

21

¹ In situ Cosmogenic ¹⁰Be and ²⁶Al in Deglacial Sediment

2 Reveals Interglacial Exposure, Burial, and Limited Erosion

3 Under the Quebec-Labrador Ice Dome

4 Peyton M. Cavnar^{1,2}, Paul R. Bierman^{1,2}, Jeremy D. Shakun³, Lee B. Corbett¹, Danielle LeBlanc³,

- 5 Gillian L. Galford^{1,2}, and Marc Caffee⁴
- ¹Rubenstein School for the Environment and Natural Resources, University of Vermont, Burlington, 05405, United
 States
- 8 ²Gund Institute for the Environment, Burlington, 05405, United States
- 9 ³Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, 02467, United States
- 10 ⁴PRIME Laboratory, Purdue University, West Lafayette, 47907, United States
- 11 Correspondence to: Peyton M. Cavnar (cavnar.peyton@gmail.com)

12 Abstract. To understand the erosivity of the eastern portion of the Laurentide Ice Sheet and the isotopic

13 characteristics of the sediment it transported, we sampled buried sand from deglacial features (eskers and deltas)

- 14 across eastern Canada (n=10), a landscape repeatedly covered by the Quebec-Labrador Ice Dome. We measured
- 15 concentrations of ¹⁰Be and ²⁶Al in quartz isolated from the sediment and, correcting for sub-surface cosmic-ray
- 16 exposure after Holocene deglaciation, used these results to determine nuclide concentrations at the time the ice sheet
- 17 deposited the sediment. To determine what percentage of sediment moving through streams and rivers currently
- 18 draining the field area was derived from incision of thick glacial deposits as opposed to surface erosion, we used

¹⁰Be and ²⁶Al as tracers by collecting and analyzing modern river sand sourced from Holocene-exposed landscapes
 (n=11).

We find that all ten deglacial sediment samples contain measurable concentrations of ¹⁰Be and ²⁶Al

22 equivalent on average to several thousand years of surface exposure—after correction, based on sampling depth, for

- 23 post-deposition Holocene nuclide production. Error-weighted averages (1 standard deviation errors) of measured
- $24 = {}^{26}\text{Al}/{}^{10}\text{Be ratios for both corrected deglacial (6.1\pm1.2) and modern sediment samples (6.6\pm0.5) are slightly lower$
- 25 than the production ratio at high latitudes (7.3 \pm 0.3) implying burial and preferential decay of ²⁶Al, the shorter-lived
- 26 nuclide. However, five deglacial samples collected closer to the center of the former Quebec-Labrador Ice Dome
- 27 have much lower corrected ${}^{26}Al/{}^{10}Be$ ratios (5.2±0.8) than five samples collected closer to the former ice margins

(7.0±0.7). Modern river sand contains on average about 1.75 times the concentration of both nuclides than deglacial
 sediment corrected for Holocene exposure.

30 The ubiquitous presence of ¹⁰Be and ²⁶Al in eastern Quebec deglacial sediment is consistent with many

31 older-than-expected exposure ages, reported here and by others, for bedrock outcrops and boulders once covered by

- 32 the Quebec-Labrador Ice Dome. Together, these data suggest that glacial erosion and sediment transport in eastern
- 33 Canada were insufficient to remove material containing cosmogenic nuclides produced during prior interglacial
- 34 periods both from at least some bedrock outcrops and from all glacially transported sediment we sampled. Near the
- 35 center of the Quebec-Labrador Ice Dome, ratios of ²⁶Al/¹⁰Be are consistently below those characteristic of surface
- 36 production at high latitude. This suggests burial of the glacially transported sediment for at least many hundreds of

- 37 thousands of years and thus the possibility that ice at the center of the Quebec-Labrador Ice Dome survived many
- 38 interglacials when more distal ice melted away.
- 39

40 1. Introduction

41 Ice sheets are important geomorphic agents of high-latitude landscape change, and their activity reflects 42 changes of climate on a global scale. During the Last Glacial Maximum (LGM), about 20-25 ka, the Laurentide Ice 43 Sheet (LIS) was the largest body of ice in the Northern Hemisphere, covering most of Canada and the northern 44 United States (Dalton et al., 2022). Its disappearance during the latest Pleistocene and early Holocene (characterized 45 by collapse of northern Canadian ice domes) revealed a complicated paraglacial landscape: one in which cycles of 46 advance and retreat left behind deglacial landforms (both bedrock and sedimentary) while overriding, altering, and 47 eroding those created previously (Occhietti et al., 2011). Because of this, in most places it is difficult to ascertain 48 from the landscape much about LIS behavior prior to the LGM although landscape analysis in far northern Canada 49 suggests inheritance of some bedrock landscape features from prior times of glaciation (Rice et al., 2020). 50 Understanding paleo ice sheet behavior is important because it indicates how and when prior ice sheets 51 melted during warming periods and readvanced when the climate cooled. Sub-glacial erosion not only shapes 52 landscapes, but it also generates sediment that is both deposited on land and in adjacent marine basins. Such

53 glacially derived marine sediment records millions of years of ice history and when cored can be used to understand

- 54 past climates and ice sheet response (e.g., Larsen et al., 1994). More recently, analyses of cosmogenic nuclides in
- 55 marine sediment have been used to decipher the Pleistocene history of the Greenland Ice Sheet (Bierman et al.,

2016) and to suggest that the LIS did not completely melt away during some and perhaps many interglacials of the
 last million years (LeBlanc et al., 2023).

58 In this paper, we use cosmogenic nuclide concentrations to study glacially derived sediment deposited 59 beneath and adjacent to the now-vanished LIS. We present concentrations of ¹⁰Be and ²⁶Al measured in quartz 60 isolated from buried deglacial sediments and modern river sand in Labrador and Quebec, Canada. After correcting 61 isotopic concentrations of deglacial sediment for Holocene nuclide production, we use these data and ²⁶Al/¹⁰Be 62 ratios to infer paleo ice sheet persistence, erosion, and sediment transport efficiency, as well as to constrain the 63 source of sediment in modern rivers. These results allow us to infer LIS behavior and erosivity during the late 64 Pleistocene and improve interpretation of cosmogenic analysis of glacially-derived sediment in marine sediment 65 cores such as those of LeBlanc et al. (2023).

66

67 2. Background

We know little about the LIS's erosion and sediment transport behavior prior to the LGM because, each time the ice sheet advanced, it overran and remobilized datable sedimentary and morphological evidence of previous glaciations such as moraines, eskers, and ice-contact deltas. Because of this, few terrestrial records remain of pre-LGM LIS behavior. In Quebec and Labrador, abundant streamlined bedrock outcrops, scoured lake basins, and multiple sets of striations provide evidence for a once-erosive LIS with warm-based, fast-sliding ice (Kleman et al., 1994; Roy et al., 2009; Dalton et al., 2019). However, models commonly suggest that this region featured some of

74 the most cold-based and slowest moving ice of the entire LIS during the last glaciation (Tarasov and Peltier, 2007; 75 Stokes et al., 2012; Melanson et al., 2013). Because the advancing LIS destroyed evidence of its past deposits and 76 ice margin positions, it is difficult to disentangle the timing of cross-cutting striation formation (Kleman et al., 77 2010); thus, our knowledge about how erosive or extensive this sector of the LIS was prior to the LGM is limited 78 (Dalton et al., 2019; Batchelor et al., 2019). 79 80 2.1. Using Cosmogenic Nuclides to Study Complex Glacial and Post-Glacial Histories 81 Cosmogenic nuclides provide a means to understand paleo ice sheet behavior. These nuclides are rare 82 isotopes, such as ¹⁰Be and ²⁶Al, created when cosmic radiation bombards minerals at and near Earth's surface 83 including weathering-resistant quartz (Gosse & Phillips, 2001). Most nuclide production occurs within several 84 meters of the surface via spallation reactions between neutrons and target elements in rock. A small amount of 85 nuclide production is caused by smaller particles, muons, but because muons have low reactivity with matter, they 86 can penetrate far more deeply below the surface than neutrons (Braucher et al., 2011). At depths below several 87 meters, muons are responsible for most subsurface production of cosmogenic nuclides (Braucher et al., 2003). 88 Because ¹⁰Be and ²⁶Al are created in both rock and glacially deposited sediment, we can analyze their 89 concentrations to infer the depth of glacial erosion, the persistence of glacial sediment on the landscape, and set 90 limits on the extent and timing of sediment and rock burial by ice sheets (e.g., Briner et al., 2016; Bierman et al., 91 2016; Marsella et al., 2000; Corbett et al., 2016b; Stroeven et al., 2002; Staiger et al., 2006; Harbor et al., 2006). The 92 half-lives of 10 Be and 26 Al differ by a factor of two (~1.36 and ~0.73 My, respectively) and hence they decay at 93 different rates. This dual isotope approach allows for a more detailed understanding of glacial presence over time 94 (burial during which time nuclide production ceases) and the persistence of surficial materials (exposure when 95 nuclide production occurs) (e.g., Nishiizumi et al., 2007; Nishiizumi, 2004; Nishiizumi et al., 1991; Bierman et al., 96 1999). 97 In situ ratios of 26 Al/ 10 Be at production are 7.3 ±0.3 (1 σ) in high-latitude regions (Corbett et al., 2017). 98 When a landscape is covered by a thick layer of ice such as the LIS, or if sediment is stored in deposits deep enough 99 to prevent most cosmic ray penetration, production of *in situ*²⁶Al and ¹⁰Be slows or stops. As isotopes produced 100 during initial exposure decay, the ²⁶Al/¹⁰Be ratio falls (Klein et al., 1986; Bierman et al., 1999; Balco et al., 2005). 101 This change becomes reliably measurable only after several hundred thousand years of burial. Re-exposure to 102 cosmic rays at or near Earth's surface will raise the ²⁶Al/¹⁰Be ratio back toward that at production. However, if 103 sediment is buried meters below the surface during interglacial periods (such as in deglacial deltas, coastal bluffs, or 104 eskers), ²⁶Al/¹⁰Be ratios depressed by LIS ice cover and/or storage in sedimentary deposits can be preserved (Corbett 105 et al., 2016b; Bierman et al., 2016; Balco et al., 2005). Conversely, sediment, if it is sourced close to the surface, 106 will have a higher ²⁶Al/¹⁰Be ratio because of recent exposure to cosmic radiation (Nelson et al., 2014). 107 Concentrations of ¹⁰Be and ²⁶Al in glacial sediment reflect the history of that sediment and of the ice sheet 108 that produced it over time. Long interglacial exposures, thin sediment cover, and bedrock that is resistant to erosion 109 will allow high concentrations of nuclides to accumulate - for example, in central North America (Balco et al., 110 2005). Persistent ice cover, high rates and depths of glacial erosion, and efficient sediment transport by ice will

3

111 lower nuclide concentrations in glacially derived sediment, such as in southern and western Greenland (Nelson et

- 112 al., 2014).
- 113

114 2.2. Laurentide Ice Sheet History and Deglaciation in Eastern Canada

For most of its recent inception (~118 ka) to final deglaciation (~8 ka), the LIS was characterized by three major ice domes, regions of especially thick, outflowing ice (~4 km in some places): Foxe Baffin Dome, Keewatin Dome, and the Quebec-Labrador Dome (Stokes et al., 2012; Dalton et al., 2022). Modeling suggests the formation of the Foxe Baffin Dome first (~118 ka), with ice growth then progressing southward to create the Keewatin Dome (~116 ka), and later the nucleus of the Quebec-Labrador Ice Dome (~114 ka) (Stokes et al., 2012). These domes coalesced into a single ice body and separated again as the LIS waxed and waned during its overall buildup through the last glacial cycle (Stokes et al., 2012; Dalton et al., 2022).

