

1	Review Article:
2	A Comprehensive Review of
3	Compound Flooding Literature with a
4	Focus on Coastal and Estuarine Regions
5	
6 7	Joshua Green ^{1,2} , Ivan D. Haigh ^{1,2} , Niall Quinn ² , Jeff Neal ^{2,3} , Thomas Wahl ⁴ , Melissa Wood ¹ , Dirk Eilander ^{5,6} , Marleen de Ruiter ⁵ , Philip Ward ^{5,6} , Paula Camus ^{1,7}
8	
9	
10 11	1 School of Ocean and Earth Science, National Oceanography Centre, University of Southampton,
11	2 Fathom, Square Works, 17-18 Berkeley Square, Bristol BS8 1HB, UK
13	3 School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
14	4 Department of Civil, Environmental, and Construction Engineering and National Center for
15	Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
16	s Institute for Environmental Studies, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The
17	e Deltares 2629 HV Delft The Netherlands
19	7 Geomatics and Ocean Engineering Group. Departamento de Ciencias y Técnicas del Agua y del
20	Medio Ambiente. E.T.S.I.C.C.P. Universidad de Cantabria, 39005 Santander, Spain
21	
22	
23	Correspondence to: Joshua Green, J.Green@soton.ac.uk
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

39	Abstract
40	Compound flooding, where the combination or successive occurrence of two or more flood drivers
41	leads to a greater impact, can exacerbate the adverse consequences of flooding, particularly in
42	coastal/estuarine regions. This paper reviews the practices and trends in coastal/estuarine
43	compound flood research and synthesizes regional to global findings. Systematic review is employed
44	to construct a literature database of 271 studies relevant to compound flooding in a
45	coastal/estuarine context. This review explores the types of compound flood events, their
46	mechanistic processes, and synthesizes terminology throughout the literature. Considered in the
47	review are six flood drivers (fluvial, pluvial, coastal, groundwater, damming/dam failure, and
48	tsunami) and five precursor events and environmental conditions (soil moisture, snow, temp/heat,
49	fire, and drought). Furthermore, this review summarizes research methodology and study
50	applications trends, and considers the influences of climate change and urban environments. Finally,
51	this review highlights knowledge gaps in compound flood research and discusses the implications on
52	future practices. Our five recommendations for compound flood research are: 1) adopt consistent
53	terminology and approaches; 2) expand the geographic coverage of research; 3) pursue more inter-
54	comparison projects; 4) develop modelling frameworks that better couple dynamic Earth systems;
55	and 5) design urban and coastal infrastructure with compounding in mind.
56	
57	
EO	
20	
59	
60	

62	Short Summary
63	Compound flooding, involving the combination or successive occurrence of two or more flood
64	drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices,
65	trends, methodologies, applications, and findings of coastal compound flooding literature at regional
66	to global scales. We explore the types of compound flood events, their mechanistic processes, and
67	the range of terminology. Lastly, this review highlights knowledge gaps and implications for future
68	practices.
69	
70	
71	Key Words: Compound Flood, Compound Event, Flood Driver, Coastal Flood, Coastal Hazard
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	

83 1) Introduction

84	Flooding is the costliest and most common hazard worldwide (Bevere and Remondi, 2022;
85	Mishra et al., 2022; Rentschler et al., 2022; Thieken et al., 2022), and can lead to a wide range of
86	environmental, economic, and social repercussions. Over 1.8 billion people, almost a quarter (23%)
87	of the world's population, are exposed to 1-in-100 year flooding (Rentschler et al., 2022). The vast
88	majority (89%) of these people live in low- and middle-income countries, and socially vulnerable
89	communities are disproportionately at risk (Rentschler et al., 2022). Since 1980, global floods have
90	caused over 250,000 fatalities and \$1 trillion USD in losses (Re, 2017; Em-Dat, 2022). In 2021 alone
91	there were more than 50 severe flood disasters recorded worldwide, causing economic losses
92	totaling \$82 billion (2022 USD) (Bevere and Remondi, 2022).
93	A large proportion of deaths and the economic losses associated with flooding have historically
94	occurred in densely populated coastal/estuarine regions. Today, near-coastal zones and low-
95	elevation coastal zones, subject to flooding from a range of drivers, are respectively home to 2.15
96	billion and ~900 million people globally (Reimann et al., 2023). In the past decade, floods associated
97	with strong onshore wind and pressure fields (e.g., 2013/2014 UK Winter Floods, 2017 Atlantic
98	Hurricane Season, 2019 Atlantic Hurricane Dorian, 2019 East Africa Tropical Cyclone Idai, 2019
99	Pacific Typhoon Season, and 2022 Eastern Australia Floods) have showcased the ever-present threat
100	of extreme flood impacts in coastal settings. Even in regions where coastal defence standards are
101	among the highest in the world (e.g., Europe, Japan, Netherlands), potential defence failure during
102	events that exceed the standard of protection (e.g., major overtopping or a breach) still pose
103	considerable risk to populations and development in coastal floodplains. Moreover, flooding is a
104	rapidly growing threat to most coastal regions and their communities due to: (i) sea-level rise,
105	changes in storminess, and increasingly variable rainfall patterns driven by climate change (Church et
106	al., 2001; Wood et al., 2023); (ii) population growth, urbanisation, and continued development in
107	floodplains (Hallegatte et al., 2013); and (iii) the continued decline in the extent of shorelines and
108	habitats which act as natural buffers to flooding (Woodruff et al., 2013; Oppenheimer et al., 2019).

- 109 Average global flood losses in large coastal cities are estimated to increase approximately tenfold by
- 110 2050 due to socio-economic change alone, reaching up to US\$1 trillion or more per year when
- 111 considering sea-level rise and land subsidence (Hallegatte et al., 2013). There is clear importance in
- advancing our understanding of flooding in coastal/estuarine regions.

114	This review focuses on compound flooding that takes place in coastal (ocean/lake) and
115	estuarine regions, which primarily arises from three main sources: (1a) river discharge (fluvial); (1b)
116	precipitation surface runoff (pluvial); and (1c) coastal processes including storm surge, astronomical
117	tides, wave action, and relative sea level rise (SLR) (coastal) as shown in Figure 1. Traditionally, most
118	existing flood risk assessments consider these main drivers of flooding separately; and many
119	oversimplify or ignore key interactions all together. However, in many coastal/estuarine regions,
120	floods are often caused by more than one driver as the processes are naturally correlated. For
121	example, intense tropical/extratropical cyclones (TCs/ETCs) can generate heavy precipitation that
122	enhances river discharges, while at the same time strong winds and low pressures cause large storm

123	surges and waves. When fluvial, pluvial, and/or coastal drivers occur at the same time, or within a
124	few hours or days, the adverse effects of flooding can be measurably exacerbated (Gori et al., 2020a;
125	Khalil et al., 2022). The synergy of multiple hazard drivers can result in disproportionately extreme
126	events, even if individual flood drivers are not extreme themselves. This is often referred to as
127	'compound events' (Hewitt and Burton, 1971; Adhikari et al., 2010; Seneviratne et al., 2012; Leonard
128	et al., 2014; Zscheischler et al., 2020). It is only in the last decade that we are beginning to recognize
129	the necessity of compound event-based approaches to flood risk assessment, as traditional
130	univariate methods of analysis fail to capture the non-linear impacts of multiple flood drivers
131	(Kappes et al., 2010; Leonard et al., 2014; Eshrati et al., 2015; Klerk et al., 2015; Ridder et al., 2018;
132	Zscheischler et al., 2018; Hao and Singh, 2020; Ridder et al., 2020; Manoj J et al., 2022).
133	In recent decades our knowledge of individual flood drivers has improved tremendously, as a
134	result of better in-situ and remote sensed datasets, and advances in statistical and numerical
135	modelling techniques. However, our understanding of compound flood events is still limited, from
136	the synergetic processes to the spatiotemporal trends and scales of interacting drivers. Compound
137	event-based research is relatively new (Wu et al., 2020; Bevacqua et al., 2021), having only gained
138	notable attention in 2012 when it was formally defined in the Intergovernmental Panel on Climate
139	Change's (IPCC) Special Report on Climate Extremes (SREX) (Seneviratne et al., 2012), and as a key
140	guiding principle of the 2015 UN Sendai Framework on Disaster Risk Reduction (Undrr, 2015) .
141	Additionally, there has been growing public awareness of extreme compound flooding following a
142	decade of increasingly frequent extreme weather events, where catastrophic disasters arose from
143	multiple interacting flood drivers. For example, in 2017 Hurricane Harvey resulted in record-breaking
144	rainfall, river discharge, and runoff, which when combined with long-lasting storm surge resulted in
145	catastrophic flooding in Houston, Texas (Valle-Levinson et al., 2020; Huang et al., 2021; Gutenson et
146	al., 2022). This was the second costliest (\$152.5B) natural hazard in US history (Ncei, 2023). As a
147	result of this event, it has been recognised that by failing to consider compound flooding, the risk to
148	Houston and elsewhere had been, and currently remains, greatly underestimated.

149	Compound flood research at local, regional, and recently global scales has experienced growing
150	recognition and substantial advancements over the past decade, with rapid increases in the number
151	of academic publications (particularly since 2020). However, to date there have only been a handful
152	of published reviews that have synthesized current understanding of compound flooding. Moreover,
153	the reviews that do exist have only focused on specific elements of the broader compound flood
154	subject. Bensi et al. (2020) reviewed the drivers and mechanisms of compound flooding, the
155	methods of joint distribution analysis regarding probability hazard assessment, and the key findings
156	of various bivariate coastal-fluvial and coastal-pluvial flood studies. To the best of our knowledge,
157	three publications have reviewed compound flood modelling approaches in coastal regions
158	(Santiago-Collazo et al., 2019; Xu et al., 2022; Jafarzadegan et al., 2023) . Santiago-Collazo et al.
159	(2019) summarized practices of numerical compound flood modelling methodologies including
160	different frameworks for linking (or coupling) multiple hydrologic, hydrodynamic, and ocean
161	circulation models. Xu et al. (2022) examined the advancements, benefits, limitations, and
162	uncertainties of varying numerical and statistical (joint probability and dependence) models and
163	frameworks for compound flood inundation. Lastly, Jafarzadegan et al. (2023) provided a general
164	review of advancements in both univariate riverine and coastal modelling , briefly touching on a
165	hybrid compound modelling approach using linked statistical-hydrodynamic models and physics-
166	informed machine learning (ML). More broadly, two additional papers by Hao et al. (2018) and
167	Zhang et al. (2021a) reviewed the advancing work on compound flood extremes in the realm of
168	hydrometeorology, evaluating the physical drivers and underlying mechanisms (Hao et al., 2018)
169	plus analytical and modelling research methods (Zhang et al., 2021a). Hao et al. (2018) outlined the
170	characteristics and key statistical tools for assessing compound flood and other compound
171	hydroclimatic extremes (drought, heatwave, coldwave, extreme rainfall). Zhang et al. (2021a)
172	discussed these same statistical approaches when reviewing drivers, mechanisms, and means of
173	quantifying risk for compound flooding and four other compound extremes (drought, hot-wet, cold-
174	wet, cold-dry). In addition, they reflected on methods of numerical modelling and collate findings on

175	pluvial-surge, fluvial-surge, sea level-tide, and fluvial-tide compound flood studies. Regarding
176	compound events and driver dependence, Hao and Singh (2020) and Zscheischler and Seneviratne
177	(2017) reviewed standard methods of measuring dependence (using copulas) as well as approaches
178	for quantifying the likelihood of compound floods. Abbaszadeh et al. (2022) reviewed the sources
179	and challenges of uncertainty in flood modelling and forecasting and offer guidance on reducing
180	uncertainty in the context of compound floods. In addition to these aforementioned papers that
181	reviewed specific aspects of compound flooding, there are a number of articles (e.g., Leonard et al.
182	(2014); Aghakouchak et al. (2020); Ridder et al. (2020); Zscheischler et al. (2020); Bevacqua et al.
183	(2021); Simmonds et al. (2022); Van Den Hurk et al. (2023)) that have reviewed broader compound
184	event research involving a wider range of hazards beyond just flooding. These papers have discussed
185	compound flooding and provide a diversity of detailed case examples, but largely focus on the
186	frameworks, typologies, theories, and perspectives of compound event-based research and disaster
187	risk reduction as a whole (Leonard et al., 2014; Aghakouchak et al., 2020; Ridder et al., 2020;
188	Zscheischler et al., 2020; Bevacqua et al., 2021; Simmonds et al., 2022). Overall, these previous
189	reviews have provided an excellent synthesis of specific aspects of compound flooding, however,
190	they have each only focused on a narrow area within the much broader compound flooding
191	discipline. To date, a detailed state-of-the-art review of the entire body of compound flood literature
192	has yet to be done.
193	Therefore, the overall aim of this paper is to carry out a comprehensive systematic review and
194	synthesis of compound flood literature, with a focus on coastal/estuarine regions where compound
195	flooding is most prevalent. We stress, this is not a review of coastal flooding, but rather compound
196	flooding occurring in coastal (ocean/lake) and estuarine settings.
197 198	To address this aim we have six objectives around which the paper is structured:
199	1. To survey the range of compound event definitions and terminologies, and examine how

200 they pertain to the scope of compound flooding (Section 2);

201	2.	To briefly discuss the key physical processes contributing to flood events from individual
202		drivers (Section 3);
203	3.	To develop an extensive literature database on compound flood research in
204		coastal/estuarine regions (Section 4);
205	4.	To identify trends in the characteristics of compound flood research (Section 5);
206	5.	To synthesize the key findings (dependence hotspots and driver dominance), considerations
207		(coastal urban infrastructure and climate change), and standard practices (application cases
208		and analytical methods) of compound flood research (Section 6); and
209	6.	To reflect on the knowledge gaps in multivariate flood hazard research and suggest potential
210		directions for research going forward (Section 7).
211		
212	Fi	nally, overall conclusions are given (Section 8). Compound flood research is a rapidly
213	develo	ping field of science. As well as providing a comprehensive review, identifying knowledge
214	gaps, a	nd suggesting potential areas for future research, one of our secondary goals of this paper is
215	to prov	vide an initial starting point to better inform researchers and decision-makers new to the
216	emerg	ing field.
217	2) De	finitions and Types of Compound Events & Multi-hazard Events
218	. 0	ur first objective is to survey the range of compound event terminologies observed in
219	literatu	are, and to establish the scope of compound flooding considered in this review. First, we do
220	this bro	padly, reflecting on the definitions of compound events across different types of hazards (and
221	risks) t	hat have been defined in the literature, and then we examine how the various definitions
222	pertair	specifically to compound flood types and accompanying drivers. After this, we seek to
223	champ	ion a unifying definition framework (i.e., encompasses a diversity of perspectives and use-
224	cases a	around compound events) for this review.

225	Throughout natural hazard literature, terminology around 'compound event, 'compound
226	hazard', and 'multi-hazard' are highly inconsistent. In the past, these terms have sometimes been
227	applied interchangeably. Some refer to compound hazards as a type of multi-hazard event within
228	the larger umbrella of the multi-hazard framework. We believe each of these terms are distinct from
229	one another, and thus for the purposes of this review we use the phrase 'compound event'.
230	Examples of different compound event (and related) terminologies are listed in Table 1 (general
231	disaster and hazard definitions are also provided for context). Several terms have been used to
232	describe similar concepts that all broadly involve the consideration of multiple hazards, drivers,
233	mechanisms, variables, and extremes in a multivariate and non-linear assessment of risk (i.e., hazard
234	exposure x vulnerability x capacity) and impact as defined by the IPCC (Ipcc, 2012, 2014).
235	Use of the term 'compound event' (and similar phrases) has been observed in older academic
236	publications (Hewitt and Burton, 1971), however it was only formally defined in an official context in
237	the 2012 IPCC SREX (Seneviratne et al. (2012)). As of present, the most widely accepted definitions
238	of compound events are those from the IPCC SREX (Seneviratne et al., 2012), Leonard et al. (2014),
239	and Zscheischler et al. (2020), which we briefly discuss below.
240	
241	The IPCC SREX (Seneviratne et al., 2012) defines compound events as a 'combination of
242	multiple divers or hazards with adverse environmental or social risk/impact'. A more detailed
243	explanation is as follow:
244	
245	"(1) two or more extreme events occurring simultaneously or successively, (2) combinations
246	of extreme events with underlying conditions that amplify the impact of the events, or (3)
247	combinations of events that are not themselves extremes but lead to an extreme event or
248	impact when combined. The contributing events can be of similar (clustered multiple events)
249	or different type(s)"
250	

251	According to this definition, compound flooding could, for instance, describe the occurrence of
252	a moderate rainfall event that causes surface runoff and discharges at the coast, in addition to
253	elevated coastal water level from storm surge and wave action (whether simultaneous or a few days
254	later). None, one, or both of the two events may be considered extreme according to threshold or
255	probability-based approaches, but together they lead to extreme coastal water levels. This definition
256	also emphasizes the potential for compounding from the temporal clustering of the same (or
257	different) types of events (e.g., storm clustering involving quick succession of storm events and
258	associated coastal hazards (Jenkins et al., 2023)).
259	Leonard et al. (2014) argue that the IPCC SREX (Seneviratne et al., 2012) definition is unable to
260	capture extreme event edge cases (i.e., unexpected or outlier situations) and is not founded on the
261	physical systems at play. They instead propose a definition that focuses on the variable interactions
262	and event impact, as follows:
263	
264	"Our definition emphasizes three characteristics: (1) the extremeness of the impact rather
265	than the climate or weather event; (2) the multivariate nature of the event; and (3) statistical
266	dependence between variables or events that cause the impact."
266 267	dependence between variables or events that cause the impact."
266 267 268	dependence between variables or events that cause the impact." Thus, according to this definition, classification of compound flood events necessitates an
266 267 268 269	dependence between variables or events that cause the impact." Thus, according to this definition, classification of compound flood events necessitates an extreme impact. In the context of flooding, the IPCC SREX may recognize, for example, the
266 267 268 269 270	dependence between variables or events that cause the impact." Thus, according to this definition, classification of compound flood events necessitates an extreme impact. In the context of flooding, the IPCC SREX may recognize, for example, the simultaneous overtopping of riverine channels and surfacing of groundwater as compounding.
266 267 268 269 270 271	dependence between variables or events that cause the impact." Thus, according to this definition, classification of compound flood events necessitates an extreme impact. In the context of flooding, the IPCC SREX may recognize, for example, the simultaneous overtopping of riverine channels and surfacing of groundwater as compounding. However, unless the impact is extreme, it would not pass as a compound flood according to Leonard
266 267 268 269 270 271 272	dependence between variables or events that cause the impact." Thus, according to this definition, classification of compound flood events necessitates an extreme impact. In the context of flooding, the IPCC SREX may recognize, for example, the simultaneous overtopping of riverine channels and surfacing of groundwater as compounding. However, unless the impact is extreme, it would not pass as a compound flood according to Leonard et al. (2014). This interpretation also requires definitive dependence between the extremes in
266 267 268 269 270 271 272 273	dependence between variables or events that cause the impact." Thus, according to this definition, classification of compound flood events necessitates an extreme impact. In the context of flooding, the IPCC SREX may recognize, for example, the simultaneous overtopping of riverine channels and surfacing of groundwater as compounding. However, unless the impact is extreme, it would not pass as a compound flood according to Leonard et al. (2014). This interpretation also requires definitive dependence between the extremes in question. Therefore, a fluke spatiotemporal overlap of extreme rainfall due to an atmospheric river
266 267 268 269 270 271 272 273 274	dependence between variables or events that cause the impact." Thus, according to this definition, classification of compound flood events necessitates an extreme impact. In the context of flooding, the IPCC SREX may recognize, for example, the simultaneous overtopping of riverine channels and surfacing of groundwater as compounding. However, unless the impact is extreme, it would not pass as a compound flood according to Leonard et al. (2014). This interpretation also requires definitive dependence between the extremes in question. Therefore, a fluke spatiotemporal overlap of extreme rainfall due to an atmospheric river in a region with elevated river levels from recent snowmelt would not be considered a compound

276	More recently, Zscheischler et al. (2018) proposed a broader definition that is specific to
277	compound weather/climate events, as follows:
278	
279	"The combination of multiple drivers and/or hazards that contributes to societal or
280	environmental risk."
281	
282	Under this definition, the extremeness of individual drivers and/or hazards is not considered,
283	however their combination must still exhibit some extent of impact to contribute to overall risk.
284	Furthermore, compound events are strictly limited to the combination of natural (weather/climate)
285	drivers and hazards. Thus, anthropogenic hazards (e.g., dam failure and deforestation) are not
286	included within their scope of compound events. To date, the definition proposed in Zscheischler et
287	al. (2018) offer strong potential for unified discussion of compound climate events across scientific
288	disciplines. In the past few years numerous compound flood studies have accordingly adopted their
289	definition framework (Hao and Singh, 2020; Ridder et al., 2020; Bevacqua et al., 2021; Zhang et al.,
290	2021a; Xu et al., 2022).
291	Finally, for the scope of this review, we adopt the IPCC definitions of 'hazard' and 'compound
292	event' (Ipcc, 2012; Seneviratne et al., 2012), and thus consider compound events as a combination
293	of two or more co-occurring or consecutive drivers (natural or anthropogenic), that together have a
294	greater impact than either of the individual events. Neither the individual driver nor their
295	combinations must explicitly be considered extreme. Potential driver interaction types within this
296	compound event framework include the temporal and/or spatially overlapping combination of
297	multiple hazards (often from a shared modulators, e.g., storm event prompts simultaneously rainfall
298	and storm surge), the direct triggering or cascading of one hazard by another (e.g., heavy rainfall on
299	top of existing bankfull river discharge), and the random or by-chance spatial/temporal overlapping
300	of independent hazards (e.g., atmospheric river rainfall during peak spring snowmelt).

301

Term Category	Reference	Term	Definition
General	Undrr (2016)	Disaster	A serious disruption of the functioning of a community or a society at any scale due to hazardous events interacting with conditions of exposure, vulnerability, and capacity , leading to one or more of the following: human, material, economic and environmental losses and impacts .
General	lpcc (2012)	Disaster	Severe alterations in the normal functioning of a community or a society due to hazardous physical events interacting with vulnerable social conditions, leading to widespread adverse human, material, economic, or environmental effects that require immediate emergency response to satisfy critical human needs and that may require external support for recovery.
General	Undrr (2016)	Hazard	A process, phenomenon or human activity that may cause loss of life, injury or other health impacts, property damage, social and economic disruption, or environmental degradation.
General	Ipcc (2012)	Hazard	The potential occurrence of a natural or human-induced physical event that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, and environmental resources.
General	Ipcc (2012)	Disaster Risk	The likelihood over a specified time period of severe alterations in the normal functioning of a community or a society due to hazardous physical events interacting with vulnerable social conditions , leading to widespread adverse human, material, economic, or environmental effects that require immediate emergency response to satisfy critical human needs and that may require external support for recovery.
General	Undrr (2016)	Disaster Risk	The potential loss of life, injury, or destroyed or damaged assets which could occur to a system, society or a community in a specific period of time, determined probabilistically as a function of hazard, exposure, vulnerability, and capacity .
General	lpcc (2012)	Impacts	The effects on natural and human systems of physical events, of disasters, and of climate change.
General	Undrr (2016)	Disaster Impact	The total effect , including negative effects (e.g., economic losses) and positive effects (e.g., economic gains), of a hazardous event or a disaster . The term includes economic, human and environmental impacts, and may include death, injuries, disease and other negative effects on human physical, mental and social well-being.
General	Herring (2020)	Extreme Event	A time and place in which weather , climate , or environmental conditions —such as temperature, precipitation, drought, or flooding— statistically rank above a threshold value near the upper or lower ends of the range of historical measurements. Though the threshold is subjective, some scientists define extreme events as those that occur in the highest or lowest 5% or 10% of historical measurements. Other times they describe events by how far they are from the mean, or by their recurrence interval or probability.
General	Sarewitz and Pielke (2001)	Extreme Event	An occurrence that, with respect to some class of occurrences, is either notable , rare, unique, profound, or otherwise significant in terms of its impacts, effects or outcomes . An extreme event is not simply 'something big and rare and different'. 'Eventness' demands some type of temporal and spatial boundaries, while 'extremeness' reflects an event's potential to cause change.
General	lpcc (2014)	Extreme Weather Event	An extreme weather event is an event that is rare at a particular place and time of year . Definitions of rare vary, but an extreme weather event would normally be as rare as or rarer than the 10 th or 90 th percentile of a probability density function estimated from observations. The characteristics of what is called extreme weather may vary from place to place in an absolute sense. When a pattern of extreme weather persists for some time, such as a season, it may be classed as an extreme climate event, especially if it yields an average or total that is itself extreme (e.g., drought or heavy rainfall over a season).
Multi-	Undrr (2016)	Multi-hazard	 The selection of multiple major hazards that the country faces, and The specific contexts where hazardous events may occur simultaneously, cascadingly, or cumulatively over time, and taking into account the potential interrelated effects

Multi-	Zschau (2017)	Multi-hazard	More than one hazard where hazard interactions are considered
Multi-	Komendant ova et al. (2014)	Multi-hazard	The analysis of different relevant hazards, triggering, and cascade effects threatening the same exposed elements with or without temporal concurrence
Multi-	Tilloy et al. (2019)	Multi-hazard	More than one natural hazard with interrelationships between the hazards that impact the same location and time period.
Multi-	Gill and Malamud (2014)	Multihazards	All possible and relevant hazards, and their interactions, in a given spatial region and/or temporal period
Multi-	Hewitt and Burton (1971)	Multiple Hazards	Elements of quite different kinds coinciding accidentally, or more often, following one another with damaging force, for instance floods in the midst of drought, or hurricane followed by landslides and floods.
Multi-	Zschau (2017)	Multi-hazard Risk	Risk in a multihazard framework where no hazard interactions are considered on the vulnerability level
Multi-	Eshrati et al. (2015)	Multi-hazards Risk	The consideration of multiple (if possible all relevant) hazards posing risk to a certain area under observation.
Multi-	Kappes et al. (2010)	Multi-hazard Risk	The totality of relevant hazards in a defined area . Hazards are, as natural processes, part of the same overall system, influence each other and interact. Thus, multi-hazard risk contains emergent properties: It is not just the sum of single-hazard risks since their relations would not be considered and this would lead to unexpected effects.
Multi-	Kappes et al. (2012)	Multi-hazard Risk	A first definition of the term ' multi-hazard ' in a risk reduction context could read as follows: the totality of relevant hazards in a defined area (Kappes 2011). However, whether a hazardous process is relevant has to be defined according to the specific setting of the respective area and to the objective of the study. Additionally, not all studies on multiple hazards share the aim of involving 'all relevant processes of a defined area ' but can rather be described as 'more-than- one-hazard ' approaches. In summary, two approaches to multi-hazard can be distinguished: 1) primarily spatially oriented and aims at including all relevant hazards, and 2) primarily thematically defined .
Multi-	Eshrati et al. (2015)	Multi-hazards Interaction Types	 Hazards relationship refers to many different types of influence of hazards to each other. 1) Triggering of a hazard by another 2) Simultaneous impact of several hazards due to the same triggering event 3) Disposition alteration of a hazard after another hazard occurrence 4) Multiple effects of a hazard phenomenon
Multi-	Tilloy et al. (2019)	Multi-hazards Interaction Types	 Independence where spatial and temporal overlapping of the impact of two hazards without any dependence or triggering relationship Triggering/Cascading where a primary hazard that triggers and a secondary hazard Change Conditions: one hazard altering the disposition of a second hazard by changing environmental conditions Compound hazard (association) where different hazards are the result of the same "primary event", or large-scale processes which are not necessarily hazard Mutual exclusion (negative dependence) where two hazards can also exhibit negative dependence or be mutually exclusive
Multi-	Kappes et al. (2010)	Multi-hazard Interaction Types	1) Disposition Altering where modification of environmental characteristics, whether long-term basic disposition (e.g., relief, climate, vegetation cover) or

			faster variable disposition (e.g. daily to seasonal weather, water balance, vegetation period) causes the exceedance of a threshold and resulting hazard 2) Triggering/Cascading where one hazards is directly triggered or provoked by another hazard, or a chain of two or more hazards are induced as a result of a shared external event
Multi-	Gill and Malamud (2014)	Multihazard Interaction Types	 Multiple hazard interaction types are divided into four categories: 1) Coincidence relationship involving the spatial and temporal coincidence of natural hazards. 2) Triggering relationship where a hazard is triggered. (e.g., lightning triggering a wildfire, groundwater abstraction triggering regional subsidence, a flood triggering a landslide which then triggers a further flood) 3) Increased probability relationship where the probability of a hazard in increased. (e.g., a wildfire increasing the probability of landslides, regional subsidence increasing the probability of flooding) 4) Decreased probability relationship where the probability of a hazard is decreased. (e.g., urbanisation catalysing storm-triggered flooding, storms impeding urban fire-triggered structural collapse)
Multi-	Zschau (2017)	Multi-risk	Risk in a multi-hazard framework where hazard interactions are considered on the vulnerability level.
Multi-	Komendant ova et al. (2014)	Multi-risk	A comprehensive risk defined from interactions between all possible hazards and vulnerabilities.
Compound / Other	IPCC SREX (Seneviratn e et al. (2012)) Ipcc (2012)	Compound Event	In climate science, compound events can be: 1) Two or more extreme events occurring simultaneously or successively, 2) Combinations of extreme events with underlying conditions that amplify the impacts of the events, or 3) Combinations of events that are not themselves extreme but lead to an extreme event or impact when combined. The contributing events can be of similar (clustered multiple events) or different types. Examples of compound events resulting from events of different types are varied – for instance, high sea level coinciding with tropical cyclone landfall, or cold and dry conditions (e.g., the Mongolian Dzud), or the impact of hot events and droughts n wildfire, or a combined risk of flooding from sea level surges and precipitation-induced high river discharge (Svensson and Jones, 2002; Van den Brink et al., 2005). Compound events can even result from 'contrasting extremes', for example, the projected occurrence of both droughts and heavy precipitation events in future climate in some regions.
Compound / Other	Hewitt and Burton (1971)	Compound Event	Several elements acting together above their respective damage threshold, for instance wind, hail, and lightning damage in a severe storm. Many of the most severe meteorological hazards are compound, or become disastrous through involvement in a multiple hazard situation
Compound / Other	Leonard et al. (2014)	Compound Event	Emphasizes three key characteristics of a compound event : (1) the extremeness of the impact rather than variables or events it depends on; (2) the requirement of multiple variables or events on which the impact depends; and (3) the role of statistical dependence . Consider a coastal flood where the flood level depends on a rainfall event and an elevated ocean level. The coastal flood is a compound event because (1) the impact metric, a flood level, is considered to be extreme; (2) the impact depends on multiple variables, the rainfall and ocean boundary; and (3) the ocean level can have a statistical dependence with rainfall due to influences such as storm surge, wind setup, or seasonality.
Compound / Other	Zscheischler et al. (2018)	Compound Event	Compound weather and climate events are the combination of multiple drivers and/or hazards that contributes to societal or environmental risk. Drivers include processes, variables and phenomena in the climate and weather domain that may span over multiple spatial and temporal scales. Hazards are usually the immediate physical precursors to negative impacts (such as floods, heatwaves, wildfire), but can occasionally have positive outcomes (for example, greening in the Alps during the 2003 heatwave in Europe).

Compound / Other	Zscheischler et al. (2020)	Compound Event Interaction Types	 Compound weather and climate events have been organized into four type classes: 1) Preconditioned: where a hazard causes or leads to an amplified impact because of a precondition 2) Multivariate: co-occurrence of multiple climate drivers and/or hazards in the same geographical region causing an impact 3) Temporally Compounding (sequential): succession of hazards that affect a given geographical region, leading to, or amplifying, an impact compared with a single hazard 4) Spatially Compounding: events where spatially co-occurring hazards cause an impact
Compound / Other	Raymond et al. (2020)	Connected Extreme Event	The concept of connected extreme weather and climate events further recognizes that compound event impacts are often substantially and nonlinearly influenced by non-physical factors such as exposure and vulnerability, cutting across sectors and scales (from personal to society wide). These 'societal mechanisms' can tie together the impacts from two or more climate extremes . It is the creation or strengthening of the connections between events, in the impacts space and involving anthropogenic systems, that leads to our terminology of ' connected' events as being distinct from 'compound' events , and also from interacting-risk or multi-risk frameworks that focus on combinations of physical hazards .
Compound / Other	Pescaroli and Alexander (2018)	Compound Risk	Risk from: 1) Extremes that occur simultaneously or successively; 2) Extremes combined with background conditions that amplify their overall impact; or 3) Extremes that result from combinations of "average" events.
Compound / Other	De Ruiter et al. (2020)	Dependent Hazards (Triggering / Cascading)	Include triggering and cascading disasters , such as landslides triggered by a flood, or fires caused in the aftermath of an earthquake (Daniell et al., 2017). Cascading events are commonly defined as a primary hazard triggering a secondary hazard (Pescaroli & Alexander, 2015)
Compound / Other	Kappes et al. (2010); Kappes et al. (2012)	Cascading / Triggering Hazards	The triggering of one hazard by another , eventually leading to subsequent hazard events. This is referred to as cascade, domino effect, follow-on event, knock-on effect, or triggering effect .
Compound / Other	Undrr (2019)	Cascading Hazard	Cascading hazard processes refer to a primary impact (trigger) such as heavy rainfall, seismic activity or unexpectedly rapid snow melt, followed by a chain of consequences that can cause secondary impacts
Compound / Other	Mishra et al. (2021)	Cascading / Compound Extreme Event	A cascading (compound) event occurs due to the combination of two or more individual extreme events occurring successively (simultaneously). Examples of cascading events are: (a) a severe drought event followed by an extreme flood (drought-flood regime), and (b) extreme drought followed by wildfire (drought- wildfire regimes), which can be further compounded by flooding events. The compound event can also be a combination of human and natural related disasters (Mishra et al., 2021).
Compound / Other	Cutter (2018)	Compound / Cascading / Triggering Hazard	Natural scientists working in the hazards arena inherently understand the compounding physical processes and interactions that trigger a natural hazard event such as an earthquake and follow on sequences of other events that occur as a direct or indirect result of the initial triggering event. Compounding interactions can trigger a secondary hazard (e.g., lightning causing a wildfire) or increase the probability of a hazard (e.g., wildfire destroying slope vegetation and when rain events occur mudflows ensue). Compounding interactions are both spatially and temporally coincident and can amplify the effects, especially if they occur over relatively short time periods and overlap geographically. Compounding processes, compounding events, or compounding hazards are synonyms for describing these types of processes or outcomes. Cascading hazards occur as a direct or indirect result of an initial hazard. One characteristic feature of cascading natural events is proximity in time and snace suggesting that there are sufficient

			forces or energy in the initial event to trigger the subsequent events in the physical system.
Compound / Other	Pescaroli and Alexander (2015)	Cascading Disasters	Extreme events, in which cascading effects increase in progression over time and generate unexpected secondary events of strong impact. These tend to be at least as serious as the original event, and to contribute significantly to the overall duration of the disaster's effects. In cascading disasters one or more secondary events can be identified and distinguished from the original source of disaster.
Compound / Other	De Ruiter et al. (2020)	Consecutive Disasters	Two or more disasters that occur in succession, and whose direct impacts overlap spatially before recovery from a previous event is considered to be completed. This can include a broad range of multi-hazard types, such as compound events (Zscheischler et al., 2018) and cascading events (Pescaroli & Alexander, 2015). Consecutive disasters can occur due to dependency between natural hazards (e.g., triggering events) or when independent hazards occur in the same space- time window
Compound / Other	Pescaroli and Alexander (2018)	Interacting / Interconnecte d Risk	Risk from physical dynamics that develop through the existence of a widespread network of causes and effects, tends to overlap with compound risk in the hazard domain. Focus on the area in which hazard interacts with vulnerability to create disaster risk
Compound / Other	Pescaroli and Alexander (2018)	Cascading Risk	Risk from ' toppling dominoes ' or ' systematic accidents '. Associated mostly with the anthropogenic domain and the vulnerability component of risk.

