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Abstract. Soil moisture, an essential parameter for hydroclimatic studies, exhibits significant spatial and temporal 

variability, making it challenging to map at fine spatiotemporal resolutions. Although current remote sensing products 

provide global soil moisture estimate at a fine temporal resolution, they are mostly at a coarse spatial resolution. In recent 

years, deep learning (DL) has been applied to generate high-resolution maps of various soil properties, but DL requires a 

large amount of training data. This study aimed to map daily soil moisture across Tasmania, Australia at 80 meters resolution 15 

based on a limited set of training data. We assessed three modelling strategies: DL models calibrated using an Australian 

dataset (51,411 observation points), models calibrated using the Tasmanian dataset (9,825 observation points), and a transfer 

learning technique that transferred information from Australian models to Tasmania. We also evaluated two DL approaches, 

i.e. Multilayer perceptron (MLP) and Long Short-Term Memory (LSTM). Our models included data of Soil Moisture Active 

Passive (SMAP) dataset, weather data, elevation map, land cover and multilevel soil properties maps as inputs to generate 20 

soil moisture at the surface (0-30 cm) and subsurface (30-60 cm) layers. Results showed that (1) models calibrated from the 

Australia dataset performed worse than Tasmanian models regardless of the type of DL approaches; (2) Tasmanian models, 

calibrated solely using Tasmanian data, resulted in shortcomings in predicting soil moisture; and (3) Transfer learning 

exhibited remarkable performance improvements (error reductions of up to 45% and a 50% increase in correlation) and 

resolved the drawbacks of the Tasmanian models. The LSTM models with transfer learning had the highest overall 25 

performance with an average mean absolute error (MAE) of 0.07 m3m-3 and a correlation coefficient (r) of 0.77 across 

stations for surface layer and MAE = 0.07 m3m-3, and r = 0.69 for subsurface layer. The fine-resolution soil moisture maps 

captured the detailed landscape variation as well as temporal variation according to four distinct seasons in Tasmania. The 

best performance of soil moisture models were made available live to predict near-real-time daily soil moisture of Tasmania, 

assisting agricultural decision making. 30 
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1 Introduction 

Soil moisture (SM) plays an essential role in land modelling as it links the natural system's components of soil, climate, and 

plants. In hydrology, this variable is commonly used as a proxy to assess hydrological extreme events such as drought 

assessment (Taufik et al., 2022; Lin et al., 2023). In agricultural practices, SM can provide valuable information for soil-

water management and crop yield predictions (Yang et al., 2021). Measuring and mapping soil moisture has challenged soil 35 

scientists as it is highly spatially and temporally diverse. SM variation is characterised by climate zone, topographic features, 

vegetation cover, and soil characteristics, including clay content, soil aggregation, and organic carbon content (Minasny and 

Mcbratney, 2003; Védère et al., 2022). 

Currently, SM information is available in various formats and coverage. At the point scale, the International Soil Moisture 

Network provides a harmonised measured SM database worldwide (Dorigo et al., 2021). In Australia, observed SM at the 40 

national scale can be found in the Oz-Net and Oz-Flux databases (Smith et al., 2012; Beringer et al., 2016). However, despite 

accurate information of SM at the point level, the spatial coverage of measurements is limited, meaning that SM in areas 

without moisture probes installed are uncertain. Various spatial SM datasets were generated to complement the point scale 

measurements. Remote sensing, geostatistical models, water balance models, or a combination of them are the principal 

methods to derive SM images that cover space and time.  45 

Furthermore, some spatial datasets are available as near-present soil moisture maps at various spatial and temporal 

resolutions. The Global Land Data Assimilation System (GLDAS) products offer the estimated soil moisture from Noah 

model at surface (0-2 cm) and rootzone (0-100cm) layers (Li et al., 2019). The SM images are spatially at 0.25 to 1 degree 

with 3-hour to daily temporal resolution, updated daily with 1 month latency. The ERA5-Land provides four levels of daily 

soil moisture (0-7, 7-28, 28-100, 100-289 cm depth) at 0.1-degree spatial resolution with a 2- to 3-month delay (Muñoz-50 

Sabater et al., 2021). Soil Moisture Active Passive level 4 (SMAP-L4), as the most recent product of SMAP dataset, 

provides vertical average of soil moisture at surface (0-5 cm) and rootzone (0-100 cm) layers based on NASA’s Catchment 

land surface model assimilated with SMAP L-band (Reichle et al., 2017). This SM product is available 3-hourly at 9-km 

resolution and updated within 3-days from real time, making it suitable for continuous monitoring systems. 

Nevertheless, the mentioned SM products are not yet suitable for monitoring systems at the regional scale because they lack 55 

detailed spatial resolution (e.g., SMAP-L4). Finer resolution maps would be more reliable to provide more detailed 

variations of SM for informing agricultural practices and environmental monitoring. Thus, studies attempted to downscale 

these products to finer resolution maps (Cai et al., 2022; Hu et al., 2020; Wei et al., 2019; Xu et al., 2022; Xu et al., 2021; Li 

et al., 2022b).  

Deep learning (DL) has been used to derive very high-resolution maps of soil properties in recent years (Padarian et al., 60 

2020; Padarian et al., 2019b; Behrens et al., 2018). In the case of SM, DL algorithms have been assessed to map soil 

moisture at high spatial resolution (Fuentes et al., 2022). Additionally, several studies using DL models have been 

investigated to downscale the global SM dataset based on point data observations. However, most studies attempted to 
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produce 1 km resolution maps, which are still too coarse for agricultural management as they cannot capture the highly 

variable soil and topography (Zhao et al., 2022; Cai et al., 2022; Alemohammad et al., 2018; Li et al., 2022c).  65 

Despite its high applicability, the performance of DL models is highly influenced by the amount of data for model 

development. Small datasets may lead to overfitting during the model training and can further impact the final model 

accuracy. To address the issue of a small training dataset, several studies employed transfer learning techniques, to leverage 

models created from a larger dataset. Transfer learning works by transferring the information derived from a model trained 

from a large dataset to a new model with similar tasks. This technique is commonly used to increase the performance of 70 

models built from a limited number of observations. Several studies, particularly in soil sciences, have implemented this 

technique to enhance the performance of DL models on local datasets. Padarian et al. (2019a) used transfer learning to 

localise a global soil vis-NIR model for prediction at local scales. Transfer learning was able to lower the error in the 

prediction of local data in up to 90% of the cases. In soil moisture prediction, Li et al. (2021) applied transfer learning to 

improve the predictability (reduced error by up to 30%) of DL models derived from the latest SMAP dataset using the 75 

ERA5-land dataset, which has a longer time span. 