122 Changes in LIS size are thought to have tracked the global marine oxygen isotope record, though 123 uncertainties in ice volume and extent through time reflect the paucity of geologic constraints. For instance, the 124 majority of Canada may have been ice-covered with the LIS reaching 70% of its LGM extent as early as Marine 125 Oxygen Isotope (MIS) stage 5d (~110 ka) or not until MIS 4 (~60 ka) (Dalton et al., 2022). In contrast, the deglacial 126 retreat of the LIS in eastern Quebec following the LGM is well constrained (Dalton et al., 2022; Ullman et al., 2016;

127 Couette et al., 2023) (Figure 1).

128 It is debated how extensive and persistent the LIS was during Pleistocene interglacials (Zhou and 129 McManus, 2023; LeBlanc et al. 2023). Cosmogenic nuclides in ice-rafted debris (IRD) from LIS icebergs 130 discharged during the last glacial period have been used to infer the burial and exposure history of glacial sediment 131 prior to its transport to the ocean (LeBlanc et al., 2023). These IRD ²⁶Al/¹⁰Be ratios averaged 4.7±0.8 (LeBlanc et 132 al., 2023), which is much lower than the high latitude production value of 7.3±0.3 (Corbett et al., 2017). Such 133 depressed ratios require long (>million year) periods of burial (presumably by ice) throughout the Pleistocene, as 134 interglacials with little to no ice would have yielded IRD with higher ratios from near-surface exposure (LeBlanc et 135 al., 2023). LeBlanc et al.'s cosmogenic data challenge the commonly held assumption that all Pleistocene

136 interglacials resulted in fully ice-free conditions in eastern Canada for at least thousands of years.

137A similar debate concerns the magnitude of LIS retreat during interstadials within the last glacial period. A138combination of luminescence dating, ¹⁴C dating, and cosmogenic nuclides (¹⁰Be and ²⁶Al), along with evidence of a139marine incursion into Hudson Bay, suggest that the portion of the LIS over Hudson Bay deglaciated during MIS 3140(Dalton et al., 2019; Miller and Andrews, 2019). However, the reliability of these ages has been questioned and the141timing of carbonate-rich Heinrich events H5 and H4 suggest that an intact Hudson Strait ice stream existed during142MIS 3 (Miller & Andrews, 2019). With this debate unsettled, it remains uncertain how much the LIS ice margin

143 retreated during interstadial periods.

144Other studies have investigated LIS sensitivity to climate shifts on even finer time scales during the last145deglaciation. For instance, there is evidence for ties between regional deglaciation and climate fluctuations based on14637 ¹⁰Be exposure ages in eastern Quebec and Labrador (Couette et al., 2023). These data are interpreted as147indicating five still-stands or re-advances of the eastern LIS margin (~12.9 ka, ~11.5 ka, ~10.4 ka, ~9.3 ka, and

148	~8.4-8.2 ka) before its final collapse (Couette et al., 2023). These periods correspond with abrupt cooling events
149	recorded in Greenland ice cores, likely triggered by meltwater discharge from the LIS (Couette et al., 2023). These
150	recurring cold episodes may have helped delay final deglaciation of the Quebec-Labrador Ice Dome until ~4 ka after
151	peak Holocene insolation and CO ₂ forcing (Ullman et al., 2016), making it a part of the LIS that lasted longer than
152	most after the LGM (Dalton et al., 2020).
153	
154	2.3. Cosmogenic Nuclides as Tracers of Sediment Sourcing
155	Cosmogenic nuclides have been used to identify sediment sources for both modern and paleo ice sheets.
156	For example, Nelson et al., (2014) sampled rivers in the deglaciated areas of coastal Greenland. They found that
157	10 Be concentrations in Greenland sediment sourced from the ice sheet (6,500 ± 4,100 atoms g ⁻¹) were significantly
158	lower than sediment sourced from deglaciated terrain (14,900 \pm 8,600 atoms g ⁻¹ , Nelson et al., 2014). This
159	difference can be explained by contrasting exposure histories. Outboard of the ice margin ¹⁰ Be concentrations in
160	sediment increased when exposed to cosmic radiation since Holocene deglaciation while concentrations remained
161	low under the ice sheet where production of ¹⁰ Be is minimal. Sediments sourced from a mix of deglaciated and
162	glaciated areas have ¹⁰ Be concentrations that are much closer to those of the glacial than deglacial terrains. These
163	results therefore suggest most sediment moving through river systems in glacial and paraglacial landscapes in
164	Greenland comes from under the glacier as opposed to the adjacent deglaciated areas.
165	In southwest Minnesota and eastern South Dakota, a similar approach was used to determine sediment
166	sourcing in a deglaciated part of the midwestern United States (Balco et al., 2005). They inferred that modern river
167	sediments were sourced primarily from rapid erosion of riverbanks that exposed glacial deposits because of similar
168	¹⁰ Be and ²⁶ Al concentrations (~60,000 and 270,000 atoms g ⁻¹ , respectively) and much lower than production
169	26 Al/ 10 Be in both (4.70 ± 0.29; n=9). If the modern sediment had come from slowly-eroding surfaces exposed to
170	cosmic radiation after deglaciation, it would have had nuclide concentrations higher than deglacial sediment and
171	higher ²⁶ Al/ ¹⁰ Be.
172	
173	2.4. Assessing the Erosivity of Ice Sheets
174	Previously-published ¹⁰ Be concentrations in bedrock and boulders within the historical range of the
175	Quebec-Labrador Ice Dome reveal a varied pattern of erosion. Some areas were deeply eroded while others show
176	evidence for inherited ¹⁰ Be and less effective subglacial erosion (Ullman et al., 2016; Couette et al., 2023). For
177	example, of the five boulders sampled by Couette et al. (2023) from the early Holocene Paradise Moraine in eastern
178	Labrador, two have significant and obvious inheritance of nuclides from prior exposure with ¹⁰ Be ages >20 ka, while
179	the remaining three inaccurately date the moraine as older than a margin further from the center of the ice dome.
180	Ullman et al. (2016) likewise found anomalously high ¹⁰ Be concentrations in 10 out of 65 boulders along transects
181	stretching eastward and southward from the center of the Quebec-Labrador Dome to the coast.
182	Comparable results have been found near the margin of other ice sheets. In western Norway, glacial erratic
183	boulders on the island of Utsira, near the former margin of the Scandinavian Ice Sheet, have 10 Be ages that are >10%
184	too old (~20 ka) based on independent radiocarbon constraints on the timing of deglaciation (Briner et al., 2016).

185 The uniform concentration of inherited ¹⁰Be among all samples suggests that the elevated nuclide concentrations are 186 the product of muon-induced production at depth rather than surface exposure where the sides and the bottom of 187 boulders would have different concentrations than the top (Briner et al., 2016). Assuming brief ice cover only during 188 maximum glacial phases, long interglacial exposure times at Utsira coupled with ineffective glacial erosion helped 189 create and preserve this inherited muon-produced ¹⁰Be.
190 Along Greenland's western ice margin, most subglacial cobbles (72 out of 86) sampled had an extremely

191low concentration of 10 Be (median = 1.0 x 10³ atoms g⁻¹), indicative of deep subglacial erosion and/or minimal prior192surface exposure (Corbett et al., 2021). But, a subset of samples had higher 10 Be concentrations (> 3 x 10³ atoms g⁻¹,

193 n = 14), suggesting sourcing from minimally erosive, cold-based regions where bedrock and sediment still contained

¹⁰Be accumulated during prior ice-free periods (Corbett et al., 2021). Halsted et al. (2023) and Colgan et al. (2002)

195 found similar inheritance of ¹⁰Be in boulders and bedrock sampled near the former LGM margin of the LIS and

attributed higher than expected concentrations of ¹⁰Be to minimal erosion during the brief time the ice occupied the
 marginal position.

198

199 3. Study Site

200 The Quebec-Labrador Ice Dome occupied the eastern subarctic Canadian Shield, where bedrock consists of 201 mostly Proterozoic quartzofeldspathic gneisses and granites (Hynes & Rivers, 2010). Soils are thin and punctuated 202 by prominent bedrock outcrops and large glacial erratics (Ullman et al., 2016). Central and southern Quebec-203 Labrador also includes multiple moraine systems that track the final deglaciation of the ice dome into the early 204 Holocene (Ullman et al. 2016). There are eskers and substantial ice contact deltas where the ice front during 205 deglaciation met a body of standing water (Liverman, 1997; Storrar et al., 2013). The paraglacial landscape is still 206 experiencing isostatic glacial rebound, with greater changes in elevation since deglaciation towards the former dome 207 center (Andrews & Tyler, 1977). Prominent isostatic rebound has occurred near James Bay and southern Hudson 208 Bay, with ~300 m of rebound compared to ~100 m along coastal eastern Labrador (Andrews & Tyler, 1977). 209 Notable geographic features of this region include the St. Lawrence River, the Churchill River, and the 210 Manicouagan Reservoir, an annular lake north of the Gulf of St. Lawrence formed in a depression caused by a 211 meteor impact (Spray et al., 1998). The St. Lawrence River flows from southwest to northeast and is located 212 southeast of the Quebec-Labrador Ice Dome's center (Süfke et al., 2022). During final LIS deglaciation, the St. 213 Lawrence River served as one of the major meltwater drainage systems (Süfke et al., 2022). The Churchill River 214 flows east from the former center of the Quebec-Labrador Dome, draining into Lake Melville and then the Atlantic 215 Ocean (Canadian Geographic, n.d.). 216 Eastern Canada is dominated by boreal spruce forests, sedges, and muskegs (shallow bogs covered in moss) 217 (Pavette et al., 1989). This sub-arctic ecosystem is prone to burning during arid periods in the summer, with a 218 recorded fire history stretching back to the 1950's (Payette et al., 1989). Northern Quebec and Labrador are 219 classified under the Dfc climate zone (cool continental climate/subarctic) according to the Koppen climate 220 classification system (Amani et al., 2019; Beck et al., 2018). During winter, ground-based measurements record a

221	mean of ~158 millimeters (mm) of snow water equivalent (SWE) for eastern Canadian boreal forests (Larue et al.,
222	2017).
223	
224	4. Methods & Materials
225	
226	4.1. Study Design
227	Our primary goal is to measure and understand the concentrations of cosmogenic nuclides in sediment
228	moved by the LIS in eastern Canada along a 1000-km transect (Figure 1). To constrain nuclide concentrations in
229	materials deposited by the LIS (Table 1), we sampled deglacial sediment deposits (n=10) including ice-contact
230	deltas and eskers as well as contemporary river sediment (Figure 2). We also collected modern river sediment
231	samples (n=11) from main river trunks (St. Lawrence and Churchill River) as well as smaller tributaries to compare
232	their ¹⁰ Be and ²⁶ Al concentrations and ²⁶ Al/ ¹⁰ Be ratios to those of deglacial samples to determine the source of
233	sediment moving through contemporary streams and rivers (Table 1). We collected one sample from a bedrock
234	outcrop. Our data provide context for measurements made in sand-sized sediment of glacial and interglacial age
235	present in marine sediment cores collected offshore (LeBlanc et al. 2023).
236	
237	4.2. Field Methods
238	We collected samples along a transect running westward from Goose Bay, Labrador through the former
239	center of the Quebec-Labrador Ice Dome at Labrador City and then southward to the St. Lawrence River near
240	Quebec City (Figure 1). We collected sediment from deltas and eskers on clean faces in gravel pits or along river
241	bluffs from 2 to 30 meters (m) below the upper surface to reduce the effect nuclide production following