Table 1. Examples of different compound event (and related) terminologies, types, and definitions in scientific literature.
 Unique aspects of varying definitions are emphasized in bold.

304

305 3) Flood Processes and Mechanisms

306	Having considered the compound event definitions, our second objective is to briefly discuss
307	the key physical processes contributing to flooding and the individual drivers/hazards recognized in
308	this review. In this review we focus on coastal regions. Here, flooding mainly arises from three main
309	flood drivers, namely (i) fluvial, (ii) pluvial and (iii) coastal. In this section we start by discussing these
310	three drivers and their mechanisms individually (Section 3.1). It is these three drivers, in different
311	combinations, that most often result in compound flood events. Schematic diagrams illustrating the
312	varying flood processes associated with these three main drivers are shown in Figure 1. However,
313	flooding can also arise from three less frequent auxiliary flood drivers, that is (iv) groundwater, (v)
314	damming and dam failure, and (vi) tsunamis. These additional flood drivers are also briefly discussed
315	(Section 3.2). Finally, we also highlight several precursor events and environmental conditions that
316	can influence the magnitude and/or occurrence of flooding (Section 3.3).

317 3.1 Main Drivers of Flooding in Coastal Regions

318	Fluvial flooding (Figure 1a), also known as river (or riverine) flooding is induced by the
319	accumulation of large volumes of rainfall and/or freshwater. Intense precipitation during extreme
320	meteorological events (e.g., TCs/ETCs and atmospheric rivers) and weather seasons (e.g., monsoons)
321	can inundate rivers quickly. Elevated volumes of water cause the level in rivers, creeks, and streams
322	to rise above their channel banks and spill out into the adjacent low-lying area known as the
323	floodplain. Thus, fluvial flooding depends on the hydrometeorological conditions and catchment
324	characteristics (e.g., size, shape, slope, land cover, and soil type). The peak of river flooding can have
325	a time lag of hours to weeks between the rainfall over a catchment and the exceedance of
326	downstream channels (Valle-Levinson et al., 2020). In the spring, fluvial flooding can also be driven
327	by snowmelt (or glacial melt) as large reservoirs of melting freshwater flows into downstream river
328	channels. Freshwater fluvial flooding occurs worldwide but is more frequent in high latitude (e.g.,
329	Canada and Northern Europe) and high elevation (e.g., Hindu Kush and Andes Mountains) regions.
330	Pluvial flooding (Figure 1b) is the result of rapid heavy rainfall (flash flooding) or long sustained
331	rainfall. As the rain reaches the ground, the soil has the potential to become saturated, causing
332	either ponding or surface runoff (overland flooding) that flows down terrain and into rivers (in
333	practice the boundary between pluvial and fluvial flooding is not well defined and is usually based on
334	catchment area rather than physical process). Pluvial flooding is thus closely dependent on surface
335	drainage. Urban flooding is closely linked with pluvial flooding where excessive runoff in areas of
336	human development has insufficient drainage, often due to impervious surfaces such as concrete
337	and asphalt (Gallien et al., 2018). Urban flooding also ties in with sewer and stormwater flooding in
338	which pluvial surface runoff infiltrate waste management infrastructure and exceed system capacity
339	(Archetti et al., 2011; Gallien et al., 2018; Meyers et al., 2021).
340	Coastal flooding (Figure 1c) mainly occurs from one or more combinations of high astronomical
341	tides, storm surge, and wave action (runup, set up, swell, seiche), superimposed on relative mean

342 sea level. Each of these components of total sea level contribute differently to flooding, but we have

343	chosen to group them together for simplicity. Coastal flooding primarily refers to flooding at the
344	interface of land and ocean; however, it is sometimes also used when discussing instances of
345	flooding by these mechanisms (e.g. seiche) along the shoreline of lakes (e.g., Great Lakes). Tides are
346	the regular and predictable rise and fall of the sea level caused by the gravitational attraction and
347	rotation of the Earth, Moon, and Sun. Tides exhibit diurnal, semi-diurnal, or mixed diurnal cycles and
348	experience shifts in amplitude on fortnightly, bimonthly, and interannual timescales. Storm surges
349	are driven by storm events with low atmospheric pressure that cause sea levels to rise, and strong
350	winds that force water towards the coastline. Storms also generate waves, locally or remotely (e.g.,
351	swell), via the interaction of wind on a water's surface due to boundary friction and energy transfer.
352	Waves mostly contribute to enhanced coastal flooding via setup (the increase in mean water level
353	due to the presence of breaking waves) and runup (the maximum vertical extent of wave uprush on
354	a beach or structure). Mean sea level is the average height of the sea after filtering out the short-
355	term variations associated with tides, storm surges, and waves. Increases in relative mean sea level
356	arise as a result of vertical land movements (i.e., isostatic SLR) and changes in ocean volume (i.e.,
357	eustatic SLR) from thermal expansion of water, mass loss from glaciers and polar ice sheets, and
358	changes in terrestrial water storage (Oppenheimer et al., 2019).

359 3.2 Other Drivers of Flooding

In Section 3.1 we considered the three main flood drivers, which most frequently contribute to 360 compound flooding in coastal regions. However, other less frequent drivers can also play an 361 362 important role in compound floods and are briefly summarised below. Groundwater flooding is the 363 rise of the water table to the ground surface or an elevation above human development (Holt, 364 2019). This occurs during an increase in the volume of water entering an underlying aquifer. This can 365 be the result of prolonged rainfall and snowmelt, but in the case of unconfined coastal aquifers can 366 also be driven by SLR and saltwater intrusion (Plane et al., 2019; Befus et al., 2020; Rahimi et al., 367 2020). Groundwater flooding is often observed along shorelines that are equal to or below sea level 368 (Plane et al., 2019; Befus et al., 2020; Rahimi et al., 2020), in regions with high ground-surface

369	connectivity (Jane et al., 2020), and in areas experiencing ground subsidence (downward vertical
370	shift of Earth's surface from processes such as compaction and groundwater extraction) (Rozell,
371	2021). As coastal groundwater flooding is the result of long-term changes, it is slow to dissipate and
372	usually persists longer than floods driven by fluvial and pluvial processes (Rozell, 2021).
373	Damming and dam failure (whether occurring naturally or from anthropogenic activities) can
374	result in flooding from a rapid release or build-up of large volumes of water. Natural damming
375	including beaver dams, ice jams, volcanic dams, morainal dams, and landslide dams can inhibit flow
376	and cause backwater flooding (and even lake formation) (Costa, 1985). Anthropogenic damming is
377	the intentional inundation (via impoundment) of a hydrological network for purposes of resources
378	management (Baxter, 1977). Natural dam failures such as glacial outbursts and landslide dam
379	overtopping can release vast quantities of water that overwhelm and inundate downstream
380	landscapes (Costa, 1985). The failure of human engineered water reservoirs (e.g., dams, levees,
381	dykes, water supply systems) can also cause substantial downstream flooding; often posing a greater
382	threat due to the close proximity to human development (e.g., 2017 Oroville Dam crisis (Koskinas et
383	al., 2019) and 2023 Derna dam collapses (Reliefweb, 2023)).
384	Tsunamis are a series of impulsive waves generated by the sudden displacement of large
385	volumes of water due to undersea earthquakes and landslides, shifts in the tectonic plates, and
386	underwater volcanic eruptions (lotic, 2020). While large magnitude tsunami events occur
387	infrequently compared to other flood drivers, they still have the potential to cause catastrophic
388	flooding in coastal regions. Tsunamis are also unique in their potential to drive coastal flooding at
389	oceanic scales, sometimes spanning multiple countries and continents (e.g., 2004 Indian Ocean
390	Tsunami (Lavigne et al., 2009; Leone et al., 2011) and 2022 Hunga Tonga Tsunami (Manneela and
391	Kumar, 2022; Borrero et al., 2023)).

392 3.3 Precursor Events and Environmental Conditions

393 In addition to the aforementioned six flood drivers, we also bring to attention five important

394 precursor events and environmental conditions that can strongly influence flooding and whether or

395	not it occurs. First, soil moisture conditions commonly exacerbate surface flooding due to reduced
396	drainage capacity during periods of sustained high antecedent soil moisture (Stein et al., 2019).
397	Elevated freshwater volumes from snow and glacial melt may escalate fluvial and groundwater
398	flooding (Melone, 1985; Benestad and Haugen, 2007; Vormoor et al., 2015). Extreme temp/heat
399	have the potential to increase atmospheric water content and thus intensify pluvial and fluvial
400	flooding (Bermúdez et al., 2021). Wildfires can worsen pluvial and fluvial floods by modifying soil
401	properties such that ash deposits and burnt hydrophobic soils cause rapid surface flows and
402	channelization (Bayazıt and Koç, 2022; Jong-Levinger et al., 2022; Xu et al., 2023). Finally, drought is
403	known to potentially intensify pluvial flooding when long term water deficiencies dry out and harden
404	the soil, in turn reducing ground infiltration and causing rapid surface flows (Katwala, 2022). We
405	note that many of these precursors and conditions have partially overlapping influences on flooding
406	as they are inherently interlinked by shared climatic and meteorologic forcings.

407 4) Literature Database Methodology

408	Our third objective is to develop a database of the extensive English-written scientific literature
409	on compound flood research. In this section we describe how the database was compiled, and then
410	we review and discuss the database contents in objectives four (Section 5) and five (Section 6).
411	A combination of systematic review and content analysis were used to collect scientific literature
412	and filter for publications relevant to the scope and themes of this paper. Published journal articles,
413	academic theses, conference proceedings, as well as government and scientific reports up until the
414	end of the year 2022 were sourced using the Web of Science, Semantic Scholar, Google Scholar, and
415	Dimensions AI search engines. Papers were filtered by topic, title, abstract, and full text (when
416	possible) entering different combinations of key search terms as shown in Table 2. Potential valid
417	articles were also identified from the bibliographies of compound flood papers using literature
418	mapping tools, including Connected papers, Citation Gecko, Local Citation Network, Open

419	Knowledge Maps. Research literature was then filtered for relevance based on the set of criteria			
420	defined below.			
421				
422	To be include in our review applicable papers must:			
423	1) focus primarily on compound flooding, and not simply mention it fleetingly in the			
424	abstract or conclusion when in fact addressing univariate flooding;			
425	2) involve multivariate statistical analysis, numerical modelling (hydrological and/or			
426	hydrodynamic), and/or discussion of two or more flood drivers, precursors events, or			
427	environmental conditions, of which at least one being one of the main three flood			
428	drivers (fluvial, pluvial, coastal); and			
429	3) take place in coastal regions, (i.e. near an ocean, sea, inlet, estuary, or lake)			
430				
431	Papers deemed appropriate were added to the literature review database and categorized by:			
432	1) case study geographic scope;			
433	2) case study scenario;			
434	3) flood drivers, precursor events, and/or environmental conditions considered;			
435	4) research approach (numerical modelling, statistical modelling/analysis, or both); and			
436	5) study application (earth system processes, risk assessment, impact assessment,			
437	forecasting, planning and management, and methodological advancement).			
438				
439				
440				
441				
442				
443				

Search Terms
"compound* flood*"
"joint* "flood*"
"coincid* flood*"
"comb* flood*"
"multivariate flood*"
"multi* flood*"
"multi-hazard" AND "flood*"
"cascading" AND "flood*"
"trigger*" AND "flood*"
"concurrent" AND "flood*"
"precondition" AND "flood*"
"antecedent" AND "flood*"
"*connected" AND "flood*"
("cooccur*" OR "co-occurr*") AND "flood*"
("interrelated" OR "interacting") AND "flood*"
("joint probability" OR "joint occurrence") AND "flood*"
("river" OR "discharge") AND ("precipitation" OR "rain") AND "flood*"
("precipitation" OR "rain") AND ("surge" OR "tide" OR "wave") AND "flood*"
("river" OR "discharge") AND ("surge" OR "tide" OR "wave") AND "flood*"
"fluvial" AND "pluvial" AND "flood*"
"fluvial" AND "coastal" AND "flood*"
"pluvial" AND "coastal" AND "flood*"
"fluvial" AND "pluvial" AND "coastal" AND "flood*"

 444
 Table 2. Literature database keywords and Boolean search terms. Asterisks act as multi-character wildcards used to capture

 445
 alternative phrasing of truncated root words (e.g., 'flood*' returns 'flood-s', 'flood-ed', and 'flood-ing')

446

447 To fully clarify the scope of this review, we again emphasize that this review is focused on

448 compound flood literature in coastal (ocean/lake) and estuarine environments. Some may argue

449 that all coastal flooding (or really flooding in general) involves a combination of multiple drivers.

450 While this is not untrue, the majority of historical flood and coastal flood literature has not explicitly

451 focussed on the compounding interactions between the different components of flooding and how

452 those interactions influence flooding as a whole. For this reason, general coastal flood literature that

453 does not explicitly examine the interactions of different flood mechanisms on total flooding is

- 454 excluded. Additionally, while compound flood literature must examine flooding in coastal and
- 455 estuarine regions, it does not necessarily require the consideration of coastal drivers to be included
- 456 (e.g. compound fluvial-pluvial flooding at the coast). Finally, we highlight that historical literature
- 457 that do not use the phrase "compound flood" may still be included as they would have satisfied the
- 458 other keyword search terms listed in Table 2.

459	Keeping in line with the compound event definition framework outlined in Section 2, and the
460	individual flood mechanisms detailed in Section 3, this review recognizes compound flooding as a
461	combination of two or more of the six flood drivers (fluvial, pluvial, coastal, groundwater,
462	damming/dam failure, and tsunami) and five precursor events and environmental conditions (soil
463	moisture, snow, temp/heat, fire, and drought). In this paper, the coastal driver category will
464	encapsulate processes at lake coasts in addition to oceanic coasts, as lakes exhibit wind-driven
465	oscillating waves (seiche) that contribute to compound flooding similarly to oceanic tides and storm-
466	surge. Not considered in the review are studies that assess the cooccurrence or consecutive
467	occurrence of flood characteristics that are not unique to a particular flood driver variable (e.g., flow
468	velocity, flood volume, flood duration, flood intensity, flood depth/height). Additionally, this review
469	does not recognize the confluence or convergence of rivers channels within the same river network
470	as compound flooding. While there is considerable literature on this subject (e.g., Bender et al.
471	(2016)), fluvial-fluvial compounding predominantly occurs inland and therefore is not included
472	within the scope of this paper, which we again emphasize focuses on coastal regions. This review
473	does however recognize compounding of like-type flood drivers in the case of pluvial-pluvial
474	temporal clustering as well as coastal-coastal between different coastal components (e.g., tide-
475	surge, surge-waves, tide-waves).
476	While this review aims to provide an overview of existing research on compound flooding, it is
477	necessary to recognize limitations of the literature review database. Most notably, this review only
478	considers English scientific literature and thus may not fully represent the perspectives and findings
479	of all research communities. Throughout the literature database development process, a small
480	number (<5) of non-English compound flood studies were identified but omitted to preserve
481	consistent methodology. Additionally, the final literature database used in this study is extensive but
482	not exhaustive, as some compound flood literature may have been overlooked or excluded based on
483	the drivers, precursor events, and environmental conditions considered within the review's scope.

- 484 From these literature search and database curation methodologies, we identified a total of 271
- 485 compound flood publications. A detailed overview of the compound flood literature database is
- 486 presented in the Appendix (Table A1).

487 5) Review of Literature Database

488 The fourth objective of the review is to identify and reflect on trends in the characteristics of

- 489 compound flood research. We discuss general bibliometric characteristics of compound flood
- 490 literature including: publications over time (Section 5.1), the geographic scope of compound flood
- 491 case studies (Section 5.2), and the key scientific journals and/or institutions (Section 5.3). We then
- 492 review the flood drivers considered (Section 5.4), the analytical approaches applied in the studies
- 493 (Section 5.4), and their various research applications (Section 5.5).

494 5.1) Publications by Year

495 As mentioned previously, we identified 271 publications on compound flooding up to the end 496 of the year 2022. The number of publications per year, identified in the review, are shown in Figure 497 2. Up until the year 2000 there were very few compound flood studies (16) (Myers, 1970; Ho and 498 Myers, 1975; Prandle and Wolf, 1978; Mantz and Wakeling, 1979; Walden et al., 1982; Loganathan 499 et al., 1987; Chou, 1989; Vongvisessomjai and Rojanakamthorn, 1989; Flick, 1991; Tawn, 1992; 500 Acreman, 1994; Coles and Tawn, 1994; Dixon and Tawn, 1994; Jones, 1998; Coles et al., 1999; 501 Rodríguez et al., 1999), the earliest being published in 1970 (Myers, 1970). Since then, there has 502 been a considerable increase in compound flood related papers. The past three years (2020-2022) in

503 particular has spawned a considerable number of compound flood papers (129), nearly half (48%).

504 5.2) Publications by Geographic Region

505 The number of compound flood related papers, organized by geographical region on which the 506 study focuses, are displayed in Figure 3a, and spatially mapped in Figure 3b. Although there has been 507 increasing focus on the compound nature of flooding, the spatial scope of compound flood research 508 is largely limited to a few geographic regions. Nearly half the publications are directed at compound

- 509 flooding along the US coastlines (110, 40%). The spatial distribution of US-related studies is
- 510 visualized in Figure 3c. Following the US, some of the next most frequently studied regions are the
- 511 UK (35, 13%), China (19, 7.0%), Global (12, 4.4%), Europe (12, 4.4%), Australia (9, 3.3%), the
- 512 Netherlands (8, 3.0%), Canada (7, 2.6%), and Taiwan (7, 2.6%). Additional geographic regions
- 513 assessed in <7 studies are presented in Figure 3a.
- 514 5.3) Publications by Journals and Institutions
- 515 A total of 107 unique scientific journals and institutions (i.e., universities and government agencies)
- 516 have published compound flood research (i.e., articles, reports, and theses). More than half (140,
- 517 52%) of the compound flood literature is published in 15 academic research journals (Figure 4), with
- 518 the top 5 most frequent journals being Natural Hazards and Earth System Sciences (26, 9.6%),
- 519 Journal of Hydrology (15, 5.5%), Hydrology and Earth System Sciences (12, 4.4%), Water Resources
- 520 Research (11, 4.1%), and Water (10, 3.7%). Although a considerable volume of compound flood
- 521 research is published by a select few journals and institutions, a total of 65 journals and institutions
- 522 have only published a single compound flood study. We suspect that this will change in the years to

523 come as the field of compound flood hazards gains further attention.

527 5.4) Review of Flood Drivers Considered

528	Across the 271 studies in the review database, a total of 11 unique compound flood drivers,
529	precursor events, and environmental conditions were identified. These are listed in Table 3 and
530	visualized in Figure 5. Due to the highly complex interactions between terrestrial, oceanic, and
531	atmospheric systems, most studies choose to limit the scope of their research to a select few flood
532	driving mechanisms. For instance, some focus on TC/ETC and extreme precipitation events, while
533	others addressed elevated river discharge in tandem with storm surge. Looking at the combination
534	of drivers analysed, 42 (15%) studies considered exactly the three main components of compound
535	flooding (fluvial, pluvial, coastal); note that analysis of three drivers does not necessarily dictate
536	trivariate analysis (e.g., fluvial-pluvial-coastal), but can also describe two separate bivariate analyses
537	(e.g., fluvial-coastal and pluvial-fluvial) that together include three drivers. The remainder of the
538	studies largely considered combinations of the main drivers (often as bivariate analyses), the most
539	prominent being fluvial-coastal (83, 31%), pluvial-coastal (77, 28%), and coastal-coastal (36, 13%)
540	(e.g., surge and tide) (Figure 5). These results are to be expected as compounding is most prevalent
541	at the coast. Examples of unique and less frequently studied compound flood driver combinations
542	include pluvial-snow (Sui and Koehler, 2001; Mohammadi et al., 2021), pluvial-fire (Cannon et al.,
543	2008; Jong-Levinger et al., 2022), coastal-tsunami (Kowalik and Proshutinsky, 2010; Zhang et al.,
544	2011), pluvial-temp/heat (Benestad and Haugen, 2007), pluvial-drought (Ridder et al., 2020), and
545	fluvial-damming/dam failure (Thieken et al., 2022).
546	
547	
548	
549	
550	
551	

Flood Drivers, Precursors Events, and Environmental Conditions	Number of Studies in which Considered	Other Corresponding Terms & Variables
Coastal	249 (92%)	tide, astronomical tide, storm-tide, surge, storm surge, swell, storm swell, waves, sea surface height, sea level, ocean level, sea water level, total sea level, non-tidal residuals, NTR, H, S, T, W
Pluvial	149 (55%)	precipitation, flash flood, rainfall, rainfall runoff, rainfall anomalies, rainfall extremes, surface runoff, surface inundation, P
Fluvial	141 (52%)	river discharge, riverine discharge, riverine flow, streamflow, streamflow discharge, river level, fluvial discharge, channel discharge, channel flow, Q, R
Groundwater	6 (2.2%)	water table, groundwater level, groundwater head
Soil Moisture	4 (1.5%)	soil saturation, soil moisture extremes, soil moisture anomalies, antecedent soil moisture
Snow	4 (1.5%)	snowmelt, snowfall, glacial melt, freshwater melt
Damming/Dam Failure	2 (0.74%)	dam, levee, barrier, wall, reservoir; dam breach, dam failure, dyke breach, dyke failure, levee breach, levee failure, reservoir breach, reservoir failure
Temp/Heat	2 (0.74%)	temperature extremes, temperature anomalies, extreme heat,
Fire	2 (0.74%)	wildfire
Tsunami	2 (0.74%)	
Drought	1 (0.37%)	

Table 3. List of unique flood drivers, precursor events, and environmental conditions (plus terms and variables) observed in

552 553 compound flood research from the literature review database.

554

556

557

558 5.5) Review of Research Approaches

559 Across the database, the compound flood studies have tended to apply approaches that

560 generally fall into two categories: (1) physical (process-based) numerical modelling, and/or (2)

561 statistical modelling and analysis; similar findings to that of Tilloy et al. (2019). The number of

- 562 studies applying each approach are illustrated in Figure 6. In total, 96 (36%) studies used only
- 563 numerical modelling approaches, 97 (36%) used only statistical approaches, and 76 (28%) studies
- 564 applied hybrid methods involving a combination of numerical and statistical approaches. Within the
- 565 main two approach classes are many different methods for investigating compound floods, each of
- 566 which exhibiting their own benefits and limitations as discussed in Section 6. Lastly, 2 (<1%) studies
- 567 used neither of these approaches, instead completing qualitative survey-based investigations related

- to the perception and understanding of compound flooding by disaster managers and the wider
- 569 public (Curtis et al., 2022; Modrakowski et al., 2022).

570

571

572 5.6) Review of Research Applications

573	Across the database, the compound flood studies have tended to relate to six main application
574	themes, as illustrated in Figure 7. Assessing the individual research application categories
575	nonexclusively, 129 (48%) studies consider Earth System Processes, 127 (47%) Risk Assessment, 12
576	(4.4%) Impact Assessment, 21 (7.7%) Forecasting, 29 (11%) Planning & Management, and 73 (27%)
577	Methodological Advancement (Figure 7). These applications are discussed in more detail in Section
578	6.7. Reflecting on the exclusive multi-classification of applications, the three most common
579	classifications are 'Earth System Processes' (73, 27%), 'Risk Assessment' (49, 18%), and 'Earth System
580	Processes, Risk Assessment' (30, 11%) which together account for over half of the literature
581	database entries (Figure 7). This is to be expected as they are the broadest of application categories,
582	but also the primary objective of most research. Other prominent research application classification

- 583 categories include 'Methodological Advancement' (26, 9.6%); 'Methodological Advancement, Risk
- 584 Assessment' (21, 7.7%); 'Earth System Processes, Methodological Advancement' (18, 6.6%); and
- 585 'Planning & Management, Risk Assessment' (12, 4.4%) (Figure 7).
- 586

587

588 6) Discussion

589	Our fifth objective is to synthesize the key findings (e.g., dependence hotspots and driver
590	dominance), considerations (e.g., uncertainty and climate change), and standard practices (e.g.,
591	application cases and analytical methods) of the compound flood research from across the database.
592	First, we examine the global and regional hotspots of compound flooding, outlining where and when
593	different driver pairs exhibit significant dependence (Section 6.1). Next, we discuss the tendency for
594	certain drivers to dominate the compound flooding process and examine how this changes spatially
595	as influenced by landscape characteristics (Section 6.2). We then consider compound flooding in the
596	context of urban and coastal infrastructure and how these environments are particularly susceptible
597	to the compounding drivers as it is a common consideration throughout the literature (Section 6.3).
598	Next, we assess how climate change is expected to affect the frequency, variability, and severity of

- 599 compound flooding in the future (Section 6.4). Then, we reflect on the different approaches that
- 600 have been used in the literature to analyse compound flooding (Section 6.5). Finally, we investigate
- 601 the range of different applications considered across the literature (Section 6.6).
- 602 6.1) Compound Flood Hotspots and Spatiotemporal Dependence Patterns
- 603 Our review highlights that knowledge of compound flooding hotspots, spatiotemporal patterns,
- 604 and multivariate dependence characteristics has advanced considerably in recent years. However,
- 605 the ways in which global meteorological and climate modulators affect the propensity of compound
- flooding in one region over another is not fully understood, and few studies consider the non-
- 607 stationarity of multivariate flood variable dependence. Nonetheless, large-scale patterns in seasonal
- 608 and interannual occurrence of compound events have become apparent in several regions (Wu et
- 609 al., 2018; Ganguli and Merz, 2019b, a; Ridder et al., 2020; Lai et al., 2021a; Lai et al., 2021b; Camus
- 610 et al., 2022; Stephens and Wu, 2022).

611 Existing compound event literature has identified certain areas around the world that are

- 612 especially prone to compound flooding, namely: Southern Asia, where monsoon floods and cyclones
- 613 cause widespread damage; the Gulf and East Coasts of the United States, where hurricanes induce
- 614 storm surge and heavy rainfall which exacerbate river flooding; global low-lying delta regions (e.g.,
- 615 Ganges, Irrawaddy, Mekong, Mississippi, Rhine, and Pearl) where riverine and coastal waters
- together induce severe flooding; northern and western Europe which are prone to river flooding plus
- 617 extreme precipitation and surge from storm events; and coastal areas of East Asia, Southeast Asia,
- and Oceania, where TCs/ETCs drive joint fluvial and coastal flooding (Apel et al., 2016; Ikeuchi et al.,
- 619 2017; Bevacqua et al., 2020; Couasnon et al., 2020; Eilander et al., 2020; Camus et al., 2021; Lai et
- 620 al., 2021a). Below we further detail the spatiotemporal patterns in compound flooding and driver
- 621 interdependence by region.

North America: The coasts of North America are the most studied in terms of compound
 flooding globally. Compound flooding predominantly occurs along the mid-eastern US coastline and
 the Gulf of Mexico due to TCs/ETCs that generate heavy rainfall and extreme sea levels (Ridder et al.,

650

625	2020; Camus et al., 2021; Najafi et al., 2021; Camus et al., 2022). Joint pluvial-fluvial extremes
626	account for the majority of compound flood events and occur frequently with low return periods
627	(<0.5 year) over the entire contiguous US, but particularly along the coasts (Ridder et al., 2020).
628	Coastal-fluvial drivers too exhibit positive dependence at both coasts(Ridder et al., 2020).
629	Dependence is also measured between flood drivers along Canada's coasts, albeit less frequent
630	relative to the US (Jalili Pirani and Najafi, 2020). Throughout the Great Lakes, consistent significant
631	positive dependence is found between pluvial-coastal drivers. On the east coast, pluvial-fluvial
632	extremes are frequent in late spring and early summer during the Atlantic hurricane season (Ridder
633	et al., 2020; Nasr et al., 2021). This region exhibits strong correlations between pluvial-coastal (Wahl
634	et al., 2015; Lai et al., 2021a) and fluvial-coastal (Moftakhari et al., 2017) drivers (Camus et al., 2021;
635	Nasr et al., 2021). Lastly, the west coast features positive dependence for fluvial-coastal (Ward et al.,
636	2018) and pluvial-coastal (Lai et al., 2021a) pairs during the winter ETC season (Nasr et al., 2021).
637	Central & South America: Current knowledge of compound flood events in Central and South
638	America is lacking due to a void of localized research. Global studies on compound flooding indicate
639	that fluvial-pluvial extremes are the most frequent cause of compound flooding in South America;
640	and largely occur in the eastern half of the continent (particularly Brazil) during austral summer/late
641	autumn (Ridder et al., 2020). Similarly, there is positive dependence between fluvial-coastal flood
642	drivers on the southeast coast of Brazil, with large clustering in the highly populated states of São
643	Paulo and Rio de Janeiro (Ward et al., 2018; Couasnon et al., 2020; Ridder et al., 2020). On the west
644	coast, co-occurring fluvial-coastal extremes are located at the southern portion of Chile in austral
645	summer (Couasnon et al., 2020; Ridder et al., 2020).
646	Europe: Across Europe, large-scale low-pressure systems are a prominent modulator of
647	compound floods (Ridder et al., 2020), with most (~90%)(Camus et al., 2021) events occurring in the
648	winter ETC season (Ridder et al., 2020; Lai et al., 2021a; Camus et al., 2022). The main hotspots of
649	compound flooding are the west coast of the UK, the northwest coast of the Iberian Peninsula,

around the Strait of Gibraltar, coasts along the North Sea, and the eastern portion of the Baltic Sea

651	(Ward et al., 2018; Couasnon et al., 2020; Ridder et al., 2020; Camus et al., 2021). Concomitant
652	pluvial-fluvial and pluvial-coastal extremes are most prominent in western Europe (Couasnon et al.,
653	2020; Ridder et al., 2020; Camus et al., 2021; Lai et al., 2021a). In Ireland and the UK, joint
654	occurrence of high skew surges and high river discharge are more common on the west and
655	southwest coasts compared to the east coast (Svensson and Jones, 2002, 2004; Ward et al., 2018;
656	Hendry et al., 2019; Camus et al., 2021). Pluvial-fluvial drivers also show strong positive correlations
657	in southern Italy, the east coast of Turkey, the eastern Mediterranean, the coasts along the North
658	Sea, and parts of the Baltics. Compound rainfall and river discharge occur primarily in the early
659	summer to late autumn. For fluvial-coastal and pluvial-coastal driver dependence, there are strong
660	correlations along the Iberian coasts, the Strait of Gibraltar, and the UK west coast (Svensson and
661	Jones, 2003; Svensson and Jones, 2004; Ward et al., 2018; Camus et al., 2021; Lai et al., 2021a).
662	Lastly, positive pairwise dependence of temporally compounding pluvial-pluvial ("wet-wet")
663	conditions are prominent along the coastal Mediterranean (De Michele et al., 2020).
664	Africa: Research in Africa is sparse relative to the other continents; however, a few compound
665	flood patterns have been ascertained along the northern, southern, and eastern coasts. Portions of
666	northern Africa show significant positive pluvial-fluvial correlation along the southern
667	Mediterranean and eastern Atlantic coasts including Libya, Tunisia, Algeria, and especially Morocco
668	(Camus et al., 2021). In fact, Morocco has the greatest compound flood potential in northern Africa
669	as it also demonstrates strong dependence for coastal-pluvial (Zellou and Rahali, 2019) and coastal-
670	fluvial extremes (Camus et al., 2021). Analysis of rain gauges across northern Africa also reveals a
671	select few sites in Algeria with pluvial-pluvial ("wet-wet") pairwise dependence (De Michele et al.,
672	2020). In southern and eastern Africa, both South Africa and Mozambique experience compound
673	flooding from seasonal TCs during austral summer (Bischiniotis et al., 2018; Ward et al., 2018;
674	Couasnon et al., 2020; Ridder et al., 2020; Claassen et al., 2023). As a result, this region has strong
675	dependence relationships between the flood driver pairs coastal-fluvial, coastal-pluvial, and pluvial-
676	fluvial (Van Berchum et al., 2020; Eilander et al., 2022a; Kupfer et al., 2022). Lastly, Madagascar has

677	significant positive coastal-fluvial dependence (Couasnon et al., 2020; Ridder et al., 2020) also due to
678	its exposure to TCs (Claassen et al., 2023).
679	Asia: Compound flood spatiotemporal distributions are highly varied throughout Asia but tend
680	to be most frequent in the south, southeast, and east. Strong correlations for fluvial-coastal
681	extremes are seen at the coasts of India and Bangladesh (Bay of Bengal), Indonesia (North Natuna
682	Sea), Vietnam (East Sea), Philippines (West/East Philippine Seas), Malaysia, China, Taiwan, and Japan
683	(Sea of Japan) (Ward et al., 2018; Couasnon et al., 2020; Ridder et al., 2020). Similarly, there is
684	positive dependence for pluvial-fluvial drivers in India, Bangladesh, and Japan (Ridder et al., 2020;
685	Claassen et al., 2023). Co-occurring pluvial-coastal extremes are most prominent in east Asia
686	(particularly China, Taiwan, and Japan)(Lai et al., 2021a; Lai et al., 2021b) and southeast Asia during
687	the wet monsoon season (Lu et al., 2022). Most compound flood events within Asia occur from
688	summer to late autumn, corresponding with the TC/ETC seasonality in the western Pacific.
689	Oceania: Within Oceania, compound flood events have been primarily observed in Australia
690	and to a lesser degree New Zealand. In Australia, the highest frequency of compound flood events is
691	along the northern coastlines (bearing the brunt of TCs (Claassen et al., 2023)) followed by the east
692	and west coasts; all of which predominantly occur during TC season in austral summer. Examining
693	dependence, these patterns are consistent for nearly all flood driver pair combinations, with strong
694	positive correlation in all areas except the southern coast (particularly Victoria) for pluvial-coastal,
695	fluvial-coastal, pluvial-fluvial, (Zheng et al., 2013; Ward et al., 2018; Wu et al., 2018; Couasnon et al.,
696	2020; Ridder et al., 2020; Lai et al., 2021a; Lai et al., 2021b). In New Zealand, compound flood events
697	from pluvial-coastal and fluvial-coastal drivers have been observed as being substantial but are not
698	strongly correlated (Stephens and Wu, 2022). Compound flooding likely affects small Pacific Island
699	Nations; however they have been scarcely studied. To-date, there are only two localized studies
700	(Chou, 1989; Habel et al., 2020) on co-occurring flood extremes for the entirety of Micronesia,
701	Melanesia, and Polynesia. Habel et al. (2020) confirmed the occurrence of coastal-groundwater and

