80 yrs
Climate (a)
R 282 mm/DJF +9%  (1:32) +14%  (-2:18) +12% (-7:53)
Perg 45 mm/DJF +8%  (1:16) +9%  (3:21) +19% (2:29)
R-Perg 234 mm/DJF +9%  (1:37) +14%  (-3:20) +11% (-11:58)
Storage dynamics
Soil carbon/ha (b1)
P ----> Pine SP -14%  (-21:-7) +68%  (51:83) +211% (193:250)
P ----> Larch SP 52t +4%  (-2:12) +108% (89:121) +290% (268:333)
P ----> Syca. SP 12%  (-18:-4) +71%  (53:84) +226%  (209:261)
Soil + biomass carbon/ha (b2)
P ----> Pine SP +65% (59:72) +499% (483:514) +1518%  (1500:1554)
P ----> Larch SP 52t +87% (81:95) +519% (501:531) +1603% (1583:1644)
P ----> Syca. SP +13% (7:20) +217% (200:229) +847% (831:880)
Storage deficit (winter average) (b3)
P --—-> Pine SP +22% (-48:90) +70% (3:133) +90% (-13:408)
P ----> Larch SP 6 mm +14% (-39:72) +35%  (-38:92) +74% (-14:181)
P ----> Syca. SP +12%  (-45:72) +29%  (-45:86) +71% (-18:185)
Green water fluxes
Canopy evaporation (c1)
P ----> Pine SP +35% (30:42) +76% (61:90) +119% (102:149)
P ----> Larch SP 14 [mm/DJF] +9%  (4:15) +19%  (8:27) +31% (19:46)
P ----> Syca. SP +6% (1:12) +14% (4:22) +26% (14:40)
Soil evaporation (c2)
P --—> Pine SP -13%  (-30:0) -35%  (-59:-24) -66% (-87:-42)
P ---> Larch SP 2 [mm/DJF] 7% (-24:7) -18%  (-38:-2) -32% (-57:-6)
P ----> Syca. SP -5% (-21:9) -13%  (-33:3) -26% (-52:2)
Transpiration (c3)
P --—-> Pine SP +73% (49:98) +159% (131:199) +256% (168:353)
P ----> Larch SP 7 [mm/DJF] +33% (12:54) +64% (56:103) +131% (76:202)
P ----> Syca. SP +23% (4:42) +49%  (38:83) +114%  (59:178)
Total ET (c4)
P --—-> Pine SP +43% (30:58) +90% (78:115) +143% (106:189)
P ----> Larch SP 23 [mm/DJF] +15% (5:28) +31%  (21:49) +59% (30:90)
P ——-> Syca. SP +11% (0:23) +24%  (12:40) +50% (23:80)
Blue water fluxes
Winter water yield (d1)
P ----> Pine SP -4% (-39:31) -9% (-30:12) -13% (-76:43)
P ---> Larch SP 260 [mm/DJF] 3% (-38:33) 3% (-26:16) -5% (-64:56)
P ----> Syca. SP -2% (-38:34) -2% (-25:17) -5% (-64:57)

* soil thickness = 0.5 m
**DJD= Dec + Jan + Feb
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