- deglaciation. We used shovels to dig ~0.3 m into the side of the landform before collecting ~500 g of sand. We
- collected one exposed bedrock sample (Table 1). Modern river sediment samples were collected along shorelines
- 244 upstream of any nearby development.
- 245

246 Table 1. Sample Location and Type

Sample Name	Type ^a	Latitude ^b (°N)	Longitude ^b (°W)	Sample Site Elevation ^b (m)
CF-02	Deglacial Sediment	53.5077	-63.9545	167
LC-02	Deglacial Sediment	52.2011	-67.8722	537
LC-04	Deglacial Sediment	51.7102	-68.0719	440
LC-05	Deglacial Sediment	51.4881	-68.2192	391
MC-01	Deglacial Sediment	50.4748	-68.8101	500

MC-02	Deglacial Sediment	48.6452	-69.0854	10
GB-03	Deglacial Sediment	53.2572	-60.7848	36
GB-05	Deglacial Sediment	53.0922	-61.8920	402
SS-01	Deglacial Sediment	48.1030	-69.7213	10
SS-05	Deglacial Sediment	47.1669	-70.8047	307
CF-01	Modern River Sediment	53.5060	-63.9585	126
CF-05	Modern River Sediment	53.0595	-66.2555	527
LC-01	Modern River Sediment	52.3365	-67.5671	533
LC-03	Modern River Sediment	52.1107	-68.0073	645
LC-06	Modern River Sediment	51.4882	-68.2229	401
GB-02	Modern River Sediment	53.3934	-60.4229	2
GB-04	Modern River Sediment	53.2201	-60.9549	210
MC-03	Modern River Sediment	48.6779	-69.3045	61
SS-02	Modern River Sediment	47.8942	-69.9368	128
SS-03	Modern River Sediment	47.6665	-70.1589	3
SS-04	Modern River Sediment	47.5157	-70.5066	25
GB-06	Bedrock	53.3351	-62.9912	484

^a Deglacial sediment is sand deposited from the LIS as it was retreating. Modern river sediment was collected

from rivers and streams.

^b Location and elevation were measured in the field using a Garmin eTrex 20 GPS

250

251

Figure 1. Map of field area. A. Overview of North America with field area demarcated by black outline. B.

254 Sampling locations are color coded by type and with sample ID. The black star represents the center of the Quebec-

Labrador Ice Dome, estimated to be close to modern day Labrador City (Ullman et al., 2016). Dotted lines represent

LIS margins provided by Dalton et al. (2020). Different colored lines each correspond to a retreat isochron with

- 257 calibrated radiocarbon age in ka (see legend).
- 258

- 259
- Figure 2. Photographs of representative field sites. A. Modern river sediment at MC-03. B. Deglacial sediment at
 SS-05. C. Bedrock outcrop at GB-06. D. Deglacial sediment at MC-01.
- 262

263 4.3 Laboratory Methods

To isolate and purify quartz for cosmogenic nuclide analysis, we used a series of physical and chemical processes (Kohl & Nishiizumi, 1992). We sieved material to between 250 and 850 µm for further processing. For each sample, we performed two 24-hour 6 N hydrochloric acid etches in heated ultrasonic baths to remove grain coatings. We then used dilute (1%) hydrofluoric and nitric acid etches for three 24-hour periods after which we sonicated samples in 0.5% HF and HNO₃ for a minimum of two weeks (Kohl & Nishiizumi, 1992). We evaluated the purity of etched samples using inductively coupled plasma spectrometry optical emission (ICP-OES) after which impure samples were re-etched until they were sufficiently pure.

We extracted beryllium and aluminum from the purified quartz samples (17.3 - 22.2 g, n = 22) in the National Science Foundation/ University of Vermont Community Cosmogenic Facility using methods described in Corbett et al. (2016). Samples were prepared in two separate batches, each of which included a fully processed blank. We spiked the samples with ~250 µg ⁹Be using a beryl carrier made in the Community Cosmogenic Facility with a Be concentration of 348 µg mL⁻¹ (Table 4a). We spiked samples with SPEX ICP AI standard (1000 ppm) as needed based on their quantity of native AI, ensuring at least 1500 µg of total AI in every sample.

277	We quantified total Al in the samples by ICP-OES immediately following sample digestion. Following
278	standard procedures (Corbett et al., 2016), we removed replicate aliquots from the samples by mass (representing
279	${\sim}2\%$ and ${\sim}4\%$ of the sample, respectively), added 25 μL H_2SO_4 to each, evaporated the HF, then diluted the residual
280	H_2SO_4 droplets by mass with a 0.25% H_2SO_4 solution spiked with Y as an internal standard. Purdue Rare Isotope
281	Measurement Laboratory performed accelerator mass spectrometry analysis. For ¹⁰ Be/ ⁹ Be, measured ratios were
282	normalized to primary standard 07KNSTD3110 with a ratio of 2850 x 10 ⁻¹⁵ (Nishiizumi et al., 2007). For ²⁶ Al/ ²⁷ Al,
283	analyses were normalized to primary standard KNSTD with a ratio of 1.818 x 10 ⁻¹² (Nishiizumi et al., 2004).
284	
285	4.4. Data Reduction
286	We used the known concentration of ⁹ Be added as carrier, along with the measured isotopic ratio and quartz
287	mass to calculate the concentration of ¹⁰ Be in each sample. Because of the native ²⁷ Al within the samples, the
288	concentration of ²⁷ Al measured using ICP-OES after quartz dissolution was used to calculate the concentration of
289	26 Al. We subtracted the mean extraction process blank ratios of 10 Be/ 9 Be ((7.41 ± 2.81) x 10 ⁻¹⁶ ; n = 2) and 26 Al/ 27 Al
290	$((5.39 \pm 0.71) \times 10^{-16}; n = 2)$ from the measured ratios and propagated the uncertainty in quadrature (Table 2). We

291 used a 2-standard deviation (SD) threshold for detectability; that is, if twice the analytical uncertainty exceeded the 292 measured ratio, then we considered the sample to be below detection limits. This provides a 95% confidence that the 293 isotopic ratios and concentrations we report are finite. We use the same value (alpha = 0.05) for all statistical tests 294 we perform. We used both Wilcoxon rank-sum tests (due to the non-normal distribution of nuclide concentrations in 295 modern sediment samples) and Tukey HSD tests to investigate significant differences between sample groups.

296

297 Table 2. Measured Blank Isotope Ratio

Name	Batch Number	Al Cathode Number	Be Cathode Number	AMS ¹⁰ Be/ ⁹ Be Ratio	AMS ¹⁰ Be/ ⁹ Be Uncertainty	AMS ²⁶ Al/ ²⁷ Al Ratio	AMS ²⁶ Al/ ²⁷ Al Uncertainty
BLK	745	169457	169433	5.42 x 10 ⁻¹⁶	2.71 x 10 ⁻¹⁶	4.89 x 10 ⁻¹⁶	7.04 x 10 ⁻¹⁶
BLK	746	169470	169446	9.39 x 10 ⁻¹⁶	5.77 x 10 ⁻¹⁶	5.89 x 10 ⁻¹⁶	8.49 x 10 ⁻¹⁶

298 Both ²⁶Al blanks had 1 rare isotope count accounting for the large uncertainty.

299

300 4.5. Holocene Exposure Correction

301 For deglacial samples, we calculated the concentration of nuclides attributable to Holocene exposure. To do 302 this, we used the online exposure age calculator formerly known as CRONUS (constant production rate model, 303 version 3.0.2, constants 2020-08-26) to determine the surface production rate (atoms g^{-1} yr⁻¹) of ¹⁰Be and ²⁶Al for 304 both muons (P_{μ}) and spallation (P_s) at each sample site (Balco et al., 2008). The production rate at depth was then 305 estimated using an attenuation length of 165 g cm⁻² for spallation (Λ_s) and 1400 g cm⁻² for muons (Λ_μ). We assumed 306 a sediment density (ρ) of 1.7 g/cm³. This allowed us to calculate the production of ¹⁰Be and ²⁶Al (*H* in atoms g⁻¹) at 307 each sampling depth (D in cm) since deglaciation (A in yr) taking deglaciation age estimates for each sample site 308 from Ullman et al.(2016) and Dalton et al.(2020) and using equation 1.

309 310

$$H = P_{s} \cdot 1/exp\left(\frac{D \cdot \rho}{\Lambda_{s}}\right) \cdot A + P_{\mu} \cdot 1/exp\left(\frac{D \cdot \rho}{\Lambda_{\mu}}\right) \cdot A \qquad (1)$$

311

312 We checked how appropriate our apparent muonogenic attenuation factor was using the CRONUS 313 implementation of Heisinger et al. (2002) (code P_mu_total.m) for sea level- yielding < 1% difference from our 314 original calculations. We estimated 1σ uncertainties in the concentration of nuclides produced during the Holocene 315 due to uncertainties in our sample depths (we use half our quoted uncertainty, which we consider a 95% confidence 316 interval), and combined these in quadrature with measurement uncertainties (Table 3). To correct for Holocene 317 exposure in our bedrock sample (GB-06), we multiplied the deglaciation age in this area (7.6 ka, from Ullman et 318 al.'s CL3 transect) by the CRONUS-derived production rate at this site to estimate the concentration of nuclides 319 produced following deglaciation. This concentration was subtracted from the sample's ¹⁰Be concentration to 320 calculate the concentration of inherited nuclides.

321

322 Table 3. Calculations for Holocene Exposure-Corrected Concentrations

Sample Name	Deglaciation Age (yr)	Sample Depth (cm)	Depth Uncertainty (cm)	¹⁰ Be Muon Production Rate (atoms g ⁻¹ y ⁻¹)	²⁶ Al Muon Production Rate (atoms g ⁻¹ y ⁻¹)	¹⁰ Be Spallation Rate (atoms g ⁻¹ y ⁻ ¹)	²⁶ Al Spallation Rate (atoms g ⁻¹ y ⁻¹)	Total ¹⁰ Be production rate at depth (atoms g ⁻¹ y ⁻¹)	Total ²⁶ Al production rate at depth (atoms g ⁻¹ y ⁻ ¹)
CF-02	7500	800	-200, +200	0.193	1.612	5.49	37.05	0.0745	0.6200
LC-02	7700	250	-50, +50	0.220	1.838	7.80	52.63	0.7559	5.3617
LC-04	7700	200	-50, +50	0.212	1.774	7.11	47.98	1.0719	7.5030
LC-05	7700	250	-50, +50	0.209	1.743	6.78	45.76	0.6702	4.7688
MC-01	8200	180	-30, +20	0.217	1.811	7.49	50.50	1.3468	9.3599
MC-02	12800	2000	-200, +200	0.181	1.513	4.54	30.61	0.0160	0.1334
GB-03	8000	700	-200, +200	0.185	1.540	4.82	32.52	0.0826	0.6822
GB-05	8000	300	-100, +100	0.211	1.759	6.96	46.94	0.4630	3.3559
SS-01	12800	550	-150, +50	0.181	1.511	4.50	30.39	0.1084	0.8800
SS-05	12800	3000	-500, +500	0.201	1.681	5.99	40.44	0.0053	0.0440

³²³

324 Deglaciation ages estimated based on proximity to dated moraine systems in Ullman et al., 2016 and Dalton et al., 2020 isochrons

325 (see methods). Sample depth estimated in the field. Depth uncertainty estimated from photos and field journal and considered

326 95% confidence interval. Muonogenic and spallation surface production rates estimated from CRONUS online calculator using

327 sample location data.