- 702 pluvial-coastal flooding processes in Hawaii, and Chou (1989) quantified the frequency of compound
- flooding from tide and storm surge along Saipan in the Mariana Islands.
- 704 6.2) Dominant Drivers of Compound Flooding
- While compound flood events involve a combination of drivers, often one of the components 705 706 contributes more than the other(s). Understanding how drivers dominate the flooding process and 707 how these change with space and time is essential to improving compound flood forecasting and risk 708 assessment. Most compound flood events highlighted in the literature contain regions that are 709 pluvial-, fluvial-, coastal-, groundwater-, or compound-dominated in nature. Only a handful of 710 studies examine driver dominance at a global scale (Eilander et al., 2020; Lai et al., 2021b), but those 711 that do reveal general patterns that also tend be supported by more localized research. First, 712 estuaries tend to have a mixture of dominant drivers. In a global assessment of 3,433 estuaries, 713 Eilander et al. (2020) classified 19.7% as compound dominant, 69.2% as fluvial dominant, and 7.8% 714 as coastal dominant. Next, coastal-only environments (i.e., coastal areas with little or no river 715 interaction) have a much larger proportion of coastal-dominant compound floods due to the direct 716 proximity of tide-surge processes and wave actions; and groundwater-dominated floods where sea 717 level (and salinity differences) push the water table up. Excluding river processes, Lai et al. (2021b) 718 deduced that coastal (storm surge) and pluvial flooding contributed 65% and 35% to the global 719 change in annual compound floods, respectively. Finally, urban coastal regions are expected to have 720 greater number of pluvial-dominated compound floods. 721 Flood driver dominance can depend on topography and channel morphology (i.e., depth, width, 722 size, shape, volume, slope, friction, and damping) (Eilander et al., 2020; Bermúdez et al., 2021; 723 Tanim and Goharian, 2021; Familkhalili et al., 2022; Harrison et al., 2022), spatial extent (i.e., 724 location within hydrological network and distance to the coast) (Moftakhari et al., 2019; Bermúdez 725 et al., 2021; Del-Rosal-Salido et al., 2021; Huang et al., 2021; Ye et al., 2021; Gori and Lin, 2022; 726 Juárez et al., 2022; Sampurno et al., 2022a; Sebastian, 2022; Zhang and Chen, 2022), elevation 727 (Huang et al., 2021; Liang and Zhou, 2022), ground-surface connectivity (Jane et al., 2020), and

728	meteorologic modulator characteristics (i.e., storm event timing and intensity) (Tanim and Goharian,
729	2021; Gori and Lin, 2022). Pluvial flooding is the least frequently reported dominating driver, and
730	primarily only occurs in areas disconnected from the river network with no fluvial inundation (Apel
731	et al., 2016; Ye et al., 2021; Gori and Lin, 2022) or at higher elevation (Berghuijs et al., 2019; Huang
732	et al., 2021). Pluvial-dominated flooding is also prevalent in urban zones when the capacity of
733	drainage systems is exceeded (Shi et al., 2022), areas with high antecedent soil moisture (e.g.,
734	Europe as a whole) and/or snow (rain-on-snow) (e.g., Scandinavia and northeast Europe) (Berghuijs
735	et al., 2019), and regions with strong connectivity of surface and groundwater networks (Jane et al.,
736	2020). Fluvial processes dominate inland flooding in watershed catchments from channelized
737	freshwater in dynamic hydrological networks. Flooding can also be fluvial-dominant in coastal
738	regions fed by steep mountainous rivers that respond quickly to rainfall and snowmelt (e.g., Zhejiang
739	China) (Liang and Zhou, 2022). Within primarily coastal influenced regions, driver dominance can be
740	further broken down into surge-, wave-, and tide-dominated. Which of the components of extreme
741	sea level is the principal driver varies on continental to regional scale depending on meteorological
742	modulators and characteristics of landmasses.
743	In the case of mixed fluvial and coastal flooding in estuaries and deltas, identifying the
744	dominant driver is more challenging as it varies based on location and channel geomorphology.
745	River-sea interactions are highly dynamic, and the sensitivities of flood components can fluctuate
746	greatly within a single estuary (Harrison et al., 2022). Common methods of classifying regions of
747	driver dominance usually involve using Flow Interaction Indices (Valle-Levinson et al., 2020; Juárez et
748	al., 2022) and Compound Hazard Ratio Indices (Shen et al., 2019; Valle-Levinson et al., 2020; Jalili
749	Pirani and Najafi, 2022; Juárez et al., 2022). As might be expected, most researchers have found that
750	the lower estuary is tide- or surge-dominated, the middle estuary transition zone may be considered
751	compound-dominated, and the upper river region is discharge-dominated (Moftakhari et al., 2019;
752	Bermúdez et al., 2021; Del-Rosal-Salido et al., 2021; Huang et al., 2021; Ye et al., 2021; Gori and Lin,
753	2022; Juárez et al., 2022; Qiu et al., 2022; Sampurno et al., 2022a; Sebastian, 2022; Zhang and Chen,

754	2022). General patterns of driver dominance are different across estuaries depending on the
755	properties of watershed drainage basins (i.e., topography and morphology) and behaviour of storm
756	events (i.e., path, orientation, intensity, duration, and time lag between drivers). Numerous studies
757	map out regions dominated by each of the different flood drivers (Chen et al., 2010; De Bruijn et al.,
758	2014; Gori et al., 2020b; Bilskie et al., 2021; Del-Rosal-Salido et al., 2021; Maymandi et al., 2022),
759	often zoned as coastal, hydrological (fluvial and/or pluvial), or transition/compound (combined
760	drivers determine the max water levels) based on numerical model simulations using different
761	scenarios. The exact scenario definitions however often vary between studies making it difficult to
762	compare results. Compound-dominant floods usually have greater surge extremes and quicker
763	discharge due in part to flatter topography (Eilander et al., 2022b). Large rivers are usually fluvial-
764	dominant, while smaller and less connected rivers are more likely to be influenced by precipitation
765	at the coast (Bevacqua et al., 2020). Similarly, increasing channel depth reduces the impact of fluvial
766	processes while amplifying the effect of coastal drivers on total water level (Familkhalili et al., 2022) .
767	Therefore, channel deepening pushes the compound-dominated region further upstream and
768	shortens the length of fluvial-dominated estuary. Flood dominance can also be significantly affected
769	by the magnitude and severity of storm events such that a single location can be dominated by
770	different drivers from different return period storms. Gori et al. (2022) observed surge-dominated
771	flooding at the coast for low return period events, but compound-dominated flooding for high (100-
772	year) return periods.
773	Fewer studies have examined the role of timing on flood driver dominance. In the case of
774	TC/ETC events there is a time lag such that it can be hypothesized that coastal areas are first
775	inundated by storm-tide followed by river discharge from upstream rainfall. Thus, at the beginning
776	of storm events flooding is likely coastal (and/or pluvial) dominated and later switches to being
777	compound dominated and then finally fluvial (and/or pluvial) dominated. For instance, the 1991
778	cyclone that hit Chittagong Bangladesh had a 5-hour difference between peak surge and peak
779	rainfall (Tanim and Goharian, 2021). As a result, the flooding began as coastal-dominated and then

780	shifted towards being pluvial-dominated. The importance of timing may also fluctuate depending on
781	the size of the water bodies in question. Dykstra and Dzwonkowski (2021) found that slowing of river
782	propagation in larger watersheds (>5000 km ²) led to a greater time lag between storm surge and
783	river discharge, indicating greater risk of fluvial-coastal compounding in smaller watersheds where
784	discharge travels downstream faster. Likewise, differences observed in the UK's Humber and Dyfi
785	estuaries explain why maximum flood depth from fluvial-coastal compounding is less sensitive to
786	timing in the case of a larger estuary (Humber) subject to slow river discharge, compared with short
787	intense discharge in a smaller estuary (Dyfi) (Harrison et al., 2022).
788	6.3) Urban and Coastal Infrastructure
788 789	6.3) Urban and Coastal Infrastructure Urban areas are identified in the literature database to be especially vulnerable to compound
788 789 790	6.3) Urban and Coastal Infrastructure Urban areas are identified in the literature database to be especially vulnerable to compound flooding, as the built environment can exacerbate the effects of flooding, and the concentration of
788 789 790 791	 6.3) Urban and Coastal Infrastructure Urban areas are identified in the literature database to be especially vulnerable to compound flooding, as the built environment can exacerbate the effects of flooding, and the concentration of people and infrastructure can lead to significant losses. In the coastal environment, hazard
788 789 790 791 792	6.3) Urban and Coastal Infrastructure Urban areas are identified in the literature database to be especially vulnerable to compound flooding, as the built environment can exacerbate the effects of flooding, and the concentration of people and infrastructure can lead to significant losses. In the coastal environment, hazard modelling and risk assessment practices regularly consider the influence of flood defence structure
788 789 790 791 792 793	6.3) Urban and Coastal Infrastructure Urban areas are identified in the literature database to be especially vulnerable to compound flooding, as the built environment can exacerbate the effects of flooding, and the concentration of people and infrastructure can lead to significant losses. In the coastal environment, hazard modelling and risk assessment practices regularly consider the influence of flood defence structure (i.e., barriers, sea walls, groynes, breakwaters), however other aspects of human activity (e.g.,
788 789 790 791 792 793 794	6.3) Urban and Coastal Infrastructure Urban areas are identified in the literature database to be especially vulnerable to compound flooding, as the built environment can exacerbate the effects of flooding, and the concentration of people and infrastructure can lead to significant losses. In the coastal environment, hazard modelling and risk assessment practices regularly consider the influence of flood defence structure (i.e., barriers, sea walls, groynes, breakwaters), however other aspects of human activity (e.g., coastal and floodplain development and modification, land use/land cover change) and urban
788 789 790 791 792 793 794 795	6.3) Urban and Coastal Infrastructure Urban areas are identified in the literature database to be especially vulnerable to compound flooding, as the built environment can exacerbate the effects of flooding, and the concentration of people and infrastructure can lead to significant losses. In the coastal environment, hazard modelling and risk assessment practices regularly consider the influence of flood defence structure (i.e., barriers, sea walls, groynes, breakwaters), however other aspects of human activity (e.g., coastal and floodplain development and modification, land use/land cover change) and urban infrastructure (e.g., sewer waste drainage systems, water management reservoirs) receive less

796 attention. Furthermore, existing urban infrastructure planning and risk assessment practices

797 generally do not consider the ramifications of compounding flood drivers and thus underperform or

have greater chance of failure from compound flooding (Archetti et al., 2011; Jasim et al., 2020;

799 Najafi et al., 2021). For instance, in Jasim et al. (2020), coastal earthen levees were simulated to

800 experienced 8.7% and 18.6% reductions in the factor of safety for 2-year and 50-year recurrence

801 intervals under compound pluvial-fluvial flood conditions compared to fluvial-only flooding.

802 Similarly, Khanam et al. (2021) found that FEMA maps significantly underestimate risk at several

- 803 power grid substations in coastal Connecticut by not accounting for compound flood interactions
- 804 This section will discuss the ways in which compound floods influence the performance of urban and

805	coastal infrastructure, and how infrastructure in these settings can either amplify or reduce the risks
806	and impacts of compound floods.
807	It is well established that the risks and impacts of compound flooding can be elevated in coastal
808	and urban settings. Private property and public utilities developed within floodplains and along
809	shorelines are more likely to be exposed to multiple coinciding flood mechanisms. Over the past
810	century, changes in land use/land cover have made the urban environment increasingly susceptible
811	to flooding. Urban areas experience increased precipitation as unstable warm city air masses rise
812	(i.e., urban heat island effect) and then cool, forming rainclouds. This rain falls onto impervious
813	surfaces (i.e., asphalt and concrete) and compacted soils (from construction and agriculture) which
814	prevent surface water from seeping into the ground and percolating down into underlying aquifers
815	(Shahapure et al., 2010). Instead, water finds its way into river channels and urban drainage
816	networks which act as highways and rapidly deliver vast volumes of water to the coast. During TC
817	events, rainfall and river discharge are more likely to temporally overlap with coastal storm surge
818	due to the heightened mobility of water within the urban environment. It is this combination of
819	urban land cover and storm-sewer drainage infrastructure that play a substantial part in amplifying
820	the impacts of urban coastal compound flood (Meyers et al., 2021). It has been well demonstrated
821	that elevated water levels at the coast from storm surge can significantly reduce the rates of urban
822	drainage resulting in more severe flooding (Bunya et al., 2010; Zellou and Rahali, 2019; Shi et al.,
823	2022). Accumulated surface runoff in cities is meant to flow into rivers and ultimately the ocean, but
824	high tides or waves can either block or force this water back inland. It has also been shown that
825	poorly maintained and leaking stormwater drainage systems can cause compound pluvial-
826	groundwater and fluvial-groundwater flooding where seawater travels inland via drainage systems
827	(known as 'drainage backflow' and 'seawater intrusion') and flood areas near (and sometimes far
828	from) the coast (Habel et al., 2020; Qiang et al., 2021; Sangsefidi et al., 2022; Sebastian, 2022).
829	Furthermore, human activity including coastal and riverine modifications (i.e., dredging and
830	straightening) (Muñoz et al., 2022b) in favour of water utilities (e.g., hydroelectric) and

831	transportation (e.g., marine shipping) also may increase the risks and impacts of compound flooding.
832	Changing the morphology of coastal channels as often seen in urban ports, can amplify fluvial-
833	coastal and pluvial-coastal compound flooding due to of reduced dissipation of energy and thus
834	increased extreme peaks. Lastly, urban environments also pose the rare but catastrophic potential of
835	damming/dam failure related compound flooding. For instance, in 2013 a German dyke breach led
836	to a compound pluvial-damming/dam failure flood that affected hundreds of households and caused
837	major damages to transportation infrastructure (Thieken et al., 2022).
838	Urban infrastructure can also reduce the risks and impacts of compound flooding if designed to
839	be resilient and forward looking. Management and policy decisions regarding urban infrastructure
840	investment, maintenance, and outreach can play a large role in shaping compound event risk
841	through the lens of population exposure and vulnerability (Raymond et al., 2020). Well-maintained
842	and operated coastal urban infrastructure from flood defence (e.g., storm surge barriers, sea walls,
843	levees, breakwaters, and groynes) to flow management systems (e.g., dams, stormwater sewers,
844	sump pumps, dry wells) can act to minimize compound flood risk when the dependence of multiple
845	drivers is adequately considered. Furthermore, sustainable urban drainage systems (e.g., swales,
846	infiltration trenches, retention basins, green roofs, and permeable paving)(Eaa, 2017) can reduce the
847	likelihood of compound flooding as they can create a time lag between peak pluvial, groundwater,
848	and coastal processes. Lastly, natural flood management practices (e.g., wetland/floodplain/lake
849	restoration, riverbed material re-naturalisation, river re-meandering)(Eaa, 2017), can also serve to
850	spread out the duration and reduce acute impact of compounding involving fluvial and coastal
851	drivers, advancing the resiliency of urban and coastal environments.
852	6.4) Compound Flooding and Changing Climate

853 Many studies in the database stress that future compound flood risk is likely to increase from changes in the variability, intensity, frequency, phasing, and seasonality of sea level, precipitation, 854 855 river discharge, and temperature driven by climate change (Zscheischler et al., 2020; Harrison et al., 856 2022). Under a changing climate the interrelationships and dependence between variables

857	contributing to compound events are likely to change. These potential changes in dependence give
858	rise to uncertainty around compound flood prevalence. Projected increasing rainfall and TCs/ETCs
859	will pose higher risks of compound flooding in coastal and tropical regions (Zhang et al., 2022). Long-
860	term increases in the frequency of compound coastal river flooding from intensifying precipitation
861	has already been observed throughout the past century (Dykstra and Dzwonkowski, 2021). A
862	warmer atmospheres will bring more frequent and extreme storm events in many parts of the world
863	including Europe and the Mediterranean (Bevacqua et al., 2019). The UK is expected to see
864	increased clustering and intensity of storms (particularly in the winter) such as those seen in
865	2013/14 (Harrison et al., 2022; Jenkins et al., 2023). In North America, coastal regions will be at
866	further risk of compound flooding from changes in rainfall and storm surge (Wahl et al., 2015). A rise
867	in the annual number of compound floods from rainfall and storm surge (1-4 per decade) has
868	already been observed in northern Europe and the US east coast (Lai et al., 2021b). Increasing trends
869	in concurrent extreme precipitation and storm surge events have been observed across most of the
870	world (Lai et al., 2021b). SLR will likely pose the largest threat of compound flooding at the coast
871	(Ganguli et al., 2020; Bermúdez et al., 2021; Ghanbari et al., 2021; Harrison et al., 2022) with global
872	mean sea level projected to increase 0.61-1.10m (RCP8.5) by 2100 (relative to 1986-2005) (Church et
873	al., 2013). This is already drastically affecting island nations in Southeast Asia and the Pacific that are
874	vulnerable to pluvial-coastal flooding from storm events. Furthermore, extreme sea level frequency
875	will "very likely" increase over the century from the compounding of SLR, storm surge, and waves
876	(Oppenheimer et al., 2019). At a global scale (mid-latitudes especially), compound flooding will be
877	increasingly driven by precipitation extremes and atmospheric driven storm surge.
878	In summary, across the studies reviewed, climate change is shown to be having a profound
879	impact on the frequency and severity of compound flooding events (Sebastian, 2022). The
880	combination of heavy precipitation events, SLR, and changes in the frequency and intensity of
881	storms and hurricanes are all contributing to the increased likelihood of these events.

882 6.5) Research Approaches

883	As highlighted in Section 5.4, we identified two main categories of approaches that have been
884	used to assess compound flooding, namely, (1) physical (process-based) numerical modelling; (2)
885	and/or statistical modelling/analysis. In both approach classes we observed a diversity of methods,
886	similarly to the findings of Tilloy et al. (2019). Below, we discuss the use of computational numerical
887	methods for compound flood modelling (Section 6.5.1), then provide an overview of the statistical
888	and data science-based techniques for analysing compound flooding (Section 6.5.2), and finally
889	reflect on the benefits of hybrid (numerical-statistical) approaches (Section 6.5.3).
890	6.5.1) Numerical Modelling
891	Compound flood events are often examined by numerically modelling the physics-based
892	interactions of their processes and mechanisms. Through the simulation of historic and synthetic
893	compound flood events, researchers can develop a better understanding of present and future
894	inundation magnitude and extent. Given the highly complex nature of compound flooding,
895	numerical modelling often requires a combination of hydrological, hydrodynamic, and
896	atmospheric/climate models to represent all earth systems components contributing to compound
897	flooding. A range of different numerical models are used in the literature, as we briefly discuss here.
898	Further information on the hydrological, hydrodynamic, and atmospheric models, frameworks,
899	systems, and toolsets used in the reviewed studies is provided in Table A2.
900	Hydrological models are used to simulate the movement, storage, and transformation of water
901	within the hydrological cycle. These include land-atmosphere water exchange (precipitation and
902	evapotranspiration), flow of water through the landscape (streamflow and rainfall-runoff), and the
903	infiltration of water into the ground (groundwater recharge). Hydrodynamic models use a series of
904	governing equations (e.g. shallow-water equations) to simulate the flow of water in rivers, oceans,
905	estuaries, and coastal areas. Coastal hydrodynamic models replicate the propagation and advection
906	of water based on a combination of tide, surge, and waves. In the realm of compound flooding,
907	hydrodynamic models are vital for simulating the effects of complex river-ocean interactions, storm

908	surge, lake seiche, and flood infrastructure. Atmospheric models simulate various atmospheric
909	processes based on primitive dynamic equations explaining radiation, convection, heat flux, gas
910	exchange, kinematics of air masses, behaviour of water vapor (precipitation and clouds), and
911	land/ocean-atmosphere interactions. In compound flood research, numerical atmospheric modelling
912	is generally used to simulate synthetic or historical storm events (TCs/ETCs) and to generate
913	meteorological inputs (e.g., precipitation, atmospheric pressure, and wind velocity) that force
914	hydrological and hydrodynamic models.
915	Compound flood modelling often involves the use of coupled or linked models. Individually,
916	hydrological and hydrodynamic models are unable to capture the full dynamic interactions between
917	inland and coastal processes (Ye et al., 2020). However, integrating the capabilities of both types of
918	models can serve to better simulate the movement and transformation of water within a particular
919	system as shortcomings of one model can be complemented by the strengths of another. Santiago-
920	Collazo et al. (2019) define four techniques for linking different types of models: one-way coupled;
921	two-way (or loosely) coupled; tightly-coupled; and fully-coupled. One-way coupling involves using
922	the output of one model as the direct input for another model, such that data only transfers in one
923	direction. Alternatively, two-way coupling describes a relationship in which the outputs of both
924	models transfer information to each other iteratively, creating a two-way loop that influences
925	behaviour of both. Tight coupling refers to the integration of two independent models into single
926	model framework at the source code level. A common example of tight-coupling is the ADCIRC-
927	SWAN model. SWAN sends simulated waves to ADCIRC, and ADCIRC sends water levels and wind
928	velocities back to SWAN. Lastly, full coupling is the complete integration of all model components
929	such that physical processes are calculated simultaneously under the same framework using the
930	same governing equations. We observed that most of the existing compound flood indentation
931	modelling implements simple one-way or two-way coupling approaches (Santiago-Collazo et al.,
932	2019; Xu et al., 2022). Fully coupled numerical models are rare in compound flood research, as most

933

934	oceanography).
935	6.5.2) Statistical Approaches and Dependence Analysis
936	Across the studies we have reviewed, a wide variety of statistical-based approaches have been
937	employed to understand trends, patterns, and relationships using observed data, sometimes
938	complemented by physically simulated data. This predominantly involves the use of statistical
939	models as an indirect measure of compound flooding potential to better understand the
940	dependence between different flood drivers and the likelihood of their joint occurrence.
941	There are several broad statistical techniques that are frequently used for compound flood
942	research. Some of the most prominent methods include varying forms of spatial and temporal
943	analysis, regression analysis, extreme value analysis, Bayesian probability, principal component
944	analysis, index analysis, Markov chains, and machine learning (ML). Spatial and temporal analysis
945	investigate correlations, covariance, trends, and patterns in where and when compound flood
946	events occur. This can include identifying compound flood hotspots (Ganguli and Merz, 2019b;
947	Ridder et al., 2020; Camus et al., 2021; Lai et al., 2021b; Camus et al., 2022) and temporal clustering
948	(Haigh et al., 2016; Santos et al., 2017; Camus et al., 2021; Banfi and De Michele, 2022; Manoj J et
949	al., 2022) or examining the underlying spatiotemporal preconditions and interactions of flood
950	components (Camus et al., 2022; Manoj J et al., 2022). Regression analysis involves using statistical
951	functions to identify relationships between independent and dependent flood variables by fitting
952	data to linear and higher order non-linear functions (Zhong et al., 2013; Orton et al., 2015; Van Den
953	Hurk et al., 2015; Serafin et al., 2019; Bermúdez et al., 2021; Ghanbari et al., 2021; Lai et al., 2021b;
954	Meyers et al., 2021; Mohammadi et al., 2021; Robins et al., 2021; Santos et al., 2021b; Zhang et al.,
955	2021b; Jang and Chang, 2022; Sampurno et al., 2022b). Extreme value analysis examines the tail
956	distribution or threshold exceedances of extreme flood variables to better understand joint-
957	probability, uncertainty, and severity (Dixon and Tawn, 1994; Sui and Koehler, 2001; Kew et al.,
958	2013; Orton et al., 2016; Vitousek et al., 2017; Pasquier et al., 2019). Bayesian statistical approaches

models only specialize in one or two earth systems (i.e., meteorology, climatology, hydrology, and

959	can iteratively recalculate the likelihood of an event based on new evidence. Bayesian frameworks
960	are often used to update predictions about compound flood hazards based on new data and to
961	understand the uncertainties associated with these hazards (Orton et al., 2015; Bass and Bedient,
962	2018; Couasnon et al., 2018; Bermúdez et al., 2021; Mohammadi et al., 2021; Steinschneider, 2021;
963	Gori and Lin, 2022; Naseri and Hummel, 2022). Principal component analysis is a method of reducing
964	the dimensionality of data by selecting the most important variables and combining them into a
965	smaller volume of composite variables. In compound flood research this approach can be used to
966	reduce the complexity of compound flood data to identify the key factors contributing to compound
967	flood hazards (Camus et al., 2022). Index analysis is a method of data interpretation in which
968	statistical indices simplify our understanding of the behaviour of multiple variables, a practice
969	commonly used for flood risk and impact analysis (Rueda et al., 2016; Valle-Levinson et al., 2020;
970	Tanir et al., 2021; Huang, 2022; Jalili Pirani and Najafi, 2022; Juárez et al., 2022; Khatun et al., 2022;
971	Preisser et al., 2022; Tao et al., 2022). Compound flood research takes this further using various
972	indices that also consider the synergy of multiple flood drivers (Tanir et al., 2021; Jalili Pirani and
973	Najafi, 2022; Juárez et al., 2022; Khatun et al., 2022; Preisser et al., 2022; Tao et al., 2022; Jalili Pirani
974	and Najafi, 2023). Markov chains use records of past variable states to describe the probability of
975	future states. With this approach, flood variable data such as rainfall and river levels can be fit to
976	stochastic models to simulate the probability of joint extreme states. Additionally, Monte Carlo
977	Markov Chain (MCMC) approaches involving stochastic sampling of variables are sometimes also
978	applied in compound flood research (De Michele et al., 2020; Ganguli et al., 2020; Jong-Levinger et
979	al., 2022; Jalili Pirani and Najafi, 2023). Lastly, in recent years ML models involving varying neural
980	network structures have been trained using compound flood datasets to predict flood extremes or
981	map inundation extents (Karamouz et al., 2014; Bass and Bedient, 2018; Serafin et al., 2019; Muñoz
982	et al., 2021; Santos et al., 2021b; Huang, 2022; Sampurno et al., 2022b).
983	Understanding the dependence of compound flood variables is crucial as it tells us about their

984 joint exceedance probability (Ward et al., 2018; Xu et al., 2022). Failure to investigate driver

985	dependence will lead to an underestimation of flood probabilities. Varying forms of the Joint
986	Probability Method (JPM) (Myers, 1970; Ho and Myers, 1975; Pugh and Vassie, 1980), involving
987	aspects of extreme value analysis, are commonly used to measure potential co-occurrence and
988	dependence between compound flood drivers. Over time the analytical approaches have evolved,
989	but generally involves three main steps for investigating dependence and frequency of cooccurring
990	events. First, the flood variable event sets are sampled. The second step involves a simple calculation
991	of varying correlation coefficients from the driver data. The third step consists of fitting a
992	multivariate distribution function.
993	In preparation of the following steps, flood variables datasets are created by sampling events
994	(according to varying compound scenarios, i.e., AND, OR, Kendall) via block-maxima or threshold-
995	excess (peak-over-threshold, POT) methods. Block maxima sampling selects the maximum events
996	within a given temporal block (annual, seasonal, daily), while the threshold-excess method selects
997	events above a defined 'extreme' threshold value. Next, the correlation coefficient step typically
998	implements different types of rank correlation coefficients and tail coefficients. Correlation
999	coefficients such as Kendall's tau $ au$ and Spearman's $ ho$ can reveal non-linear relationships between
1000	random variables based on their ordinal associations. Alternatively, the lower (λ_L) and upper (λ_U) tail
1001	coefficients help examine dependence between random variables at the extremes of their
1002	distributions. While random variables may appear to show no correlation, the co-movement of their
1003	tails may reveal dependence relationships that only occur at the extremes. The joint probability
1004	distribution is then constructed from the sampled variable event datasets as the probability of all
1005	possible pairs across each input variable. The joint probability distribution thus defines the
1006	probability of two or more simultaneous events, where the variables are at least partially
1007	dependent, and thus influence each other's occurrence.
1008	In recent years copula have also been used to measure dependence, gaining considerable
1009	attention for their ability to simplify the analysis of highly stochastic multivariate processes. A total
1010	of 64 (24%) studies were observed using copula-based methods to assess dependence. Defined in

1011	Sklar's theorem (Sklar, 1959), a copula is multivariate cumulative distribution made by joining or
1012	"coupling" the univariate marginal probability distributions of two or more individual variables. This
1013	can be done using several dependence structures, with common copula families being Elliptical and
1014	Archimedean. In addition to measuring dependence, copulas are used in compound flood research
1015	to assess the non-linear relationships and uncertainties between extreme flood variables (Salvadori
1016	and De Michele, 2004, 2007). By fitting copula functions to multivariate flood data, it is possible to
1017	understand the strength and nature of the dependence between these variables and to predict the
1018	likelihood of compound flood events. To date, the majority of compound flood research involves
1019	bivariate case studies. Nonetheless, several studies have implemented trivariate approaches to
1020	simultaneously analyse three partially dependent variables (Hawkes et al., 2002; Yang and Qian,
1021	2019; Jalili Pirani and Najafi, 2020; Jane et al., 2020; Santos et al., 2021a; Jalili Pirani and Najafi,
1022	2022; Latif and Simonovic, 2022b, a; Ming et al., 2022; Zhang and Chen, 2022; Latif and Simonovic,
1023	2023), and others have taken more complex procedures integrating copulas with MCMC (Sadegh et
1024	al., 2018; Moftakhari et al., 2019; De Michele et al., 2020; Ganguli et al., 2020) and Bayesian network
1025	(Couasnon et al., 2018; Moftakhari et al., 2019; Naseri and Hummel, 2022; Jalili Pirani and Najafi,
1026	2023) approaches. For further detail on copula-based multivariate flood analysis see Latif and
1027	Mustafa (2020).
1028	6.5.3) Hybrid Modelling and Analysis Approaches
1029	Hybrid methods, involving linking numerical and statistical approaches off were commonly
1030	observed throughout the literature database, with around one-third of compound flood studies
1031	employing hybrid techniques (Figure 6). Hybrid approaches can complement each other or focus on
1032	multiple aspects of modelling in a way that would not be possible when using numerical or statistical
1033	approaches in isolation. For example, process-based numerical modelling of compound flood

- 1034 hazards may be ideal for physics-based inundation mapping and floodplain delineation, but can be
- 1035 very computationally expensive (this has pushed development of more computationally efficient
- 1036 models such as SFINCS (Leijnse et al., 2021)). Conversely, simplified statistical models are less

1037	computational expensive, but typically make general assumption about input data that do not fully
1038	consider the physical processes at play. In contrast, hybrid numerical-statistical approaches offer the
1039	benefit of computational efficiency of surrogate statistical modelling while still maintaining a realistic
1040	representation of the physical processes (Serafin et al., 2019). Additionally, numerical modelling can
1041	also be severely inhibited by historical data availability. Hydrodynamic modelling of astronomical
1042	tide and storm surge require atmospheric pressure and wind velocity forcing data, while past river
1043	level and rainfall data is dependent on the presence of in-situ tide and rain gauge monitors. If these
1044	datasets don't exist or have poor spatiotemporal coverage, numerical hydrodynamic models must
1045	rely on reanalysis data. Statistical approaches to compound flood analysis however can sometimes
1046	make do with limited data by interpolating or extrapolating extreme hazard probabilities and
1047	distributions. In the absence of historical data, one solution is to numerically simulate synthetic
1048	events that are physically capable of occurring, albeit not present in short term observations (Serafin
1049	et al., 2019). Many hybrid approach compound flood studies statistically simulate storm events that
1050	drive physical hydrodynamic and hydrological models (Moftakhari et al., 2019; Serafin et al., 2019).

1051 6.6) Research Applications

1052As highlighted in Section 5.5, we identified that six main applications have been the focus of1053most compound flood studies in the database. Discussed in the following order, prominent case1054study applications include earth system processes (Section 6.6.1); risk assessment (Section 6.6.2);1055impact assessment (Section 6.6.3); forecasting (Section 6.6.4); planning and management (Section10566.6.5); and methodological advancement (Section 6.6.6). Note, many of the compound flood studies1057fall into multiple application categories.

1058 6.6.1) Earth System Processes

From the 271 literature database entries, 128 (47%) seek to better understand the processes, interactions, and behaviour of earth systems associated with compound flooding. Research papers within the earth system processes application theme examine a variety of topics including the role of various dynamic earth systems on compound flooding, the environmental and landscape

1063	characteristics influencing flood drivers, the relationships between and relative significance of flood
1064	drivers, and the spatiotemporal distributions and frequency of compound flood events. Many of the
1065	papers discussed in Sections 6.1, 6.2, and 6.5 fall within this application category.
1066	Focusing on flood drivers relationships, there is a plethora of research examining aspects of
1067	spatiotemporal distribution, correlation, covariance, dominance, and dependence structures as
1068	demonstrated in the US (Serafin and Ruggiero, 2014; Nasr et al., 2021; Juárez et al., 2022; Maymandi
1069	et al., 2022), UK (Svensson and Jones, 2002, 2004; Haigh et al., 2016; Santos et al., 2017; Hendry et
1070	al., 2019), Europe (Klerk et al., 2015; Petroliagkis, 2018; Ganguli and Merz, 2019a; Camus et al.,
1071	2021), Australia (Zheng et al., 2013; Zheng et al., 2014; Wu et al., 2018; Wu and Leonard, 2019),
1072	Canada (Jalili Pirani and Najafi, 2020, 2022), China (Qiu et al., 2022; Tao et al., 2022; Zhang and Chen,
1073	2022), South Africa (Kupfer et al., 2022), India (Manoj J et al., 2022), Indonesia (Sampurno et al.,
1074	2022a), New Zealand (Stephens and Wu, 2022), Germany (Sui and Koehler, 2001), and globally
1075	(Ward et al., 2018; Couasnon et al., 2020; Ridder et al., 2020; Lai et al., 2021a). Many have simulated
1076	or projected how climate change (e.g., SLR and storm intensification) are expected to affect the
1077	future compounding interactions of flood drivers (Wahl et al., 2015; Bevacqua et al., 2019; Pasquier
1078	et al., 2019; Ganguli et al., 2020; Bermúdez et al., 2021; Ghanbari et al., 2021).
1079	There is also notable insight into the large-scale meteorological and climatological modulators
1080	and underlying earth systems influencing the nature of compound flooding and behaviour of flood
1081	drivers. For instance, Camus et al. (2022), Hendry et al. (2019), and Rueda et al. (2016) identify the
1082	meteorological conditions associated with the compound occurrence of extreme flood drivers in the
1083	North Atlantic, the UK, and Spain respectively. Gori et al. (2020a) and Gori et al. (2020b) determine
1084	the type of TC events likely to cause compound pluvial-coastal flooding in North Carolina. Stephens
1085	and Wu (2022) identify the weather types corresponding with both univariate and coincident pluvial,
1086	fluvial, and coastal extremes in New Zealand. Furthermore, Wu and Leonard (2019) demonstrate
1087	how ENSO climate forcings impact the dependence between rainfall and storm surge extremes.