Tasmania has diverse soils with agricultural and conservation lands with unique climate and soils that can support both food 

security and biodiversity protection (Kidd et al. 2014). The current and impending land-use change pushes the need for 

improved spatial SM data to assess agricultural management, irrigation scheduling, and identify potential environmental 

degradation threats. To support this need, this study aims to generate near real-time daily SM maps at 80 m resolution by 80 

utilising available SM observations and environment spatial datasets. Given that Tasmania currently has limited point 

observations of SM, our analysis investigates the feasibility of using transfer learning techniques in DL. We hypothesised 

that transfer learning based on models trained using Australia-wide data can increase the accuracy of SM predictions in 

Tasmania. We contribute to: (i) confirm whether two DL algorithms that has been proofed to downscale SMAP datasets over 

Australia can be used for the same purpose in Tasmania, (ii) assess whether the transferred information from the Australian 85 

model can increase the Tasmania model performance, and (iii) validate the performance of Tasmania SM map at 80 m 

resolution. Finally, we demonstrate that the model can deliver live daily SM prediction over Tasmania. 

2 Data and methods 

2.1 Study area 

Tasmania is an island state and Australia’s southern-most territory. This area has a cool temperate climate and receives 90 

average annual rainfall over 1500 mm in the west, and less than 600 mm in the central midlands. The rainfall variability 

corresponds to its topographical features, which is characterised by rugged and high mountainous area in the west and south-

west. The central area of the state has a large plateau with an elevation around 1000 m above sea level (Fig 1). The midland 

areas are dominated by flat lowlands (less than 290 m) for agricultural uses, with relatively small hills and mountains. 

Tasmania has various soils due to the diversity of landscape, climate, and geology with Dermosols and Organosols 95 
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dominating the soil types (equivalent to Alfisols and Histosols) (Cotching et al., 2009). According to the Australian Bureau 

of Meteorology, soil moisture in Tasmania was 50% in the upper soil layer (0-10 cm) and ranged from 10-85% for the root 

zone soil layer (0-100cm) during the year 2022.  

 

Figure 1: Elevation map of Tasmania state. 100 

2.2 Data sources 

For the model development, we collected spatial data of parameters that are related to soil moisture from the Google Earth 

Engine database and Tasmania spatial layers. SM reference datasets were obtained from publicly available in-situ and 

telemetered soil moisture measurements. We separated the Australia and Tasmania datasets. The detailed information on 

each dataset is summarised in Table 1 and Table 2. 105 
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Table 1: Sources of dataset as inputs for soil moisture modelling. 

Type of 

features 

Group of 

datasets 

Usage Dataset Spatial/ 

Temporal resolution 

Variable/bands (units) Reference/source 

Dynamic global soil 

moisture 

data 

All SMAP L4 

products 

(SPL4SMGP) 

9 km/ 

3-hourly 

sm_surface (m3 m-3) 

sm_rootzone (m3 m-3) 

(Reichle et al., 2017) 

Weather 

data 

AU ERA5-Land  25 km/daily total_precipitation_sum 

(m) 

temperature_2m_min (K) 

temperature_2m_max (K) 

(Muñoz-Sabater et al., 

2021) 

TAS Weather-Now 

Map Tasmania 

80 m/daily RainPrediction24hr (mm) 

TminPrediction (oC) 

TmaxPrediction (oC) 

(Webb et al., 2020) 

Static Soil 

properties 

AU Soil and 

Landscape Grid 

of Australia 

(SLGA) 

90 m/- AWC_xxx_EV (%) 

SOC_xxx_EV (%) 

CLY_xxx_EV (%) 

 

(Searle et al., 2022) 

TAS Digital Soil 

Maps of 

Tasmania 

30m or 80 m/- AWC_Tas_xxx_predicted

_mean (%) 

SOC_xxx (%) 

Clay_Tas_xxx_mean (%) 

(Kidd et al., 2015) 

Topograph

y 

All The Shuttle 

Radar 

Topography 

Mission (SRTM) 

90 m/- elevation (m) (Jarvis et al., 2008) 

Land 

use/land 

cover 

All Australian 

Collaborative 

Land Use and 

Management V8 

50 m/- clum_50m1218m  (Albers, 2018) 

All MODIS Land 

Cover 

(MCD12Q1) 

500 m/- LC_Type1 (Sulla-Menashe and 

Friedl, 2018) 

Note: xxx in soil datasets represent soil depth variation. Tmin = daily minimum air temperature, Tmax = daily maximum air 

temperature. 
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Table 2: Detailed information of the reference soil moisture data. The location of Australian stations used in this study can be 115 
found in Supplementary Material. 

Dataset Source Number of stations Number of data points Period of data coverage 

Australia Oz Net 

Oz Flux 

20 

19 

51,411 Jan 2016 – Apr 2020 

Tasmania Ag Logic 39 9,825 Jan 2022 – Jul 2023 

 

2.3 Deep learning approaches 

2.3.1 Multilayer Perceptron 

Multilayer perceptron (MLP) is a type of artificial neural network consisting of hidden layers between input and output 120 

layers. Each layer is connected by multiple perceptrons. Perceptron itself is a type of neuron that has a logical threshold in 

producing an output value. In MLP, the weights attached to the input of perceptrons are combined into a weighted sum and 

become the base value against a threshold of whether the neuron will be activated. The threshold is set by an activation 

function.  