328

329 5. Results

330 10 Be and 26 Al were present above detection limits in 21 of 22 samples we analyzed, the one exception being 331 the ²⁶Al measurement for sample GB-04, a modern stream sample (Tables 4 and 5, Figure 3). There is no significant 332 difference between the measured concentrations of 10 Be for modern river sediment (mean and $1 \text{ SD} = (3.31 \pm 1.57)$ 333 x 10⁴ atoms g⁻¹) and deglacial sediment ((2.25 ± 1.30) x 10⁴ atoms g⁻¹; Wilcoxon rank-sum test, p = 0.11). Similarly, 334 there is no significant difference between the concentrations of ${}^{26}Al$ for modern ((2.12 ± 1.18) x 10⁵ atoms g⁻¹) and 335 deglacial sediment ((1.47 ± 0.94) x 10^5 atoms g⁻¹, p = 0.13). The single bedrock sample (GB-06) had the highest

- 336 concentration of ${}^{10}\text{Be}$ ((7.33 ± 0.39) x 10⁴ atoms g⁻¹) and ${}^{26}\text{Al}$ ((5.91 ± 0.29) x 10⁵ atoms g⁻¹) that we measured.
- 337

338

339 Figure 3. Maps showing isotopic data. A. Concentration of ¹⁰Be. B. Concentration of ²⁶Al. C. ²⁶Al/¹⁰Be ratio.

340 Measured concentration plotted for modern sediment and bedrock and Holocene exposure-corrected concentration 341 plotted for deglacial sediment. Sample identification shown in Figure 1B. Data in Tables 4 and 5. Sample type 342

343

344 5.1. ¹⁰Be and ²⁶Al Concentrations Corrected for Holocene Exposure

345 Using Holocene exposure-corrected data changes the results of statistical tests. With ¹⁰Be, there was a 346 significant difference between the concentrations of deglacial (mean and $1SD = (1.88 \pm 1.40) \times 10^4$ atoms g⁻¹) and 347 modern ((3.31 ± 1.57) x 10⁴ atoms g⁻¹) samples (p = 0.02) (Figure 4A). For ²⁶Al, the concentration of deglacial 348 $((1.21 \pm 1.04) \times 10^5 \text{ atoms g}^{-1})$ and modern $((2.12 \pm 1.18) \times 10^5 \text{ atoms g}^{-1})$ samples are also significantly different (p 349 = 0.04) (Figure 4B). The modern samples have more ¹⁰Be concentration variability, with an interquartile range (IQR) of 27.6 x 10³ atoms g⁻¹ compared to the IQR of 8.2 x 10³ atoms g⁻¹ for Holocene exposure-corrected deglacial 350 351 samples. The bedrock sample (GB-06) contains 2.17 x10⁴ atoms g⁻¹ of inherited ¹⁰Be and 2.40 x 10⁵ atoms g⁻¹ of 352 inherited ²⁶Al.

353

354 5.2. ²⁶Al/¹⁰Be Ratios

shown in key by color.

355 Using ¹⁰Be and ²⁶Al concentrations from deglacial samples corrected for Holocene nuclide production, the error-weighted mean and standard deviation of ${}^{26}Al/{}^{10}Be$ ratios for deglacial and modern samples are 6.1 ± 1.2 and 356 357 6.6 ± 0.5 , respectively (Figure 4C). Both a Wilcoxon rank-sum test (p = 0.63) and a Tukey HSD test (p = 0.84)

- 358 confirm that there is no significant difference between modern and deglacial sample ²⁶Al/¹⁰Be ratios (Holocene
- 359 corrected). The mean value for both is lower than the nominal production ratio at high latitudes. The ratios for
- deglacial samples are more variable (IQR = 2.37) compared to modern samples (IQR = 0.78). There is a significant,
- 361 positive linear trend for deglacial samples, with ratio values increasing with distance from the center of the Quebec-
- 362 Labrador Ice Dome ($r^2 = 0.45$, p = 0.03) (Figure 5). The five samples closest to the center of the ice dome (5.2 ± 0.8)
- have lower error-weighted average 26 Al/ 10 Be ratios than samples farther away (7.0 ± 0.7, Table 6 and Figure 6C).
- 364 Modern samples, in contrast, exhibit no spatial trend in ²⁶Al/¹⁰Be ratios. Tukey HSD tests (one including and
- 365 excluding sample LC-04) show a significant difference between ²⁶Al/¹⁰Be ratios in deglacial samples closest to and
 - further from the center of the ice dome (both tests: p = 0.00). 8x10 5x10 С Α В ^oBe concentration (atoms/g) ^oDtx5 ^oDtx9 ^oD ²⁶Al concentration (atoms/g) 4x10⁵ þ ę 10 3x10⁵ 26AI/10Be 2x10⁵ 10⁵ 0 0 0 Modern Deglacial Modern Deglacial Modern Deglacial
- 367 368

366

Figure 4. Comparison of modern and Holocene-exposure-corrected deglacial samples. (A) ¹⁰Be concentrations,
 (B) ²⁶Al concentrations, and (C) ²⁶Al/¹⁰Be ratios for deglacial (Holocene-corrected) and modern samples. The
 dashed line in panel C indicates the nominal production ratio (7.3) at high latitudes from Corbett et al. (2017). Points

372 represent individual samples with 1σ propagated errors for modern (green) and deglacial (pink) samples. Box and

- 373 whisker plots are shown for each dataset with whiskers going to the smallest and highest values. The box extends
- from the 25th to the 75th percentiles. The line in the middle of each box is the median.

Sample Name	Туре	Quartz Mass (g)	Be Carrier Solution Mass (g)	Uncorrected ¹⁰ Be/ ⁹ Be Ratio ^a	Uncorrected ¹⁰ Be/ ⁹ Be Ratio Uncertainty ^a	Background Corrected ¹⁰ Be/ ⁹ Be Ratio	Background Corrected ¹⁰ Be/ ⁹ Be Ratio Uncertainty	Measured ¹⁰ Be (atoms g ⁻¹)	¹⁰ Be Uncertainty (atoms g ⁻¹)	Cathode #
CF-02	Deglacial	20.46	0.7353	2.31 x 10 ⁻¹⁴	1.55 x 10 ¹⁵	2.23 x 10 ⁻¹⁴	1.58 x 10 ¹⁵	1.84 x 10 ⁴	1.30 x 10 ³	169432
LC-02	Deglacial	21.95	0.7364	3.11 x 10 ⁻¹⁴	1.87 x 10 ¹⁵	3.04 x 10 ⁻¹⁴	1.89 x 10 ¹⁵	2.34 x 10 ⁴	1.45 x 10 ³	169436
LC-04	Deglacial	19.74	0.7348	2.45 x 10 ⁻¹⁴	1.54 x 10 ¹⁵	2.38 x 10 ⁻¹⁴	1.57 x 10 ¹⁵	2.04 x 10 ⁴	1.34 x 10 ³	169438
LC-05	Deglacial	19.29	0.7348	3.26 x 10 ⁻¹⁴	2.13 x 10 ¹⁵	3.18 x 10 ⁻¹⁴	2.15 x 10 ¹⁵	2.79 x 10 ⁴	1.88 x 10 ³	169439
MC-01	Deglacial	19.60	0.7342	2.24 x 10 ⁻¹⁴	1.85 x 10 ¹⁵	2.17 x 10 ⁻¹⁴	1.88 x 10 ¹⁵	1.86 x 10 ⁴	1.61 x 10 ³	169441
MC-02	Deglacial	18.75	0.7319	2.16 x 10 ⁻¹⁴	1.69 x 10 ¹⁵	2.09 x 10 ⁻¹⁴	1.71 x 10 ¹⁵	1.87 x 10 ⁴	1.54 x 10 ³	169442
GB-03	Deglacial	9.38	0.7353	5.42 x 10 ⁻¹⁵	8.92E-16	4.68 x 10 ⁻¹⁵	9.35E-16	8.42 x 10 ³	1.68 x 10 ³	169444
GB-05	Deglacial	20.10	0.7310	2.70 x 10 ⁻¹⁴	2.37 x 10 ¹⁵	2.62 x 10 ⁻¹⁴	2.39 x 10 ¹⁵	2.19 x 10 ⁴	1.99 x 10 ³	169447
SS-01	Deglacial	19.70	0.7337	1.36 x 10 ⁻¹⁴	1.48 x 10 ¹⁵	1.28 x 10 ⁻¹⁴	1.50 x 10 ¹⁵	1.10 x 10 ⁴	1.29 x 10 ³	169450
SS-05	Deglacial	20.88	0.7308	7.02 x 10 ⁻¹⁴	3.26 x 10 ¹⁵	6.95 x 10 ⁻¹⁴	3.28 x 10 ¹⁵	5.59 x 10 ⁴	2.63 x 10 ³	169454
CF-01	Modern	18.52	0.7331	2.82 x 10 ⁻¹⁴	2.37 x 10 ¹⁵	2.75 x 10 ⁻¹⁴	2.39 x 10 ¹⁵	2.50 x 10 ⁴	2.17 x 10 ³	169431
CF-05	Modern	20.92	0.7348	6.55 x 10 ⁻¹⁴	2.69 x 10 ¹⁵	6.48 x 10 ⁻¹⁴	2.71 x 10 ¹⁵	5.23 x 10 ⁴	2.18 x 10 ³	169434
LC-01	Modern	20.41	0.7330	6.44 x 10 ⁻¹⁴	2.81 x 10 ¹⁵	6.37 x 10 ⁻¹⁴	2.83 x 10 ¹⁵	5.26 x 10 ⁴	2.33 x 10 ³	169435
LC-03	Modern	20.50	0.7307	6.88 x 10 ⁻¹⁴	2.93 x 10 ¹⁵	6.81 x 10 ⁻¹⁴	2.94 x 10 ¹⁵	5.58 x 10 ⁴	2.41 x 10 ³	169437
LC-06	Modern	19.44	0.7345	3.14 x 10 ⁻¹⁴	2.42 x 10 ¹⁵	3.07 x 10 ⁻¹⁴	2.44 x 10 ¹⁵	2.67 x 10 ⁴	2.12 x 10 ³	169440
GB-02	Modern	19.96	0.7311	1.75 x 10 ⁻¹⁴	1.65 x 10 ¹⁵	1.68 x 10 ⁻¹⁴	1.67 x 10 ¹⁵	1.41 x 10 ⁴	1.41 x 10 ³	169443
GB-04	Modern	17.34	0.7362	1.72 x 10 ⁻¹⁴	1.39 x 10 ¹⁵	1.65 x 10 ⁻¹⁴	1.42 x 10 ¹⁵	1.61 x 10 ⁴	1.39 x 10 ³	169445
MC-03	Modern	20.73	0.7304	2.51 x 10 ⁻¹⁴	2.03 x 10 ¹⁵	2.44 x 10 ⁻¹⁴	2.05 x 10 ¹⁵	1.98 x 10 ⁴	1.66 x 10 ³	169449
SS-02	Modern	20.37	0.7345	3.44 x 10 ⁻¹⁴	2.41 x 10 ¹⁵	3.37 x 10 ⁻¹⁴	2.43 x 10 ¹⁵	2.79 x 10 ⁴	2.01 x 10 ³	169451
SS-03	Modern	20.81	0.7349	3.31 x 10 ⁻¹⁴	2.17 x 10 ¹⁵	3.24 x 10 ⁻¹⁴	2.19 x 10 ¹⁵	2.63 x 10 ⁴	1.78 x 10 ³	169452
SS-04	Modern	22.15	0.7349	6.31 x 10 ⁻¹⁴	2.82 x 10 ¹⁵	6.24 x 10 ⁻¹⁴	2.83 x 10 ¹⁵	4.76 x 10 ⁴	2.16 x 10 ³	169453