1088	Other common focuses of earth system processes themed literature include characterizing the
1089	physical mechanics and environmental properties that shape the ways in which flood drivers
1090	interact. Several papers including Vongvisessomjai and Rojanakamthorn (1989), Poulos et al. (2022),
1091	and Pietrafesa et al. (2019) evaluate the timing and mechanisms behind downstream blocking and
1092	dampening that often explain fluvial-coastal flooding. Similarly, Maymandi et al. (2022) measure the
1093	timing, extent, and intensity of storm surge, river discharge, and rainfall components to understand
1094	their relative importance. Likewise, Tanim and Goharian (2021) observe how changes in tidal phase
1095	alter the depth and duration of urban compound pluvial-coastal flooding. Harrison et al. (2022) and
1096	Helaire et al. (2020) measure how estuary characteristics (e.g., shape, size, width) influence fluvial-
1097	coastal dynamics. Wolf (2009) consider how wind-stress, bottom friction, depth, bathymetry, and
1098	ocean current refraction change co-occurring surge and wave extremes (coastal-coastal). Torres et
1099	al. (2015) and Gori et al. (2020b) examine the influence of hurricane landfall location, angle of
1100	approach, and forward speed on compound rainfall-runoff and storm surge flooding (pluvial-
1101	coastal). Tao et al. (2022) explore compound fluvial-pluvial flood scenarios involving upstream and
1102	downstream water levels, and how intensity, timing, duration, and dependence change based on
1103	synoptic and topographic conditions.
1104	Lastly, while the occurrence of compound flooding is well recognized in coastal, estuary, and
1105	delta environments, we note that emerging research has enhanced the understanding of compound
1106	flood processes in the context of coastal lake environments (Saharia et al., 2021; Steinschneider,
1107	2021; Banfi and De Michele, 2022; Jalili Pirani and Najafi, 2022). For example, Banfi and De Michele
1108	(2022) determine that flooding of Italy's Lake Como is primarily (70%) from temporal compounding
1109	of rainfall (pluvial-pluvial). In Lake Erie, Saharia et al. (2021) analyses compound flooding involving
1110	river flow and lake seiche (fluvial-coastal), showing for the first time how seiches can combine with
1111	hydrological processes to exacerbate flooding. Finally, along Lake Ontario, Steinschneider (2021)
1112	quantified the compounding nature and variability of storm surge and total water level (coastal-
1113	coastal).

1114	6.6.2) Risk Assessment
1115	The overarching goal of most compound flood research is to better understand risk, hence why
1116	127 (46%) studies involve aspects of risk assessment. As defined by the UNDRR (2016), risk
1117	assessment is an approach for determining the state of risk posed by a potential hazard taking into
1118	account conditions of exposure and vulnerability. Risk assessment inherently plays a key role in
1119	several of the reviews' other research application categories including hazard planning and
1120	management as well as impact assessment.
1121	As the field of compound event sciences advances, it has become increasingly clear that
1122	conventional univariate analysis cannot accurately capture the synergistic and non-linear risk of
1123	compound processes (Kappes et al., 2010; Leonard et al., 2014; Eshrati et al., 2015; Zscheischler and
1124	Seneviratne, 2017; Sadegh et al., 2018; Zscheischler et al., 2018; Ridder et al., 2020). A plethora of
1125	studies have concluded that traditional hazard analysis, in which flood variables dependence and
1126	synergy is not considered, underestimate the risk of compound extremes (Bevacqua et al., 2017;
1127	Bilskie and Hagen, 2018; Kumbier et al., 2018; Hendry et al., 2019; Huang et al., 2021; Eilander et al.,
1128	2022b). Jang and Chang (2022) determine that by not considering the multivariate nature of pluvial-
1129	coastal flooding, Taiwan's flood risk would be severely misestimated causing incorrect warning
1130	alarms and inadequate protection. Khalil et al. (2022) assert that failing to consider the interactions
1131	of multiple flood drivers would reduce flood levels by 0.62m and 0.12m in Jidalee and Brisbane.
1132	Similarly, Santos et al. (2021a) measured 15-35cm higher water levels for 1% annual exceedance
1133	probability events when considering dependence for trivariate fluvial-pluvial-coastal flooding in
1134	Sabine Lake, Texas.
1135	There is a diversity of topics within the risk-themed compound flood literature, but many
1136	papers involve simple regional case studies or framework proposals (Najafi et al., 2021; Ming et al.,
1137	2022; Naseri and Hummel, 2022; Peña et al., 2022). Čepienė et al. (2022) examine risk associated
1138	with combined fluvial-coastal flooding and how it will change with SLR at the port city of Klaipėda.
1139	Bischiniotis et al. (2018) assess the influence of antecedent soil moisture on flood risk in sub-Saharan

1140	Africa, showing that precipitation alone cannot explain flood occurrence. Along the coasts of
1141	Mozambique, Eilander et al. (2022a) demonstrate a globally applicable compound flood risk
1142	framework and Van Berchum et al. (2020) present the novel Flood Risk Reduction Evaluation and
1143	Screening (FLORES) model. Bass and Bedient (2018) create joint pluvial-coastal flooding probabilistic
1144	risk models built upon TC risk products in Texas. A few studies examine the risk of Potential Loss of
1145	Life (PLL) such as De Bruijn et al. (2014) who present a Monte Carlo-based analysis framework for
1146	fluvial-coastal interactions in the Rhine-Meuse delta.
1147	6.6.3) Impact Assessment
1148	Impact assessment is the least common compound flood application with only 12 (4%) relevant
1149	studies. This may be because flood impact assessments have historically only been designed to
1150	address a single type of flooding at a time (Láng-Ritter et al., 2022). Additionally, flood loss modelling
1151	has largely targeted riverine floods, with less attention given to pluvial, coastal, or groundwater
1152	drivers (Mohor et al., 2020). This is slowly changing, and in recent years a small portion of research
1153	has been dedicated to analysing the impacts of compound flood events (Habel et al., 2020; Mohor et
1154	al., 2020; Tanir et al., 2021; Láng-Ritter et al., 2022; Preisser et al., 2022). Impact assessment differs
1155	from risk assessment in that it looks at the realized or impending outcomes of flood events rather
1156	than simply the event likelihood as a product of exposure and vulnerability. This involves identifying
1157	and analysing the physical (e.g., building and infrastructure damage), social (e.g., loss of essential
1158	services, household displacement, and community cohesion), and economic (e.g., loss of income,
1159	damage to business and industry, and disruption of transportation and supply chain) impacts of
1160	flooding.
1161	Physical parameters for quantifying the empirical impact of flooding in an affected area can
1162	include water depth, flow velocity, inundation duration, water quality (contamination), land
1163	use/land cover change, and infrastructure damage. For example, Habel et al. (2020) look at the
1164	influence of compound floods and SLR on urban infrastructure and identify the roadways, drainage
1165	inlets, and cesspools that would fail under compound extreme conditions.

1166	Social and economic flood impacts are routinely measured using multifaceted indices and
1167	damage models. Preisser et al. (2022) and Tanir et al. (2021) assessed impacts of compound flooding
1168	with SVI (Social Vulnerability Index; 42 variables) and SOVI (Socio-Economic Vulnerability Index; 41
1169	variables) respectively. Karamouz et al. (2017) apply a flood damage estimator (FDE) model to
1170	quantify pluvial-coastal flood damages to buildings structures in New York City. Similarly, Ming et al.
1171	(2022) calculate the average annual loss in value of residential buildings in the Thames River
1172	catchment from compound flooding. Lastly, Thieken et al. (2022) assessed the differing impacts and
1173	coping abilities (financial damage, psychological burden, and recovery) of residents following
1174	compound river-dyke breach (fluvial-damming/dam failure) and flash flood-surface saturation
1175	(pluvial-soil moisture) events.
1176	6.6.4) Forecasting
1177	A total of 21 (8%) compound flood studies in the database focus on flood forecasting. Flood
1178	forecasts are valuable emergency management tools that provide information on location, timing,
1179	magnitude, and potential impact of impending flood scenarios (Merz et al., 2020). Together with
1180	monitoring and prediction, forecasts guide time sensitive early warning systems and disaster
1181	reduction strategies to help communities prepare for and respond to flooding. As compound event-
1182	based perspectives gain traction, there has been emerging development of flood forecast models
1183	that consider the compound interaction of multiple drivers.
1184	Several studies have demonstrated the capabilities of integrated near-real-time observation-
1185	based hydrological river and hydrodynamic coastal flood models forced by already established
1186	meteorological forecasting systems (Stamey et al., 2007; Mashriqui et al., 2010; Park et al., 2011;
1187	Blanton et al., 2012; Dresback et al., 2013; Mashriqui et al., 2014; Blanton et al., 2018; Tehranirad et
1188	al., 2020; Cifelli et al., 2021). For instance, the fluvial-coastal flood forecasting system Hydro-CoSMoS
1189	detailed in Tehranirad et al. (2020) can predict tidal river interactions in San Francisco Bay. Over the
1190	Korean peninsula, Park et al. (2011) design a model for real-time water level forecasting of pluvial-
1191	coastal inundation such as seen during Typhon Maemi.

1192	Much of the existing compound flood forecasting research has focused on advances in the
1193	development of monitoring and early warning systems for the US East Coast and Gulf of Mexico.
1194	Blanton et al. (2012) feature development of the North Carolina Forecasting System (NCFS) which
1195	predicts fluvial-pluvial-coastal flood variables. Van Cooten et al. (2011) showcase the Coastal and
1196	Inland Flooding Observation and Warning (CI-FLOW) Project's 7-day total water levels forecasts and
1197	potential for near-real-time fluvial-pluvial-coastal flood prediction. Dresback et al. (2013) develop
1198	the coupled hydrological-hydrodynamic model ASGS-STORM for forecasting joint fluvial-coastal
1199	inundation. Multiple studies also concentrate on flood forecasting in the Chesapeake Bay and tidally-
1200	influenced Potomac River . Stamey et al. (2007) introduce the Chesapeake Bay Inundation Prediction
1201	System (CIPS), a prototype operational flood forecasting system for TC/ETC storm system induced
1202	fluvial-coastal flooding. This is followed by Mashriqui et al. (2010) and Mashriqui et al. (2014) who
1203	build a River-Estuary-Ocean (REO) forecast system to fill gaps in existing operational models.
1204	Accurate forecast products are crucial to effective emergency management practices and
1205	reliable early warning systems. Ensemble modelling has been implemented in two compound
1206	forecasting studies as a means of minimizing uncertainty. Blanton et al. (2018) develop a hurricane
1207	ensemble hazard prediction framework and demonstrate the ability to forecast pluvial-coastal
1208	flooding with a 7-day lead simulation of Hurricane Isabel. Similarly, Saleh et al. (2017) showcase a 4-
1209	day advance operational ensemble forecasting framework for fluvial-coastal flooding in Newark Bay
1210	during Hurricanes Irene and Sandy.
1211	A number of studies have also investigated the use-case of ML for forecasting compound
1212	flooding (Bass and Bedient, 2018; Huang, 2022; Sampurno et al., 2022b) For instance, Sampurno et
1213	al. (2022b) use a combined hydrodynamic and ML approach to forecast fluvial-pluvial-coastal
1214	flooding in Indonesia's Kapuas River delta. Bass and Bedient (2018) take peak inundation levels from
1215	a coupled hydrological-hydrodynamic model results to train an Artificial Neural Network (ANN) and
1216	Kriging ML model for rapid forecasting of TC-driven pluvial-coastal extremes in Houston, Texas as a
1217	result of Hurricanes Allison and Ike. Finally, Huang (2022) constructs a Recurrent Neural Network

1218 (RNN) model that considers downstream geomorphological and hydrological characteristics to 1219 predict joint pluvial-coastal flooding in Taiwan. 1220 6.6.5) Planning and Management 1221 Within the literature database there are 29 (11%) papers that focus on different aspects of 1222 flood management from emergency response planning to risk mitigation strategies. The Undrr 1223 (2016) define disaster management as the organization, planning, and application of measures for 1224 disaster response and recovery. Subsequently, disaster risk management is described as the use of 1225 disaster risk reduction strategies and policies to prevent, reduce, and manage risk (Undrr, 2016). 1226 Flood management strategies might involve identifying areas for prioritized flood protection and 1227 building risk reduction structures such as building levees, dykes, barriers, and sea walls; or enacting 1228 changes in land use planning and zoning policy to minimize habitation and activity in floodplains. 1229 Flood defence and water management structures have long been in use; however these 1230 features have predominantly been designed for responding to a single flood driver (e.g., storm surge) (Sebastian, 2022). Several studies examine the effectiveness of flood defence structures 1231 1232 protecting against compound events. Christian et al. (2015) investigate the feasibility of a proposed storm surge barrier for mitigating pluvial-coastal flooding in the Houston Shipping Channel. Findings 1233 1234 on the magnitude of reductions in surface height and floodplain area help guide project 1235 development decision making by coastal and port authorities. Del-Rosal-Salido et al. (2021) develop 1236 management maps to support decision making and long-term climate and SLR adaptation planning 1237 in Spain's Guadalete estuary, identifying sites for potential flood barriers. 1238 During extreme flood events, unpredictable impacts to utility and transportation infrastructure 1239 can exacerbate loss. Thus, another key component of flood management is flexible emergency 1240 response planning. Several articles address these elements of response planning, identify evacuation 1241 areas, routes, and emergency shelters in the event of compound flooding. In their analysis of urban 1242 infrastructure failure from compound flooding in Hawaii, Habel et al. (2020) locate road networks 1243 and urban spaces that are likely to be impassable and estimate the effects of traffic on resident

1244	evacuation. In the event of Typhon landfall in the Korean peninsula, Park et al. (2011) design an early
1245	warning system for pluvial-coastal flooding that supports decision making and response from local
1246	officials by identifying areas to evacuate. Blanton et al. (2018) also address emergency planning,
1247	developing a hurricane-driven inundation evacuation model that dynamically accounts for
1248	interactions of compound drivers.
1249	Effective communication and outreach are additional critical components of flood hazard
1250	planning and mitigation. This includes educating the public about the types and considerations of
1251	flooding, collaborating with hazard managers and policy makers to address challenges in flood
1252	management, and timely dissemination of information on flood risk, evacuation routes, and
1253	emergency shelters. In a unique narrative paper, Curtis et al. (2022) interview emergency managers
1254	and planners on compound flood risk perceptions and challenges and reveal inadequacies in
1255	communication mediums and the ability to convey compound flood severity to the public. Similarly,
1256	Thieken et al. (2022) survey German residents affected by two compound flood events on their
1257	understanding of compounding drivers and the communication medium through which they learned
1258	about the events. Modrakowski et al. (2022) centres on the use of precautionary risk management
1259	strategies in the Netherlands, and how perception of compound flood events in-part shapes the
1260	flood management practices of local authorities. Interestingly, both Curtis et al. (2022) and Thieken
1261	et al. (2022) discovered a greater perception of risk from fluvial and coastal dominant flooding as
1262	opposed to pluvial inundation. Conversely, Modrakowski et al. (2022) found that pluvial flooding
1263	(specifically heavy rainfall from cloudbursts) had a larger perceived risk, being equal if not greater
1264	than fluvial and coastal. These findings on compound flood communication and perception help
1265	hazard managers determine how to approach emergency response and risk mitigation planning.
1266	6.6.6) Methodological Advancement
1267	The third most common application category is methodological advancement with 73 (27%) of
1268	the 271 studies aimed at testing and developing methodologies for research on compound floods.
1269	Methodological advancement is a broad application category, but most often describes research

1270	studies that investigate either new setups and frameworks for running numerical model simulations,
1271	or novel statistical modelling and analysis techniques for quantifying the likelihood of compounding
1272	extremes or behaviour of interacting drivers. Papers classified as methodological advancement seek
1273	to better understand and showcase the feasibility, development, and/or performance of compound
1274	flood research methods. Here forward see Table A2 for full model names and descriptions.
1275	In relation to advancements in numerical-based methodologies, many papers explicitly state
1276	their primary research objective is the development of a compound flood modelling system itself,
1277	such as Chen and Liu (2014) and Lee et al. (2019), who test whether their respective SELFE and HEC-
1278	HMS + Delft3D-FLOW model frameworks can sufficiently replicate the fluvial-coastal flood conditions
1279	observed during historical storm events. Bates et al. (2021) showcase a sophisticated 30m resolution
1280	large-scale LISFLOOD-FP centric model of the contiguous US that incorporates pluvial, fluvial, and
1281	coastal processes under the same methodological framework. Numerous papers focus on assessing
1282	the performance of specific computational software applications for simulating compound flooding.
1283	These primarily seek to provide insight for future development and use case application. For
1284	instance, Bush et al. (2022) examine the benefits and drawbacks between ADCIRC and combined
1285	ADCIRC + HEC-RAS simulations of fluvial-coastal flooding. Bilskie et al. (2021) demonstrate a new
1286	approach for delineating coastal floodplains and simulating water level using ADCIRCs "rain-on-
1287	mesh" modules forced by antecedent rainfall, TC-driven rainfall, and storm surge. Ye et al. (2020)
1288	use SCHISM to develop a 3D model that incorporate the baroclinic effects of storm surge and
1289	compare its performance against 3D barotropic and 2D models alternatives. Numerous studies
1290	incorporate sensitivity assessments, experimenting with model parameters and settings, and
1291	examining how they influence performance and uncertainty (Mcinnes et al., 2002; Brown et al.,
1292	2007; Orton et al., 2012; Olbert et al., 2017; Silva-Araya et al., 2018; Leijnse et al., 2021; Khalil et al.,
1293	2022; Lyddon et al., 2022). For example, Khalil et al. (2022) investigate how model mesh resolution
1294	affects flood discharge rates, revealing that finer meshes best replicate peak flows. Some studies
1295	introduce newly developed numerical models, such as Olbert et al. (2017), who present the first

1296	instance of a dynamically linked and nested POM + MSN_Flood framework for fluvial-pluvial-coastal
1297	flooding. Others focus on the computational efficiency of compound flood frameworks, for instance
1298	Leijnse et al. (2021) assess the reduced-physical solver SFINCS's ability to accurately simulate fluvial-
1299	pluvial-coastal interactions with less computational resources.
1300	Many of the literature database studies showcase innovations in statistical approaches to
1301	compound flood research. Sampurno et al. (2022b) assess the operational viability and performance
1302	of three ML algorithms for compound flood forecasting system. Similarly, Muñoz et al. (2021)
1303	examine the capability of ML and data fusion-based approaches for post-event mapping of
1304	compound floods from satellite imagery. Muñoz et al. (2022a) demonstrate techniques for
1305	employing data assimilation to reduce uncertainty in compound flood modelling. Wu et al. (2021)
1306	experiment with three methods of compound flood frequency analysis and discuss the advantages
1307	and disadvantages of each approach. Phillips et al. (2022) examine combinations of varying copula
1308	structure and statistical fitting frameworks to further approaches for measuring driver dependence.
1309	Thompson and Frazier (2014) test out different means of deterministic and probabilistic modelling
1310	for quantifying compound flood risk. Lastly, some studies expand on existing methodologies to
1311	overcome known limitations, such as Gouldby et al. (2017) who develop a method of full
1312	multivariate probability analysis that overcomes drawbacks of the prevalent joint probability
1313	contours (JPC) method by directly quantifying response variable extremes.
1314	7) Knowledge Gaps and Improvements for Future Research
1315	Our final objective is to reflect on the knowledge gaps in compound flood research and suggest
1316	potential directions for research going forward. Based on our detailed review we have five main
1317	recommendations moving forward, as follows:
1318	Recommendation 1 - Adopt consistent definitions, terminology, and approaches: Definitions
1319	and use-cases of compound event, compound hazard, multi-hazard, and associated terminology
1320	(Table 1) are highly inconsistent throughout the literature (Kappes et al., 2012; Gallina et al., 2016;
1321	Tilloy et al., 2019). This is well recognized in Tilloy et al. (2019), who refer to the variety of terms as a
	61

1322	"fragmentation of [the] literature." Similarly, Pescaroli and Alexander (2018) draw attention to
1323	trends in "superficial" and "ambiguous" use of hazard terms by academics and practitioners. This
1324	tendency to use differing concepts synonymously is blurring the state of compound flood research
1325	(something we observed ourselves while completing this review). They warn of potential confusion
1326	and duplication of research as a result of overlapping definitions. In summary, compound event and
1327	related terms have a wide range of overlapping and interlinked definitions, and there is a
1328	considerable need for clarity. Recent preliminary efforts by the collaborative MYRIAD-EU project to
1329	develop a multi-hazard and multi-risk definitions handbook appear promising for fostering a
1330	common understanding of hazard concepts across disciplines (Gill et al., 2020).
1331	Recommendation 2 - Expand the geographic coverage of research: Geographically, much of
1332	the existing compound flood research is too narrowly focused on a select few regions (i.e., North
1333	America, Europe, Southeast Asia, UK, China, the Netherlands, Australia) (Figure 3b). To date there
1334	are no English-language studies, to our knowledge, on compound flooding in any parts of South
1335	America, Central America, or the Middle East. South America regularly experiences catastrophic
1336	flooding from both long-term heavy rainfall and extreme river discharge (e.g., 2015/16 (Reliefweb,
1337	2016) and 2016/17 (Reliefweb, 2017) South American floods), however existing research in these
1338	regions has not considered their combined interactions. Furthermore, there are very few compound
1339	flood papers within the African subcontinent (Bischiniotis et al., 2018; De Michele et al., 2020; Van
1340	Berchum et al., 2020; Kupfer et al., 2022) (a region deserving of greater attention given the
1341	projected extreme coastal hazard exposure as a result of SLR, population growth, and coastal
1342	urbanization (Neumann et al., 2015)) due to a lack of data. Thus, for much of the world, knowledge
1343	on the interactions and dependence of flood variables is missing. Future compound flood research
1344	must be dedicated to improving our understanding of these neglected regions and developing
1345	methodologies for assessing compound flooding in data sparse areas.
1346	Recommendation 3 - Pursue more inter-comparison and collaborative compound flood

1347 projects: Current methodologies for analysing compound flooding are highly diverse, inhibiting

1348	quantitative comparisons between studies. Considerable subjectivity is observed in compound event
1349	mechanism and variable selection, temporal and spatial bounds, hazard scenario design, conditional
1350	and joint probability, and dependence measurement (Zscheischler et al., 2020). Standard
1351	approaches for compound flood risk analysis have yet to be established (Kappes et al., 2012;
1352	Sebastian, 2022). Furthermore, methods for analysing compound events vary across scientific
1353	communities (Pietrafesa et al., 2019; Tilloy et al., 2019). Discussions between emergency manager
1354	and stakeholder have revealed the leading barrier to the use of multi-hazard and multi-risk
1355	approaches was a lack of common methodologies and data (Komendantova et al., 2014). Further
1356	highlighting this point, Tilloy et al. (2019) identified a staggering 79 unique uses of 19 different
1357	methods for analysing compound events. There is a substantial need for a standardized framework
1358	that addresses assorted analytical methods and considerations (Sebastian, 2022) including flood
1359	variable choice and pairing, flood threshold definition, case study hazard design, spatiotemporal
1360	scales and resolutions, statistical model assumptions, and numerical parameter choice. Future water
1361	management practices and coastal hazard mitigation strategies must better reflect the perspectives
1362	of compound events. To aid this we would recommend that the community create a compound
1363	flood inter-comparison project, similar to that set up for the wave and coastal modelling
1364	communities (i.e., COWCLIP (Hemer et al., 2010) and CoastMIP (Hinkel et al., 2014)).
1365	Recommendation 4 - Develop modelling frameworks that holistically represent dynamic
1366	earth systems: While there have been substantial advancements in compound flood research over
1367	the past decade, the overall ability to identify, model, quantify, and forecast compound flood events
1368	remains a substantial challenge. These difficulties stem from the highly complex and chaotic nature
1369	of hydrological, meteorological, and oceanographic systems (Sebastian, 2022). Connections between
1370	flood modulators and drivers are spatiotemporally dynamic, and how those relationships are
1371	affected by the changing climate is uncertain and everchanging. Stand-alone numerical models
1372	generally lack the ability to holistically simulate the dynamic interconnected systems necessary to
1373	explain compound flooding (especially in the coastal setting). The skill of compound flood

1374	forecasting systems and numerical models have improved but still largely remains inadequate
1375	(Mashriqui et al., 2014; Pietrafesa et al., 2019). Going forward, we recommend adoption of
1376	standardized modelling interfaces (e.g., Basic Model Interface (Hutton et al., 2020)) to facilitate
1377	coupling between numerical models to develop holistic modelling frameworks that better
1378	disentangle the complex earth system processes driving compound floods. Compound flood
1379	research also serves to greatly benefit from the use of hybrid modelling frameworks that couple
1380	numerical and statistical models. While this review discovered many studies that employed hybrid
1381	numerical-statistical methods, few explicitly outlined a standardized frameworks for linking the
1382	models. Thus, we additionally recommend further evaluation of hybrid frameworks as the linking of
1383	statistical and numerical models has considerable room for improvement.
1384	Recommendation 5 – Plan and design urban and coastal infrastructure with compound
1385	flooding in mind: We advise reshaping the planning, design, and operation of urban and coastal
1386	infrastructure to fully recognize the dependence and synergetic extremes of interacting flood
1387	drivers. As we look to a future of increasing flood frequency, proactive flood management is vital to
1388	lowering the vulnerability and exposure of urban and coastal communities. This can include investing
1389	in long-term resilient infrastructure (i.e., >100-year extremes), developing flood hazard maps that
1390	consider compound flood return periods to aid planning (e.g. update Fema hazard maps), supporting
1391	development blue-green and natural flood management (e.g., wetland protection, riverbank
1392	restoration, and leaky dams), enacting operational early warning systems and emergency response
1393	measures, and educating the public about the risks of inhabiting coastal floodplains.
1394	8) Conclusions

We have long known that high-impact hazard events involve a combination of drivers, however
existing research has largely been limited to single-factor or univariate analysis of climate extremes
due to technical or methodological constraints. Such is the case with flooding, as standard flood
hazard assessment practices have traditionally accounted for the effects of the different drivers of

1399	flooding independently. Only in recent years has flood research more closely examined the non-
1400	linear combination of these variables through the lens of compound events.
1401	This paper has presented a systematic review of the existing literature on compound flooding in
1402	coastal regions. Analysis of 271 studies up to 2022 has revealed significantly increased attention to
1403	compound flood research in recent years. This review identified different definitions and
1404	terminologies of compound flood events, categories of compound flood drivers, numerical modelling
1405	frameworks, and statistical analysis techniques. Furthermore, several compound flood hotspots
1406	have been identified throughout the world including the US East Coast and Gulf of Mexico, Northern
1407	Europe, East Asia, Southern Asia, Southeast Asia, Northern Australia, and global low-lying deltas and
1408	estuaries. Research has shown that compound floods are likely to have increasing frequency and
1409	severity in the future as a result of climate change, and that societal risks of extreme climate hazards
1410	are underestimated when the compound effects of climatic processes are not considered in
1411	combination. Compound flood research thus requires a more holistic and integrated approach to risk
1412	analysis that reflects on the complex interactions and nonstationary of Earth systems. We must
1413	recognize the threats posed by the interactions between hazard drivers for accurate risk assessment.
1414	Further research must also focus on identifying the dominant drivers of flooding, the precursors that
1415	make certain regions particularly susceptible to compound flooding, the dependence relationships
1416	between flood drivers, and investigate how all these aspects change spatiotemporally. Going
1417	forward, an improved understanding of compound flooding processes and precursors is vital to
1418	coastal management, hazard risk reduction, and community resilience in the face of changing
1419	climates.

1420 Acknowledgements

- 1421 We thank Kate Davis¹ for creation of schematic diagram (Figure 1). JG time was supported by the
- 1422 UKRI Natural Environmental Research Council (NERC) grant NE/S007210/1. ID time was supported by
- 1423 NERC grant NE/S010262/1. JN time was supported by the NERC grant NE/S015639/1. T.W.
- 1424 acknowledges support by the National Science Foundation (grant numbers 1929382 and 2103754)
- 1425 and the USACE Climate Preparedness and Resilience Community of Practice and Programs.

1426

- 1427 Author CRediT (Contributor Roles Taxonomy)
- 1428 Joshua Green: Conceptualization, Writing Original Draft Preparation, Writing Review & Editing,
- 1429 Data Curation, Methodology, Formal Analysis
- 1430 Ivan D. Haigh: Conceptualization, Writing Review & Editing
- 1431 <u>Niall Quinn:</u> Writing Review & Editing
- 1432 Jeff Neal: Writing Review & Editing
- 1433 Thomas Wahl: Writing Review & Editing
- 1434 Melissa Wood: Writing Review & Editing
- 1435 Dirk Eilander: Writing Review & Editing
- 1436 Marleen de Ruiter: Writing Review & Editing
- 1437 Philip Ward: Writing Review & Editing
- 1438 Paula Camus: Writing Review & Editing
- 1439

1440 Competing Interests

1441 Co-author Philip Ward is a member of the NHESS editorial board.

References

1444 1445	Abbaszadeh, P., Muñoz, D. F., Moftakhari, H., Jafarzadegan, K., and Moradkhani, H.: Perspective on
1445	uncertainty quantification and reduction in compound house modeling and forecasting,
1446	Iscience, 25, 105201, 10.1016/J.isci.2022.105201, 2022.
144/	
1448	Acreman, M. C.: Assessing the Joint Probability of Fluvial and Tidal Floods in the River Roding, Water
1449	and Environment Journal, 8, 490-496, 10.1111/j.1747-6593.1994.tb01140.x, 1994.
1450	
1451	Adhikari, P., Hong, Y., Douglas, K. R., Kirschbaum, D. B., Gourley, J., Adler, R., and Brakenridge, G. R.:
1452	A digitized global flood inventory (1998-2008): Compilation and preliminary results, Natural
1453	Hazards, 55, 405-422, 10.1007/S11069-010-9537-2, 2010.
1454	
1455	AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H.,
1456	Papalexiou, S. M., Ragno, E., and Sadegh, M.: Climate Extremes and Compound Hazards in a
1457	Warming World, Annual Review of Earth and Planetary Sciences, 48, 519-548,
1458	10.1146/annurev-earth-071719-055228, 2020.
1459	
1460	Apel, H., Martínez Trepat, O., Nghia Hung, N., Thi Chinh, D., Merz, B., and Viet Dung, N.: Combined
1461	fluvial and pluvial urban flood hazard analysis: Concept development and application to Can
1462	Tho city, Mekong Delta, Vietnam, Natural Hazards and Earth System Sciences, 16, 941-961,
1463	10.5194/NHESS-16-941-2016, 2016.
1464	
1465	Archetti, R., Bolognesi, A., Casadio, A., and Maglionico, M.: Development of flood probability charts
1466	for urban drainage network in coastal areas through a simplified joint assessment approach,
1467	Hydrology and Earth System Sciences, 15, 3115-3122, 10,5194/HESS-15-3115-2011, 2011.
1468	,
1469	Banfi, F. and De Michele, C.: Compound flood hazard at Lake Como. Italy, is driven by temporal
1470	clustering of rainfall events. Communications Earth & Environment 2022 3:1, 3, 1-10.
1471	10.1038/s43247-022-00557-9. 2022
1472	
1473	Bass, B. and Bedient, P.: Surrogate modeling of joint flood risk across coastal watersheds. Journal of
1474	Hydrology, 558, 159-173, 10.1016/i.jhydrol.2018.01.014, 2018.
1475	
1476	Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, Q., Sosa, L. Savage, L. Olcese, G., Neal, L.
1477	Schumann G. Giustarini I. Coxon G. Porter J. R. Amodeo M. F. Chu, 7. Lewis-Gruss S.
1/178	Freeman N. B. Houser T. Delgado M. Hamidi A. Bolliger I. F. McCusker K. Emanuel K.
1/179	Ferreira C M Khalid A Haigh I D Couasnon A E Konn R Hsiang S and Krajewski W
1/120	E : Combined Modeling of US Eluvial Dluvial and Coastal Elood Hazard Under Current and
1400	Future Climates, Water Resources Research, 57, 10, 1020/2020/WR028673, 2021
1401	Future climates, water resources research, 57, 10.1029/2020Wro28075, 2021.
1402	Poytor, P. M. Environmental Effects of Dams and Impoundments, Annual Poviow of Ecology and
1405	Suctomatics 9, 255, 292, 1077
1404 1405	Systematics, 8, 255-265, 1977.
1405	Pavarit V and Kee C . The impact of forest fires on fleeds and eresion. Marmaris Turkey
1400	Dayazir, i. anu Koy, c The impact of forest files off Hoods and erosion. Marmans, Furkey,
140/	Environment, Development and Sustainability, 24, 13426-13445, 10.1007/S10668-022-
1488	02024-9, 2022.
1489	Define K MA, Demond D L, Henrie D L, Fine Hart J A, and Vers C L, Jack Structure for state
1490	Berus, K. IVI., Barnard, P. L., HOOVER, D. J., FINZI Hart, J. A., and Voss, C. I.: Increasing threat of coastal
1491	groundwater nazards from sea-level rise in California, Nature Climate Change, 10, 946-952,
1492	10.1038/s41558-020-0874-1, 2020.