Since the MLP algorithm contains more than one hidden layer, combinations of perceptron between layers could resolve 125 

non-linear relationships between input and output layers. The multilayer concept means that the perceptron's output values in 

one layer are propagated to the next layer as the input. At the end of the perceptron, the final output value was compared to 

the reference value and evaluated using a cost function to quantify the difference between predicted and actual values. An 

optimization function was then used to minimise this difference metric. Additionally, this algorithm has a backpropagation 

scheme, which calculates the gradient error across all pairs of input and output into the first hidden layer and uses the 130 

gradient to update the weight values. All these processes are processed in an iteration or epoch. 

2.3.2 Long short-term memory 

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that overcomes the challenge of long-term 

dependency in regular RNN. This approach is commonly applied to sequence datasets such as time series data. In one neuron 

of LSTM, there is a cell state representing the long-term memory responsible for filtering and controlling the information 135 

from input and other layers. This cell state will decide which information will be stored and passed through as output, and 

which information will be removed as it does not correlate to the function. There are two types of LSTM: unidirectional 

LSTM and bidirectional LSTM. The one-directional LSTM only stores information about the network that moves forward. 

Meanwhile, in bidirectional LSTM, the neural network can work in both forward and backward directions of information 

flow. At the end of this network, the output of LSTM is concatenated with dense layers, which has a similar concept to MLP. 140 
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2.3.3 Transfer learning 

Transfer learning (TL) is a technique in deep learning that transfers the knowledge from a trained model to a new model that 

has a similar architecture. Theoretically, the new model does not need to be trained from scratch since the transferred 

knowledge has an overview pattern of the data, which can reduce the training time or even increase the model’s 

performance. A TL approach generally consists of three stages, which are (i) developing/selecting a pre-trained model, (ii) 145 

re-using the model, and (iii) fine-tuning the model. A pre-trained model can be a globally accepted general model, or a 

model developed based on a large dataset. Reusing the model means importing the weights of all or several layers from the 

pre-trained model to the new model. Fine tuning is the training process on the transferred new model using a new specific 

dataset. 

2.4 Soil Moisture Modelling 150 

2.4.1 Data preparation 

Preparing datasets for model development included data cleaning of the reference soil moisture probes data, stacking images 

of covariates, and sampling the covariates based on probe locations. Reference soil moisture data were measured using 

frequency-domain reflectometry sensors available at different soil depths between stations. Calibration on recorded SM data 

was based on bulk density values extracted at each probe location from the digital soil map of Tasmania. We applied the 155 

spline interpolation (Bishop et al., 1999) to get soil moisture values at the surface (0-30cm) and subsurface (30-60cm) soil 

layers. All soil moisture data in this study was converted into decimals of volumetric water content (m3 m-3). Sub-hourly soil 

moisture was averaged into an average daily moisture level. 

Covariates were collected using the Google Earth Engine platform. We first stacked weather datasets, including daily 

accumulated rainfall, and daily maximum and minimum temperature (TMAX and TMIN) as the reference date. Since 160 

rainfall has an extended effect on soil moisture levels, we included the current and the last 3-day rainfall data in the 

covariates list. Thus, we had 4 layers of rainfall data for each day (RAINt, RAINt-1, RAINt-2, and RAINt-3).  

Daily value of SMAP soil moisture was averaged and we only selected surface (surf_SMAP) and rootzone bands 

(rootz_SMAP), representing 0-5cm and 0-100cm soil layers. Since SMAP-L4 products have 3-day latency, we used 

backward 4–7-day windows to get the sequence of SMAP bands (SMAPt, SMAPt-1, …, SMAPt-n with t as the day and n from 165 

4 to 7 referring to the backward sequence). This series was then converted into a multiband image and stacked together with 

the weather data.  

The multiband image of weather and SMAP data were then combined with land cover, elevation and spatial soil properties 

data. For the land cover, we used five categories, i.e. pasture, forest, rain-fed agricultural, savannah, and irrigation (PAST, 

FORE, AGRI, SAVA, and IRRI). For soil properties, we selected three variables that affect the water storage of soils, 170 

including available water content (AWC), soil organic carbon (SOC) and clay content (CLY). Maps representing four layers 
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of soil depth (0-5 cm, 5-15 cm, 15-30 cm, and 30-60 cm) of each variable were incorporated as covariates. These were 

further named AWCLx, SOCLx, and CLYLx, being L as layer and x as integers from 1 to 4. 

Finally, the daily multiband image was calculated each day along the period of Australian and Tasmanian reference data. We 

then sampled the covariates value at each location of measured soil moisture data, resulting in pairs of covariates and 175 

observed data for each date at each station. Any row that contained missing values in either covariates or observed data was 

excluded. This led to 51,411 observations covering the period of January 2016-April 2020 for the Australia dataset and 9,825 

observations for Tasmania from January 2022-July 2023. 

2.4.2 Model setup 

This study set the deep learning models to have two output values representing soil moisture at the surface and subsurface 180 

layers (0-30cm and 30-60cm, respectively). The structure of the MLP model consisted of four dense layers of 128, 64, 32, 

and 16 neurons as the hidden layer, existing in between the input and output layers. We used Rectified Linear Unit (ReLU) 

and Adam optimiser as the activation and optimisation functions, respectively. The learning rate, batch size, and the number 

of epochs used in this algorithm were 0.0001, 128, and 150, respectively. To avoid overfitting in the training process, an 

early stopping was applied based on the validation loss, which halted the training if there was no improvement after five 185 

epochs.  