375 Table 4. Measured Isotopic Data for ¹⁰Be

	GB-06	Bedrock	15.35	0.7365	6.73 x 10 ⁻¹⁴	3.53 x 10 ¹⁵	6.65 x 10 ⁻¹⁴	3.54 x 10 ¹⁵	7.33 x 10 ⁴	3.90 x 10 ³	169448
376 377	^a Isotop	oic analysis c	onducted at	t PRIME La	poratory; ratios	were normaliz	ed against stand	lard 07KNSTD3	110 with an a	ssumed	
378	ratio of	f 2850 x 10 ⁻¹⁵	⁵ (Nishiizur	ni et al., 200	7).						
379	All und	certainties are	e 1σ.								
380											

Sample Name	Туре	Quartz Mass (g)	Total ²⁷ Al Quantified by ICP-OES (µg) ^a	Uncorrected ²⁶ Al/ ²⁷ Al Ratio ^b	Uncorrected ²⁶ Al/ ²⁷ Al Ratio Uncertainty ^b	Background Corrected ²⁶ Al/ ²⁷ Al Ratio	Background Corrected ²⁶ Al/ ²⁷ Al Ratio Uncertainty	Measured ²⁶ Al (atoms g ⁻¹)	²⁶ Al Uncertainty (atoms g ⁻¹)	Measured ²⁶ Al/ ¹⁰ Be	²⁶ Al/ ¹⁰ Be Uncertainty	Cathode #
CF-02	Deglacial	20.46	3394	3.07 x 10 ¹⁴	2.91 x 10 ¹⁵	3.01 x 10 ¹⁴	2.91 x 10 ¹⁵	1.12 x 10 ⁵	1.08 x 10 ⁴	6.05	0.72	169432
LC-02	Deglacial	21.95	1682	7.50 x 10 ¹⁴	6.25 x 10 ¹⁵	7.45 x 10 ¹⁴	6.25 x 10 ¹⁵	1.27 x 10 ⁵	1.07 x 10 ⁴	5.44	0.57	169436
LC-04	Deglacial	19.74	1882	4.73 x 10 ¹⁴	4.80 x 10 ¹⁵	4.67 x 10 ¹⁴	4.80 x 10 ¹⁵	9.94 x 10 ⁴	1.02 x 10 ⁴	4.89	0.60	169438
LC-05	Deglacial	19.29	3401	4.11 x 10 ¹⁴	4.24 x 10 ¹⁵	4.05 x 10 ¹⁴	4.24 x 10 ¹⁵	1.60 x 10 ⁵	1.67 x 10 ⁴	5.72	0.71	169439
MC-01	Deglacial	19.60	5255	2.04 x 10 ¹⁴	2.39 x 10 ¹⁵	1.99 x 10 ¹⁴	2.39 x 10 ¹⁵	1.19 x 10 ⁵	1.43 x 10 ⁴	6.38	0.95	169441
MC-02	Deglacial	18.75	1757	5.66 x 10 ¹⁴	4.57 x 10 ¹⁵	5.61 x 10 ¹⁴	4.57 x 10 ¹⁵	1.17 x 10 ⁵	9.56 x 10 ³	6.27	0.73	169442
GB-03	Deglacial	9.38	7435	4.56 x 10 ¹⁵	1.83 x 10 ¹⁵	4.02 x 10 ¹⁵	1.83 x 10 ¹⁵	7.11 x 10 ⁴	3.23 x 10 ⁴	8.44	4.19	169444
GB-05	Deglacial	20.10	5364	3.01 x 10 ¹⁴	3.74 x 10 ¹⁵	2.95 x 10 ¹⁴	3.74 x 10 ¹⁵	1.76 x 10 ⁵	2.23 x 10 ⁴	8.02	1.25	169447
SS-01	Deglacial	19.70	1512	5.22 x 10 ¹⁴	4.66 x 10 ¹⁵	5.16 x 10 ¹⁴	4.66 x 10 ¹⁵	8.84 x 10 ⁴	7.98 x 10 ³	8.05	1.19	169450
SS-05	Deglacial	20.88	3437	1.09 x 10 ¹³	7.64 x 10 ¹⁵	1.09 x 10 ¹³	7.64 x 10 ¹⁵	3.99 x 10 ⁵	2.81 x 10 ⁴	7.15	0.61	169454
CF-01	Modern	18.52	2977	4.39 x 10 ¹⁴	4.56 x 10 ¹⁵	4.33 x 10 ¹⁴	4.56 x 10 ¹⁵	1.55 x 10 ⁵	1.63 x 10 ⁴	6.22	0.85	169431
CF-05	Modern	20.92	3327	1.04 x 10 ¹³	6.54 x 10 ¹⁵	1.03 x 10 ¹³	6.54 x 10 ¹⁵	3.67 x 10 ⁵	2.32 x 10 ⁴	7.02	0.53	169434
LC-01	Modern	20.41	2056	1.61 x 10 ¹³	8.24 x 10 ¹⁵	1.60 x 10 ¹³	8.24 x 10 ¹⁵	3.61 x 10 ⁵	1.85 x 10 ⁴	6.86	0.47	169435
LC-03	Modern	20.50	2013	1.74 x 10 ¹³	1.09E-14	1.73 x 10 ¹³	1.09 x 10 ¹⁴	3.80 x 10 ⁵	2.38 x 10 ⁴	6.82	0.52	169437
LC-06	Modern	19.44	2743	6.76 x 10 ¹⁴	5.83 x 10 ¹⁵	6.70 x 10 ¹⁴	5.83 x 10 ¹⁵	2.11 x 10 ⁵	1.84 x 10 ⁴	7.92	0.93	169440
GB-02	Modern	19.96	20382	5.02 x 10 ¹⁵	1.52 x 10 ¹⁵	4.48x 10 ¹⁵	1.52 x 10 ¹⁵	1.02 x 10 ⁵	3.46 x 10 ⁴	7.24	2.56	169443
GB-04	Modern	17.34	17148	1.80 x 10 ¹⁵	1.20 x 10 ¹⁵	1.26 x 10 ¹⁵	1.20 x 10 ¹⁵	Below Detection Limit	Below Detection Limit			169445
MC-03	Modern	20.73	1806	6.21 x 10 ¹⁴	6.10 x 10 ¹⁵	6.16 x 10 ¹⁴	6.10 x 10 ¹⁵	1.20 x 10 ⁵	1.19 x 10 ⁴	6.06	0.79	169449
SS-02	Modern	20.37	1837	8.63 x 10 ¹⁴	6.19 x 10 ¹⁵	8.58 x 10 ¹⁴	6.19 x 10 ¹⁵	1.73 x 10 ⁵	1.25 x 10 ⁴	6.19	0.63	169451
SS-03	Modern	20.81	3229	5.02 x 10 ¹⁴	3.79 x 10 ¹⁵	4.97 x 10 ¹⁴	3.80 x 10 ¹⁵	1.72 x 10 ⁵	1.31 x 10 ⁴	6.55	0.67	169452
SS-04	Modern	22.15	8285	3.27 x 10 ¹⁴	4.20 x 10 ¹⁵	3.22 x 10 ¹⁴	4.21 x 10 ¹⁵	2.68 x 10 ⁵	3.51 x 10 ⁴	5.64	0.78	169453

381 Table 5. Measured Isotopic Data for ²⁶Al

17

GB-06	Bedrock	15.35	2509	1.62 x 10 ¹³	7.95 x 10 ¹⁵	1.62 x 10 ¹³	7.95 x 10 ¹⁵	5.91 x 10 ⁵	2.90 x 10 ⁴	8.05	0.58	169448
382 383	^{a 27} Al was	added only	to sample	s with insuffic	cient total Al	through com	mercial SPEX	ICP standard	d with a conc	entration	of 1000	
384	μg mL ⁻¹ . T	he total he	re reflects	the sum of Al	added throug	gh carrier and	native Al in c	juartz.				
385	^b Isotopic a	nalysis coi	nducted at	PRIME Labor	ratory; ratios	were normali	zed against st	andard KNS	ΓD with an a	ssumed ra	tio of	
386	1.818 x 10	⁻¹² (Nishiiz	umi et al.,	2004).								
387	All uncerta	inties are 1	Ισ.									

388389 Table 6. Holocene Corrected Concentrations for Deglacial Samples

Sample Name	Type of Deposit	Distance from Labrador City (km)	Inherited ¹⁰ Be (atoms g ⁻¹)	¹⁰ Be Uncertainty (atoms g ⁻¹) ^a	Inherited ²⁶ Al (atoms g ⁻¹)	$\stackrel{26}{\text{(atoms }g^{-1})^{a}}$	²⁶ Al/ ¹⁰ Be at Time of Deposition	²⁶ Al/ ¹⁰ Be Uncertainty ^a
LC-02	esker	109	1.76 x 10 ⁴	(-2.15, +1.74) x 10 ³	8.61 x 10 ⁴	(-1.51, +1.25) x 10 ⁴	4.90	-0.88, +0.67
LC-04	ice contact fan	162	1.21 x 10 ⁴	(-2.74, +1.97) x 10 ³	4.17 x 10 ⁴	(-1.91, +1.41) x 10 ⁴	3.45	-1.79, +0.84
LC-05	outwash fan	188	2.27 x 10 ⁴	(-2.33, +2.06) x 10 ³	1.23 x 10 ⁵	(-1.91, +1.76) x 10 ⁴	5.41	-0.97, +0.81
CF-02	glacial delta	221	1.79 x 10 ⁴	(-1.31, +1.30) x 10 ³	1.07 x 10 ⁵	(-1.08, +1.08) x 10 ⁴	5.98	-0.75, +0.74
MC-01	esker or outwash fan	309	7.60 x 10 ³	(-2.39, +1.85) x 10 ³	4.23 x 10 ⁴	(-1.86, +1.56) x 10 ⁴	5.56	-3.98, +1.81
GB-05	esker	361	1.82 x 10 ⁴	(-3.09, +2.18) x 10 ³	1.49 x 10 ⁵	(-2.74, +2.31) x 10 ⁴	8.18	-2.10, +1.38
GB-03	glacial delta	403	7.76 x 10 ³	(-1.69, +1.68) x 10 ³	6.56 x 10 ⁴	(-3.23, +3.23) x 10 ⁴	8.46	-4.78, +4.45
MC-02	glacial delta	506	1.85 x 10 ⁴	(-1.54, +1.54) x 10 ³	1.16 x 10 ⁵	(-9.56, +9.56) x 10 ³	6.24	-0.73, +0.73
SS-01	glacial delta	580	9.59 x 10 ³	(-1.37, +1.29) x 10 ³	7.72 x 10 ⁴	(-8.71, +8.00) x 10 ³	8.04	-1.53, +1.34
SS-05	glacial delta	710	5.58 x 10 ⁴	(-2.63, +2.63) x 10 ³	3.99 x 10 ⁵	(-2.81, +2.81) x 10 ⁴	7.15	-0.61, +0.61

390 391

^a Uncertainty for both nuclides was calculated by propagating error from AMS data reduction with depth estimation error (see

392 methods). Depth estimate uncertainty and changing production rates with depth create asymmetrical uncertainty in both nuclide

393 concentrations. All uncertainties are 10.

394

Figure 5. ²⁶Al/¹⁰Be ratios versus distance from center of the Quebec-Labrador Ice Dome at Labrador City. Deglacial
 data are corrected for Holocene nuclide production and fit with a trendline. Error bars are 1σ. Dashed line shows
 production ratio at high latitudes (7.3) (Corbett et al., 2017).