1493	
1494	Bender, J., Wahl, T., Müller, A., and Jensen, J.: A multivariate design framework for river confluences,
1495	Hydrological Sciences Journal, 61, 471-482, 10.1080/02626667.2015.1052816, 2016.
1496	
1497	Benestad, R. E. and Haugen, J. E.: On complex extremes: Flood hazards and combined high spring-
1498	time precipitation and temperature in Norway, Climatic Change, 85, 381-406
1/00	
1433	10.1007/310364-007-3203-2, 2007.
1500	
1501	Bensi, M., Mohammadi, S., Kao, SC., and DeNeale, S. T.: Multi-Mechanism Flood Hazard
1502	Assessment: Critical Review of Current Practice and Approaches, Oak Ridge National Lab,
1503	United States, 10.2172/1637939, 2020.
1504	
1505	Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., and Kirchner, J. W.: The Relative Importance of
1506	Different Flood-Generating Mechanisms Across Europe, Water Resources Research, 55,
1507	4582-4593, 10.1029/2019WR024841, 2019.
1508	
1509	Bermudez M. Farfán I. F. Willems, P. and Cea, I. Assessing the Effects of Climate Change on
1510	Compared Elocitation (Costal Biror Araza, Water Pascurras Pascurras Fig.
1510	
1511	10.1029/2020WR029321, 2021.
1512	
1513	Bevacqua, E., Vousdoukas, M. I., Shepherd, T. G., and Vrac, M.: Brief communication: The role of
1514	using precipitation or river discharge data when assessing global coastal compound flooding,
1515	Natural Hazards and Earth System Sciences, 20, 1765-1782, 10.5194/NHESS-20-1765-2020,
1516	2020.
1517	
1518	Bevacqua, E., Maraun, D., Hobæk Haff, J., Widmann, M., and Vrac, M.: Multivariate statistical
1519	modelling of compound events via pair-copula constructions: Analysis of floods in Bayenna
1520	(Italy) Hydrology and Earth System Sciences 21 2701-2723 10 5190/HESS-21-2701-2017
1520	
1521	2017.
1522	
1523	Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann,
1524	M.: Higher probability of compound flooding from precipitation and storm surge in Europe
1525	under anthropogenic climate change, Science Advances, 5, 10.1126/SCIADV.AAW5531,
1526	2019.
1527	
1528	Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S., Ramos, A. M., Vignotto, E.,
1529	Bastos, A., Blesić, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P.,
1530	Saunders, K., van der Wiel, K., Wu, W., Zhang, T., and Zscheischler, J.: Guidelines for Studying
1531	Diverse Types of Compound Weather and Climate Events, Earth's Future, 9.
1532	
1522	10.1023/20211 002040, 2021.
1533	Powers L and Domandi C. Matural astaction has in 2021, the flood stars are onen. Swiss Do
1534	Bevere, L. and Remonal, F.: Natural catastrophes in 2021: the hoodgates are open, swiss Re
1535	institute, Zurich, Switzeriand, 2022.
1536	
1537	Bilskie, M. V. and Hagen, S. C.: Defining Flood Zone Transitions in Low-Gradient Coastal Regions,
1538	Geophysical Research Letters, 45, 2761-2770, 10.1002/2018GL077524, 2018.
1539	
1540	Bilskie, M. V., Zhao, H., Resio, D., Atkinson, J., Cobell, Z., and Hagen, S. C.: Enhancing Flood Hazard
1541	Assessments in Coastal Louisiana Through Coupled Hydrologic and Surge Processes,
1542	Frontiers in Water, 3, 10.3389/FRWA.2021.609231. 2021.
1543	,, , ,,-

1544 1545	Bischiniotis, K., van den Hurk, B., Jongman, B., Coughlan de Perez, E., Veldkamp, T., de Moel, H., and Aerts, J.: The influence of antecedent conditions on flood risk in sub-Saharan Africa, Natural
1546 1547	Hazards and Earth System Sciences, 18, 271-285, 10.5194/nhess-18-271-2018, 2018.
1548	Blanton, B., McGee, J., Fleming, J., Kaiser, C., Kaiser, H., Lander, H., Luettich, R., Dresback, K., and
1549	Kolar, R.: Urgent Computing of Storm Surge for North Carolina's Coast, Procedia Computer
1550	Science, 9, 1677-1686, 10.1016/J.PROCS.2012.04.185, 2012.
1551	
1552	Blanton, B., Dresback, K., Colle, B., Kolar, R., Vergara, H., Hong, Y., Leonardo, N., Davidson, R., Nozick,
1553	L., and Wachtendorf, T.: An Integrated Scenario Ensemble-Based Framework for Hurricane
1554	Evacuation Modeling: Part 2—Hazard Modeling, Risk Analysis, 40, 117-133,
1555	10.1111/RISA.13004, 2018.
1556	
1557	Borrero, J. C., Cronin, S. J., Latu'ila, F. H., Tukuafu, P., Heni, N., Tupou, A. M., Kula, T., Fa'anunu, O.,
1558	Bosserelle, C., Lane, E., Lynett, P., and Kong, L.: Tsunami Runup and Inundation in Tonga
1559	from the January 2022 Eruption of Hunga Volcano, Pure and Applied Geophysics, 180, 1-22,
1560	10.1007/s00024-022-03215-5, 2023.
1561	Denver I. D. Connector T. and Marshard I. Marshall residence over files all an effect where some visit
1562	Brown, J. D., Spencer, L., and Moeller, L.: Modeling storm surge flooding of an urban area with
1563	particular reference to modeling uncertainties: A case study of Canvey Island, United
1564	Kingdom, Water Resources Research, 43, 10.1029/2005WR004597, 2007.
1505	Dunya C. Districh I. C. Wasterink, J. J. Charsela, D. A. Smith, J. M. Atkinson, J. H. Janson, D.
1500	Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, K.,
1507	Resio, D. T., Luellich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powen, M. D., Westerink, H.
1560	J., and Roberts, H. J.: A High-Resolution Coupled Riverine Flow, Flde, Wind, Wind Wave, and Storm Surge Model for Southern Louisians and Mississippi. Part I: Model Development and
1570	Validation Monthly Weather Review 138, 345-377, 10, 1175/2009MW/R2006, 1, 2010
1570	
1572	Rush S T Dreshack K M Sznilka C M and Kolar R L Lise of 1D Unsteady HEC-RAS in a Counled
1573	System for Compound Flood Modeling: North Carolina Case Study, Journal of Marine Science
1574	and Engineering, 10, 10, 3390/JMSE10030306, 2022.
1575	
1576	Camus, P., Haigh, I. D., Nasr, A. A., Wahl, T., Darby, S. E., and Nicholls, R. J.: Regional analysis of
1577	multivariate compound coastal flooding potential around Europe and environs: Sensitivity
1578	analysis and spatial patterns, Natural Hazards and Earth System Sciences, 21, 2021-2040,
1579	10.5194/nhess-21-2021-2021, 2021.
1580	
1581	Camus, P., Haigh, I. D., Wahl, T., Nasr, A. A., Méndez, F. J., Darby, S. E., and Nicholls, R. J.: Daily
1582	synoptic conditions associated with occurrences of compound events in estuaries along
1583	North Atlantic coastlines, International Journal of Climatology, 42, 5694-5713,
1584	10.1002/JOC.7556, 2022.
1585	
1586	Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm rainfall conditions for
1587	floods and debris flows from recently burned areas in southwestern Colorado and southern
1588	California, Geomorphology, 96, 250-269, 10.1016/j.geomorph.2007.03.019, 2008.
1589	×
1590	Cepienė, E., Dailidytė, L., Stonevičius, E., and Dailidienė, I.: Sea Level Rise Impact on Compound
1591	Coastal River Flood Risk in Klaipėda City (Baltic Coast, Lithuania), Water, 14,
1592	10.3390/W14030414, 2022.
1283	

1594 1595 1596 1597	Chen, A. S., Djordjević, S., Leandro, J., and Savić, D. A.: An analysis of the combined consequences of pluvial and fluvial flooding, Water Science and Technology, 62, 1491-1498, 10.2166/wst.2010.486, 2010.
1598 1599 1600	Chen, W. B. and Liu, W. C.: Modeling flood inundation induced by river flow and storm surges over a river basin, Water, 6, 3182-3199, 10.3390/W6103182, 2014.
1601 1602 1603	Chou, L. W.: Typhoon water surface analysis for west coast of Saipan: Mariana Islands, Coastal Engineering Research Center, 1989.
1604 1605 1606 1607	Christian, J., Fang, Z., Torres, J., Deitz, R., and Bedient, P.: Modeling the Hydraulic Effectiveness of a Proposed Storm Surge Barrier System for the Houston Ship Channel during Hurricane Events, Natural Hazards Review, 16, 10.1061/(ASCE)NH.1527-6996.0000150, 2015.
1608 1609 1610 1611 1612 1613	Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., and Nunn, P.: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, New York, USA, 1137 - 1216, 10.1017/ CB09781107415324.026, 2013.
1614 1615 1616 1617 1618	Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., Qin, D., and Woodworth, P. L.: Changes in Sea Level, in: Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel, 639-694, 10013/epic.15081.d001, 2001.
1619 1620 1621 1622	Cifelli, R., Johnson, L. E., Kim, J., Coleman, T., Pratt, G., Herdman, L., Martyr-Koller, R., Finzihart, J. A., Erikson, L., Barnard, P., and Anderson, M.: Assessment of flood forecast products for a coupled tributary-coastal model, Water, 13, 1-24, 10.3390/W13030312, 2021.
1623 1624 1625 1626	Claassen, J., Ward, P., Daniell, J., Koks, E., Tiggeloven, T., and de Ruiter, M.: MYRIAD-HESA: A New Method to Generate Global Multi-Hazard Event Sets, Vrije Universiteit Amsterdam, 10.21203/rs.3.rs-2635188/v1, 2023.
1627 1628 1629	Coles, S., Heffernan, J., and Tawn, J.: Dependence Measures for Extreme Value Analyses, Extremes, 2, 339-365, 10.1023/A:1009963131610, 1999.
1630 1631 1632 1633	Coles, S. G. and Tawn, J. A.: Statistical Methods for Multivariate Extremes: An Application to Structural Design, Journal of the Royal Statistical Society Series C: Applied Statistics, 43, 1-48, 10.2307/2986112, 1994.
1634 1635	Costa, J. E.: Floods from dam failures, Report 85-560, 10.3133/ofr85560, 1985.
1636 1637 1638 1639 1640	Couasnon, A., Sebastian, A., and Morales-Nápoles, O.: A Copula-based bayesian network for modeling compound flood hazard from riverine and coastal interactions at the catchment scale: An application to the houston ship channel, Texas, Water, 10, 10.3390/W10091190, 2018.
1641 1642 1643 1644	Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Natural Hazards and Earth System Sciences, 20, 489-504, 10.5194/NHESS-20-489-2020, 2020.

1645	
1646	Curtis, S., Mukherji, A., Kruse, J., Helgeson, J., Ghosh, A., and Adeniji, N.: Perceptions of risk to
1647	compound coastal water events: A case study in eastern North Carolina, USA, Progress in
1648	Disaster Science, 16, 100266-100266, 10.1016/J.PDISAS.2022.100266, 2022.
1649	
1650	Cutter, S. L.: Compound, Cascading, or Complex Disasters: What's in a Name?, Environment: Science
1651	and Policy for Sustainable Development, 60, 16-25, 10.1080/00139157.2018.1517518, 2018.
1652	
1653	De Bruijn, K. M., Diermanse, F. L. M., and Beckers, J. V. L.: An advanced method for flood risk analysis
1654	in river deltas, applied to societal flood fatality risk in the Netherlands, Natural Hazards and
1655	Earth System Sciences, 14, 2767-2781, 10.5194/nhess-14-2767-2014, 2014.
1656	
1657	De Michele, C., Meroni, V., Rahimi, L., Deidda, C., and Ghezzi, A.: Dependence Types in a Binarized
1658	Precipitation Network, Geophysical Research Letters, 47, 10.1029/2020GL090196, 2020.
1659	
1660	De Ruiter, M. C., Couasnon, A., van den Homberg, M. J. C., Daniell, J. E., Gill, J. C., and Ward, P. J.:
1661	Why We Can No Longer Ignore Consecutive Disasters, Earth's Future, 8,
1662	10.1029/2019EF001425, 2020.
1663	
1664	Del-Rosal-Salido, J., Folgueras, P., Bermúdez, M., Ortega-Sánchez, M., and Losada, M.: Flood
1665	management challenges in transitional environments: Assessing the effects of sea-level rise
1666	on compound flooding in the 21st century, Coastal Engineering, 167,
1667	10.1016/J.COASTALENG.2021.103872, 2021.
1668	
1669	Dixon, M. J. and Tawn, J. A.: Extreme sea-levels at the UK A-class sites: site-by-site analyses,
1670	Proudman Oceanographic Laboratory, 1994.
1671	
1672	Dresback, K. M., Fleming, J. G., Blanton, B. O., Kaiser, C., Gourley, J. J., Tromble, E. M., Luettich, R. A.,
1673	Kolar, R. L., Hong, Y., Van Cooten, S., Vergara, H. J., Flamig, Z. L., Lander, H. M., Kelleher, K.
1674	E., and Nemunaitis-Monroe, K. L.: Skill assessment of a real-time forecast system utilizing a
1675	coupled hydrologic and coastal hydrodynamic model during Hurricane Irene (2011),
1676	Continental Shelf Research, 71, 78-94, 10.1016/J.CSR.2013.10.007, 2013.
1677	
1678	Dykstra, S. L. and Dzwonkowski, B.: The Role of Intensifying Precipitation on Coastal River Flooding
1679	and Compound River-Storm Surge Events, Northeast Gulf of Mexico, Water Resources
1680	Research, 57, e2020WR029363, 10.1029/2020WR029363, 2021.
1681	
1682	EAA: Green Infrastructure and Flood Management, European Environment Agency (EEA),
1683	Copenhagen, Denmark14/2017, 10.2800/3242, 2017.
1684	
1685	Eilander, D., Couasnon, A., Ikeuchi, H., Muis, S., Yamazaki, D., Winsemius, H. C., and Ward, P. J.: The
1686	effect of surge on riverine flood hazard and impact in deltas globally, Environmental
1687	Research Letters, 15, 104007-104007, 10.1088/1748-9326/AB8CA6, 2020.
1688	
1689	Eilander, D., Couasnon, A., Sperna Weiland, F. C., Ligtvoet, W., Bouwman, A., Winsemius, H. C., and
1690	Ward, P. J.: Modeling compound flood risk and risk reduction using a globally-applicable
1691	framework: A case study in the Sofala region, Natural Hazards and Earth System Sciences
1692	Discussions, 1-31, 10.5194/nhess-2022-248, 2022a.
1693	

1694 1695	Eilander, D., Couasnon, A., Leijnse, T., Ikeuchi, H., Yamazaki, D., Muis, S., Dullaart, J., Winsemius, H. C., and Ward, P. J.: A globally-applicable framework for compound flood hazard modeling,
1696 1697	EGUsphere, 1-40, 10.5194/egusphere-2022-149, 2022b.
1698 1699	EM-DAT: International Disaster Database [dataset], 2022.
1700 1701 1702	Eshrati, L., Mahmoudzadeh, A., and Taghvaei, M.: Multi hazards risk assessment, a new methodology, International Journal of Health System and Disaster Management, 3, 79-79, 10.4103/2347-9019.151315, 2015.
1703 1704 1705 1706	Familkhalili, R., Talke, S. A., and Jay, D. A.: Compound flooding in convergent estuaries: insights from an analytical model, Ocean Science, 18, 1203-1220, 10.5194/os-18-1203-2022, 2022.
1707 1708 1709	Flick, R. E.: Joint Occurrence of High Tide and Storm Surge in California, World Marina'91, 52-60, 1991.
1710 1711 1712 1713	Gallien, T. W., Kalligeris, N., Delisle, M. P. C., Tang, B. X., Lucey, J. T. D., and Winters, M. A.: Coastal flood modeling challenges in defended urban backshores, Geosciences, 8, 10.3390/geosciences8120450, 2018.
1714 1715 1716 1717 1718	Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., and Marcomini, A.: A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment, Journal of Environmental Management, 168, 123-132, 10.1016/J.JENVMAN.2015.11.011, 2016.
1719 1720 1721	Ganguli, P. and Merz, B.: Trends in Compound Flooding in Northwestern Europe During 1901–2014, Geophysical Research Letters, 46, 10810-10820, 10.1029/2019GL084220, 2019a.
1722 1723 1724	Ganguli, P. and Merz, B.: Extreme Coastal Water Levels Exacerbate Fluvial Flood Hazards in Northwestern Europe, Scientific Reports, 9, 10.1038/s41598-019-49822-6, 2019b.
1725 1726 1727 1728	Ganguli, P., Paprotny, D., Hasan, M., Güntner, A., and Merz, B.: Projected Changes in Compound Flood Hazard From Riverine and Coastal Floods in Northwestern Europe, Earth's Future, 8, 10.1029/2020EF001752, 2020.
1729 1730 1731 1732	Ghanbari, M., Arabi, M., Kao, S. C., Obeysekera, J., and Sweet, W.: Climate Change and Changes in Compound Coastal-Riverine Flooding Hazard Along the U.S. Coasts, Earth's Future, 9, 10.1029/2021EF002055, 2021.
1733 1734 1735	Gill, J. C. and Malamud, B. D.: Reviewing and visualizing the interactions of natural hazards, Reviews of Geophysics, 52, 680-722, 10.1002/2013RG000445, 2014.
1736 1737 1738 1739 1740	 Gill, J. C., Duncan, M., Ciurean, R., Smale, L., Stuparu, D., Schlumberger, J., de Ruiter, M., Tiggeloven, T., Torresan, S., Gottardo, S., Mysiak, J., Harris, R., Petrescu, EC., Girard, T., Khazai, B., Claassen, J., Dai, R., Champion, A., Daloz, A. S., Blanco Cipollone, F., Campillo Torres, C., Palomino Antolin, I., Ferrario, D., Tatman, S., Tijessen, A., Vaidya, S., Adesiyun, A., Goger, T., Angiuli, A., Audren, M., Machado, M., Hochrainer-Stigler, S., Šakić Trogrlić, R., Daniell, J.,
1741 1742 1743 1744	Bulder, B., Krishna Swamy, S., Wiggelinkhuizen, EJ., Díaz Pacheco, J., López Díez, A., Mendoza Jiménez, J., Padrón-Fumero, N., Appulo, L., Orth, R., Sillmann, J., and Ward, P.: MYRIAD-EU Project D1.2 Handbook of multi-hazard, multi-risk definitions and concepts, 75, 2020.

1745	
1746	Gori, A. and Lin, N.: Projecting compound flood hazard under climate change with physical models
1747	and joint probability methods, Earth's Future, 10.1029/2022EF003097, 2022.
1748	
1749	Gori, A., Lin, N., and Smith, J.: Assessing Compound Flooding From Landfalling Tropical Cyclones on
1750	the North Carolina Coast, Water Resources Research, 56, 10.1029/2019WR026788, 2020a.
1751	
1752	Gori, A., Lin, N., and Xi, D.: Tropical Cyclone Compound Flood Hazard Assessment: From Investigating
1753	Drivers to Quantifying Extreme Water Levels, Earth's Future, 8, 10.1029/2020EF001660,
1754	2020b.
1755	
1756	Gori, A., Lin, N., Xi, D., and Emanuel, K.: Tropical cyclone climatology change greatly exacerbates US
1757	extreme rainfall-surge hazard, Nature Climate Change, 12, 171-178, 10.1038/s41558-021-
1758	01272-7, 2022.
1759	
1760	Gouldby, B., Wyncoll, D., Panzeri, M., Franklin, M., Hunt, T., Hames, D., Tozer, N., Hawkes, P.,
1761	Dornbusch, U., and Pullen, T.: Multivariate extreme value modelling of sea conditions
1762	around the coast of England, Proceedings of the Institution of Civil Engineers - Maritime
1763	Engineering, 170, 3-20, 10.1680/jmaen.2016.16, 2017.
1764	
1765	Gutenson, J. L., Tavakoly, A. A., Islam, M. S., Wing, O. E. J., Lehman, W. P., Hamilton, C. O., Wahl, M.
1766	D., and Massey, T. C.: Comparison of Flood Inundation Modeling Frameworks within a Small
1767	Coastal Watershed during a Compound Flood Event, Natural Hazards and Earth System
1768	Sciences, 10.5194/nhess-2022-27, 2022.
1769	
1770	Habel, S., Fletcher, C. H., Anderson, T. R., and Thompson, P. R.: Sea-Level Rise Induced Multi-
1771	Mechanism Flooding and Contribution to Urban Infrastructure Failure, Scientific Reports, 10,
1772	1-12, 10.1038/s41598-020-60762-4, 2020.
1773	
1774	Haigh, I. D., Wadey, M. P., Wahl, T., Ozsoy, O., Nicholls, R. J., Brown, J. M., Horsburgh, K., and
1775	Gouldby, B.: Spatial and temporal analysis of extreme sea level and storm surge events
1776	around the coastline of the UK, Scientific Data, 3, 10.1038/SDATA.2016.107, 2016.
1777	
1778	Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal
1//9	cities, Nature Climate Change, 3, 802-806, 10.1038/NCLIMATE1979, 2013.
1780	
1/81	Hao, Z. and Singh, V. P.: Compound Events under Global Warming: A Dependence Perspective,
1/82	Journal of Hydrologic Engineering, 25, 10.1061/(ASCE)HE.1943-5584.0001991, 2020.
1/83	
1/84	Hao, Z., Singh, V. P., and Hao, F.: Compound extremes in hydroclimatology: A review, Water, 10,
1785	10.3390/W10060/18, 2018.
1707	Handson I. M. Caulthand T. I. Dakina D. F. and Levits M. L. Caulth the effective data to C.
1/8/	Harrison, L. M., Coulthard, T. J., Robins, P. E., and Lewis, M. J.: Sensitivity of Estuaries to Compound
1788	Flooding, Estuaries and Coasts, 45, 1250-1269, 10.1007/512237-021-00996-1, 2022.
1700	Handres D. L. Candellan, D. D. Tanna, I. A. and Onnes, M. M. The Science helitike of the second statements of the
1701	Hawkes, P. J., Gouldby, B. P., Tawn, J. A., and Owen, M. W.: The joint probability of waves and water
1702	ieveis in coastal engineering, Journal of Hydraulic Kesearch, 40, 241-251,
1702	10.1080/00221680209499940, 2002.
T122	

1794 1795 1796 1797	Helaire, L. T., Talke, S. A., Jay, D. A., and Chang, H.: Present and Future Flood Hazard in the Lower Columbia River Estuary: Changing Flood Hazards in the Portland-Vancouver Metropolitan Area, Journal of Geophysical Research: Oceans, 125, 10.1029/2019JC015928, 2020.
1798 1799 1800 1801	 Hemer, M. A., Wang, X. L., Church, J. A., and Swail, V. R.: Coordinating Global Ocean Wave Climate Projections, Bulletin of the American Meteorological Society, 91, 451-454, 10.1175/2009BAMS2951.1, 2010.
1802 1803 1804 1805	Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Lauge, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, Hydrology and Earth System Sciences, 23, 3117-3139, 10.5194/HESS-23-3117-2019, 2019.
1806 1807 1808 1809	 Herring, D.: What is an "extreme event"? Is there evidence that global warming has caused or contributed to any particular extreme event?, National Oceanic and Atmospheric Administration (NOAA), <u>https://www.climate.gov/news-features/climate-qa/what-extreme- event-there-evidence-global-warming-has-caused-or-contributed</u>, last access: Jan 1, 2024,
1810 1811	2020.
1812 1813 1814	Hewitt, K. and Burton, I.: Hazardousness of a place: A regional ecology of damaging events, University of Toronto Press, 1971.
1815 1816 1817 1818 1819	Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S. J., Marzeion, B., Fettweis, X., Ionescu, C., and Levermann, A.: Coastal flood damage and adaptation costs under 21st century sea-level rise, Proceedings of the National Academy of Sciences of the United States of America, 111, 3292-3297, 10.1073/PNAS.1222469111, 2014.
1820 1821 1822	Ho, F. P. and Myers, V. A.: Joint probability method of tide frequency analysis applied to Apalachicola Bay and St. George Sound, Florida, NOAA, 1975.
1823 1824 1825 1826	Holt, C.: What is groundwater flooding?, Environment Agency, UK, <u>https://environmentagency.blog.gov.uk/2019/12/23/what-is-groundwater-flooding/</u> , last access: Jan 1, 2024, 2019.
1827 1828 1829 1830	Huang, P. C.: An effective alternative for predicting coastal floodplain inundation by considering rainfall, storm surge, and downstream topographic characteristics, Journal of Hydrology, 607, 127544-127544, 10.1016/J.JHYDROL.2022.127544, 2022.
1831 1832 1833 1834	 Huang, W., Ye, F., Zhang, Y. J., Park, K., Du, J., Moghimi, S., Myers, E., Pe'eri, S., Calzada, J. R., Yu, H. C., Nunez, K., and Liu, Z.: Compounding factors for extreme flooding around Galveston Bay during Hurricane Harvey, Ocean Modelling, 158, 10.1016/j.ocemod.2020.101735, 2021.
1835 1836 1837 1838	Hutton, E. W. H., Piper, M. D., and Tucker, G. E.: The Basic Model Interface 2.0: A standard interface for coupling numerical models in the geosciences, Journal of Open Source Software, 51, 5, 10.21105/joss.02317, 2020.
1839 1840 1841 1842 1843	Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., Muis, S., Ward, P. J., Winsemius, H. C., Verlaan, M., and Kanae, S.: Compound simulation of fluvial floods and storm surges in a global coupled river- coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh, Journal of Advances in Modeling Earth Systems, 9, 1847-1862, 10.1002/2017MS000943, 2017.

1845 1846	IOTIC: What Causes Tsunami, Indian Ocean Tsunami Information Centre (IOTIC), <u>https://iotic.ioc-unesco.org/what-causes-tsunami/</u> , last access, 2020.
1847	
1848	IPCC: Glossary of Terms, Cambridge University Press, Cambridge, United Kingdom, New York,
1849 1850	USA9781107025066, 555-564, 10.1017/CBO9781139177245.014, 2012.
1851 1852	IPCC: Annex II: Glossary, IPCC, Geneva, Switzerland, 117-130, 2014.
1853	lafarzadegan K. Moradkhani H. Pannenberger F. Moftakhari H. Bates P. Abbaszadeh P.
1854	Marsooli, R., Ferreira, C., Cloke, H. L., Ogden, F., and Duan, O.: Recent Advances and New
1855	Frontiers in Riverine and Coastal Flood Modeling, Reviews of Geophysics, 61.
1856	e2022RG000788. 10.1029/2022RG000788. 2023.
1857	
1858	Jalili Pirani, F. and Naiafi, M. R.: Recent Trends in Individual and Multivariate Compound Flood
1859	Drivers in Canada's Coasts, Water Resources Research, 56, 10.1029/2020WR027785, 2020.
1860	
1861	Jalili Pirani, F. and Najafi, M. R.: Multivariate Analysis of Compound Flood Hazard Across Canada's
1862	Atlantic, Pacific and Great Lakes Coastal Areas, Earth's Future, 10, 10.1029/2022EF002655,
1863	2022.
1864	
1865	Jalili Pirani, F. and Najafi, M. R.: Characterizing compound flooding potential and the corresponding
1866	driving mechanisms across coastal environments, Stochastic Environmental Research and
1867	Risk Assessment, 10.1007/s00477-022-02374-0, 2023.
1868	
1869	Jane, R., Cadavid, L., Obeysekera, J., and Wahl, T.: Multivariate statistical modelling of the drivers of
1870	compound flood events in south Florida, Natural Hazards and Earth System Sciences, 20,
1871	2681-2699, 10.5194/NHESS-20-2681-2020, 2020.
1872	
1873	Jang, J. H. and Chang, T. H.: Flood risk estimation under the compound influence of rainfall and tide,
1874	Journal of Hydrology, 606, 10.1016/j.jhydrol.2022.127446, 2022.
1875	
1876	Jasim, F. H., Vahedifard, F., Alborzi, A., Moftakhari, H., and AghaKouchak, A.: Effect of Compound
1877	Flooding on Performance of Earthen Levees, Geo-Congress 2020, 2020/2//, 707-716,
1878	10.1061/9780784482797.069,
1879	Jenkins, L. J., Haigh, I. D., Camus, P., Pender, D., Sansom, J., Lamb, R., and Kassem, H.: The temporal
1880	clustering of storm surge, wave height, and high sea level exceedances around the UK
1881	coastline, Natural Hazards, 115, 1761-1797, 10.1007/s11069-022-05617-z, 2023.
1882	
1883	Jones, D.: Joint Probability Fluvial-Tidal Analyses: Structure Functions and Historical Emulation,
1884	Institute of Hydrology, 1998.
1885	
1886	Jong-Levinger, A., Banerjee, T., Houston, D., and Sanders, B. F.: Compound Post-Fire Flood Hazards
1887	Considering Infrastructure Sedimentation, Earth's Future, 10, 10.1029/2022EF002670, 2022.
1888	
1889	Juárez, B., Stockton, S. A., Serafin, K. A., and Valle-Levinson, A.: Compound Flooding in a Subtropical
1890	Estuary Caused by Hurricane Irma 2017, Geophysical Research Letters, 49,
1891	10.1029/2022GL099360, 2022.
1892	
1893	Kappes, M., Keiler, M., and Glade, T.: From Single- to Multi-Hazard Risk analyses: a concept
1894	addressing emerging challenges, Mountain Risks International Conference, Strasbourg,
1895	France, 2010/11//2010.

1896	
1897	Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of analyzing multi-hazard risk:
1898	A review, Natural Hazards, 64, 1925-1958, 10.1007/S11069-012-0294-2, 2012.
1899	
1900	Karamouz, M., Ahmadvand, F., and Zahmatkesh, Z.: Distributed Hydrologic Modeling of Coastal
1901	Flood Inundation and Damage: Nonstationary Approach, Journal of Irrigation and Drainage
1902	Engineering, 143, 04017019, 10.1061/(ASCE)IR.1943-4774.0001173, 2017.
1903	
1904	Karamouz, M., Zahmatkesh, Z., Goharian, E., and Nazif, S.: Combined Impact of Inland and Coastal
1905	Floods: Mapping Knowledge Base for Development of Planning Strategies, Journal of Water
1906	Resources Planning and Management, 141, 10.1061/(ASCE)WR.1943-5452.0000497, 2014.
1907	
1908	Katwala, A.: How Long Droughts Make Flooding Worse, 2022.
1909	
1910	Kew, S. F., Selten, F. M., Lenderink, G., and Hazeleger, W.: The simultaneous occurrence of surge and
1911	discharge extremes for the Rhine delta, Natural Hazards and Earth System Sciences, 13,
1912	2017-2029, 10.5194/NHESS-13-2017-2013, 2013.
1913	
1914	Khalil, U., Yang, S., Sivakumar, M., Enever, K., Bin Riaz, M. Z., and Sajid, M.: Modelling the compound
1915	flood hydrodynamics under mesh convergence and future storm surge events in Brisbane
1916	River Estuary, Australia, Natural Hazards and Earth System Sciences Discussions, 1-30,
1917	10.5194/nhess-2021-284, 2022.
1918	
1919	Khanam, M., Sofia, G., Koukoula, M., Lazin, R., Nikolopoulos, E. I., Shen, X., and Anagnostou, E. N.:
1920	Impact of compound flood event on coastal critical infrastructures considering current and
1921	future climate, Natural Hazards and Earth System Sciences, 21, 587-605, 10.5194/NHESS-21-
1922	587-2021, 2021.
1923	
1924	Khatun, A., Ganguli, P., Bisht, D. S., Chatterjee, C., and Sahoo, B.: Understanding the impacts of
1925	predecessor rain events on flood hazard in a changing climate, Hydrological Processes, 36,
1926	e14500-e14500, 10.1002/HYP.14500, 2022.
1927	
1928	Klerk, W. J., Winsemius, H. C., Van Verseveld, W. J., Bakker, A. M. R., and Diermanse, F. L. M.: The co-
1929	incidence of storm surges and extreme discharges within the Rhine-Meuse Delta,
1930	Environmental Research Letters, 10, 10.1088/1748-9326/10/3/035005, 2015.
1931	
1932	Komendantova, N., Mrzyglocki, R., Mignan, A., Khazai, B., Wenzel, F., Patt, A., and Fleming, K.: Multi-
1933	hazard and multi-risk decision-support tools as a part of participatory risk governance:
1934	Feedback from civil protection stakeholders, International Journal of Disaster Risk Reduction,
1935	8, 50-67, 10.1016/J.IJDRR.2013.12.006, 2014.
1936	
1937	Koskinas, A., Tegos, A., Tsira, P., Dimitriadis, P., Iliopoulou, T., Papanicolaou, P., Koutsoyiannis, D.,
1938	and Williamson, T.: Insights into the Oroville Dam 2017 Spillway Incident,
1939	10.3390/geosciences9010037, 2019.
1940	
1941	Kowalik, Z. and Proshutinsky, A.: Tsunami-tide interactions: A Cook Inlet case study, Continental
1942	Shelf Research, 633-642, 10.1016/j.csr.2009.10.004, 2010.
1943	
1944	Kumbier, K., Carvalho, R. C., Vafeidis, A. T., and Woodroffe, C. D.: Investigating compound flooding in
1945	an estuary using hydrodynamic modelling: A case study from the Shoalhaven River,

1946 1947 1948	Australia, Natural Hazards and Earth System Sciences, 18, 463-477, 10.5194/NHESS-18-463- 2018, 2018.
1948 1949 1950 1951 1952	Kupfer, S., Santamaria-Aguilar, S., Van Niekerk, L., Lück-Vogel, M., and Vafeidis, A. T.: Investigating the interaction of waves and river discharge during compound flooding at Breede Estuary, South Africa, Natural Hazards and Earth System Sciences, 22, 187-205, 10.5194/NHESS-22- 187-2022, 2022.
1953 1954	Lai, Y., Li, J., Gu, X., Liu, C., and Chen, Y. D.: Global compound floods from precipitation and storm
1955 1956	surge: Hazards and the roles of cyclones, Journal of Climate, 34, 8319-8339, 10.1175/JCLI-D-21-0050.1, 2021a.
1957 1958 1959 1960	Lai, Y., Li, Q., Li, J., Zhou, Q., Zhang, X., and Wu, G.: Evolution of Frequency and Intensity of Concurrent Heavy Precipitation and Storm Surge at the Global Scale: Implications for Compound Floods, Frontiers in Earth Science, 9, 10, 3389/feart 2021, 660359, 2021b
1960 1961	Láng Bitter L. Berenguer M. Detteri E. Keles M. and Sompers Terres D. Compound flood
1962 1963 1964 1965 1966	impact forecasting: Integrating fluvial and flash flood impact assessments into a unified system, Hydrology and Earth System Sciences, 26, 689-709, 10.5194/hess-26-689-2022, 2022.
1967 1968 1969	Latif, S. and Mustafa, F.: Copula-based multivariate flood probability construction: a review, Arabian Journal of Geosciences, 13, 132, 10.1007/s12517-020-5077-6, 2020.
1970 1971 1972	Latif, S. and Simonovic, S. P.: Trivariate Joint Distribution Modelling of Compound Events Using the Nonparametric D-Vine Copula Developed Based on a Bernstein and Beta Kernel Copula Density Framework, Hydrology, 9, 221, 2022a.
1975 1974 1975 1976	Latif, S. and Simonovic, S. P.: Parametric Vine Copula Framework in the Trivariate Probability Analysis of Compound Flooding Events, Water, 14, 10.3390/W14142214, 2022b.
1977 1978 1979 1980	Latif, S. and Simonovic, S. P.: Compounding joint impact of rainfall, storm surge and river discharge on coastal flood risk: an approach based on 3D fully nested Archimedean copulas, Environmental Earth Sciences, 82, 63, 10.1007/s12665-022-10719-9, 2023.
1981 1982 1983 1984 1985 1986	Lavigne, F., Paris, R., Grancher, D., Wassmer, P., Brunstein, D., Vautier, F., Leone, F., Flohic, F., De Coster, B., Gunawan, T., Gomez, C., Setiawan, A., Cahyadi, R., and Fachrizal: Reconstruction of Tsunami Inland Propagation on December 26, 2004 in Banda Aceh, Indonesia, through Field Investigations, Pure and Applied Geophysics, 166, 259-281, 10.1007/s00024-008-0431- 8, 2009.
1987 1988 1989 1990	Lee, C., Hwang, S., Do, K., and Son, S.: Increasing flood risk due to river runoff in the estuarine area during a storm landfall, Estuarine, Coastal and Shelf Science, 221, 104-118, 10.1016/J.ECSS.2019.03.021, 2019.
1991 1992 1993 1994 1995	Leijnse, T., van Ormondt, M., Nederhoff, K., and van Dongeren, A.: Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: Including fluvial, pluvial, tidal, wind- and wave-driven processes, Coastal Engineering, 163, 10.1016/j.coastaleng.2020.103796, 2021.