For the LSTM algorithm, the time series dataset of SMAP was used as input in bidirectional LSTM. This part formed a 2x8 

shape, which then passed through a dense layer of 100 neurons. Combined with the rest of the covariates, this became the 

input of four hidden layers with 128, 64, 32, 16 neurons. To make a fair comparison, we set the activation and optimisation 

functions, learning rate, batch size, and the number of epochs in LSTM that are similar to the MLP.  190 

During model training and validation, the value of 1-𝜌𝑐 (Lin’s concordance correlation coefficient, Equation 1) was used as a 

cost function. We aimed its minimum value for validation to get the best model performance. The Lin’s coefficient 

represents the distance of predicted data plotted against the observed data with the 45-degree line (Lin, 1989):  

𝜌𝑐 =
2𝑠𝑥𝑦

𝑠𝑥
2+𝑠𝑦

2+(�̅�−�̅�)2
        (1) 

where 𝑠𝑥
2  and 𝑠𝑦

2  are the variances, while �̅�  and �̅�  are the mean of the observed and the predicted SM. The 𝑠𝑥𝑦  is the 195 

covariance value was calculated using Equation 2. 

𝑠𝑥𝑦 =
1

𝑛
∑ (𝑥𝑖 − �̅�)𝑛
𝑖=1 (𝑦𝑖 − �̅�)      (2) 

where n is the number of data, and 𝑖 is the order of data being calculated. This function can represent how well the model 

capture temporal patterns of the observed data in a time series. 

For analysis, we had three scenarios for feeding these two DL algorithms:  200 

a. Australia (AU) model, only based on the Australia dataset. This was based on the model developed by Fuentes et al. 

2022, with a modification on feature selection as model input: (1) used the most recent product of the SMAP dataset 

which is continuously updated daily; (2) excluded variables giving the least impact on DL predictions, including 
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Sentinel-1 dataset, vegetation index, and land surface temperature; (3) added daily maximum and minimum air 

temperature. We derived only one AU model for each DL algorithm by splitting the dataset of 2016-2018 for 205 

training and 2019-2020 for validation.  

b. Tasmania (TAS) model, only based on the Tasmania dataset. We derived multiple models for analysis using the 

leave one station out cross-validation schema across 39 monitoring stations. 

c. Transfer learning (TL) model. Here, we used the AU model and fine-tuned the model using the Tasmania dataset. 

For MLP, we transferred the weights of the first three hidden layers of the AU model and kept them unchanged 210 

during the fine-tuning process. Meanwhile, for LSTM, we only kept the first three hidden layers after LSTM output 

(128, 64, and 32 neuron layers) unchanged. The rest of the neurons, including the weights on LSTM architecture, 

were retrained. Figure 2 shows the modelling scheme used in this study. 

 

 215 

Figure 2: Soil moisture modelling scheme. 

2.4.3 Model evaluation 

Evaluation was first conducted on AU models. We applied AU models to predict soil moisture in Tasmania and quantified 

goodness of fit between predicted and measured values. Subsequently, the TAS and Transfer Learning (TL) models were 

evaluated using leave one station out cross validation and testing schema across different locations. This scheme comprised 220 

of randomly selecting one station as a testing set, another station as a validation set, and the rest of the stations as the training 

set. The scheme was applied to all probes, thus resulting in 39 models for each TAS and TL models.   
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The goodness of fit between prediction and observations was quantified based on mean absolute error (MAE), root mean 

square error (RMSE) and Pearson’s linear correlation coefficient (Equations 3-5).  

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|
𝑛
𝑖=1

𝑛
       (3) 225 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−𝑥𝑖)

2

𝑛

𝑛
𝑖=1        (4) 

𝑟 =
∑ (𝑥𝑖−�̅�)
𝑛
𝑖=1 (𝑦𝑖−�̅�)

√∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1 √∑ (𝑦𝑖−�̅�)
2𝑛

𝑖=1

       (5) 

where 𝑦𝑖 is moisture prediction, 𝑥𝑖 observation, and 𝑛 the amount of data. 

2.4.4 Model interpretation 

To explain the contribution of each input variable in SM prediction, we calculated the Shapley value (Aas et al., 2021). 230 

Shapley value is the marginal contribution of each predictor after considering all possible combinations. The SHAP value is 

derived from the game theory and optimal Shapley values and has been widely used to interpret feature contribution in deep 

learning models (Padarian et al., 2020; Odebiri et al., 2022; Mohammadifar et al., 2022). In this study, SHAP calculation 

was based on the transferred LSTM model with a random split of 0.9:0.1 for training and testing. SHAP values resulting 

from the testing dataset were summed across different times or covariates for analysis. The calculation was done using the 235 

Shapley Additive exPlanations (SHAP) library in Python language (Lundberg and Lee, 2017). 

3 Results 

3.1 Distribution of moisture data 

We first compared the measured soil moisture data for the Australia and Tasmania datasets. Figure 3 shows the distribution 

of SM data over the analysis period based on density probability and histogram plots. Tasmania data generally had a similar 240 

pattern to that of Australia data. Both data were left-skewed for the surface layer and had a peak concentration of around 0.2 

m3 m-3. Nevertheless, Tasmania data were slightly shifted to the right with a mean value of 0.26 m3 m-3 higher than the 

Australian one (mean = 0.17 m3 m-3). Tasmania data ranged from 0.07 to 0.54 m3 m-3, while Australian data ranged 0.02-

0.50 m3 m-3. Tasmania data had a lower density value for soil moisture less than 0.2 m3 m-3 compared to Australia, yet it 

concentrated more at over 0.25 m3 m-3.  245 
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Figure 3: Distribution plot of Australia (AU) and Tasmania (TAS) soil moisture data. 

Meanwhile, for subsurface soil moisture data, both regions had two peaks of data concentration (about 0.2 and 0.35 m3 m-3) 

yet different types of distribution. Australian data were relatively skewed to the right (skewness -0.32), while Tasmania data 250 

were skewed to the left (skewness 0.23). The Australia data for this layer had a wider range (0.01-0.60 m3 m-3) compared to 

Tasmania (0.06-0.54 m3 m-3). Tasmania data had more concentrations of moisture level of 0.10-0.35 m3 m-3, while the 

Australia data had a fair distribution of moisture levels less than 0.30 m3 m-3. Despite all the differences, both subsurface 

data had a similar mean value about 0.26 m3 m-3. 
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 255 

Figure 4: Comparison of the boxplot from Australia (AU) and Tasmania (TAS) covariates used in this study, including available 

water content (AWC), clay content (CLY), soil organic carbon (SOC), soil moisture (in vwc [m3 m-3]) from SMAP, rainfall, air 

temperature and elevation. 