398

399 6. Discussion

400 Measurements of in situ produced ¹⁰Be and ²⁶Al in sediment and bedrock sampled in eastern Quebec and in 401 Labrador indicate that LIS erosion and sediment transport during the last glacial period were not sufficient to 402 remove all cosmogenic nuclides accumulated during previous periods of exposure (Figure 4A,B). Corrected for Holocene exposure, the error-weighted mean ${}^{26}\text{Al}/{}^{10}\text{Be}$ for both deglacial (6.1 ± 1.2) and modern fluvial sediments 403 404 (6.6 ± 0.5) are lower than the production ratio of the two nuclides at high latitudes (7.3 ± 0.3) (Corbett et al., 2017) 405 (Figure 6A-C), consistent with burial after initial exposure. A Tukey HSD test confirms a significant difference 406 between our deglacial (Holocene corrected) 26 Al/ 10 Be ratios and the 7.3 ± 0.3 production ratio (p = 0.01). However, 407 most of these terrestrial samples have ${}^{26}\text{Al}/{}^{10}\text{Be}$ ratios higher than those (4.7 ± 0.8) measured in North Atlantic 408 quartz IRD thought to be sourced from northeastern Canada (LeBlanc et al., 2023) (Figure 6D). Together these data 409 suggest that the IRD measured by LeBlanc et al. was either not sourced from much of eastern Quebec and Labrador 410 that we sampled or was buried beyond the depth of cosmic-ray penetration for hundreds of thousands of years (in 411 Hudson Bay or thick sediment deposits) before being transported as IRD. 412

413

414 Figure 6. Summed probability plots of ²⁶Al/¹⁰Be ratios for Arctic samples. A. Samples with simple exposure 415 histories in Greenland (Corbett et al., 2017). B. Modern stream sediment (this study). C. Deglacial samples corrected 416 for Holocene exposure; black 5 samples most proximal to Labrador City (center of the dome); gray 5 samples are 417 most distal (this study). D. IRD samples from North Atlantic (LeBlanc et al, 2023). Analytical error weighted mean 418 and 1 SD uncertainty above each plot.

419

420 6.1 Nuclide Concentrations in Deglacial Sediments Indicate Limited Erosion by Laurentide Ice

421 After correcting for Holocene exposure, all deglacial sediment samples in our study (n = 10) contain ²⁶Al 422 and ¹⁰Be inherited from exposure during prior interglacials. The center of the Quebec-Labrador Ice Dome was 423 covered by ice starting at least ~70 ka and as early as ~115 ka and did not deglaciate until 7 ka (Ullman et al., 2016; 424 Dalton et al., 2022). Despite being buried for ~60-105 ka by the LIS during the last glacial period, nuclide 425 concentrations in sediment (and at least some bedrock) have not been reset by erosion to zero. The average inherited 426 ¹⁰Be concentration (1.88 x 10⁴ atoms g⁻¹) is equivalent to ~3,000 years of surface production, assuming the average

427 production rate across the sites (6.35 atoms g⁻¹ yr⁻¹). If these nuclides were produced during last interglacial exposure

428 (poorly constrained to between 10 and 60 kyr in the center of our transect) the implied eroded depth would be a few

429 meters over tens of thousands to perhaps one hundred thousand years – a low average rate of erosion.

430	
431	Subglacial process modeling over North America supports a minimally erosive LIS in portions of Quebec
432	and Labrador during the last glacial cycle (Melanson et al., 2013) consistent with our findings. Specifically,
433	Melanson et al.'s modeling of the Quebec-Labrador region exhibits minima for both basal sliding speed and total ice
434	movement integrated over the last glacial cycle – both variables related to the efficacy of glacial erosion. Simulated
435	ice sliding distances (the integrated basal velocity over the last glacial cycle in millions of meters (Mm)) are near
436	zero in the center of our study area, 1 Mm near Goose Bay, and 3 Mm along the St. Lawrence estuary - an order of
437	magnitude less than for the Hudson Strait ice stream and southern LIS lobes (Melanson et al., 2013). Total erosion
438	predicted using empirical abrasion and quarrying laws ranges from near zero under the center of the Quebec-
439	Labrador dome to ≥ 10 m along parts of its Atlantic and St. Lawrence margin. Our data are consistent with a variably
440	erosive LIS, which contained regions of slow ice movement and thus insignificant erosion where nuclides from prior
441	periods of exposure are more likely to have been retained. This pattern may help explain the patchy and thin
442	sediment cover present in Quebec and Labrador today (Pelletier et al., 2016).
443	Our results agree with ¹⁰ Be measurements made by others in bedrock and boulders sampled to date
444	deglacial landforms in Quebec and Labrador. The bedrock sample we analyzed (GB-06), which contained ¹⁰ Be
445	inheritance equivalent to ~3.2 ka of surface exposure, was collected adjacent to samples CL3-10-01 (1.1 km from
446	GB-06) and CL3-10-07 (0.7 km from GB-06) both along Ullman et al.'s (2016) CL3 transect. Ullman et al.
447	excluded these boulder samples from their deglacial chronology because their estimated ages (14.2 and 12.4 ka)
448	were deemed much too old. In total, 10 of 65 boulder samples from Ullman et al.'s (2016) southern and eastern
449	transects, which overlap our transect, were regarded as outliers because of their unusually high concentration of
450	¹⁰ Be. Couette et al. (2023) similarly excluded 5 of 37 samples in eastern Labrador because of high ¹⁰ Be
451	concentrations. The results suggest inheritance from prior exposure is common in boulders and bedrock in the
452	region.
453	The concentrations of inherited nuclides we measured in LIS deglacial sediment (~19,000 10 Be atoms g ⁻¹)
454	are on average several times higher than those currently in sediment shed by the Greenland Ice Sheet (\sim 6,500 10 Be
455	atoms g^{-1} , Nelson et al., 2014) but much lower than those deposited by the LIS in the midwestern United States
456	(~60,000 ¹⁰ Be atoms g ⁻¹ , Balco et al., 2005). Nuclide concentrations in deglacial sediment must reflect a
457	combination of interglacial exposure duration, glacial erosivity, and nuclide decay during burial. The low
458	concentrations of ¹⁰ Be in sediment issuing from the Greenland Ice Sheet (as well as low ²⁶ Al/ ¹⁰ Be ratios ~4.5,
459	Bierman et al., 2016) reflect continuous ice cover through most interglacials and erosive warm-based ice in areas
460	from which sediment is sourced. In contrast, the high concentrations of ¹⁰ Be in deglacial sediment originating from
461	the southern margin of the Keewatin Ice Dome in Minnesota (Balco et al., 2005) suggest that ice there, although it
462	lingered through many interglacials to provide low ${}^{26}\text{Al}/{}^{10}\text{Be}$ ratios (also ~4.5), was only weakly erosive and thus
463	perhaps at least in part, cold-based.
464	
465	6.2 Implications for Cosmogenic Dating

466

- 467 Our findings of nuclide inheritance from prior periods of exposure, and thus limited glacial erosion, are
 468 consistent with studies conducted in other regions of the LIS, as well as glacial and deglacial landscapes in
 469 Fennoscandia and Greenland (e.g., Stroeven et al., 2002; Corbett et al., 2016; Briner & Swanson, 1998). Our data, as
 470 well as those of others, have implications for the use of in situ produced cosmogenic nuclides for both exposure and
 471 burial dating.
 472 Measurements in several other parts of the LIS have shown that boulders, cobbles, and sand carried
- 473 nuclides inherited from prior periods of surface exposure. For example, a cobble sampled from Baffin Island had 474 concentrations of ¹⁰Be and ²⁶Al that suggested nuclide inheritance equivalent to ~3 ka years of surface exposure 475 (Davis et al., 1999). In the northeastern United States, Halsted et al. (2023) estimated that boulders on LIS terminal 476 moraines contained concentrations of inherited ¹⁰Be equivalent to 2-6 ka of surface exposure. In the midwestern 477 United States, the ²⁶Al/¹⁰Be ratio was well below the production value in glacial outwash negating efforts to use 478 older deposits for burial dating (Balco et al., 2005). In the Torngat Mountains of northern Labrador, measurements 479 of ²⁶Al and ¹⁰Be on bedrock sites and erratic boulders at mountain summits provide evidence of minimal erosion 480 (<1.4 m Ma⁻¹) where cold-based ice was predominant before deglaciation (Staiger et al., 2005). In south-central 481 Wisconsin, three out of five bedrock outcrops sampled had concentrations of ¹⁰Be and ²⁶Al eight times higher than
- 482 predicted based on radiocarbon dating (Colgan et al., 2002).
- 483 Minimal erosion and significant inheritance of cosmogenic nuclides have been observed in areas once 484 occupied by other Northern Hemisphere ice sheets as well. On the historical periphery of the Scandinavian Ice Sheet 485 (southwestern Norway), glacial erratic boulders had the surface equivalent of ~2 ka years of inherited muonogenic 486 ¹⁰Be (Briner et al., 2016). Towards the center of that ice sheet (northeastern Sweden) there is evidence that bedrock 487 outcrops and boulder fields have been preserved through many glacial cycles since the late Cenozoic (Stroeven et 488 al., 2002). There is also evidence of minimal erosion near the margin of the Cordilleran Ice Sheet, with 8 out of 23 489 bedrock samples on Whitbey Island having ³⁶Cl/Cl ratios suggesting inheritance of nuclides produced from prior 490 interglacials (Briner & Swanson, 1998). In northwest Greenland, 8 of 28 sampled boulders had high concentrations 491 of ¹⁰Be and ²⁶Al along with low ²⁶Al/¹⁰Be ratios indicative of burial, providing evidence of minimal subglacial 492 erosion over multiple interglacial and glacial periods where the ice was predominantly cold-based (Corbett et al., 493 2016).
- 494 The inheritance of nuclides from prior periods of exposure has implications for cosmogenic exposure 495 dating of bedrock outcrops, boulders, and sediment deposits, because nuclide concentrations are biased too high. For 496 example, Ullman et al. (2016) noted that their ¹⁰Be-based deglacial chronology in our study area leads radiocarbon-497 based estimates of local deglaciation by centuries (see their Figure 7). While radiocarbon lags are frequently 498 attributed to delayed colonization of the landscape by vegetation following deglaciation (e.g., Peteet et al., 2012), 499 the widespread nuclide inheritance we find in Quebec-Labrador suggests that, at least in this case, it is the ¹⁰Be ages 500 that may be too old. Practical solutions include larger sample sizes to facilitate outlier identification, sampling 501 shielded material as we have done to quantify the magnitude of nuclide inheritance, and the application of short-502 lived nuclides such as in situ ¹⁴C which, because of its half-life (5730 years) does not retain nuclides from prior 503 interglaciations (e.g., Hippe, 2017).
 - 23

504

505 6.3 The Quebec-Labrador Ice Dome Center Persisted During Some Interglacials 506 Finding ²⁶Al/¹⁰Be ratios below production in quartz IRD from North Atlantic Heinrich layers, LeBlanc et 507 al. (2023) concluded that ice sheet remnants must have lingered in parts of eastern Canada for the majority of 508 Pleistocene interglacials. While Heinrich layer sediment was predominantly delivered to the ocean by the Hudson 509 Strait ice stream, the quartz IRD LeBlanc et al. (2023) analyzed most likely came from interior areas of the LIS 510 feeding the ice stream because Hudson Strait is underlain primarily by carbonate rocks (Bond et al., 1992). 511 Data we present in this paper suggest that the quartz analyzed by LeBlanc et al. (2023) could have been 512 sourced from parts our field area near Labrador City because only there are ²⁶Al/¹⁰Be ratios of the Holocene-513 corrected deglacial sediment like those in the IRD (Figure 6C, D). Alternatively, it is possible that IRD was sourced 514 from a wider area (the Keewatin Dome and/or Baffin Island) where samples of sediment (Balco et al., 2005) and 515 taken from outcrops (Marsella et al., 2002) have low ²⁶Al/¹⁰Be ratios. It is also possible that sediment was stored in 516 Hudson Bay for ~1 Ma, where ²⁶Al and ¹⁰Be decayed, before being transported to the deep sea. 517 Sediment could have also been recycled multiple times on land and shielded from interglacial exposure in 518 thick deposits (e.g., deltas) before eventually making it to the ocean as IRD. This lag between initial deposition, 519 either in Hudson Bay or in thick sedimentary sequences on land, and final transport by ice into the Atlantic Ocean 520 allows for the sediment to have initially had higher ratios of ²⁶Al/¹⁰Be (like the range of ratios in our deglacial data). 521 The low rates of glacial erosion and ice sliding in this region suggested by our data as well as models (Melanson et

al., 2013) could help account for such long residence times of terrestrial sediment in Quebec-Labrador; yet, the
 absence of lower than production ²⁶Al/¹⁰Be ratios in deglacial sediment closer to the ice sheet margin remains
 inconsistent with long term burial. Perhaps incorporation of IRD occurred primarily toward the center of the ice
 sheet and not closer to the margins.