1996 1997 1998 1999 2000	Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound event framework for understanding extreme impacts, Wiley Interdisciplinary Reviews: Climate Change, 5, 113-128, 10.1002/WCC.252, 2014.
2001 2002 2003 2004 2005	Leone, F., Lavigne, F., Paris, R., Denain, JC., and Vinet, F.: A spatial analysis of the December 26th, 2004 tsunami-induced damages: Lessons learned for a better risk assessment integrating buildings vulnerability, Applied Geography, 31, 363-375, 10.1016/j.apgeog.2010.07.009, 2011.
2006 2007 2008 2009	Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., and Pfister, H.: UpSet: Visualization of Intersecting Sets, IEEE Transactions on Visualization and Computer Graphics (InfoVis), 20, 1983-1992, 10.1109/TVCG.2014.2346248, 2014.
2010 2011 2012	Liang, H. and Zhou, X.: Impact of Tides and Surges on Fluvial Floods in Coastal Regions, Remote Sensing, 14, 5779-5779, 10.3390/RS14225779, 2022.
2013 2014 2015	Loganathan, G. V., Kuo, C. Y., and Yannaccone, J.: Joint Probability Distribution of Streamflows and Tides in Estuaries, Hydrology Research, 18, 237-246, 10.2166/NH.1987.0017, 1987.
2016 2017 2018 2019	Lu, W., Tang, L., Yang, D., Wu, H., and Liu, Z.: Compounding Effects of Fluvial Flooding and Storm Tides on Coastal Flooding Risk in the Coastal-Estuarine Region of Southeastern China, Atmosphere, 13, 10.3390/ATMOS13020238, 2022.
2020 2021 2022 2023	Lyddon, C., Robins, P., Lewis, M., Barkwith, A., Vasilopoulos, G., Haigh, I., and Coulthard, T.: Historic Spatial Patterns of Storm-Driven Compound Events in UK Estuaries, Estuaries and Coasts, 10.1007/S12237-022-01115-4, 2022.
2023 2024 2025 2026 2027	Manneela, S. and Kumar, S.: Overview of the Hunga Tonga-Hunga Ha'apai Volcanic Eruption and Tsunami, Journal of the Geological Society of India, 98, 299-304, 10.1007/s12594-022-1980- 7, 2022.
2028 2029 2030 2031	Manoj J, A., Guntu, R. K., and Agarwal, A.: Spatiotemporal dependence of soil moisture and precipitation over India, Journal of Hydrology, 610, 127898-127898, 10.1016/J.JHYDROL.2022.127898, 2022.
2032 2033 2034 2035	Mantz, P. A. and Wakeling, H. L.: Forecasting Flood Levels for Joint Events of Rainfall and Tidal Surge Flooding using Extreme Values Statistics, Proceedings of the Institution of Civil Engineers, 67, 31-50, 10.1680/iicep.1979.2315, 1979.
2036 2037 2038 2039	Mashriqui, H. S., Halgren, J. S., and Reed, S. M.: 1D River Hydraulic Model for Operational Flood Forecasting in the Tidal Potomac: Evaluation for Freshwater, Tidal, and Wind-Driven Events, Journal of Hydraulic Engineering, 140, 10.1061/(ASCE)HY.1943-7900.0000862, 2014.
2040 2041 2042 2043	Mashriqui, H. S., Reed, S., and Aschwanden, C.: Toward Modeling of River-Estuary-Ocean Interactions to Enhance Operational River Forecasting in the NOAA National Weather Service, 2nd Joint Federal Interagency Conference, Las Vegas, NV, 2010/6//2010.
2044 2045 2046	Maymandi, N., Hummel, M. A., and Zhang, Y.: Compound Coastal, Fluvial, and Pluvial Flooding During Historical Hurricane Events in the Sabine–Neches Estuary, Texas, Water Resources Research, 58, 10.1029/2022WR033144, 2022.

2047	
2048	McInnes, K. L., Hubbert, G. D., Abbs, D. J., and Oliver, S. E.: A numerical modelling study of coastal
2049	flooding, Meteorology and Atmospheric Physics, 80, 217-233, 10.1007/S007030200027,
2050	2002.
2051	
2052	Melone, A. M.: Flood Producing Mechanisms in Coastal British Columbia, Canadian Water Resources
2053	Journal, 10, 46-64, 10.4296/cwrj1003046, 1985.
2054	
2055	Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babevko, A., Bresch, D. N., Domeisen, D. I. V., Feser, F.,
2056	Koszalka, I., Kreibich, H., Pantillon, F., Parolai, S., Pinto, J. G., Punge, H. J., Rivalta, E.,
2057	Schröter, K., Strehlow, K., Weisse, R., and Wurpts, A.: Impact Forecasting to Support
2058	Emergency Management of Natural Hazards, Reviews of Geophysics, 58, e2020RG000704,
2059	10.1029/2020RG000704. 2020.
2060	
2061	Meyers, S. D., Landry, S., Beck, M. W., and Luther, M. E.: Using logistic regression to model the risk of
2062	sewer overflows triggered by compound flooding with application to sea level rise. Urban
2063	Climate, 35, 10.1016/i.uclim.2020.100752, 2021.
2064	
2065	Ming, X., Liang, O., Dawson, R., Xia, X., and Hou, L: A quantitative multi-hazard risk assessment
2066	framework for compound flooding considering hazard inter-dependencies and interactions.
2067	Journal of Hydrology, 607, 10,1016/i.jbydrol.2022,127477, 2022.
2068	
2069	Mishra, A., Alnahit, A., and Campbell, B.: Impact of land uses, drought, flood, wildfire, and cascading
2070	events on water quality and microbial communities: A review and analysis. Journal of
2071	Hydrology 596 125707 10 1016/i ibydrol 2020 125707 2021
2072	
2073	Mishra A. Mukheriee S. Merz B. Singh V. P. Wright D. B. Villarini G. Paul S. Kumar D. N
2074	Khedun C P Nivogi D Schumann G and Stedinger I R An Overview of Flood Concents
2075	Challenges and Euture Directions Journal of Hydrologic Engineering 27 03122001-
2076	03122001 10 1061/(ASCF)HF 1943-5584 0002164 2022
2077	
2078	Modrakowski, L-C, Su, L, and Nielsen, A, B.: The Precautionary Principles of the Potential Risks of
2070	Compound Events in Danish Municipalities Frontiers in Climate 3
2075	10 3389/fclim 2021 772629 2022
2000	10.5505/1000.2021.772025, 2022.
2001	Moftakhari H. Schuhert J. F. AghaKouchak A. Matthew R. A. and Sanders B. F.: Linking statistical
2002	and hydrodynamic modeling for compound flood hazard assessment in tidal channels and
2003	estuaries Advances in Water Resources 128, 28-38, 10, 1016/i advastres 2019 0/ 009
2004	2019
2005	2015.
2000	Moftakhari H. R. Salvadori G. AghaKouchak A. Sanders B. F. and Matthew R. A. Compounding
2007	affects of sea level rise and fluvial flooding. Proceedings of the National Academy of Sciences
2088	of the United States of America, 114, 9785-9790, 10, 1072/DNAS 1620225114, 2017
2009	or the office states of Affende, 117, 5765-5750, 10.1075/FINAS.1020525114, 2017.
2030	Mohammadi S. Rensi M. Kao S.C. and Deneale S.T. Multi-Mechanism Flood Hazard
2091	Assessment: Example Lice Case Studies: 10.2172/1627020, 2021
2092	A303311011. LAMPIC USE Case Studies, 10.21/2/103/337, 2021.
2095	Mohor G.S. Hudson P. and Thicken A.H.: A Comparison of Eactors Driving Flood Losses in
2094	Households Affected by Different Flood Types Water Resources Research 56
2095	10 1029/2019WR025943 2020
2097	10,1023/2013 WIND2373/2020.
/	

2098 2099 2100	Muñoz, D. F., Abbaszadeh, P., Moftakhari, H., and Moradkhani, H.: Accounting for uncertainties in compound flood hazard assessment: The value of data assimilation, Coastal Engineering, 171, 10.1016/j.coastaleng.2021.104057, 2022a.
2101	
2102 2103 2104 2105	Muñoz, D. F., Moftakhari, H., Kumar, M., and Moradkhani, H.: Compound Effects of Flood Drivers, Sea Level Rise, and Dredging Protocols on Vessel Navigability and Wetland Inundation Dynamics, Frontiers in Marine Science, 9, 10.3389/fmars.2022.906376, 2022b.
2105 2106 2107 2108 2109	Muñoz, D. F., Muñoz, P., Moftakhari, H., and Moradkhani, H.: From local to regional compound flood mapping with deep learning and data fusion techniques, Science of the Total Environment, 782, 10.1016/j.scitotenv.2021.146927, 2021.
2110 2110 2111 2112 2113	Myers, V. A.: Joint probability method of tide frequency analysis applied to Atlantic City and Long Beach Island, N.J, Environmental Sciences Services Administration (ESSA), 10.7282/T3ZK5DVQ, 1970.
2114 2115 2116 2117	Najafi, M. R., Zhang, Y., and Martyn, N.: A flood risk assessment framework for interdependent infrastructure systems in coastal environments, Sustainable Cities and Society, 64, 10.1016/j.scs.2020.102516, 2021.
2118 2119 2120 2121	Naseri, K. and Hummel, M. A.: A Bayesian copula-based nonstationary framework for compound flood risk assessment along US coastlines, Journal of Hydrology, 610, 10.1016/j.jhydrol.2022.128005, 2022.
2122 2123 2124 2125 2126	Nasr, A. A., Wahl, T., Rashid, M. M., Camus, P., and Haigh, I. D.: Assessing the dependence structure between oceanographic, fluvial, and pluvial flooding drivers along the United States coastline, Hydrology and Earth System Sciences, 25, 6203-6222, 10.5194/hess-25-6203- 2021, 2021.
2127 2128 2129	NCEI: U.S. Billion-Dollar Weather and Climate Disasters, National Centers for Environmental Information (NCEI), 10.25921/stkw-7w73, 2023.
2130 2131 2132 2133	Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment, PLOS ONE, 10, e0118571, 10.1371/journal.pone.0118571, 2015.
2134 2135 2136 2137	Olbert, A. I., Comer, J., Nash, S., and Hartnett, M.: High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and rivers inflows. A Cork City example, Coastal Engineering, 121, 278-296, 10.1016/J.COASTALENG.2016.12.006, 2017.
2138 2139 2140 2141 2142	Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, Intergovernmental Panel on Climate Change, Geneva, 2019.
2143 2144 2145 2146	Orton, P., Georgas, N., Blumberg, A., and Pullen, J.: Detailed modeling of recent severe storm tides in estuaries of the New York City region, Journal of Geophysical Research: Oceans, 117, 10.1029/2012JC008220, 2012.
2147 2148	Orton, P., Conticello, F., Cioffi, F., Hall, T., Georgas, N., Lall, U., Blumberg, A., Conticello, F., Cioffi, F., Hall, T., Georgas, N., Lall, U., and Blumberg, A.: Hazard Assessment from Storm Tides and

2149 2150 2151	Rainfall on a Tidal River Estuary, 36th IAHR World Congress, The Hague, Netherlands, 2015/6/, 1-10, 2015.
2152 2153 2154 2155	Orton, P. M., Hall, T. M., Talke, S. A., Blumberg, A. F., Georgas, N., and Vinogradov, S.: A validated tropical-extratropical flood hazard assessment for New York Harbor, Journal of Geophysical Research: Oceans, 121, 8904-8929, 10.1002/2016JC011679, 2016.
2156 2157 2158	Park, G. H., Kim, I. C., Suh, K. S., and Lee, J. L.: Prediction of Storm Surge and Runoff Combined Inundation, Journal of Coastal Research, 1150-1154, 2011.
2159 2160 2161 2162	Pasquier, U., He, Y., Hooton, S., Goulden, M., and Hiscock, K. M.: An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change, Natural Hazards, 98, 915-937, 10.1007/S11069-018-3462-1, 2019.
2163 2164 2165 2166 2167	Peña, F., Nardi, F., Melesse, A., Obeysekera, J., Castelli, F., Price, R. M., Crowl, T., and Gonzalez- Ramirez, N.: Compound flood modeling framework for surface-subsurface water interactions, Natural Hazards and Earth System Sciences, 22, 775-793, 10.5194/NHESS-22- 775-2022, 2022.
2168 2169	Pescaroli, G. and Alexander, D.: A definition of cascading disasters and cascading effects: Going beyond the "toppling dominos" metaphor, Planet@Risk, 03/12, 58-67,
2170 2171 2172 2173	Pescaroli, G. and Alexander, D.: Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework, Risk Analysis, 38, 2245-2257, 10.1111/RISA.13128, 2018.
2174 2175 2176 2177	Petroliagkis, T. I.: Estimations of statistical dependence as joint return period modulator of compound events-Part 1: Storm surge and wave height, Natural Hazards and Earth System Sciences, 18, 1937-1955, 10.5194/NHESS-18-1937-2018, 2018.
2178 2179 2180 2181 2182	Phillips, R. C., Samadi, S., Hitchcock, D. B., Meadows, M. E., and Wilson, C. A. M. E.: The Devil Is in the Tail Dependence: An Assessment of Multivariate Copula-Based Frameworks and Dependence Concepts for Coastal Compound Flood Dynamics, Earth's Future, 10, 10.1029/2022EF002705, 2022.
2183 2184 2185 2186	Pietrafesa, L. J., Zhang, H., Bao, S., Gayes, P. T., and Hallstrom, J. O.: Coastal flooding and inundation and inland flooding due to downstream blocking, Journal of Marine Science and Engineering, 7, 10.3390/JMSE7100336, 2019.
2187 2188 2189	Plane, E., Hill, K., and May, C.: A Rapid Assessment Method to Identify Potential Groundwater Flooding Hotspots as Sea Levels Rise in Coastal Cities, 10.3390/w11112228, 2019.
2190 2191 2192 2193	Poulos, S., Karditsa, A., Hatzaki, M., Tsapanou, A., Papapostolou, C., and Chouvardas, K.: An Insight into the Factors Controlling Delta Flood Events: The Case of the Evros River Deltaic Plain (NE Aegean Sea), Water, 14, 10.3390/W14030497, 2022.
2194 2195	Prandle, D. and Wolf, J.: The interaction of surge and tide in the North Sea and River Thames, Geophysical Journal International, 55, 203-216, 10.1111/j.1365-246X.1978.tb04758.x, 1978.
2196 2197 2198	Preisser, M., Passalacqua, P., Bixler, R. P., and Hofmann, J.: Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household

2199 2200	flood impact index, Hydrology and Earth System Sciences, 26, 3941-3964, 10.5194/hess-26- 3941-2022, 2022.
2201 2202 2203 2204 2205	Pugh, D. T. and Vassie, J. M.: Applications of the Joint Probability Method for Extreme Sea Level Computations, Proceedings of the Institution of Civil Engineers, 69, 959-975, 10.1680/iicep.1980.2179, 1980.
2206 2207 2208 2209	Qiang, Y., He, J., Xiao, T., Lu, W., Li, J., and Zhang, L.: Coastal town flooding upon compound rainfall- wave overtopping-storm surge during extreme tropical cyclones in Hong Kong, Journal of Hydrology: Regional Studies, 37, 10.1016/j.ejrh.2021.100890, 2021.
2210 2211 2212	Qiu, J., Liu, B., Yang, F., Wang, X., and He, X.: Quantitative Stress Test of Compound Coastal-Fluvial Floods in China's Pearl River Delta, Earth's Future, 10, 10.1029/2021EF002638, 2022.
2213 2214 2215 2216	Rahimi, R., Tavakol-Davani, H., Graves, C., Gomez, A., and Valipour, M. F.: Compound inundation impacts of coastal climate change: Sea-level rise, groundwater rise, and coastal precipitation, Water, 12, 10.3390/W12102776, 2020.
2210 2217 2218 2219 2220 2221	 Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., Bowen, S. G., Camargo, S. J., Hess, J., Kornhuber, K., Oppenheimer, M., Ruane, A. C., Wahl, T., and White, K.: Understanding and managing connected extreme events, Nature Climate Change, 10, 611-621, 10.1038/s41558-020-0790-4, 2020.
2222 2223 2224	Re, M.: Topics Geo natural catastrophes 2016: analyses, assessments, positions, Munich Reinsurance, 2017.
2225 2226 2227	Reimann, L., Vafeidis, A. T., and Honsel, L. E.: Population development as a driver of coastal risk: Current trends and future pathways, Cambridge Prisms: Coastal Futures, 1, e14, 10.1017/cft.2023.3, 2023.
2229 2230 2231	ReliefWeb: South America: Floods and Landslides - Nov 2015-Dec 2016, UN Office for the Coordination of Humanitarian Affairs, 2016.
2231 2232 2233	ReliefWeb: South America: Floods and Landslides - Dec 2016, UN Office for the Coordination of Humanitarian Affairs, 2017.
2234 2235 2236	ReliefWeb: Libya: Flood update Flash Update No.3 September 16 2023, UN Office for the Coordination of Humanitarian Affairs, 2023.
2237 2238 2239 2240	Rentschler, J., Salhab, M., and Jafino, B. A.: Flood exposure and poverty in 188 countries, Nature Communications, 13, 3527, 10.1038/s41467-022-30727-4, 2022.
2240 2241 2242 2243	Ridder, N., De Vries, H., and Drijfhout, S.: The role of atmospheric rivers in compound events consisting of heavy precipitation and high storm surges along the Dutch coast, Natural Hazards and Earth System Sciences, 18, 3311-3326, 10.5194/NHESS-18-3311-2018, 2018.
2244 2245 2246 2247 2248	Ridder, N. N., Pitman, A. J., Westra, S., Ukkola, A., Hong, X. D., Bador, M., Hirsch, A. L., Evans, J. P., Di Luca, A., and Zscheischler, J.: Global hotspots for the occurrence of compound events, Nature Communications, 11, 1-10, 10.1038/s41467-020-19639-3, 2020.

2249 2250 2251 2252	Robins, P. E., Lewis, M. J., Elnahrawi, M., Lyddon, C., Dickson, N., and Coulthard, T. J.: Compound Flooding: Dependence at Sub-daily Scales Between Extreme Storm Surge and Fluvial Flow, Frontiers in Built Environment, 7, 10.3389/fbuil.2021.727294, 2021.
2253 2254 2255	Rodríguez, G., Nistal, A., and Pérez, B.: Joint occurrence of high tide, surge and storm-waves on the northwest Spanish coast, Boletín-Instituto Español de Oceanografía, 1999.
2256 2257 2258	Rozell, D. J.: Overestimating coastal urban resilience: The groundwater problem, Cities, 118, 103369, 10.1016/j.cities.2021.103369, 2021.
2259 2260 2261 2262	Rueda, A., Camus, P., Tomás, A., Vitousek, S., and Méndez, F. J.: A multivariate extreme wave and storm surge climate emulator based on weather patterns, Ocean Modelling, 104, 242-251, 10.1016/J.OCEMOD.2016.06.008, 2016.
2263 2264 2265 2266	Sadegh, M., Moftakhari, H., Gupta, H. V., Ragno, E., Mazdiyasni, O., Sanders, B., Matthew, R., and AghaKouchak, A.: Multihazard Scenarios for Analysis of Compound Extreme Events, Geophysical Research Letters, 45, 5470-5480, 10.1029/2018GL077317, 2018.
2267 2268 2269	Saharia, A. M., Zhu, Z., and Atkinson, J. F.: Compound flooding from lake seiche and river flow in a freshwater coastal river, Journal of Hydrology, 603, 10.1016/j.jhydrol.2021.126969, 2021.
2270 2271 2272 2273 2274	Saleh, F., Ramaswamy, V., Wang, Y., Georgas, N., Blumberg, A., and Pullen, J.: A multi-scale ensemble-based framework for forecasting compound coastal-riverine flooding: The Hackensack-Passaic watershed and Newark Bay, Advances in Water Resources, 110, 371- 386, 10.1016/j.advwatres.2017.10.026, 2017.
2275 2276 2277	Salvadori, G. and De Michele, C.: Frequency analysis via copulas: Theoretical aspects and applications to hydrological events, Water Resources Research, 40, 10.1029/2004WR003133, 2004.
2278 2279 2280	Salvadori, G. and De Michele, C.: On the Use of Copulas in Hydrology: Theory and Practice, Journal of Hydrologic Engineering, 12, 369-380, 10.1061/(ASCE)1084-0699(2007)12:4(369), 2007.
2281 2282 2283 2284	Sampurno, J., Vallaeys, V., Ardianto, R., and Hanert, E.: Modeling interactions between tides, storm surges, and river discharges in the Kapuas River delta, Biogeosciences, 19, 2741-2757, 10.5194/bg-19-2741-2022, 2022a.
2285 2286 2287 2288	Sampurno, J., Vallaeys, V., Ardianto, R., and Hanert, E.: Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta, Nonlinear Processes in Geophysics, 29, 301-315, 10.5194/npg-29-301-2022, 2022b.
2289 2290 2291 2292	Sangsefidi, Y., Bagheri, K., Davani, H., and Merrifield, M.: Vulnerability of coastal drainage infrastructure to compound flooding under climate change, Journal of Hydrology, 128823- 128823, 10.1016/J.JHYDROL.2022.128823, 2022.
2293 2294 2295 2296	Santiago-Collazo, F. L., Bilskie, M. V., and Hagen, S. C.: A comprehensive review of compound inundation models in low-gradient coastal watersheds, Environmental Modelling and Software, 119, 166-181, 10.1016/j.envsoft.2019.06.002, 2019.
2297 2298 2299	Santos, V. M., Haigh, I. D., and Wahl, T.: Spatial and temporal clustering analysis of extreme wave events around the UK coastline, Journal of Marine Science and Engineering, 5, 10.3390/JMSE5030028, 2017.

2300	
2301	Santos, V. M., Wahl, T., Jane, R., Misra, S. K., and White, K. D.: Assessing compound flooding
2302	potential with multivariate statistical models in a complex estuarine system under data
2303	constraints, Journal of Flood Risk Management, 14, 10.1111/JFR3.12749, 2021a.
2304	- · · · · ·
2305	Santos, V. M., Casas-Prat, M., Poschlod, B., Ragno, E., Van Den Hurk, B., Hao, Z., Kalmár, T., Zhu, L.,
2306	and Naiafi. H.: Statistical modelling and climate variability of compound surge and
2307	precipitation events in a managed water system: A case study in the Netherlands, Hydrology
2308	and Earth System Sciences, 25, 3595-3615, 10,5194/HESS-25-3595-2021, 2021b.
2309	
2310	Sarewitz D and Pielke R · Extreme Events: A Research and Policy Framework for Disasters in
2311	Context International Geology Review 43 406-418 10 1080/00206810109465022 2001
2312	
2313	Sebastian A · Chanter 7 - Compound Flooding in: Coastal Flood Risk Reduction: The Netherlands
2313	and the LLS Linner Texas Coast Elsevier 77-88 10 1016/B978-0-323-85251-7 00007-X
2314	2022
2315	
2210	Sanaviratna S. L. Nichalls, N. Eastarling, D. Goodoss, C. M. Kanao, S. Kassin, J. Luo, V. Marango
2317	Melanos K. Pahimi M. Poishetoin M. Sortohorg A. Vora C. Zhang V. Bustieuszi M.
2310	J., Michilles, K., Kalinin, M., Kelchstein, M., Softeberg, A., Vera, C., Zhang, A., Kusticucci, M.,
2219	Marta D. M. Carbor M. Cong S. Cocyami P. N. Homor M. Huggel C. Van den Hurk P.
2320	Marta, P. M., Gerber, M., Gong, S., Goswann, B. N., Henner, M., Hugger, C., Van den Hurk, B.,
2321	Kharin, V. V., Kitori, A., Kiein Tarik, A. Ivi. G., Li, G., Masori, S., Ivic Guire, W., Van Oldenborgh,
2322	G. J., UNUWSKY, B., SMIUN, S., TMIAW, W., VEIEgrakis, A., YIOU, P., Zhang, T., Zhou, T., and
2323	Zwiers, F. W.: Changes in Climate Extremes and their impacts on the Natural Physical
2324	Environment, Cambridge University Press, Cambridge, United Kingdom, New York,
2325	USA9/811391//245, 109-230, 10.101//CBO9/811391//245.006, 2012.
2326	
2327	Serafin, K. A. and Ruggiero, P.: Simulating extreme total water levels using a time-dependent,
2328	extreme value approach, Journal of Geophysical Research: Oceans, 119, 6305-6329,
2329	10.1002/2014JC010093, 2014.
2330	
2331	Serafin, K. A., Ruggiero, P., Parker, K., and Hill, D. F.: What's streamflow got to do with it? A
2332	probabilistic simulation of the competing oceanographic and fluvial processes driving
2333	extreme along-river water levels, Natural Hazards and Earth System Sciences, 19, 1415-1431,
2334	10.5194/NHESS-19-1415-2019, 2019.
2335	
2336	Shahapure, S. S., Eldho, T. I., and Rao, E. P.: Coastal Urban Flood Simulation Using FEM, GIS and
2337	Remote Sensing, Water Resources Management, 24, 3615-3640, 10.1007/s11269-010-9623-
2338	у, 2010.
2339	
2340	Shen, Y., Morsy, M. M., Huxley, C., Tahvildari, N., and Goodall, J. L.: Flood risk assessment and
2341	increased resilience for coastal urban watersheds under the combined impact of storm tide
2342	and heavy rainfall, Journal of Hydrology, 579, 124159-124159,
2343	10.1016/J.JHYDROL.2019.124159, 2019.
2344	
2345	Shi, S., Yang, B., and Jiang, W.: Numerical simulations of compound flooding caused by storm surge
2346	and heavy rain with the presence of urban drainage system, coastal dam and tide gates: A
2347	case study of Xiangshan, China, Coastal Engineering, 172, 10.1016/j.coastaleng.2021.104064,
2348	2022.
2349	

2350 2351 2352 2353	Silva-Araya, W. F., Santiago-Collazo, F. L., Gonzalez-Lopez, J., and Maldonado-Maldonado, J.: Dynamic Modeling of Surface Runoff and Storm Surge during Hurricane and Tropical Storm Events, Hydrology, 5, 13-13, 10.3390/HYDROLOGY5010013, 2018.
2354 2355 2356 2357	Simmonds, R., White, C. J., Douglas, J., Sauter, C., and Brett, L.: A review of interacting natural hazards and cascading impacts in Scotland Research funded by the National Centre for Resilience, 2022.
2358 2359 2360 2361 2362	 Sklar, M.: Fonctions de répartition à n dimensions et leurs marges, Annales de l'ISUP, 229-231, Stamey, B., Smith, W., Carey, K., Garbin, D., Klein, F., Wang, H., Shen, J., Gong, W., Cho, J., Forrest, D., Friedrichs, C., Boicourt, W., Li, M., Koterba, M., King, D., Titlow, J., Smith, E., Siebers, A., Billet, J., Lee, J., Manning, D., Szatkowski, G., Wilson, D., Ahnert, P., and Ostrowski, J.: Chesapeake Inundation Prediction System (CIPS): A regional prototype for a national problem. Ocease Vanceware 2007/0//. 10 1100/OCEANS 2007 4440323
2363 2364 2365 2366	Stein, L., Pianosi, F., and Woods, R.: Event-based classification for global study of river flood generating processes, Hydrological Processes, 34, 1514-1529, 10.1002/hyp.13678, 2019.
2367 2368 2369 2370	Steinschneider, S.: A hierarchical Bayesian model of storm surge and total water levels across the Great Lakes shoreline – Lake Ontario, Journal of Great Lakes Research, 47, 829-843, 10.1016/J.JGLR.2021.03.007, 2021.
2371 2372 2373 2374	Stephens, S. A. and Wu, W.: Mapping Dependence between Extreme Skew-Surge, Rainfall, and River- Flow, Journal of Marine Science and Engineering 2022, Vol. 10, Page 1818, 10, 1818-1818, 10.3390/JMSE10121818, 2022.
2375 2376 2377	Sui, J. and Koehler, G.: Rain-on-snow induced flood events in southern Germany, Journal of Hydrology, 252, 205-220, 10.1016/S0022-1694(01)00460-7, 2001.
2378 2379 2380 2381	Svensson, C. and Jones, D. A.: Dependence between extreme sea surge, river flow and precipitation in eastern Britain, International Journal of Climatology, 22, 1149-1168, 10.1002/JOC.794, 2002.
2382 2383 2384	Svensson, C. and Jones, D. A.: Dependence between extreme sea surge, river flow and precipitation: a study in south and west Britain., CEH Wallingford, 2003.
2385 2386 2387 2388	Svensson, C. and Jones, D. A.: Dependence between sea surge, river flow and precipitation in south and west Britain, Hydrology and Earth System Sciences, 8, 973-992, 10.5194/HESS-8-973- 2004, 2004.
2389 2390 2391 2392	Tanim, A. H. and Goharian, E.: Developing a hybrid modeling and multivariate analysis framework for storm surge and runoff interactions in urban coastal flooding, Journal of Hydrology, 595, 10.1016/j.jhydrol.2020.125670, 2021.
2393 2394 2395 2396 2397	Tanir, T., Sumi, S. J., de Lima, A. d. S., de A. Coelho, G., Uzun, S., Cassalho, F., and Ferreira, C. M.: Multi-scale comparison of urban socio-economic vulnerability in the Washington, DC metropolitan region resulting from compound flooding, International Journal of Disaster Risk Reduction, 61, 10.1016/j.ijdrr.2021.102362, 2021.
2398 2399 2400	Tao, K., Fang, J., Yang, W., Fang, J., and Liu, B.: Characterizing compound floods from heavy rainfall and upstream–downstream extreme flow in middle Yangtze River from 1980 to 2020, Natural Hazards, 10.1007/S11069-022-05585-4, 2022.

2401	
2402 2403	Tawn, J. A.: Estimating Probabilities of Extreme Sea-Levels, Journal of the Royal Statistical Society Series C: Applied Statistics 41, 77-93, 10, 2307/2347619, 1992
2403	Series e. Applied Statistics, 41, 77 55, 10.2507/2547015, 1552.
2405 2406 2407	Tehranirad, B., Herdman, L., Nederhoff, K., Erikson, L., Cifelli, R., Pratt, G., Leon, M., and Barnard, P.: Effect of fluvial discharges and remote non-tidal residuals on compound flood forecasting in San Francisco Bay, Water, 12, 10.3390/W12092481, 2020.
2408	
2409 2410	Thieken, A. H., Samprogna Mohor, G., Kreibich, H., and Müller, M.: Compound inland flood events: Different pathways, different impacts and different coping options, Natural Hazards and
2411 2412	Earth System Sciences, 22, 165-185, 10.5194/NHESS-22-165-2022, 2022.
2413	Thompson, C. M. and Frazier, T. G.: Deterministic and probabilistic flood modeling for contemporary
2414 2415	and future coastal and inland precipitation inundation, Applied Geography, 50, 1-14, 10.1016/J.APGEOG.2014.01.013, 2014.
2416	
2417	Tilloy, A., Malamud, B. D., Winter, H., and Joly-Laugel, A.: A review of guantification methodologies
2418	for multi-hazard interrelationships, Earth-Science Reviews, 196, 102881-102881,
2419	10.1016/J.EARSCIREV.2019.102881. 2019.
2420	· · · · · · · · · · · · · · · · · · ·
2421	Torres, J. M., Bass, B., Irza, N., Fang, Z., Proft, J., Dawson, C., Kiani, M., and Bedient, P.: Characterizing
2422	the hydraulic interactions of hurricane storm surge and rainfall-runoff for the Houston-
2423	Galveston region, Coastal Engineering, 106, 7-19, 10.1016/i.coastaleng,2015.09.004, 2015.
2424	
2425	UNDRR: Sendai Framework for Disaster Risk Reduction 2015-2030. United Nations Office for Disaster
2426	Risk Reduction (UNDRR). New York, 2015.
2427	
2428	UNDRR: Report of the open ended intergovernmental expert working group on indicators and
2429	terminology relating to disaster risk reduction. United Nations Office for Disaster Risk
2430	Reduction (UNDRR), 41, 2016.
2431	
2432	UNDRR: Global Assessment Report on Disaster Risk Reduction. United Nations Office for Disaster
2433	Risk Reduction (UNDRR), Geneva, Switzerland, 425, 2019.
2434	
2435	Valle-Levinson, A., Olabarrieta, M., and Heilman, L.: Compound flooding in Houston-Galveston Bay
2436	during Hurricane Harvey. Science of the Total Environment, 747.
2437	10.1016/i.scitoteny.2020.141272.2020.
2438	
2439	Van Berchum, E. C., Van Ledden, M., Timmermans, J. S., Kwakkel, J. H., and Jonkman, S. N.; Rapid
2440	flood risk screening model for compound flood events in Beira. Mozambigue, Natural
2441	Hazards and Earth System Sciences, 20, 2633-2646, 10,5194/NHESS-20-2633-2020, 2020.
2442	······································
2443	Van Cooten, S., Kelleher, K. E., Howard, K., Zhang, J., Gourley, J. J., Kain, J. S., Nemunaitis-Monroe, K.,
2444	Flamig, Z., Moser, H., Arthur, A., Langston, C., Kolar, R., Hong, Y., Dresback, K., Tromble, F.,
2445	Vergara, H., Luettich, R. A., Blanton, B., Lander, H., Gallunni, K., Losego, I. P., Rlain, C. A
2446	Thigpen, J., Mosher, K., Figurskey, D., Moneynenny, M., Blaes, L. Orrock, L. Bandy, R
2447	Goodall, C., Kelley, J. G. W., Greenlaw, J., Wengren, M., Eslinger, D., Pavne, L. Olmi, G., Feldt
2448	L. Schmidt, L. Hamill, T., Bacon, R., Stickney, R., and Snence, J. The CL-FLOW Project: A
2449	System for Total Water Level Prediction from the Summit to the Sea. Bulletin of the
2450	American Meteorological Society, 92, 1427-1442, 10, 1175/2011BAMS3150,1, 2011
2451	

2452 2453 2454 2455	Van Den Hurk, B., Van Meijgaard, E., De Valk, P., Van Heeringen, K. J., and Gooijer, J.: Analysis of a compounding surge and precipitation event in the Netherlands, Environmental Research Letters, 10, 10.1088/1748-9326/10/3/035001, 2015.
2456 2457 2458 2459	Van den Hurk, B. J. J. M., White, C. J., Ramos, A. M., Ward, P. J., Martius, O., Olbert, I., Roscoe, K., Goulart, H. M. D., and Zscheischler, J.: Consideration of compound drivers and impacts in the disaster risk reduction cycle, iScience, 26, 106030, 10.1016/j.isci.2023.106030, 2023.
2460 2461 2462 2463	Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and Storlazzi, C. D.: Doubling of coastal flooding frequency within decades due to sea-level rise, Scientific Reports, 7, 1-9, 10.1038/s41598-017-01362-7, 2017.
2464 2465 2466 2467	Vongvisessomjai, S. and Rojanakamthorn, S.: Interaction of Tide and River Flow, Journal of Waterway, Port, Coastal, and Ocean Engineering, 115, 86-104, 10.1061/(ASCE)0733- 950X(1989)115:1(86), 1989.
2468 2469 2470 2471 2472	Vormoor, K., Lawrence, D., Heistermann, M., and Bronstert, A.: Climate change impacts on the seasonality and generation processes of floods – projections and uncertainties for catchments with mixed snowmelt/rainfall regimes, Hydrol. Earth Syst. Sci., 19, 913-931, 10.5194/hess-19-913-2015, 2015.
2473 2474 2475 2476	Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing risk of compound flooding from storm surge and rainfall for major US cities, Nature Climate Change, 5, 1093-1097, 10.1038/NCLIMATE2736, 2015.
2477 2478 2479 2480	Walden, A. T., Prescott, P., and Webber, N. B.: The examination of surge-tide interaction at two ports on the central south coast of England, Coastal Engineering, 6, 59-70, 10.1016/0378- 3839(82)90015-1, 1982.
2481 2482 2483 2484 2485	 Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S., Veldkamp, T. I. E., Winsemius, H. C., and Wahl, T.: Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries, Environmental Research Letters, 13, 10.1088/1748-9326/AAD400, 2018.
2486 2487 2488	Wolf, J.: Coastal flooding: Impacts of coupled wave-surge-tide models, Natural Hazards, 49, 241-260, 10.1007/S11069-008-9316-5, 2009.
2489 2490 2491 2492 2493	Wood, M., Haigh, I. D., Le, Q. Q., Nguyen, H. N., Tran, H. B., Darby, S. E., Marsh, R., Skliris, N., Hirschi, J. J. M., Nicholls, R. J., and Bloemendaal, N.: Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region, Natural Hazards and Earth System Science, 23, 2475-2504, 10.5194/nhess-23-2475-2023, 2023.
2494 2495 2496	Woodruff, J. D., Irish, J. L., and Camargo, S. J.: Coastal flooding by tropical cyclones and sea-level rise, Nature, 504, 44-52, 10.1038/nature12855, 2013.
2497 2498 2499	Wu, W. and Leonard, M.: Impact of ENSO on dependence between extreme rainfall and storm surge, Environmental Research Letters, 14, 10.1088/1748-9326/AB59C2, 2019.
2500 2501 2502	Wu, W., Westra, S., and Leonard, M.: Estimating the probability of compound floods in estuarine regions, Hydrology and Earth System Sciences, 25, 2821-2841, 10.5194/HESS-25-2821-2021, 2021.