 

We also plotted the distribution of data for each covariate extracted from Australia and Tasmania (Fig. 4). Most covariates 260 

show a distinct distribution pattern between Australia and Tasmania. Australia soil data generally had lower values on 

available water content and carbon content, yet a higher percentage of clay content compared to Tasmania. Soil moisture 

values extracted from the global SMAP dataset for Australia had lower mean values at both surface and subsurface soil 

layers, yet it had a wider range of moisture levels. For the rest of the covariates (weather data and elevation), Australia 

covered a larger range of values than Tasmania. The maximum rainfall data in Australia reached 160 mm/day, while in 265 

Tasmania, it was up to 131 mm/day.   The distribution of air temperature data also followed the same trend, with Tasmania 

having lower mean values for both daily maximum and minimum. 

3.2 SMAP prediction of soil moisture in Tasmania 

Soil moisture content from the SMAP dataset was used as the primary covariate in our models. Thus, we first investigated 

the relationship between SMAP and field-observed soil moisture in Tasmania. Surface soil moisture of SMAP (0-5 cm) was 270 

directly compared to the first level of measurement (10 cm depth), while the SMAP rootzone (0-100 cm) was against the 

https://doi.org/10.5194/egusphere-2024-2253
Preprint. Discussion started: 6 August 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

average moisture values of all level’s measurements (10-80 cm depths). The overall correlation coefficient between SMAP 

and measured data was 0.37 for the surface and 0.49 for the rootzone layer. SMAP SM data had a moderately high 

correlation coefficient with the measured data across different stations in Tasmania, with a median value 0.77 and 0.76 for 

surface and rootzone layer, respectively. The errors for rootzone prediction (MAE = 0.08 m3 m-3 and RMSE = 0.10 m3 m-3) 275 

were slightly lower than surface prediction (MAE = 0.09 m3 m-3 and RMSE = 0.11 m3 m-3). According to the distribution of 

errors and correlation coefficients across the measuring stations, SMAP of the rootzone layer had a wider range value of 

errors and correlation coefficients compared to the surface layer (Fig. 5). In addition, there were more stations with negative 

correlation values for the rootzone SMAP.  

 280 

 

Figure 5: Performance of soil moisture derived from SMAP dataset compared to measured data in Tasmania during the period of 

January 2022-April 2023: (a) the distribution of mean absolute error (MAE), root mean square error (RMSE), and correlation 

valued at each probe location, (b) overall performance in scatter plot between predicted and measured soil moisture data 

compared to the 1:1 line (dashed line). 285 

3.3 Model selection and performances 

We tested the ability of Australian models to predict SM in Tasmania. In general, models with the MLP approach performed 

better than LSTM for both surface and subsurface layers, with MLP average MAE = 0.1 m3 m-3, RMSE = 0.12 m3 m-3 and 

correlation = 0.49 compared to LSTM average MAE = 0.12 m3 m-3, RMSE = 0.15 m3 m-3 and correlation = 0.48 (Fig 6). The 

MLP model resulted in predictions that were closer to the 45-degree line with the observed data. Furthermore, according to 290 

the distribution of performance across Tasmanian stations, the MLP model predictions had lower errors and less variable, as 

shown by the boxplot. The LSTM model had good correlations (>0.6) in most stations. However, despite the good results of 
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the MLP algorithm, there was no improvement in prediction’s accuracy when compared to using just the SMAP dataset (Fig 

5). 

 295 

 

Figure 6: Performance of Australia models on predicting soil moisture Tasmania based on multilayer perceptron (MLP) and long-

short term memory (LSTM) approaches: (a) overall comparison between predicted and observed soil moisture data, (b) 

distribution of mean absolute error (MAE), root mean square error (RMSE) and correlation value across 39 stations in Tasmania. 

Thus, the second set of models was trained on Tasmania data using the leave one station out cross-validation scheme. The 300 

results show that the predicted soil moisture varied from 0 to 0.8 m3 m-3, giving a larger range value than the observed data 

(Fig 7). The scatter plots of SM predictions and observations show a large dispersion, with some zero value predictions 

regardless of the variation of the observed data. Both DL approaches had similar results in performance valuation. The MLP 

models were slightly better than LSTM, with average MAE = 0.12 m3 m-3, RMSE = 0.15 m3 m-3 and correlation = 0.43 for 

MLP models, while the LSTM models had MAE = 0.13 m3 m-3, RMSE= 0.17 m3 m-3, and correlation = 0.26. Model 305 

evaluation on each station showed that error values and correlation of both DL models for subsurface soil moisture 

prediction (0.01-0.48 m3 m-3 for MAE and RMSE; -0.63 to 0.96 for correlation) were more varied compared to surface 

moisture predictions (0.02-0.35 m3 m-3 for MAE and RMSE; -0.07 to 0.94 for correlation).  
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 310 

Figure 7: Performance of Tasmania models on predicting soil moisture Tasmania based on multilayer perceptron (MLP) and long-

short term memory (LSTM) approaches: (a) overall comparison between predicted and observed soil moisture data, (b) 

distribution of mean absolute error (MAE), root mean square error (RMSE) and correlation value across 39 stations in Tasmania 

based on leave-one-out cross validation scheme. 