526 Although we cannot say during which interglacials the Quebec-Labrador Ice Dome remained in a reduced 527 state and during which it completely melted like it has today, the inverse relationship between ${}^{26}Al/{}^{10}Be$ sample 528 ratios and distance from the center of the dome at present-day Labrador City provides strong evidence that ice 529 lingered in that area for at least some interglacial periods shielding rock and sediment below from cosmic rays. In 530 contrast, the higher ${}^{26}Al/{}^{10}Be$ ratios in deglacial sediment further from the center of the ice dome are consistent with 531 repeated exposure during interglacials. More extensive sampling of eastern Canada, including Quebec-Labrador, and 532 further north near Hudson Bay and Baffin Island, would provide further evidence on how persistent different sectors 533 of the eastern LIS was during Pleistocene interglacials.

534

535 6.3 Sediment Sourcing in Modern Rivers

536 We can estimate the percentage of sediment derived from erosion of deglacial materials using a two 537 component, linear mixing model based on the measured concentrations of ¹⁰Be in both river and deglacial sediment 538 and assumptions about nuclide production since deglaciation. One component is deglacial deposits which, based on 539 our sampling today, contain an average of 22.5 x 10³ ¹⁰Be atoms g⁻¹ and enter rivers by bank incision (Figure 4A).

540 The second component is surficial materials which, when eroded, enter the drainage network. Since we did not

541	sample these surficial materials directly, we calculate their ¹⁰ Be concentration by assuming that at the time of
542	deglaciation (the beginning of exposure) surface sediment contained the average Holocene exposure-corrected
543	concentration of 10 Be for deglacial sediment (18.7 x 10^3 10 Be atoms g ⁻¹). We then use the average deglacial age of
544	9.32 ka for our field area and the average 10 Be surface production rate (7.82 atoms y ⁻¹ g ⁻¹) to calculate that surface
545	material gained about 7.3 x 10^{4} 10 Be atoms g ⁻¹ since deglaciation. The surface-exposed end member therefore
546	contains 91.6 $\times 10^{3}$ ¹⁰ Be atoms g ⁻¹ .
547	Knowing that modern sediment contains on average 33.1 x 10 ³ ¹⁰ Be atoms g ⁻¹ , the two-component mixing
548	model suggests that about 85% of sediment in eastern Quebec rivers today is derived from incision of glacial
549	deposits and only about 15% comes from erosion of surficial sediment and bedrock. Our findings for eastern Quebec
550	are like those of Balco et al. (2005) in Minnesota. In that previously glaciated region, they suggest most sediment
551	carried by rivers comes from incision of glacial deposits. Our finding is also consistent with the low sediment yield
552	of forested upland terrains in other glaciated areas of the LIS (e.g., Dethier et al., 2018).
553	
554	Conclusions
~ ~ ~	

555 Analysis of cosmogenic ¹⁰Be and ²⁶Al in deglacial (n=10) and modern (n=11) sediment samples indicates 556 that the Quebec-Labrador Ice Dome was minimally erosive during the last glacial period, allowing preservation of 557 nuclides created during prior interglacial exposures. Nuclide concentrations in modern sediments are only slightly 558 higher than those in deglacial sediments on average, implying most sediment transported by rivers today is sourced 559 from rapidly eroding banks composed of glacial deposits rather than surrounding slowly-eroding surfaces. Holocene 560 exposure-corrected ratios of ${}^{26}\text{Al}/{}^{10}\text{Be}$ in deglacial samples are below the production ratio of those nuclides at high 561 latitudes near the center of the ice dome but not the margins, implying interior ice survived during at least some 562 interglacials but peripheral ice did not. Further sampling of this region and northward near the Foxe-Baffin and 563 Keewatin Domes may provide more evidence of minimal erosion and show if and where ice persisted during 564 Pleistocene interglacials. Such data are important both for understanding the lower than production ²⁶Al/¹⁰Be ratios 565 measured in IRD from eastern LIS discharge and for determining the interglacial history of the LIS. 566 567 Author contribution 568 Cavnar drafted and edited the manuscript and performed data reduction and statistical analysis. Cavnar and Shakun 569 collected samples in the field. Bierman and Shakun are responsible for study conception and design. Bierman and

- 570 Shakun edited the manuscript and advised Cavnar on sample preparation and data analysis. Cavnar performed
- sample cleaning and extraction under the supervision of Corbett. Corbett, Galford, and LeBlanc edited figures coded
- 572 by Cavnar and assisted with conceptual design of figures and manuscript organization. Caffee assisted with
- 573 statistical analysis and oversaw measurement of cosmogenic nuclides via AMS and PRIME Lab.
- 574

575 Competing Interests

- 576 The authors declare that they have no conflict of interest.
- 577

578 Acknowledgements

579	We thank the 2022 field sampling team including Juliana Souza, Halley Mastro, and Cat Collins. We appreciate help
580	from Pierre-Olivier Couette and Patrick Lajeunesse to identify sample locations. Funding for this research was
581	provided by NSF-EAR-2300560, 2116209, and 1735676 awards to Bierman and Corbett, and 2116208 to Shakun.
582	
583	References
584 585 586 587 588 589 590	 Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., & Blatter, H. (2013). Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. <i>Nature</i>, 500(7461), 190–193. https://doi.org/10.1038/nature12374 Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirzadeh, S. M. J., White, L., Banks, S. N., Montgomery, J., & Hopkinson, C. (2019). Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results. <i>Remote Sensing</i>, 11(7), 842. https://doi.org/10.3390/rs11070842 Andrews, J. T., & Tyler, K. L. (2011). The observed postglacial recovery of Québec and Nouveau-Québec
591	Since 12,000 BP. <i>Géographie Physique Et Quaternaire</i> , <i>31</i> (3–4), 389–400.
592	https://doi.org/10.7202/1000286ar
593	Applegate, P. J., Urban, N. M., Laabs, B. J. C., Keller, K., and Alley, R. B.: Modeling the statistical
594	distributions of cosmogenic exposure dates from moraines, Geosci. Model Dev., 3, 293–307,
595	https://doi.org/10.5194/gmd-3-293-2010, 2010.
596	Balco, G., Stone, J. O. H., & Jennings, C. (2005). Dating Plio-Pleistocene glacial sediments using the
597	cosmic-ray-produced radionuclides ¹⁰ Be and ²⁶ Al. American Journal of Science, 305(1), 1–41.
598	https://doi.org/10.2475/ajs.305.1.1
599	Batchelor, C. L., Margold, M., Krapp, K., Murton, D. K., Dalton, A. S., Gibbard, P. L.,
600	Stokes, C. R., Murton, J. B., & Manica, A. (2019). The configuration of Northern Hemisphere ice sheets
601	through the Quaternary. <i>Nature Communications, 10.</i> https://doi.org/10.1038/s41467-019-11601-2
602	Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present
603	and future Köppen-Geiger climate classification maps at 1-km resolution. <i>Scientific Data</i> , 5(1).
604	https://doi.org/10.1038/sdata.2018.214
605	Rierman, P. (1994). Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A
606	review from the geomorphic perspective. <i>Journal of Geophysical Research</i> , 99(10),
607	13.885-13.896
608	Bierman, P. R., Marsella, K. A., Patterson, C. J., Davis, P. T., & Caffee, M. W. (1999). Mid-Pleistocene
609	cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and
610	southern Baffin Island: a multiple nuclide approach. <i>Geomorphology</i> , 27(1–2), 25–39.
611	https://doi.org/10.1016/s0169-555x(98)00088-9
612	Bierman, P. R., Shakun, J. D., Corbett, L. B., Zimmerman, S., & Rood, D. H. (2016). A persistent and
613	dynamic East Greenland Ice Sheet over the past 7.5 million years. <i>Nature</i> , 540(7632), 256–260.
614	https://doi.org/10.1038/nature20147
615 616 617 618	 Bintanja, R., & Van De Wal, R. S. W. (2008). North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. <i>Nature</i>, 454(7206), 869–872. https://doi.org/10.1038/nature07158 Braucher, R., Brown, E. T., Bourlès, D., & Colin, F. (2003). In situ produced ¹⁰Be measurements at great denths: implications for production rates by fast muons. <i>Farth and Planetary Science Letters</i>
619 620 621	 Braucher, R., Merchel, S., Borgomano, J., & Bourlès, D. (2011). Production of cosmogenic radionuclides at great depth: A multi element approach. <i>Earth and Planetary Science Letters</i>, 309(1–2), 1–9.
622	https://doi.org/10.1016/j.epsl.2011.06.036
623	Briner, J. P., Goehring, B. M., Mangerud, J., & Svendsen, J. I. (2016). The deep accumulation of 10Be
624	at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in
625	peripheral ice sheet landscapes. <i>Geophysical Research Letters</i> , 43(17), 9121–9129. https://
626	doi.org/10.1002/2016g1070100
627	Briner, J. P., & Swanson, T. W. (1998). Using inherited cosmogenic ³⁶ Cl to constrain glacial erosion rates
628	of the Cordilleran ice sheet. Geology / GeoScienceWorld. https://doi.org/10.1130/0091-7613(1998)026