2503	
2504 2505	Wu, W., Emerton, R., Duan, Q., Wood, A. W., Wetterhall, F., and Robertson, D. E.: Ensemble flood forecasting: Current status and future opportunities, Wiley Interdisciplinary Reviews: Water,
2506 2507	7, e1432-e1432, 10.1002/WAT2.1432, 2020.
2508 2509 2510	Wu, W., McInnes, K., O'Grady, J., Hoeke, R., Leonard, M., and Westra, S.: Mapping Dependence Between Extreme Rainfall and Storm Surge, Journal of Geophysical Research: Oceans, 123, 2461-2474, 10.1002/2017JC013472, 2018.
2511 2512 2513 2514	Xu, K., Wang, C., and Bin, L.: Compound flood models in coastal areas: a review of methods and uncertainty analysis, Natural Hazards, 10.1007/s11069-022-05683-3, 2022.
2515 2516 2517	Xu, Z., Zhang, Y., Blöschl, G., and Piao, S.: Mega Forest Fires Intensify Flood Magnitudes in Southeast Australia, Geophysical Research Letters, 50, e2023GL103812, 10.1029/2023GL103812, 2023.
2518 2519 2520	Yang, X. and Qian, J.: Joint occurrence probability analysis of typhoon-induced storm surges and rainstorms using trivariate Archimedean copulas, Ocean Engineering, 171, 533-539, 10.1016/j.oceaneng.2018.11.039, 2019.
2521 2522 2523 2524	Ye, F., Huang, W., Zhang, Y. J., Moghimi, S., Myers, E., Pe'eri, S., and Yu, H. C.: A cross-scale study for compound flooding processes during Hurricane Florence, Natural Hazards and Earth System Sciences, 21, 1703-1719, 10.5194/nhess-21-1703-2021, 2021.
2525 2526 2527 2528 2529 2530	Ye, F., Zhang, Y. J., Yu, H., Sun, W., Moghimi, S., Myers, E., Nunez, K., Zhang, R., Wang, H. V., Roland, A., Martins, K., Bertin, X., Du, J., and Liu, Z.: Simulating storm surge and compound flooding events with a creek-to-ocean model: Importance of baroclinic effects, Ocean Modelling, 145, 10.1016/j.ocemod.2019.101526, 2020.
2531 2532 2533 2534	Zellou, B. and Rahali, H.: Assessment of the joint impact of extreme rainfall and storm surge on the risk of flooding in a coastal area, Journal of Hydrology, 569, 647-665, 10.1016/J.JHYDROL.2018.12.028, 2019.
2535 2536 2537 2538	Zhang, L. and Chen, X.: Temporal and spatial distribution of compound flood potential in China's coastal areas, Journal of Hydrology, 615, 128719-128719, 10.1016/J.JHYDROL.2022.128719, 2022.
2539 2540 2541 2542	Zhang, W., Liu, Y., Tang, W., Wang, W., and Liu, Z.: Assessment of the effects of natural and anthropogenic drivers on extreme flood events in coastal regions, Stochastic Environmental Research and Risk Assessment, 10.1007/S00477-022-02306-Y, 2022.
2543 2544 2545 2546	Zhang, W., Luo, M., Gao, S., Chen, W., Hari, V., and Khouakhi, A.: Compound Hydrometeorological Extremes: Drivers, Mechanisms and Methods, Frontiers in Earth Science, 9, 10.3389/FEART.2021.673495, 2021a.
2547 2548 2549 2550	Zhang, Y., Sun, X., and Chen, C.: Characteristics of concurrent precipitation and wind speed extremes in China, Weather and Climate Extremes, 32, 100322-100322, 10.1016/j.wace.2021.100322, 2021b.
2551 2552 2553	Zhang, Y. J., Witter, R. C., and Priest, G. R.: Tsunami–tide interaction in 1964 Prince William Sound tsunami, Ocean Modelling, 40, 246-259, 10.1016/J.OCEMOD.2011.09.005, 2011.

2554	Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and
2555	storm surge in the coastal zone, Journal of Hydrology, 505, 172-187,
2556	10.1016/j.jhydrol.2013.09.054, 2013.
2557	
2558	Zheng, F., Westra, S., Leonard, M., and Sisson, S. A.: Modeling dependence between extreme rainfall
2559	and storm surge to estimate coastal flooding risk, Water Resources Research, 50, 2050-2071,
2560	10.1002/2013wr014616, 2014.
2561	
2562	Zhong, H., van Overloop, P. J., and van Gelder, P. H. A. J. M.: A joint probability approach using a 1-D
2563	hydrodynamic model for estimating high water level frequencies in the Lower Rhine Delta,
2564	Natural Hazards and Earth System Sciences, 13, 1841-1852, 10.5194/NHESS-13-1841-2013,
2565	2013.
2566	
2567	Zschau, J.: Where are we with multihazards, multirisks assessment capacities?, European Union Joint
2568	Research Council, Luxembourg, 10.2788/688605, 2017.
2569	
2570	Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks associated with compound
2571	events, Science Advances, 3, 10.1126/SCIADV.1700263/SUPPL_FILE/1700263_SM.PDF, 2017.
2572	
2573	Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A.,
2574	Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk
2575	from compound events, Nature Climate Change, 8, 469-477, 10.1038/S41558-018-0156-3,
2576	2018.
2577	
2578	Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B.,
2579	AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N.,
2580	Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nature
2581	Reviews Earth and Environment, 1, 333-347, 10.1038/s43017-020-0060-z, 2020.
2582 2583	

Appendix

Table A1. Overview of the literature database containing 271 compound flood research publications. Note: Numerical models without defined names are given simple descriptions. Statistical methods are defined as explicitly stated in the literature and then simplified for brevity.

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Acreman 1994	UK (River Roding)	Varying climate change scenarios, Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	ONDA	Joint Probability Method (JPM)
Ai et al. 2018	China (Jiangsu)	-	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (IPM) Copula
Apel et al. 2016	Vietnam (Can Tho, Mekong Delta)		Risk Assessment	Fluvial, Pluvial	TRUE	TRUE	TRUE	2D Hydrodyna mic Model	Joint Probability Method (JPM), Copula, Peak-over- Threshold (POT)
Archetti et al. 2011	Italy (Rimini)	-	Planning & Management, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	1D Hydrodyna mic Drainage Model (InfoWorks CS)	Joint Probability Method (JPM), Copula
Bacopoulos et al. 2017	US (Florida)	Tropical Storm Fay	Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, SWAT	
Bakhtyar et al. 2020	US (Delaware, Delaware Bay Estuary)	-	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, D- FLOW FM, HEC-RAS, NWM, WW3	-
Banfi and Michele 2022	Italy (Lake Como)	Lake Flood Events (1980 -2020)	Earth System Processes	Pluvial	FALSE	TRUE	FALSE	-	Temporal Analysis (Clustering), Peak-over- Threshold (POT)
Bao et al. 2022	US (North Carolina, Cape Fear River Basin)		Methodologic al Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	COAWST	-
Bass and Bedient 2018	US (Texas)	Tropical Storm Allison (2001), Hurricane Ike (2008)	Forecasting, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-HMS, HEC-RAS, SWAN	Machine Learning (Artificial Neural Networks (ANN)), Storm Surge Statistical Emulator (Kriging/Gaussian Process Regression (GPR)), Principal Components Analysis, Bayesian Regularization Algorithm
Bates et al. 2021	US (CONUS)	Varying climate change scenarios	Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	LISFLOOD- FP	-
Beardsley et al. 2013	US (Massachusett s)	2010 Nor'easter Storm	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	FVCOM	-
Benestad and Haugen 2007	Norway	-	Earth System Processes	Pluvial, Temp/Heat, Snow	FALSE	TRUE	FALSE	ECHAM4, HIRHAM	Joint Probability Method (JPM), Monte Carlo Simulation
Bermúdez et al. 2019	Spain (Betanzos, Mandeo River)	-	Earth System Processes, Methodologic al Advancement	Fluvial, Coastal	TRUE	TRUE	TRUE	lber	Least Square Support Vector Machine (LS-SVM) Regression
Bermúdez et al. 2021	Spain (Betanzos, Mandeo River)	Varying climate change scenarios	Earth System Processes, Methodologic al Advancement	Fluvial, Pluvial, Coastal, Temp/Heat	TRUE	TRUE	TRUE	lber, MISDc	Machine Learning (Artificial Neural Networks (ANN)), Least Square Support Vector Machine (LS-SVM) Regression, Bayesian Regularization Algorithm
Bevacqua et al. 2017	Italy (Ravenna)	February 2015 Flood Event	Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Linear Gaussian Autoregressive Model
Bevacqua et al. 2019	Europe	Varying climate change scenarios, Varying return period scenarios	Earth System Processes, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula
Bevacqua et al. 2020a	Global	Varying climate change scenarios	Earth System Processes	Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D- Flow	Joint Probability Method (JPM), Copula
Bevacqua et al. 2020b	Global	Varying return period scenarios	Risk Assessment	Fluvial, Pluvial	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Bevacqua et al. 2022	Australia (Perth, Swan River Estuary)	-	Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Multivariate Non-linear Regression, Copula, Temporal Analysis, Kendall's Correlation Coefficient tau (τ), Tail Dependence Coefficient (λ), Block Maxima
Bilskie et al. 2021	US (Louisiana, Barataria and Lake Maurepas Watersheds)	21 Tropical Cyclone Events (1948–2008)	Methodologic al Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	
Bischiniotis et al. 2018	Africa (Sub- Saharan Region)	501 Flood Events (1980 - 2010)	Forecasting, Risk Assessment	Pluvial, Soil Moisture	FALSE	TRUE	FALSE	-	Temporal Analysis, Risk Ratio (RR)
Blanton et al. 2012	US (North Carolina)	Hurricane Irene (2011)	Forecasting, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HL- RDHM	
Blanton et al. 2018	US (North Carolina)	Hurricane Isabel (2003)	Forecasting, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, CREST, WRF	
Bliskie and Hagen, 2018	US (Louisiana)	Hurricane Gustav (2008) and 2016 Louisiana Flood	Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	
Brown et al. 2007	UK (Canvey Island)	-	Methodologic al Advancement	Coastal	TRUE	FALSE	FALSE	Delft-FLS, SWAN	
Bunya et al. 2010	US (Louisiana and Mississippi)	-	Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, ECWAM, H*WIND, IOKA, STWAVE,	
Bush et al. 2022	US (North Carolina)	-	Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS	
Camus et al. 2021	Europe	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE		Joint Probability Method (JPM), Spatial Analysis, Correlation Coefficients (Kendali's tau (T), Spearman's rho (p)), Block Maxima, Peak- over-Threshold (POT)
Camus et al. 2022	Global (US and Europe, North Atlantic)	Flood Events (1980-2014)	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	CaMa- Flood, GTSM	Joint Occurrence Method, Spatial Anaylsis (Clustering K- Means Algorithm (KMA)), Principal Component Analysis (PCA), Temporal Analysis, Rendall's Correlation Coefficient tau (t), Peak-over-Threshold (POT)
Cannon et al. 2008	US (Colorado and California)	-	Earth System Processes	Pluvial, Fire	FALSE	TRUE	FALSE	-	Spatial Analysis, Temporal Analysis
Čepienė et al. 2022	Lithuania (Klaipėda)		Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	-
Chen and Liu 2014	Taiwan (Tainan City, Tsengwen River basin)	Typhoon Krosa (2007), Kalmegei (2008), Morakot (2009), and Haiyan (2013)	Methodologic al Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	SELFE	
Chen and Liu, 2016	Taiwan (Kaohsiung City, Gaoping River)	Typhoon Kalmegei (2008), Morakot (2009), Fanapi (2010), Nanmadol (2011), and Talim (2012), Varying return period scenarios	Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	SELFE	
Chen et al. 2010	UK (Bradford, Keighley, River Aire)	Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Pluvial	TRUE	FALSE	FALSE	SIPSON, UIM	-
Chen et al. 2013	Taiwan (Tainan City)	Typhoon Haitang (2005) and Kalmaegi (2008), Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	SELFE	
Chou 1989	Saipan (West Coast)	168 Synthetic Typhoon Events, Varying return period scenarios	Risk Assessment	Coastal	TRUE	TRUE	TRUE	SHAWLWV, WIFM	Joint Probability Method (JPM), Frequency Analysis

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Christian et al. 2015	US (Texas, Galveston Bav)	Hurricane Ike (2008)	Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS, Vflo	-
Cifelli et al. 2021	US (California, San Francisco)		Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	Hydro-	
Coles and Tawn 1994	UK (Cornwall)		Methodologic al Advancement , Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Chi Squared Test (χ2)
Coles et al. 1999	UK (Southwest Coast)		Methodologic al Advancement , Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE		Joint Probability Method (JPM), Copula, Chi Squared Test (χ2)
Comer et al. 2017	Ireland (Cork City)	2009 Flood Event	Methodologic al Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	MSN_Flood, POM	
Couasnon et al. 2018	US (Texas)		Methodologic al Advancement , Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	1D Hydrodyna mic Model	Bayesian Network (BN), Copula
Couasnon et al. 2020	Global	-	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Spatial Analysis, Temporal Analysis, Spearman's Correlation Coefficient rho (p)
Curtis et al. (2022)	US (North Carolina)	-	Risk Assessment	Fluvial, Coastal	FALSE	FALSE	FALSE	-	-
Daoued et al. 2021	France (Le Havre)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	•	Joint Probability Method (JPM), Probabilistic Flood Hazard Assessment (PFHA), Belief Functions, Peak-over- Threshold (POT)
De Bruijn et al. 2014	Netherlands (Rhine-Meuse Delta)	-	Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, FN-Curve, Potential Loss of Life (PLL), Monte Carlo Simulation
De Michele et al. 2020	Global (Europe and North Africa)	-	Earth System Processes	Pluvial	FALSE	TRUE	FALSE	-	Copula, Binary Markov Chain Network, Monte Carlo Simulation
Deidda et al. 2021	UK		Earth System Processes	Fluvial, Pluvial	FALSE	TRUE	FALSE	-	Joint Occurrence Method, Spatial Analysis, Kendall's Correlation Coefficient tau (τ), Block Maxima
Del-Rosal- Salido et al. 2021	Europe (Iberian Peninsula, Guadalete Estuary)	Varying climate change scenarios, Varying return period scenarios	Forecasting, Planning & Management	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D	Spatial Analysis (Vector Autoregressive (VAR) Model), Block Maxima, Peak- over-Threshold (POT),
Dietrich et al. 2010	US (Louisiana and Mississippi)	Hurricane Katrina (2005) and Rita (2005)	Methodologic al Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, IOKA, H*WIND, STWAVE, WAM	-
Dixon and Tawn 1994	UK	-	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Extreme Value Analysis, Chi Squared Test (χ2)
Dresback et al. 2013	US (North Carolina)	Hurricane Irene (2011)	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	ASGS- STORM, ADCIRC, Holland Wind Model, HL- RDHM, SWAN	-
Dykstra et al. 2021	US (Gulf Coast; Ascagoula, Tombigbee- Alabama River, and Apalachicola watersheds)	-	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (IPRM), Kendall's Correlation Coefficient tau (t), Frequency Analysis, Temporal Analysis (Pettitt Test), Wavelet Transformations (Mortlet- type Wave), Peak-over- Threshold (POT), Bootstrap Method
Eilander 2022	Global	-	Earth System Processes, Risk	Fluvial, Coastal	TRUE	FALSE	FALSE	HydroMT	-

Assessment

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Eilander et al. 2020	Global	-	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	CaMa- Flood, FES2012, GTSM	
Eilander et al. 2022	Mozambique (Sofala)	Varying return period scenarios	Impact Assessment, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	CaMa- Flood, Delft-FIAT, SFINCS	Copula, Block Maxima
Erikson et al. 2018	US (California, San Francisco)	Varying climate change scenarios, Varying return period scenarios	Impact Assessment, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	CoSMoS	-
Familkhalili et al. 2022	US (North Carolina, Cape Fear Estuary)	Hurricane Irene (2011)	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	1D Hydrodyna mic Model	-
Fang et al. 2021	China	Varying climate change scenarios, Varying return period scenarios	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Kendall's Correlation Coefficient tau (τ), Temporal Analysis, Peak-over- Threshold (POT)
Feng and Brubaker, 2016	US (Washington DC)	Varying climate change scenarios, Varying return period scenarios	Impact Assessment, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	-
Ferrarin et al. 2022	Italy (Venice, Adriatic Sea)	November 2019 Flood Event	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (τ), Temporal Analysis, Mann-Whitney U Test
Flick 1991	US (California, San Francisco)	-	Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method
Galiatsatou and Prinos 2016	Greece (Aegean Sea)	-	Earth System Processes	Coastal	TRUE	TRUE	TRUE	RegCM3, SWAN	Joint Probability Method (JPM), Copula, Block Maxima
Ganguli and Merz 2019a	Europe (Northwest)	-	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Spatial Analysis, Compound Hazard Ratio (CHR) Index, Kendall's Correlation Coefficient tau (τ)
Ganguli and Merz 2019b	Europe (Northwest)	Flood Events (1970-2014)	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	•	Spatial Analysis, Frequency Analysis, Compound Hazard Ratio (CHR) Index, Kendall's Correlation Coefficient tau (τ)
Ganguli et al. 2020	Europe (Northwest)	Varying climate change scenarios	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D- FLOW, WGHM	Copula, Markov Chain, Monte Carlo Simulation
Georgas et al. 2016	US (New York and New Jersey)	Winter Storm Jonas (2016)	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	ESTOFS, ETSS, sECOM, SFAS, NAM, NYHOPS	-
Ghanbari et al. 2021	US (CONUS)	Varying return period scenarios, Varying climate change scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Quantile Regression, Kendall's Correlation Coefficient tau (t), Peak-over-Threshold (POT)
Gori and Lin 2022	US (North Carolina, Cape Fear River)	Varying climate change scenarios	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-HMS, HEC-RAS	Joint Probability Method Optimal Sampling Bayesian Quadrature Optimization (JPM-OS-BQ)
Gori et al. 2020a	US (North Carolina, Cape Fear River)	Varying return period scenarios	Earth System Processes	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-HMS, HEC-RAS	-
Gori et al. 2020b	US (North Carolina, Cape Fear River)	Tropical Cyclone Fran (1996), Floyd (1999), and Matthew (2016), Varying return period scenarios	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-HMS, HEC-RAS	Joint Probability Method (JPM), Copula
Gori et al. 2022	US (East Coast and Gulf of Mexico)	Varying climate change scenarios, Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC	Joint Probability Method (IPM), Kendall's Correlation Coefficient tau (t), Statistical- Deterministic TC Model, Spatial Analysis, Temporal Analysis, Bootstrap Method
Gouldby et al. 2017	UK (South Coast)	Varying return period scenarios	Methodologic al Advancement	Coastal	TRUE	TRUE	TRUE	SWAN, WW3	Joint Probability Method (JPM), Wave Transformation Model Emulator, Monte Carlo Simulation

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Gutenson et al. 2022	US (Texas, Galveston Bay)	Hurricane Harvey (2017)	Impact Assessment, Methodologic al Advancement , Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	AutoRoute, HEC-RAS, LISFLOOD- FP	Spatial Analysis
Habel et al. 2020	US (Hawaii, Honolulu)	Varying climate change scenarios, Varying return period scenarios	Impact Assessment, Planning & Management	Coastal, Groundwater	TRUE	TRUE	TRUE	MODFLOW	Frequency Analysis, Bayesian Hierarchical Model, Spatial Analysis
Haigh et al. 2016	UK	2013-2014 Winter Storm Season	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Spatial Analysis, Temporal Analysis, Peak- over-Threshold (POT)
Harrison et al. 2022	UK (Humber and Dyfi Estuaries)	-	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	2D Hydrodyna mic Model	-
Hawkes 2003	UK	-	Earth System Processes, Methodologic al Advancement	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), JOIN-SEA Model
Hawkes 2006	UK	-	Planning & Management, Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), JOIN-SEA Model, Chi Squared Test (χ2)
Hawkes 2008	UK (South Coast)	-	Methodologic al Advancement , Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), JOIN-SEA Model, Temporal Analysis, Monte Carlo Simulation
Hawkes and Svensson 2003	UK		Earth System Processes, Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), JOIN-SEA Model, Monte Carlo Simulation
Hawkes et al. 2002	UK (England and Wales)	Varying return period scenarios	Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Monte Carlo Simulation
Helaire et al. 2020	US (Washington, Portland- Vancouver, Columbia River Estuary)	Varying climate change scenarios	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D	
Hendry et al. 2019	UK	-	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Occurrence Method, Kendall's Correlation Coefficient tau (τ), Temporal Analysis, Block Maxima, Peak-over-Threshold (POT)
Herdman et al. 2018	US (California, San Francisco)	-	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D-FM	-
Ho and Myers 1975	US (Florida, St. George Sound, Apalachicola Bay)	Varying return period scenarios	Methodologic al Advancement , Risk Assessment	Coastal	TRUE	TRUE	TRUE	SPLASH, 2D Hydrodyna mic Bay- Ocean Model (Overland 1975)	Joint Probability Method (JPM), Frequency Analysis
Hsiao et al. 2021	Taiwan	Typhoon Megi (2016), Low- Pressure Rainstorm (2018), Varying climate change scenarios	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	SCHISM, COS-Flow, 39 General Circulation Models (GCM)	Index Method (2 Hazard Indices, 4 Exposure Indices, 6 Vulnerability Indices)
Huang 2022	Taiwan (Touqian and Fengshan Rivers)	Hurricane Harvey (2017)	Forecasting	Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC	Machine Learning (Recurrent Neural Network (RNN)), Topographic Wetness Index (TWI)
Huang et al. 2021	US (Texas, Galveston Bay)	-	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	SCHISM	Compound Ratio (CR), Spatial Analysis
Ikeuchi et al. 2017	Bangladesh (Ganges- Brahmaputra- Meghna Delta)	Cyclone Sidr (2007)	Methodologic al Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	CaMa- Flood, MATSIRO- GW	-
Jalili Pirani and Reza Najafi 2020	Canada	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Spatial Analysis, Temporal Analysis (Mann-Kendall Test), Probability Space (PS) Index, Correlation

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
									Coefficients (Kendall's tau (τ), Spearman's rho (ρ))
Jalili Pirani and Reza Najafi 2022	Canada (East and West Coast, Great Lakes)	Varying return period scenarios	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Compound Hazard Ratio (CHR) Index, Copula, Kendall's Correlation tau (τ)
Jane et al. 2020	US (Florida)	-	Earth System Processes	Pluvial, Coastal, Groundwater	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (τ)
Jane et al. 2022	US (Texas, Sabine and Brazos River Basins)	Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Peak-over- Threshold (POT)
Jang and Chang 2022	Taiwan (Chiayi)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	COS-Flow	Joint Probability Method (JPM), Copula, Monte Carlo Simulation
Jasim et al. 2020	US (California, Sherman Island)	Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Pluvial	TRUE	TRUE	TRUE	RS3	Joint Probability Method (JPM), Frequency Analysis, Copula
Jones 1998	UK (Thames Estuary)	-	Earth System Processes, Methodologic al Advancement	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Temporal Analysis, Historical Emulation Model
Jong-Levinger et al. 2022	US (California)	Varying climate change scenarios, Varying return period scenarios	Earth System Processes	Pluvial, Fire	FALSE	TRUE	FALSE	-	Markov Chain Monte Carlo (MCMC) Algorithm
Joyce et al. 2018	US (Florida)	Varying climate change scenarios	Methodologic al Advancement , Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, SWAN, ICPR	
Juárez et al. 2022	US (Florida, Jacksonville, Lower St. Johns River)	Hurricane Irma (2017), Varying climate change scenarios	Earth System Processes, Methodologic al Advancement	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Flow Interaction Index (μ), Temporal Analysis
Karamouz et al. 2014	US (New York, New York City)	Varying return period scenarios, Varying climate change scenarios	Planning & Management	Pluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS, GSSHA, SWMM	Machine Learning (Multilayer Perceptron (MLP) Feedforward Neural Network (FNN)), Markov Chain Monte Carlo (MCMC) Algorithm, DREAM_ZS, Max Relevance Min Redundancy (MRMR) Algorithm
Karamouz et al. 2017	US (New York, New York City)	Hurricane Irenne (2011) and Sandy (2012), Varying future climate change flood scenarios, Varying return period scenarios	Methodologic al Advancement	Pluvial, Coastal	TRUE	TRUE	TRUE	GSSHA	Joint Probability Method (JPM), Frequency Analysis, Copula
Karamouz et al. 2017	US (New York, New York City)	Varying return period scenarios	Impact Assessment, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	GSSHA	Joint Probability Method (JPM), Frequency Analysis, Flood Damage Estimator (FDE) Model, Copula, Correlation Coefficients (Kendall's tau (t), Pearson's (r), Spearman's rho (p))
Kerr et al. 2013	US (Louisiana and New Orleans, Mississippi River)	Hurricane Betsy (1965), Camille (1969), Andrew (1992), Katrina (2005), Rita (2005), Gustav (2008), Ike (2008), 15 Synthetic Storm Events	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, H*WIND, SWAN	Joint Probability Method (JPM) with Optimal Sampling (JPM-OS), Frequency Analysis
Kew et al. 2013	Netherlands (Rhine Delta)	Varying return period scenarios, Varying climate change scenarios	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	ECHAM5, MPI-OM	Joint Probability Method (JPM), Extreme Value Analysis, Peak-over- Threshold (POT)
Khalil et al. 2022	Australia (Brisbane, Brisbane River	Flood Events (2006, 2011, 2013)	Earth System Processes, Methodologic	Fluvial, Coastal	TRUE	FALSE	FALSE	MIKE21	-

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
	and Moreton Bay)		al Advancement						
Khanal et al. 2019	Europe (Rhine River Basin)		Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	DCSM, HBV, RACMO2, SPHY, WAQUA	Joint Probability Method (JPM), Temporal Analysis
Khanam et al. 2021	US (Connecticut)	Varying climate change scenarios	Impact Assessment, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	CREST- SVAS, HEC- RAS, WRF	
Khatun et al. 2022	India (Upper Mahanadi River basin)	Varying return period scenarios, Varying climate change scenarios	Earth System Processes	Fluvial, Pluvial	TRUE	TRUE	TRUE	MIKE11, NAM	Bivariate Hazard Ratio (BHR) Index, Copula, Kendall's Correlation Coefficient tau (t), Peak-over-Threshold (POT)
Kim et al. 2022	US (Texas, Houston, Dickinson Bayou Watershed)	Hurricane Harvey (2017)	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Kendall's Correlation Coefficient tau (t), Peak- over-Threshold (POT)
Kirkpatrick and Olbert 2020	Ireland (Cork City)	Varying climate change scenarios, Varying return period scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	-	-
Klerk et al. 2015	Netherlands (Hoek van Holland and Lobith, Rhine- Meuse Delta)	Varying climate change scenarios, Varying return period scenarios	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	CKF, Delft3D- FLOW, DCSM, HBV- 96	Temporal Analysis, Chi Squared Test (χ 2), Peak-over- Threshold (POT)
Kowalik and Proshutinsky 2010	US (Alaska, Cook Inlet)	-	Earth System Processes	Coastal, Tsunami	TRUE	FALSE	FALSE	1D/2D Hydrodyna mic Models	-
Kudryavtseva et al. 2020	Europe (Baltic Sea)	-	Risk Assessment	Coastal	TRUE	TRUE	TRUE	NEMO, WAM	Joint Probability Method (JPM), Copula
Kumbier et al. 2018	Australia (New South Wales, Nowra, Shoalhaven River)	2016 Cyclone	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D- FLOW	-
Kupfer et al. 2022	South Africa (Breede Estuary)	Varying return period scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D- FLOW, Delft3D- WAVE	-
Lai et al. 2021a	Global	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE		Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t), Peak-over-Threshold (POT)
Lai et al. 2021b	Global	Varying climate change scenarios, Varying return period scenarios, Flood Events (1948–2014, 1979–2014)	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Frequency Analysis, Spatial Analysis, Temporal Analysis (Mann-Kendall Test), Multivariate Regression, Peak-over-Threshold (POT)
Láng-Ritter et al. 2022	Spain	-	Forecasting, Impact Assessment, Risk Assessment	Fluvial, Pluvial	TRUE	FALSE	FALSE	EFAS, ReAFFIRM	
Latif and Simonovic 2022a	Canada (West Coast)	-	Methodologic al Advancement , Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula
Latif and Simonovic 2022b	Canada (West Coast)		Methodologic al Advancement , Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE		Joint Probability Method (JPM), Copula
Lawrence et al. 2014	Norway	Varying return period scenarios	Risk Assessment	Pluvial, Snow	TRUE	TRUE	TRUE	HBV, PQRUT	Stochastic Probability (SCHADEX Probabilistic Method, GRADEX Probabilistic Method)
Lee et al. 2019	South Korea	Typhoon Maemi (2003)	Methodologic al Advancement , Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D, HEC-HMS	-

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Lee et al. 2020	South Korea (Busan, Marine City)	-	Methodologic al Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, FLOW-3D, SWAN, XPSWMM	-
Leijnse et al. 2021	US (Florida, Jacksonville) and Philippines	Hurricane Irma (2017) and Typhoon Haiyan (2013)	Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	SFINCS	
Li and Jun 2020	South Korea (Han River)	-	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	1D Hydrodyna mic Model	-
Li et al. 2022	Hong Kong (Hong Kong- Zhuhai-Macao Bridge)		Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	MIKE+	Joint Probability Method (JPM), Temporal Analysis, Damage Curves
Lian et al. 2013	China (Fuzhou City)	Typhoon Longwang (2005), Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS, SWAT	Joint Probability Method (JPM), Copula, Peak-over- Threshold (POT)
Lian et al. 2017	China (Hainan Province, Haikou)	-	Planning & Management, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS, SWMM	Disaster Reduction Analysis, Cost-Benefit Analysis (CBA)
Liang and Zhou 2022	China (Zhejiang, Qiantang River)	Typhoon Lekima (2019)	Methodologic al Advancement , Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	CaMa- Flood, MIKE21	
Lin et al. 2010	US (East Coast, Chesapeake Bav)	-	Earth System Processes	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, WRF	
Liu et al. 2022	China (Haikou	-	Risk	Pluvial,	TRUE	FALSE	FALSE	Delft3D	-
Loganathan et al. 1987	US (Virginia, Rappahannock River)	-	Earth System Processes, Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Box-Cox Transformation, Chi Squared Test (x2)
Loveland et al. 2021	US (Texas, Lower Neches River)	Hurricane Harvey (2017)	Methodologic al Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS	-
Lu et al. 2022	China (Southeast)	-	Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Multivariate Copula Analysis Toolbox (MvCAT), Kendall's Correlation Coefficient tau (t)
Lucey et al. 2022	US (California, Los Angeles, Huntington Beach, San Diego)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Correlation Coefficients (Kendall's tau (τ), Pearson's (r), Spearman's rho (ρ))
Lyddon et al. 2022	UK	-	Earth System Processes, Methodologic al Advancement	Coastal	FALSE	TRUE	FALSE	-	Frequency Analysis, Temporal Analysis, Spatial Analysis, Kendall's Correlation Coefficient tau (t), Annual Mean Compound Event Measure, Block Maxima, Peak-over- Threshold (POT)
Manoj et al. 2022	India		Earth System Processes	Pluvial, Soil Moisture	FALSE	TRUE	FALSE	-	Event Coincidence Analysis (ECA), Chi Squared Test (χ2), Spatial Analysis, Temporal Analysis
Mantz and Wakeling 1979	UK (Norfolk, Yare Basin)	Varying return period scenarios	Planning & Management, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Extreme Value Analysis
Martyr et al. 2013	US (Louisiana)	Hurricane Gustave (2008)	Methodologic al Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	
Mashriqui et al. 2010	US (Washington DC)	1996 Flood, Hurricane Isabel (2003)	Forecasting, Methodologic al Advancement , Planning & Management	Fluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Mashriqui et al. 2014	US (Washington DC)	Hurricane Isabel (2003)	Forecasting, Methodologic al Advancement , Planning & Management	Fluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	-
Masina et al. 2015	Italy (Ravenna)		Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Correlation Coefficients (Kendall's tau (t), Pearson's (r), Spearman's rho (p))
Maskell et al. 2014	UK (England)	Varying return period scenarios	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	FVCOM, LISFLOOD- FP	-
Maymandi et al. 2022	US (Texas, Sabine-Neches Estuary)	Hurricane Rita (2005), Ike (2008), and Harvey (2017)	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, Delft3D	
Mazas et al. 2014	France (Brest)	Varying return period scenarios	Methodologic al Advancement , Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Revised Joint Probability Method (RJPM), Chi Squared Test (χ2), Peak-over- Threshold (POT)
McInnes et al. 2002	Australia (Queensland, Gold Coast Broadwater)	Tropical Cyclones (1989 and 1974)	Earth System Processes, Methodologic al Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	GCOM2D, RAMS, WAM	
Meyers et al. 2021	US (Florida)	Hurricane Hermine (2017), 79 Sanitary Sewer Overflow Events (1996 - 2017), Varying climate change scenarios	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Logistic Regression Model (LRM), Temporal Analysis
Ming et al. 2022	UK (London, Thames Estuary)	Varying return period scenarios, 27 Flood Scenarios	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	HiPIMS	Joint Probability Method (JPM), Copula, Correlation Coefficients (Kendall's tau (τ), Spearman's rho (ρ)), Peak-over-Threshold (POT),
Modrakowski et al. 2022	Netherlands (Odense, Hvidovre, Vejle)	-	Planning & Management, Risk Assessment	Fluvial, Pluvial, Coastal, Soil Moisture	FALSE	FALSE	FALSE	-	-
Moftakhari et al. 2017	US (Philadelphia, Pennsylvania; San Francisco, California; and Washington DC)	Varying climate change scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Kendall's Correlation Coefficient tau (τ), Block Maxima
Moftakhari et al. 2019	US (California, Newport Bay)	-	Methodologic al Advancement , Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	BreZo	Joint Probability Method (JPM), Copula, Correlation Coefficients (Kendall's tau (t), Spearman's rho (p))
Mohammadi et al. 2021	US (Idaho, Clearwater River; Montana, Yellowstone River; New Jersey, Delaware River)		Earth System Processes, Risk Assessment	Fluvial, Pluvial, Coastal, Snow	FALSE	TRUE	FALSE	-	Copula, Bayesian Network (BN), Storm Surge Statistical Emulator (Kriging/Gaussian Process Regression (GPR)
Mohor et al. 2020	Germany	Flood Events (2002-2013)	Impact Assessment	Fluvial, Pluvial, Groundwater , Damming/Da m Failure	FALSE	TRUE	FALSE	-	Multivariate Ordinary Least Squares (OLS) Regression, Building Loss Ratio, Chi Squared Test (χ2), Univariate Normality and Variance (Levene's Test, Box's M Test, Kruskal-Wallis Test, Dunn's Test), Bootstrap Method
Muñoz et al. 2020	US (Georgia, Savannah, Savannah River Delta)	Hurricane Matthew (2016), Varying return period scenarios	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FM	Spatial Analysis, Copula, Multi-hazard Scenario Analysis Toolbox (MhAST), Correlation Coefficients (Kendall's tau (t), Spearman's rho (p))