Finally, the transfer learning approach was deployed by transferring knowledge from the trained Australia models into 315 

Tasmania models. Visually, data points resulting from TL models against the observed data were closer to the 45-degree line 

for both MLP and LSTM (Fig 8). The predicted data of MLP were in the range 0 up to 0.7 m3 m-3, being larger than that of 

LSTM (0.03-0.63 m3 m-3). The overall performance of LSTM models was MAE = 0.07 m3 m-3, RMSE = 0.08 m3 m-3, and 

correlation = 0.73. This was slightly better than the performance of the MLP models, with average MAE, RMSE and 

correlation of 0.08 m3 m-3, 0.09 m3 m-3, and 0.62. The distribution of model performance for both DL algorithms on 320 

predicting soil moisture across all stations in Tasmania was quite similar. However, the LSTM model with transfer learning 

had a more consistent performance for the surface and subsurface layer, as shown by the upper quartile of the boxplot for 

errors. This infers that most stations had error values less than 0.08 m3 m-3 for surface and subsurface predictions.  
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Figure 8: Performance of Tasmania models with transfer learning on predicting soil moisture Tasmania based on multilayer 325 
perceptron (MLP) and long-short term memory (LSTM) approaches: (a) overall comparison between predicted and observed soil 

moisture data, (b) distribution of mean absolute error (MAE), root mean square error (RMSE) and correlation value across 39 

stations in Tasmania based on leave-one-out cross validation scheme. 

Comparing the performance of the six models for predicting SM in Tasmania, it becomes evident that the LSTM with 

transfer learning approach (LSTM-TL) was optimal. We further analysed its performance according to station locations, time 330 

series, land cover types, and seasonal time.  

The spatial distribution of the performance of LSTM-TL model using different stations, is shown in Fig. 9. Stations with 

high correlation values (> 0.74) mostly corresponded to low error, with RMSE values less than 0.087 m3 m-3. Meanwhile, 

stations with large errors (RMSE > 0.106 m3 m-3) had moderate to high correlation coefficients (>0.55). In addition, the 

stations with the lowest correlations had RMSE ranging from 0.068 to 0.106 m3 m-3. 335 
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Figure 9: Spatial distribution of the performance of Long short-term memory (LSTM) model with transfer learning for predicting 

soil moisture at each station in Tasmania. The evaluations are in average of: (a) root mean-square error (RMSE) and (b) Pearson’s 

correlation coefficient across surface (0-30cm) and subsurface (30-60cm) soil layers. 

 340 

Figure 10: Performance of models resulted from leave one station out validation scheme for six stations with the longest 

observation period: op55447, op55450, op55457, op57641, op57644, and op59622. The right panel shows the prediction of the 

entire series (red dots) compared to SMAP predictions (blue dots) and the observed data (black line). Note that SMAP predictions 

in the surface panel represent 0-5 cm, while the subsurface panel refers to 0-100 cm. 
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Time series predictions for six typical stations compared to SMAP and observed data are plotted in Fig. 10. These cases 345 

show that our model predictions follow the dynamics of the observed data, with correlation coefficients varying from 0.43-

0.84 for the surface layer, and 0.35-0.85 for the subsurface layer. Our SM predictions were relatively lower than the value 

from SMAP, yet the predictions better matched the observed data.  

Table 3 highlights our model performance based on seasonal variations. The most accurate performance was achieved during 

summer, with an average correlation coefficient up to 0.72 and RMSE values around 0.06 m3 m-3. In other seasons, our 350 

model performed at MAE values ranging from 0.045 to 0.079 m3 m-3, with RMSE at 0.052 to 0.082 m3 m-3. Spring was 

identified as having a low correlation at both soil layers. 

 

Table 3: Model performance during four seasons in Tasmania. The values were aggregated from all stations. MAE = mean 

absolute error, RMSE = root mean square error. 355 

Season Soil layer MAE (m3 m-3) RMSE (m3 m-3) Correlation coefficient 

mean std mean std mean std 

Autumn 0-30cm 0.060 0.033 0.071 0.034 0.302 0.296 

30-60cm 0.077 0.039 0.084 0.039 0.242 0.351 

Spring 0-30cm 0.079 0.036 0.082 0.035 0.095 0.227 

30-60cm 0.045 0.040 0.052 0.038 0.098 0.300 

Summer 0-30cm 0.058 0.021 0.065 0.023 0.674 0.322 

30-60cm 0.066 0.032 0.075 0.031 0.723 0.211 

Winter 0-30cm 0.067 0.037 0.072 0.037 0.368 0.294 

30-60cm 0.070 0.044 0.075 0.043 0.275 0.393 

 

We also checked how our selected model performs in different land use categories (Table 4). Overall, the prediction 

consistently resulted in error values of 0.06 up to 0.09 m3 m-3 and correlation coefficients between 0.51 and 0.76 for both soil 

layers. Soil moisture prediction on the pasture area performed best with the least error values (RMSE = 0.07 m3 m-3), with a 

high correlation coefficient (0.62). While forested area had the lowest correlation (0.550 and 0.623 for surface and 360 

subsurface) followed by savannah (0.598 and 0.511 for surface and subsurface). 

 

 

 

 365 
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Table 4: Performance of the selected model for predicting soil moisture at both soil layers aggregated by land use/land cover class 

(mean and standard deviation). MAE = mean absolute error, RMSE = root mean square error, n = the number of stations. 

Land use 

category 

Soil layer MAE (m3 m-3) RMSE (m3 m-3) Correlation n 

mean std mean std mean std 

Forest 0-30 cm 0.087 0.035 0.093 0.031 0.550 0.234 3 

30-60 cm 0.080 0.010 0.083 0.012 0.623 0.176 3 

Irrigation 0-30 cm 0.063 0.039 0.072 0.038 0.769 0.151 11 

30-60 cm 0.077 0.049 0.085 0.050 0.736 0.149 11 

Pasture 0-30 cm 0.059 0.023 0.069 0.027 0.657 0.244 13 

30-60 cm 0.060 0.030 0.072 0.032 0.576 0.317 13 

Savannah 0-30 cm 0.065 0.033 0.074 0.029 0.598 0.206 12 

30-60 cm 0.071 0.023 0.079 0.025 0.511 0.399 12 

3.4 Spatial pattern of predicted soil moisture 

We then applied our calibrated models to predict SM in the whole area of Tasmania at a daily time step, and then aggregated 

the SM for each season (Fig. 11). High soil moisture occurred in the western part of Tasmania, and small forested areas in 370 

the northeast. However, the western part was predicted as the driest area at the subsurface layer in all seasons. Our models 

estimated subsurface soil moisture at 0.01 to 0.55 during the summer-autumn, and up to 0.62 during the winter-spring. The 

average of standard deviation maps varied up to 0.08 for both soil layer predictions. In most of the high moisture level areas 