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Muñoz et al. 2021	US (Southeast Coast; Savannah River Estuary, Florida, Georgia, South Carolina, and North Carolina)	Hurricane Matthew (2016)	Methodologic al Advancement	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FM	Machine Learning (Convolutional Neural Network (CNN)), Data Fusion (DF)
Muñoz et al. 2022a	US (Alabama, Mobile Bay)	Varying climate change scenarios	Earth System Processes, Planning & Management, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FM	Joint Probability Method (JPM), Copula, Multi-hazard Scenario Analysis Toolbox (MhAST), Peak-over- Threshold (POT)
Muñoz et al. 2022b	US (Texas, Galveston Bay; Delaware, Delaware Bay)	Hurricane Harvey (2017), Hurricane Sandy (2012)	Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FM	Bayesian Data Assimilation (DA), Ensemble Kalman Filter (EnKF)
Myers 1970	US (New Jersey, Atlantic City, Long Beach Island)		Methodologic al Advancement , Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Frequency Analysis
Najafi et al. 2021	Saint Lucia	Hurricane Matthew (2016)	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	HyMOD, LISFLOOD- FP	Strongest Path Method (SPM) Network Risk Analysis, Risklogik Platform, Monte Carlo Simulation
Naseri and Hummel 2022	US (CONUS)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Kendall's Correlation Coefficient tau (τ), Spatial Analysis, Temporal Analysis (Mann-Kendall Test), Markov Chain Monte Carlo (MCMC) Algorithm
Nash et al. 2018	Ireland (Cork	November 2009 Flood	Earth System	Fluvial, Coastal	TRUE	FALSE	FALSE	MSN_Flood, POM	-
Nasr et al. 2021	US (CONUS)	-	Earth System Processes, Methodologic al Advancement	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Temporal Analysis, Spatial Analysis, Kendall's Correlation Coefficient tau (τ), Tail Dependence Measure chi (χ), Bootstrap Method
Olbert et al. 2013	Ireland	48 Storm Events (1959-2005), Varying return period scenarios	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM)
Olbert et al. 2017	Ireland (Cork City)	2009 Flood Event	Methodologic al Advancement , Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	MSN_Flood, POM	
Orton et al. 2012	US (New York)	-	Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	sECOM, WRF	-
Orton et al. 2015	US (New York)	533 Synthetic Tropical Cyclones, 76 Flood Events	Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	sECOM, SELFE	Bayesian Simultaneous Quantile Regression, Markov Chain Monte Carlo (MCMC) Algorithm
Orton et al. 2016	US (New York, New York Harbor)	Hurricane Irene (2011), Northeaster Storm (2010), 42 Storm Events (1950- 2013), 606 Synthetic Storms, Varying return period scenarios	Risk Assessment	Coastal	TRUE	TRUE	TRUE	NYHOPS, sECOM, Holland Wind Model	Hall Stochastic TC Life Cycle Model (Hall and Jewson 2007; Hall and Yonekura 2013), Extreme Value Analysis, Markov Chain Monte Carlo (MCMC) Algorithm, Bootstrap Method
Orton et al. 2018	US (New York, Hudson River)	76 Storm Events (1900–2010)	Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	sECOM	Hall Stochastic TC Life Cycle Model, Bayesian Simultaneous Quantile Regression, Extreme Value Analysis
Pandey et al. 2021	India (Mahanadi River)	Cyclone Odisha (1999) and Phailin (2013)	Earth System Processes, Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS	-
Paprotny et al. 2020	Europe (Northwest)		Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	EFAS, Delft3D,	Tail Dependence Coefficient (λ), Correlation Coefficients (Kendall's tau (τ), Spearman's

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
							Statistical	LISFLOOD- FP	rho (ρ)), Peak-over-Threshold (POT)
Park et al. 2011	South Korea	Typhoon Meami (2003)	Forecasting, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	Holland Wind Model, Hydrodyna mic Model (MATLAB)	
Pasquier et al. 2019	UK (East Coast)	Varying climate change scenarios, Varying return period scenarios	Earth System Processes, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	Extreme Value Analyis, Peak- over-Threshold (POT)
Peña et al. 2022	US (Florida, Arch Creek Basin)	-	Earth System Processes, Methodologic al Advancement , Risk Assessment	Fluvial, Pluvial, Coastal, Groundwater	TRUE	FALSE	FALSE	FLO-2D, MODFLOW- 2005	-
Petroliagkis et al. 2016	Europe		Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D- Flow, ECWAM, LISFLOOD,	Joint Probability Method (JPM), Tail Dependence Measure chi (χ), Peak-over- Threshold (POT)
Petroliagkis et al. 2018	Europe (Rhine River)	Top 80 Compound Events at 32 Rivers Each	Earth System Processes	Coastal	FALSE	TRUE	FALSE	Delft3D- FLOW, ECWAM	Joint Probability Method (JPM), Tail Dependence Measure chi (χ), Peak-over- Threshold (POT)
Phillips et al. 2022	US (Southeast Coast; Florida, Georgia, and South Carolina)	-	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Locally Weighted Scatterplot Smoothing (LOWESS) Autoregressive Moving Average (ARMA) Model
Piecuch et al. 2022	US (West Coast; California, Oregon, and Washington)	Atmospheric Rivers Events (1980-2016)	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Temporal Analysis, Regression Analysis, Peak- over-Threshold (POT), Bootstrap Method
Pietrafesa et al. 2019	US (North Carolina)	Hurricanes Dennis and Floyd (1999)	Earth System Processes, Methodologic al Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	POM	
Poulos et al. 2022	Greece (Thrace, Evros River Delta)	8 Flood Events (2005–2018)	Earth System Processes, Risk Assessment	Fluvial, Pluvial	FALSE	TRUE	FALSE	-	Temporal Analysis, Spatial Analysis, Spearman's Correlation Coefficient rho (ρ)
Prandle and Wolf (1978)	UK (East Coast, North Sea, River Thames)		Earth System Processes	Coastal	TRUE	FALSE	FALSE	1D Hydrodyna mic Model (Prandle 1975)	
Preisser et al. 2022	US (Texas, Austin)	2015 Memorial Day Flood	Impact Assessment, Risk Assessment	Fluvial, Pluvial	TRUE	TRUE	TRUE	GeoFlood, GeoNet, ProMalDes	Social Vulnerability Index (SVI), Principal Component Analysis (PCA), Spatial Analysis
Qiang et al. 2021	Hong Kong (Tseung Kwan O Town Centre)	Typhoon Mangkhut (2018)	Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	FLO-2D, SWMM	
Qiu et al. 2022	China (Guangdong, Pearl River Delta)	76 Tropical Cyclone Events (1957-2018), Varying climate change scenarios	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	-
Quagliolo et al. 2021	Italy (Liguria)	-	Methodologic al Advancement , Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	InVEST- UFRM	
Rahimi et al. 2020	US (California, Oakland Flatlands)	-	Methodologic al Advancement , Risk Assessment	Pluvial, Coastal, Groundwater	TRUE	FALSE	FALSE	HEC-RAS	
Ray et al. 2011	US (Texas, Galveston Bay)	Hurricane Ike (2008)	Earth System Processes	Pluvial, Coastal	TRUE	FALSE	FALSE	HEC-HMS, HEC-RAS	-

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Razmi et al. 2022	US (New York, New York City)	Hurricane Sandy (2012), Hurricane Irene (2011), Varying return period scenarios	Earth System Processes, Methodologic al Advancement	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t), Temporal Analysis (Mann-Kendall Test)
Ridder et al. 2018	Netherlands	-	Earth System Processes	Pluvial, Coastal	TRUE	FALSE	FALSE	WAQUA	-
Ridder et al. 2020	Global	27 Hazard Pairs (1980–2014), Spatial analysis	Earth System Processes	Pluvial, Coastal, Drought, Soil Moisture	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Spatial Analysis, Likelihood Multiplication Factor (LMF)
Robins et al. 2011	UK (Dyfi Estuary)	Varying climate change scenarios	Earth System Processes, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	TELEMAC	
Robins et al. 2021	UK (Humber and Dyfi Estuaries)	56 Flood Events	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Linear Regression, Temporal Analysis, Cross-correlation Analysis, Correlation Coefficients (Kendall's tau (t), Spearman's rho (p)), Chi Squared Test (χ 2)
Rodríguez et al. 1999	Spain (Northwest Coast)	-	Risk Assessment	Coastal	FALSE	TRUE	FALSE		Joint Probability Method (JPM)
Rueda et al. 2016	Spain (Santander)	-	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Climate-based Extremal Index (Θ), Extreme Value Analysis, Monte Carlo Simulation
Ruggiero et al. 2019	US (Washington, Grays Harbor)	Varying climate change scenarios, Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-RAS, SWAN	Managing Uncertainty in Complex Models (MUCM) Hydrodynamic Emulator, Temporal Analysis
Sadegh et al. 2018	US (Washington DC, Potomac River)	Varying return period scenarios	Methodologic al Advancement , Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Correlation Coefficients (Kendall's tau (τ) , Pearson's (r), Spearman's rho (p)), Block Maxima
Saharia et al. 2021	US (New York, Buffalo River & Lake Erie)	Varying return period scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t)
Saleh et al. 2017	US (New Jersey, Newark Bay)	Hurricane Irene (2011) and Sandy (2012)	Forecasting	Pluvial, Coastal	TRUE	FALSE	FALSE	HEC-HMS, HEC-RAS, sECOM, NYHOPS	-
Sampurno et al. 2022a	Indonesia (Pontianak, Kapuas River Delta)	December 2018 Flood Event	Forecasting, Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	SLIM, SWAT	Machine Learning (Random Forest (RF), Multiple Linear Regression (MLR), Support Vector Machine (SVM))
Sampurno et al. 2022b	Indonesia (Pontianak, Kapuas River Delta)	-	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	SLIM	-
Samuels and Burt 2002	UK (Wales, Pontypridd, Taff River, Ely River)	Varying return period scenarios, Varying climate change scenarios	Planning & Management, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	Flood Modeller/IS IS	Joint Probability Method (JPM), JOIN-SEA Model, Monte Carlo Simulation
Sangsefidi et al. 2022	US (California, Imperial Beach)	-	Risk Assessment	Pluvial, Coastal, Groundwater	TRUE	FALSE	FALSE	PCSWMM	-
Santiago- Collazo et al. 2021	US (Mississippi, Mississippi River Delta)	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	-
Santos et al. 2017	UK	92 Extreme Wave Events (2002- 2016), Varying return period scenarios	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Spatial Analysis, Temporal Analysis, Extreme Value Analysis, Kendall's Correlation tau (τ), Peak- over-Threshold (POT)
Santos et al. 2021a	US (Texas, Sabine Lake)		Earth System Processes, Methodologic al Advancement , Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Multiple Linear Regression (MLR), Extreme Value Analysis, Kendall's Correlation tau (t), Peak- over-Threshold (POT)

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Santos et al. 2021b	Netherlands	Varying return period scenarios	Earth System Processes, Methodologic al Advancement	Pluvial, Coastal	TRUE	TRUE	TRUE	RTC-Tools	Joint Probability Method (JPM), Copula, Machine Learning (Artificial Neural Network (ANN), Multiple Linear Regression (MLR), Random Forest (RF)), Kendall's Correlation Coefficient tau (t), Block Maxima
Serafin and Ruggiero 2014	US (Oregon)	Varying return period scenarios	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE		Total Water Level Full Simulation Model (TWL- FSM), Temporal Analysis (Declustering), Extreme Value Analysis, Monte Carlo Simulation, Peak-over- Threshold (POT)
Serafin et al. 2019	US (Washington)	Varying return period scenarios	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-RAS, SWAN	Total Water Level Full Simulation Model (TWL- FSM), Extreme Value Analysis, Temporal Analysis, Spatial Analysis, Monte Carlo Simulation
Shahapure et al. 2010	India (Maharashtra, Navi Mumbai)	5 Rainfall Events	Methodologic al Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	1D Hydrodyna mic Model (GIS-based)	
Shen et al. 2019	US (Virginia, Norfolk)	Varying return period scenarios	Planning & Management, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	ESTRY, TUFLOW	Transition Zone Index (TZI), Spatial Analysis, Temporal Analysis
Sheng et al. 2022	US (Florida)	Varying Tropical Cyclone events, Varying climate change scenarios, Varying return period scenarios	Earth System Processes, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, CAM, CESM, CH3D, HiRAM, RFMS, SWAN	Joint Probability Method with Optimal Sampling (JPM-OS), Monte Carlo Life- Cycle (MCLC) Simulation, Peak-over-Threshold (POT)
Shi et al. 2022	China (Zhejiang, Xiangshan)	Typhoons Haikui (2012) and Fitow (2013)	Earth System Processes, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, SWMM	-
Silva-Araya et al. 2018	US (Puerto Rico)	Hurricane Georges (1998)	Methodologic al Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, GSSHA, SWAN	-
Skinner et al. 2015	UK (Humber Estuary)	2013 Storm Event	Methodologic al Advancement , Risk Assessment	Coastal	TRUE	FALSE	FALSE	CAESAR- LISFLOOD, LISFLOOD- FP	-
Sopelana et al. 2018	Spain (Betanzos)	40 Flood Events	Methodologic al Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	lber	
Stamey et al. 2007	US (Maryland and Virginia)	Hurricane Isabel (2003), Tropical Storm Ernesto (2006), and 2006 Nor'easter Storm	Forecasting, Planning & Management	Fluvial, Coastal	TRUE	FALSE	FALSE	AHPS, ELCIRC, RAMS, ROMS, UnTRIM, WRF	-
Steinschneider 2021	Canada (Ontario, Lake Ontario)	-	Earth System Processes, Risk Assessment	Coastal	TRUE	TRUE	TRUE	LOOFS	Bayesian Hierarchical Model, Monte Carlo Simulation, Spatial Analysis, Chi Squared Test (χ2)
Stephens and Wu 2022	New Zealand	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Kendall's Correlation Coefficient tau (Ţ), Spatial Analysis, Temporal Analysis, Peak-over-Threshold (POT)
Sui and Koehler 2001	Germany	Varying return period scenarios	Earth System Processes	Pluvial, Snow	FALSE	TRUE	FALSE	-	Extreme Value Analysis, Spatial Analysis, Temporal Analysis
Svensson and Jones 2002	UK (East Coast)	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Dependence Measure chi (χ), Temporal Analysis, Spatial Analysis, Peak-over- Threshold (POT), Bootstrap Method
Svensson and Jones 2004	UK (South and West Coast)	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Dependence Measure chi (χ), Temporal Analysis, Spatial Analysis, Peak-over- Threshold (POT), Bootstrap Method

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Tahvildari et al. 2022	US (Virginia)	Hurricane Irene (2011)	Planning & Management	Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D- FLOW, TUFLOW	Spatial Analysis (Traffic Network Analysis)
Tanim and Goharian 2021	Bangladesh (Chittagong)	-	Earth System Processes, Methodologic al Advancement	Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D- FLOW, SWAN, SWMM	Joint Probability Method (JPM), Copula, Spearman's Correlation Coefficient rho (p), Spatial Analysis, Temporal Analysis
Tanir et al. 2021	US (Washington DC, Potomac River)	-	Impact Assessment, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS	Socio-Economic Vulnerability Index (SOVI), Exposure Index (EI), Flood Socio-Economic Vulnerability Index (FSOVI), HAZUS-MH Damage Assessment Tool, Principal Component Analysis (PCA), Spatial Analysis
Tao et al. 2022	China (Wuhan, Yangtze River)	Compound Events (1980 -2020)	Earth System Processes, Risk Assessment	Fluvial, Pluvial	FALSE	TRUE	FALSE	-	Compound Intensity Index (CII), Joint Probability Method (JPM), Copula, Multivariate Copula Analysis Toolbox (MvCAT), Correlation Coefficients (Kendall's tau (t), Pearson's (r), Spearman's rho (p)), Temporal Analysis (Mann- Kendall Test)
Tawn 1992	UK	-	Methodologic al Advancement , Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Revised Joint Probability Method (RJPM), Extreme Value Analysis
Tehranirad et al. 2020	US (California, San Francisco Bay)	February 2019 Storm Event	Forecasting, Planning & Management	Fluvial, Pluvial	TRUE	FALSE	FALSE	Hydro- CoSMoS	
Thieken et al. 2022	Germany	2013 and 2016 Flood Events	Impact Assessment, Planning & Management	Pluvial, Damming/Da m Failure	FALSE	TRUE	FALSE	-	Socioeconomic Metrics, Mann-Whitney U Test, Chi Squared (χ2) Value, Spatial Analysis
Thompson and Frazier, 2014	US (Florida, Sarasota County)	Varying climate change scenarios	Methodologic al Advancement , Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	ICPR, SLOSH	Spatial Analysis (Geographic Weighted Regression (GWR), Moran's I, Linear Probability Model (LPM))
Torres et al. 2015	US (Texas, Galveston Bay)	Hurricane Katrina (2005), Ike (2008), and Isaac (2012)	Earth System Processes, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS, SWAN, Vflo	-
Tromble et al. 2010	US (North Carolina, Tar and Neuse River)	Tropical Storm Alberto (2006)	Methodologic al Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HL- RDHM, Vflo	-
Tu et al. 2018	China (Xixiang Basin)	-	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t), Block Maxima, Peak- over-Threshold (POT)
Valle-Levinson et al. 2020	US (Texas, Houston, Galveston Bay)	Hurricane Harvey (2017)	Earth System Processes	Pluvial, Coastal	TRUE	TRUE	TRUE	ROMS	Flow Interaction Index (μ), Temporal Analysis
Van Berchum et al. 2020	Mozambique (Beira)	-	Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	FLORES	-
Van Cooten et al. 2011	US (North Carolina)	Hurricane Isabelle (2003), Earl (2010) and Irene (2011), Tropical Storm Nicole (2010)	Forecasting, Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, CI- FLOW, HL- RDHM, RUC	
Van Den Hurk et al. 2015	Netherlands	January 2012 Near Flood, 800-Year Climate Simulation	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	EC-Earth, RACMO2, RTC-Tools	Joint Probability Method (JPM), Spatial Analysis, Temporal Analysis
Vitousek et al. 2017	Global	Varying climate change scenarios	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Extreme Value Analysis, Monte Carlo Simulation
Vongvisessomj ai and Rojanakamtho rn 1989	Thailand (Chao Phraya River)	-	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	1D Hydrodyna mic Model	Analytical Perturbation Method, Harmonic Analysis, Temporal Analysis

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Wadey et al. 2015	UK (Sefton and Suffolk)	Cyclone Xaver (2013), Varying return period scenarios	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Temporal Analysis (Clustering)
Wahl et al. 2015	US (CONUS)	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Temporal Analysis, Kendall's Correlation Coefficient tau (t)
Walden et al. (1982)	UK (South Coast)	-	Earth System Processes, Methodologic al Advancement	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Temporal Analysis
Wang et al. 2014	US (New York, New York City)	Hurricane Sandy (2012)	Methodologic al Advancement	Coastal	TRUE	FALSE	FALSE	SELFE, RAMS, UnTRIM	-
Wang et al. 2015	US (Washington DC, Potomac River)	Hurricane Isabel (2003)	Methodologic al Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	UnTRIM	
Wang et al. 2021	Canada (Newfoundlan d and Labrador)	Varying return period scenarios, Varying climate change scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	HEC-HMS, HEC-RAS, WRF	
Ward et al. 2018	Global		Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE		Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t), Spatial Analysis, Block Maxima, Peak-over- Threshold (POT)
Webster et al. 2014	Canada (Nova Scotia, Bridgewater, LaHave River estuary)	Varying climate change scenarios, Varying return period scenarios	Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	MIKE11, MIKE21	Joint Probability Method (JPM), Extreme Value Analysis
White 2007	UK (East Sussex, Lewes, Ouse River)	October 2000 Flood Event	Earth System Processes, Methodologic al Advancement , Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE		Joint Probability Method (JPM), Dependence Measure chi (\chi), Block Maxima, Peak- over-Threshold (POT)
Williams et al. 2016	Europe (UK, US, Netherlands, and Ireland)	-	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Kendall's Correlation Coefficient tau (τ), Temporal Analysis
Wolf 2009	Myanmar (Irrawaddy River Delta)	May 2008 Flood Event	Earth System Processes	Coastal	TRUE	FALSE	FALSE	ADCIRC, SWAN	
Wu and Leonard 2019	Australia	-	Earth System Processes	Pluvial, Coastal	TRUE	TRUE	TRUE	ROMS	Joint Probability Method (JPM), Kendall's Correlation tau (τ), Spatial Analysis, Peak-over-Threshold (POT)
Wu et al. 2018	Australia	-	Earth System Processes	Pluvial, Coastal	TRUE	TRUE	TRUE	ROMS	Extreme Value Analysis, Temporal Analysis, Spatial Analysis, Pearson's Correlation Coefficient (r), Peak-over-Threshold (POT)
Wu et al. 2021	Australia (Swan River)	Varying return period scenarios	Methodologic al Advancement , Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	MIKE21	Joint Probability Method (JPM), Frequency Analysis, Peak-over-Threshold (POT)
Xiao et al. 2021	US (Delaware, Delaware Bay Estuary)	Hurricane Irene (2011), Isabel (2003), Sandy (2012); and Tropical Storm Lee (2011)	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	FVCOM	Temporal Analysis (Complex Demodulation, Singular Spectral Analysis (SSA))
Xu et al. 2014	China (Fuzhou City)	-	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Temporal Analysis (Mann-Kendall U Test, Pettitt Test)
Xu et al. 2019	China (Haikou City)	-	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula
Xu et al. 2022	China (Shanghai)	Tropical Cyclones and Peak Water Level Events (1961-2018)	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	D-Flow FM	Copula, Correlation Coefficients (Kendall's tau (τ), Spearman's rho (ρ))

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Xu et al. 2022	China (Hainan, Haikou)	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	PCSWMM	Joint Probability Method (JPM), Copula, Monte Carlo Simulation, Kendall's Correlation Coefficient tau (t)
Yang and Qian 2019	China (Shenzhen, Pearl River)		Earth System Processes, Methodologic al Advancement	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Particle Swarm Optimization (PSO)
Yang et al. 2020	China (Jiangsu Province, Lianyungang, Yancheng and Nantong)	-	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Particle Swarm Optimization (PSO)
Ye et al. 2020	US (East Coast and Gulf of Mexico, Deleware Bay)	Hurricane Irene (2011)	Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	NWM, SCHISM, 3D Baroclinic Atmospheri c Model	
Ye et al. 2021	US (Southeast Coast, North Carolina & South Carolina)	Hurricane Florence (2018)	Earth System Processes, Methodologic al Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	HYCOM, NWM, SCHISM, SMS	-
Yeh et al. 2006	Taiwan (Longdong, Hualien, Chiku, and Eluanbi)	30 Typhoon Events (2001- 2005), Varying return period scenarios	Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Frequency Analysis
Zellou and Rahali 2019	Morocco (Bouregreg River)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	CAESAR- LISFLOOD	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (τ), Tail Dependence Coefficient (λ)
Zhang and Chen 2022	China	-	Earth System Processes, Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t), Spatial Analysis, Temporal Analysis, Peak- over-Threshold (POT), Block Maxima
Zhang and Najafi 2020	Saint Lucia	Hurricane Mathew (2016)	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	HYMOD, LISFLOOD- FP	•
Zhang et al. 2011	US (Alaska, Prince William Sound)	1964 Alaska Tsunami	Earth System Processes	Coastal, Tsunami	TRUE	FALSE	FALSE	SELFE	-
Zhang et al. 2020	US (Delaware, Delaware Bay)	Hurricane Irene (2011)	Earth System Processes, Methodologic al Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	SCHISM	-
Zhang et al. 2022	China (Zhejiang, Ling River Basin)	Typhoon Lekima (2019) and Wiph (2007)	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	1D/2D Coupled Hydrodyna mic Model	-
Zheng et al. 2013	Australia	-	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Extreme Value Analysis, Dependence Measure chi (χ), Spatial Analysis, Temporal Analysis, Peak-over-Threshold (POT)
Zheng et al. 2014	Australia (Sydney, Hawkesbury- Nepean Catchmen)	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Extreme Value Analysis, Block Maxima, Peak-over-Threshold (POT)
Zhong et al. 2013	Netherlands (Lower Rhine Delta)	Varying climate change scenarios	Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	1D Hydrodyna mic Model	Joint Probability Method (IPRM), Copula, Temporal Analysis (Mann-Kendall Test), Monte Carlo Simulation, Correlation Coefficient (Kendall's tau (t), Spearman's rho (p)), Chi Squared Test (χ2),

588 589

Table A2. Table of numerical models, frameworks, systems, and toolsets observed in literature database studies for simulating hydrologic, hydrodynamic, oceanographic, and atmospheric systems that contribute to compound flooding. 590

Model Acronym	Full Names	Model Type
ADCIRC	Advanced CIRCulation	Hydrodynamic Model
ADCIRC-SWAN		Coupled Hydrodynamic Model System of ADCIRC and SWAN
AHPS	Advanced Hydrologic Prediction Service	Coupled Atmospheric & Hydrological Model System
ASGS	ADCIRC Surge Guidance System	Hydrodynamic Model System
ASGS-STORM	ASGS-Scalable, Terrestrial, Ocean, River, Meteorology	Coupled Model System of ASGS, SWAN, HL-RDHM, DAH, and NAM
AutoRoute	-	Hydrological Model
BreZo	-	Hydrodynamic Model
CAESAR-Lisflood	-	Coupled Model System of Lisflood-FP and CAESAR
CAM	Community Atmosphere Model	Atmospheric Model
CaMa-Flood	Catchment-based Macro-scale Floodplain	Hydrodynamic Model
CESM	Community Earth System Model	Atmospheric Model
CH3D	Curvilinear-grid Hydrodynamics 3D Model	Hydrodynamic Model
CI-FLOW	Coastal and Inland Flooding Observation and	Hydrological Model
	Warning Project	
CKF	Climate Knowledge Facility System	Coupled Hydrological & Hydrodynamic Model System
COAWST	Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System	Coupled Hydrodynamic & Atmospheric Model System
COS-Flow	Coupled Overland-Sewer Flow model	Hydrodynamic Model
CoSMoS	Coastal Storm Modeling System	Atmospheric Model
CREST	Coupled Routing and Excess Storage	Hydrological Model
CREST-SVAS	Coupled Routing and Excess Storage-Soil- Vegetation-Atmosphere-Snow	Hydrological Model
D-Flow FM	D-Flow Flexible Mesh	Hydrodynamic Model
DCSM	Dutch Continental Shelf Model	Hydrodynamic Model
Delft3D-FM	Delft 3D Flexible Mesh Suite	Toolset
Delft3D-FLOW	-	Hydrodynamic Model
Delft3D-WAVE	-	Coupled Hydrodynamic Model of Delft3D and SWAN
Delft-FIAT	Flood Impact Analysis Tool	Toolset
Delft-FLS	DELFT FLooding System	Hydrodynamic Model
EC-Earth	European community Earth System Model	Atmospheric, Hydrological, & Hydrodynamic Model System
ECHAM5	ECMWF Hamburg Model Version 5	Atmospheric Model
ECWAM	ECMWF Ocean Wave Model	Hydrodynamic Model
EFAS	European Flood Awareness System	Hydrological Model
ELCIRC	Eulerian-Lagrangian CIRCulation	Hydrodynamic Model
ESTRY	-	Hydrodynamic Model
ESTOFS	Extra Tropical Storm and Tide Operational Forecast System	Hydrodynamic Model
ETSS	Extratropical Storm Surge model	Hydrodynamic Model
FES2012	Finite Element Solution Model	Hydrodynamic Model
FLO-2D	-	Hydrodynamic Model
Flood Modeller/ISIS	-	Hydrodynamic Model
FLORES	Flood risk Reduction Evaluation and Screening	Hydrodynamic Model
FLOW-3D	-	Hydrodynamic Model
FVCOM	Finite Volume Community Ocean Model	Hydrodynamic Model

GCOM2D	Global Environmental Modelling Systems (GEMS) 2D Coastal Ocean Model	Hydrodynamic Model
GeoFlood	-	Hydrological Model
GeoNet	-	Toolset
GSSHA	Gridded Surface Subsurface Hydrologic Analysis	Hydrological Model
GTSM	Global Tide and Surge Model	Hydrodynamic Model
H*WIND	Hurricane Wind Analysis System	Atmospheric Model
HADGEM	HADley Centre Global Environment Model	Coupled Atmospheric & Hydrodynamic Model System
HBV	Hydrologiska Byråns Vattenbalansavdelning	Hydrological Model
HEC-HMS	Hydrologic Engineering Centre's - Hydrologic Modeling System	Hydrological Model
HEC-RAS	Hydrologic Engineering Centre's - River Analysis System	Hydrological Model
HiPIMS	High-Performance Integrated Hydrodynamic Modelling Software	Hydrological & Hydrodynamic Model
HIRHAM	High Resolution Atmospheric Model	Atmospheric Model
HL-RDHM	Hydrology Laboratory - Research Distributed Hydrologic Model	Hydrological Model
Holland Wind Model	Holland Wind Model	Atmospheric Model
НҮСОМ	HYbrid Coordinate Ocean Model	Hydrodynamic Model
Hydro-CoSMoS	Hydro-Coastal Storm Modeling System	Hydrodynamic Model
HydroMT	Hydro Model Tools	Toolset
HyMOD	HYdrological MODel	Hydrological Model
Iber	Iberaula	Hydrodynamic Model
ICRP	Interconnected Channel and Pond Routing Model	Hydrological & Hydrodynamic Model
InVEST-UFRM	Integrated Valuation of Ecosystem Services and Tradeoffs - Urban Flood Risk Mitigation model	Toolset
ΙΟΚΑ	Oceanweather's Interactive Kinematic Objective Analysis System	Atmospheric Model
LISFLOOD-FP	-	Hydrodynamic Model
LOOFS	Lake Ontario Operational Forecast System	Coupled Hydrodynamic Model System of FVCOM and CICE
MATSIRO-GW	Minimal Advanced Treatments of Surface Integration and RunOff - Groundwater	Hydrological Model
MIKE+	-	Hydrological & Hydrodynamic Model
MIKE11	-	Hydrodynamic Model
MIKE21	-	Hydrodynamic Model
MISDc	Modello Idrologico SemiDistribuito in continuo	Hydrological Model
MODFLOW	Modular Hydrologic Model	Hydrological Model
Mog2D		Hydrodynamic Model
MPI-OM	Max Planck Institute - Ocean/Sea-Ice Model	Hydrodynamic Model
MRI-CGCM2	Meteorological Research Institute coupled General Circulation Model Version 2	Coupled Atmospheric & Hydrodynamic Model
MSN_Flood	-	Hydrodynamic Model
NAM	Nedbor-Afstromnings Model	Hydrological Model
NAM	North American Mesoscale Forecast System	Atmospheric Model
NEMO	Nucleus for European Modelling of the Ocean	Hydrodynamic Model
NWM	National Water Model	Hydrological Model
NYHOPS	New York Harbor Observing and Prediction System	Hydrodynamic Model
ONDA	-	Hydrodynamic Model
PCSWMM	Personal Computer Storm Water Management Model	Hydrological & Hydrodynamic Model System
POM	Princeton Ocean Model	Hydrodynamic Model

PQRUT	-	Hydrological Model
ProMalDes	Protection Measures against Inundation Decision Support	Hydrodynamic Model & Toolset
RACMO2	Regional Atmospheric Climate Model Version 2	Atmospheric Model
RAMS	Regional Atmospheric Modelling System	Atmospheric Model
ReAFFIRM	Real-time Assessment of Flash Flood Impacts Framework	Hydrological Model
RegCM3	Regional Climate Model Version 3	Atmospheric Model
RFMS	Rapid Forecasting and Mapping System	Coupled Hydrodynamic Model System of SLOSH and CH3D
ROMS	Regional Ocean Modelling System	Hydrodynamic Model
RS3	Rocscience 3D Finite Element Analysis	Toolset
RTC-Tools	-	Hydrological Model & Toolset
RUC	Rapid Update Cycle	Atmospheric Model
SCHISM	Semi-implicit Cross-scale Hydroscience Integrated System Model	Hydrodynamic Model
sECOM	Stevens Estuarine and Coastal Ocean Model	Hydrodynamic Model
sECOM-NYHOPS	-	Coupled Hydrodynamic Model System of sECOM and NYHOPS
SELFE	Semi-Implicit Finite-Element/Volume Eulerian- Lagrangian Algorithm	Hydrodynamic Model
SFAS	Stevens Flood Advisory System	Coupled Hydrologic & Hydrodynamic Model System
SFINCS	Super-Fast Inundation of CoastS	Hydrodynamic Model
SHAWLWV	Model for Simulation of Shallow Water Wave Growth, Propagation, and Decay	Hydrodynamic Model
SIPSON	Simulation of Interaction between Pipe flow and Surface Overland flow in Networks	Hydrodynamic Model
SLIM	Second-generation Louvain-la-Neuve Ice-ocean Model	Hydrodynamic Model
SLOSH	Sea, Lake, and Overland Surges from Hurricanes	Hydrodynamic Model
SMS	Surface-water Modeling System	Toolset
SNAP	Stevens Northwest Atlantic Prediction Model	Hydrodynamic Model
SPHY	Spatial Processes in HYdrology	Hydrological Model
SPLASH	Special Program to List Amplitudes of Surges from Hurricanes	Atmospheric and Hydrodynamic Model System
STWAVE	Steady State Spectral Wave	Hydrodynamic Model
SWAN	Simulating Waves Nearshore	Hydrodynamic Model
SWAT	Soil & Water Assessment Tool	Toolset
SWMM	Storm Water Management Model	Hydrological Model
TELEMAC	TELEMAC-MASCARET	Hydrodynamic Model
TUFLOW	-	Hydrodynamic Model
UIM	Urban Inundation Model	Hydrodynamic Model
UnTRIM	-	Hydrodynamic Model
Vflo	Vieux FLOod	Hydrological Model
WAM	Wave Model	Hydrodynamic Model
WAQUA	WAter movement and water QUAlity modelling	Hydrodynamic Model
WGHM	WaterGAP Global Hydrology Model	Hydrological Model
WIFM	WES Implicit Flooding Model	Hydrodynamic Model
WRF	Weather Research and Forecast Model	Atmospheric Model
WW3/WaveWatch III	WAVE-height, WATer depth and Current Hindcasting Version 3	Hydrodynamic Model Framework
XPSWMM	XP Solutions Storm Water Management Model	Hydrological & Hydrodynamic Model