(near 1 m3 m-3), the deviation maps show the lowest value for surface moisture prediction. Higher deviation value was 

identified in the central highland areas and hilly regions in the east and northeast. Meanwhile, the deviation map for 375 

subsurface soil moisture prediction depicts a higher uncertainty model over the western part of the state. 
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Figure 11: Spatial pattern of seasonal average predicted soil moisture along with its averaged standard deviation in Tasmania for 

(a) surface (0-30 cm) and (b) subsurface (30-60 cm) layers using LSTM models with the transfer learning approach. Soil moisture 

values are in m3 m-3. 380 
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Figure 12: Soil moisture predictions and its standard deviation for surface and subsurface layers on the date of 2023-09-10 as an 

example of 80 m resolution map. The zoomed panel represents an area of the Fingal Valley. 

An example of the 80 m resolution SM maps for each soil layer and their uncertainty values over an area in the eastern part 

of Tasmania is given in Fig. 12. The Fingal Valley area covers agricultural areas with irrigation systems (shown as circles 385 

area) that spread along the river between mountainous areas. The surface SM map captured the topography variation as 

shown by distinct colour changes between the mountainous area and its surroundings. Agricultural areas had lower SM 

values (orange colour), whereas higher SM was predicted in mountainous areas. The uncertainty values were mostly less 

than 0.025, except for the high elevation area. Similarly, subsurface predictions can represent the spatial variation of the area 

of interest, particularly in irrigation areas and rivers. The uncertainty was more varied than the surface prediction, with no 390 

clear spatial pattern. 
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3.5 Features contribution 

The importance of each input variable on LSTM transfer learning model outputs was analysed using the SHAP value. The 

violin plot (Fig. 13) summarises three pieces of information: (1) overall comparisons in feature importance, (2) distribution 

and variability SHAP value of each feature (3) the value of the feature shown by colour scaling from Low to High. Based on 395 

the testing dataset (n = 884), it indicates that SMAP dataset was the most important feature in predicting both surface and 

subsurface soil moisture. These were followed by LULC and soil properties (SOC and clay content). Elevation and weather 

data, including temperature and rainfall were the least important covariates in our models. SMAP surface had the widest 

range of SHAP values varying from -0.25 to 0.35. A high density of SMAP SM surface occurred in negative SHAP values, 

implying a reducer of the model output. High soil moisture in SMAP surface gave additional value to the output prediction. 400 

However, SMAP rootzone had a reverse pattern, with a fair distribution of SHAP value ranging from -0.2 to 0.2, high SM in 

SMAP rootzone negatively impacted the model output, and vice versa. Other covariates had less impact on the model output 

with SHAP value within -0.1 to 0.1. Land use and daily minimum air temperature predominantly gave positive impact on the 

output. 

 405 

 

Figure 13: Aggregated SHAP value for each input dataset representing its impact on surface (left) and subsurface (right) soil 

moisture prediction based on LSTM with transfer learning model. 

4 Discussion 

4.1 MLP and LSTM approaches 410 

We compared the MLP and LSTM as modelling algorithms to predict surface and subsurface soil moisture simultaneously. 

Our results revealed that MLP outperformed LSTM when we directly applied to the Australian models to predict Tasmania 

soil moisture, yet contradictory results were found when using transfer learning models. Nevertheless, both were equally 
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good in predicting SM (Fig. 8). In the case of Australia models, LSTM included the ‘memory’ of how daily soil moisture 

changes in Australia. When the LSTM was directly used to process SMAP in Tasmania, the ‘memory’ of Australia data 415 

might not apply in Tasmania, causing a higher error. In transfer learning, we let the weight of each cell in LSTM change 

during a fine-tuning process. This means that the model can update its ‘memory’ of daily SMAP according to the Tasmania 

dataset.  

We chose the LSTM approach as our final model as it provides consistent results in predicting surface and subsurface soil 

moisture. Fuentes et al. (2021) compared the performance of LSTM and MLP in Australia. Their MLP models resulted in a 420 

slightly lower error compared to the LSTM, yet they chose the concatenated LSTM over standalone MLP as the recurrent 

neural networks could capture the delayed effect of soil moisture change occurring between soil layers. Another research 

comparing LSTM and MLP to forecast soil moisture up to 6-day ahead at multilayers of soil showed that LSTM model 

consistently resulted in a lower RMSE value (less than 0.09) (Han et al., 2021). However, we noted that their study used one 

output value for each soil layer, not implementing simultaneous predictions. Additionally, the LSTM approach has been 425 

widely investigated to model soil moisture with reliable performances in terms of spatial, time-series, and forecast analysis 

(Li et al., 2022a; Park et al., 2023; Fang and Shen, 2020; Datta and Faroughi, 2023). 

4.2 Comparing Australia, Tasmania and transfer learning models 

Based on our three scenarios, Australia models (AU) performed worst regardless of the type of deep learning approach. High 

error in AU predictions was likely due to the different distribution of datasets between Australia and Tasmania. The results 430 

also showed that the direct application of deep learning models in other local areas requires data similarity consideration.  

Comparing the performance of the Tasmania (TAS) and the transfer learning (TL) models, we found that TL models 

resolved the drawback of the TAS model, which could not fully capture the variations of the Tasmania dataset. As illustrated 

in Fig. 7, the TAS models exhibited shortcomings in predicting soil moisture, notably yielding zero values in some 

conditions. This outcome suggests that based on data from 37 stations, the model's training was inadequate in encompassing 435 

the full range of variability within the testing dataset. Consequently, this limitation hindered the TAS model's capacity to 

estimate soil moisture values when confronted with input values that extend beyond the scope of the training dataset. The 

small sample size in the training dataset may have limited the model's ability to generalise over Tasmania’s major 

landscapes, topographical features, and soil properties. 

To address this issue, the Transfer Learning (TL) models effectively assimilated knowledge from the more extensive 440 

Australian dataset, resulting in a substantial enhancement in the performance of the TAS model. The TL models leveraged 

the pre-existing weights of hidden layers trained on the Australian dataset and retained some of these hidden layers unaltered 

during the fine-tuning process. This approach significantly enhanced the training of the TL model, as it only required 

adjustments to the previously learnt weight values to align them with the characteristics of the Tasmania dataset. In contrast, 

the TAS model required a complete training process from scratch, with random values assigned to the weights of the deep 445 

learning (DL) layers as the initial conditions. 
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Adopting a transfer learning approach has shown significant potential for enhancing both training effectiveness and model 

performance. Our Transfer Learning (TL) models, in particular, exhibited remarkable performance improvements, 

surpassing the TAS models by a factor of two. This translated to error reductions of up to 45% and a 50% increase in 

correlation coefficients. Furthermore, these enhancements were consistently reflected in the accurate prediction of both 450 

surface and subsurface soil moisture levels. 

The efficacy of transfer learning has been explored for several applications, for example (Li et al., 2021) demonstrate that 

employing transferred Deep Learning (DL) models based on ERA5-land data led to a substantial increase in the explained 

variation of observed data, exceeding 20% in some areas of China. (Padarian et al., 2019a) also reported that the transferred 

local model, designed for predicting soil properties from infrared spectra, outperformed both individually trained global and 455 

local models. 

4.3 Spatiotemporal variation of predicted soil moisture 

Soil moisture maps for Tasmania were generated using the LSTM with transfer learning models (Fig. 12). At an 80-meter 

resolution, the model's performance is on par with the original models designed for 90-meter soil moisture predictions in 

Australia (Fuentes et al., 2022). Nevertheless, there were still some limitations.  460 

While the map effectively captured the SM variation of the eastern part of Tasmania, our predictions still struggled to 

capture the variability of SM in the rocky, mountainous areas in the western part of Tasmania. This limitation is due to the 

absence of observational data in these remote regions, meaning that our model lacked the necessary information to learn and 

make accurate predictions. 

Furthermore, upon comparing the soil moisture maps with the input raster dataset used for model training, this area has soil 465 

organic carbon (SOC) content exceeding 20% (Kidd et al., 2015). Additionally, the region's high altitude, exceeding 890 

meters, was discernible from the elevation image (see Fig. 1). These peatlands with high SOC levels surpassed the maximum 

value of SOC present in our training dataset, which had a maximum of 15%. As a consequence, our models produced very 

high SM values (near 1) for surface predictions and small values (near 0) for subsurface predictions. Additionally, the SHAP 

value indicated that soil organic carbon (SOC) contributed significantly to the SM prediction in this area, overshadowing the 470 

contribution of the SMAP dataset (refer to Fig 14). 
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Figure 14: An illustration of feature contribution in generating soil moisture prediction at remote area. Base value represents the 

average of model output over the training set specifically for SHAP analysis, while f(x) is the final prediction of soil moisture value. 475 

4.4 Assumptions and limitations 

While we demonstrated the ability of the transfer learning model to accurately predict SM using leave one station out testing 

protocol, we recognise some assumptions and limitations of the study. We assumed that our reference data represent real 

moisture level values in each soil layer, however there are possible biases from the interpolation and calibration procedure 

on recorded data from the probes. Moreover, the limited stations (6 out of 39) that cover soil moisture dynamics of more 480 

than one year of records may not sufficiently capture the overall temporal and spatial variation of SM in Tasmania. In 

addition, we believe that our cross-validation scheme has not sufficiently covered the whole spatial and temporal dimensions 

of soil moisture predictions.  

4.5 Future work 

In this research, we only tested two algorithms, namely LSTM and MLP, which are combined with transfer learning 485 

techniques. Other DL algorithms could improve soil moisture maps' accuracy at fine resolutions in Tasmania. For example, 

the input covariates could include spatial context represented as images using Convolutional Neural Networks (Padarian et 

al., 2019). Our models could further consider several remote sensing data which are commonly used as covariates in soil 

moisture mapping, such as vegetation index and surface temperature (Xu et al., 2022; Zhao et al., 2022; Xu et al., 2021). 

Furthermore, feature selection as the input for models can be explored further to derive better model performance. 490 

However, a major consideration in this study lies in the need to incorporate a greater number of field-measured stations 

covering unrepresented regions, thereby enhancing the spatiotemporal representation of the data. As additional data becomes 
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available from the existing soil moisture stations, there exists the opportunity to refine the model even further, enabling it to 

capture a more comprehensive range of temporal variations. 

5 Conclusions 495 

This study addresses the issue of using DL for mapping soil moisture in Tasmania given limited training datasets. Transfer 

learning within the deep learning framework has become a prevalent technique for enhancing model performance. This 

approach was successfully applied to estimate daily soil moisture levels in Tasmania. In this context, a pre-trained soil 

moisture model, initially derived from the Australian dataset, serves as the reference. 

The transferred models tailored for Tasmania had a superior performance in predicting soil moisture from the surface to a 500 

depth of 60 cm, all at an 80-meter resolution. When combined with the LSTM algorithm, transfer learning effectively 

doubles the performance compared to non-transferred models. These enhancements signify that the transferred LSTM 

models can be effectively employed for daily monitoring of soil moisture levels throughout Tasmania. 

The model is now available live at: https://sdi.tas-hires-weather.cloud.edu.au/shiny/ predicting soil moisture at a daily 

interval along with weather information (rainfall, temperature), potentially enabling land managers and farmers to make 505 

informed decisions on managing soil water for crop production and environmental monitoring. 
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