629	Colgan, P. M., Bierman, P. R., Mickelson, D. M., & Caffee, M. (2002). Variation in glacial erosion near the
630	southern margin of the Laurentide Ice Sheet, south-central Wisconsin, USA: Implications for cosmogenic
631	dating of glacial terrains. GSA Bulletin / GeoScienceWorld. https://doi.org/10.1130/0016-7606(2002)114
632	Corbett, L. B., Bierman, P. R. and Davis, P.T. (2016) Glacial history and landscape evolution of southern
633	Cumberland Peninsula, Baffin Island, Canada, constrained by cosmogenic ¹⁰ Be and ²⁶ Al. Geological
634	Society of America Bulletin. v. 128(7-8), p. 1173-1192. doi.org/10.1130/B31402.1
635	Corbett, L. B., Bierman, P. R., Neumann, T., Graly, J. A., Shakun, J. D., Goehring, B. M., Hidy, A. J., &
636	Caffee, M. W. (2021). Measuring multiple cosmogenic nuclides in glacial cobbles sheds light on
637	Greenland Ice Sheet processes. Earth and Planetary Science Letters, 554, 116673.
638	https://doi.org/10.1016/i.epsl.2020.116673
639	Corbett, L. B., Bierman, P. R., & Rood, D. H. (2016a). An approach for optimizing in situ cosmogenic
640	¹⁰ Be sample preparation <i>Quaternary Geochronology</i> 33, 24–34
641	https://doi.org/10.1016/j.quageo.2016.02.001
642	Corbett L, B, Bierman, P, R, and Rood, D H. (2016b) Constraining multi-stage exposure-burial scenarios
643	for boulders preserved beneath cold-based glacial ice in Thule. Northwest Greenland, <i>Earth and Planetary</i>
644	Science Letters 440, 147–157, doi org/10.016/j.ensl.2016.02.004
645	Corbett L, B, Bierman, P, B, Rood, D, H, Caffee, M, W, Lifton, N, A, and Woodruff, T, F. (2017)
646	Comparence ²⁶ Al ¹⁰ Be surface production ratio in Greenland <i>Geophysical Research Letters</i> 44(3) 1350-
647	as a doi org/10 1002/2016GL071276
648	Couette P. Ghienne I. Laieunesse P. & Woerd I. (2023). Climatic control on the
649	retreat of the Laurentide Les Sheet marcini in easternmost Outbec-Labrador (Canada) revealed by
650	cosmogenic nuclide exposure dating <i>Journal of Quaternary Science</i> 38(7) 1044-1061
651	https://doi.org/10.1002/jas.3525
652	A Finkelstein S A Forman S L Barnett P I Pico T & Mitrovica I X (2019) Was the
653	Laurentide Lee Sheet significantly reduced during Marine Isotone Stage 3? Geology, 47(2) 111–114
654	https://doi.org/10.1130/s/5335.1
655	Dalton & Marcold M. Stokes C. Tarasov I. Dyke A. S. Adams R. S. Allard S.
656	Atonde H F Atkinson N Attin I W Barnett P Barnett P Batterson M Bernatchez P Borne H
657	We preclaming A Bringr L B Brouger E Campbell L E Carlson, A E Wright $H = (2000)$ An
658	Undet de Padiocarbon Barch, J. T., Diouau, E., Campoett, J. E., Campoett, J. E., Wight, H. E. (2020). An
659	Shart Complex, <i>Oustanany Science</i> Pariane, 234(15) 0277 3701
660	https://doi.org/10.1016/j.urgscirey.2020.106.223
661	Davis PT Rieman P R Marsella K & Caffee M W & Southon I (1999) Cormogenic
662	Davis, F. F., Dielman, F. K., Marsena, K. K., Cance, M. & Southol, J. (1977). Cosmogene analysis of algorithm of the effectiveness
663	of algorial engineering Annals of Glagiology 28, 1181–188
664	bit factor of 0.3180/172756000781821805
665	Debiar D. D. Bosola, L. & Wiemen, S. T. (2018). A contamporary mass balance approach to small established
666	Dennet, D. F., Katela, J., & Wielman, S. I. (2016). A contemporary mass-balance apploant to sinan-catimient
667	https://doi.org/10.1130/abs/2018am.210718
668	$E_{\rm max}$ T L & Lifton N A (2014) The puts and balts of cosmogenic puclide production <i>Elements</i> 10(5)
669	Julia, 1. 3, de Enton, N. A. (2014). The fluts and bolts of cosinogene include production. <i>Elements</i> , 10(5), 247–350. https://doi.org/10.2113/acselements.10.5.347
670	5 + 5 (2004) An outline of North American declarition with emphasis on central and porthern
671	Dyke, A. S. (2004). An outline of North American degradation with empirison central and fortherin Canada In Davidonmentic in guidence (pp. 373–424). https://doi.org/10.1016/s1571.
672	ORGE(M)80200 A
673	Goebring B M Kelly M A Schaefer I M Finkel R C & Lowell T V (2010) Dating of raised
674	Bothing, D. M., Rohy, M. A., Schaett, J. M., Hinkel, R. C., & Lowell, T. V. (2010). During of failed
675	astimates of suballocial arosion <i>IOS</i> Journal of <i>Quaternary</i> Science/Journal of <i>Quaternary</i> Science, 25(6)
676	855 874 https://doi.org/10.1002/igs.1380
677	Goese I. C. & Philling, F. M. (2001). Terrestrial in situ cosmoganic nuclidae: theory and application
678	Ousse, s. C., & Finnips, F. W. (2001). Terrestriar in site cosmogenic includes, incory and application.
679	Gregore I Ivanović R Maycock & C Valdes P I & Stavanson S (2018) Holocana lowering of the
680	Laurentide ice sheet affects North Atlantic gyre circulation and climate <i>Climate Dynamics</i> 51(0, 10)
681	3707_3813 https://doi.org/10.1007/s00382_018_4111_9
682	Halsted C T Rierman P R Shakun I D Davis P T Corbett I R Drebber I S & Pidge
002	naiseu, C. 1., Diemian, I. K., Shakun, J. D., Davis, I. 1., Corocu, L. D., Dieboul, J. S., & Kluge,

683	J. C. (2023). A critical re-analysis of constraints on the timing and rate of Laurentide Ice Sheet recession in
684	the northeastern United States, JOS, Journal of Quaternary Science/Journal of Quaternary Science, 39(1).
685	54–69. https://doi.org/10.1002/jqs.3563
686	Harbor, J. M., Stroeven, A. P., Fabel, D., Clarhäll, A., Klemån, J., Li, Y., Elmore, D., & Fink, D. (2006).
687	Cosmogenic nuclide evidence for minimal erosion across two subglacial sliding boundaries of the late
688	glacial Fennoscandian ice sheet. Geomorphology, 75(1–2), 90–99.
689	https://doi.org/10.1016/j.geomorph.2004.09.036
690	Hippe, K. (2017). Constraining processes of landscape change with combined in situ cosmogenic ¹⁴ C- ¹⁰ Be analysis.
691	Quaternary Science Reviews, 173, 1–19. https://doi.org/10.1016/j.quascirev.2017.07.020
692	Hynes, A., & Rivers, T. (2010). Protracted continental collision — evidence from the Grenville Orogen.
693	This article is one of a series of papers published in this Special Issue on the theme Lithoprobe —
694	parameters, processes, and the evolution of a continent. Canadian Journal of Earth Sciences, 47(5), 591-
695	620. https://doi.org/10.1139/e10-003
696	Klein, J., Giegengack, R., Middleton, R., & Weeks, R. (1986). Revealing histories of exposure using insitu
697	produced AL-26 and BE-10 in Libyan desert glass. <i>Radiocarbon</i> , 28(547-555).
698	Kleman, J., Borgstrom, I., & Hattestrand, C. (1994). Evidence for a relict glacial landscape in
699	Quebec-Labrador. Palaeogeography, Palaeoclimatology, Palaeoecology, 111(1994), 217-228.
700	Klemån, J., Jansson, K. N., De Angelis, H., Stroeven, A. P., Hättestrand, C., Alm, G., & Glasser, N. F.
701	(2010). North American Ice Sheet build-up during the last glacial cycle, 115–21 kyr. Quaternary Science
702	Reviews, 29(17-18), 2036-2051. https://doi.org/10.1016/j.quascirev.2010.04.021
703	LeBlanc, D. E., Shakun, J. D., Corbett, L. B., Bierman, P. R., Caffe, M. W., & Hidy, A. J.
704	(2023). Laurentide Ice Sheet Persistence During Pleistocene Interglacials. <i>Geology</i> , 51(5), 496-499.
705	https://doi.org/10.1130/G50820.1
706	Larsen, H. C., Saunders, A. D., Clift, P. D., Beget, J., Wei, W., and Spezzaferri, S.: Seven million years of glaciation
707	in Greenland, Science, 264, 952–955, https://doi.org/10.1126/science.264.5161.952, 1994.
708	Larue, F., Royer, A., De Sève, D., Langlois, A., Roy, A., & Brucker, L. (2017). Validation of GlobSnow-2
709	snow water equivalent over Eastern Canada. Remote Sensing of Environment, 194, 264–277.
710	https://doi.org/10.1016/j.rse.2017.03.027
711	Margold, M., Stokes, C. R., & Clark, C. D. (2015). Ice streams in the Laurentide Ice Sheet: Identification,
712	characteristics and comparison to modern ice sheets. <i>Earth-science Reviews</i> , 143, 117–146.
713	https://doi.org/10.1016/j.earscirev.2015.01.011
714	Margold, M., Stokes, C. R., & Clark, C. D. (2018). Reconciling records of ice streaming and ice margin
715	retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet.
/10	Quaternary Science Reviews, 189, 1–30. https://doi.org/10.1016/j.quascirev.2018.03.013
/1/	Marsella, K. A., Bierman, P. R., Davis, P. T. and Caffee, M. W. (2000) Cosmogenic "Be and "Al ages for
/18	the last glacial maximum, eastern Bartin Island, Arctic Canada. Geological Society of America Bulletin. v.
/19	112(8), p. 1296-1312. doi.org/10.1130/0016-7606(2000)112<1296:CBAAAF>2.0.CO;2
720	Marshall, S. J., Tarasov, L., Clarke, G. K. C., & Peltier, W. R. (2000). Glaciological reconstruction of the
721	Laurentide Ice Sheet: physical processes and modelling challenges. <i>Canadian Journal of Earth Sciences</i> ,
722	57(5), 709-795. https://doi.org/10.1139/699-113
723	Metanson, A., Bell, T., & Tarasov, L. (2013). Numerical modelling of subglacial erostion and sediment
724	Figure 2017 Section 2017 Sectio
726	Science Reviews, 06, 154-174. https://doi.org/10.1010/j.quastiev.2015.02.017
720	Science Regions 225 1050/4 https://doi.org/10.1016/j.aussirav.2010.1050/4
728	Munroe I S Perzan Z & Amidon W H (2016) Cave sediments constrain the latest Pleistocene
729	advance of the Laurentide Ice Sheet in the Champlain Valley. Vermont USA 105 Journal of Outgranary
730	Science/Journal of Quaternary Science, 31(8), 893–904 https://doi.org/10.1002/ios.2913
731	Nelson A H Bierman P R Shakun I D & Hood D H (2014) Using in situ
732	cosmoenic ¹⁰ Re to identify the source of sediment leaving Greenland <i>Farth Surface Processes and</i>
733	Landforms, 39, 1087-1100, 10, 1002/esp 3565
734	Nishijzumi, K. (2004). Preparation of ²⁶ Al AMS standards. <i>Nuclear Instruments and Methods in Physics</i>
735	Research. Section B. Beam Interactions with Materials and Atoms/Nuclear Instruments & Methods in
736	Physics Research, Section B. Beam Interactions with Materials and Atoms. 223–224. 388–392.
737	https://doi.org/10.1016/j.nimb.2004.04.075

738	Nishiizumi, K., Kohl, C. P., Arnold, J. R., Klein, J., Fink, D., & Middleton, R. (1991). Cosmic ray
739	produced ¹⁰ Be and ²⁶ Al in Antarctic rocks: exposure and erosion history. Earth and Planetary Science
740	Letters, 104(2–4), 440–454, https://doi.org/10.1016/0012-821x(91)90221-3
741	Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J., Finkel, R. C., & McAninch, J. (2007), Absolute
742	calibration of ¹⁰ Be AMS standards, Nuclear Instruments and Methods in Physics Research, Section B.
743	Beam Interactions with Materials and Atoms/Nuclear Instruments & Methods in Physics Research Section
744	B Beam Interactions with Materials and Atoms 258(2) 403–413
745	https://doi.org/10.1016/i.nimb.2007.01.297
746	Nishiizumi K Winterer F. L. Kohl C. P. Klein I. Middleton R. Lal D. & Arnold J. R. (1989)
747	Cosmic ray production rates of ¹⁰ Be and ²⁶ Al in Antarctic rocks: exposure and erosion history in quartz
748	from glacially polished tocks. Farth and Planetary Science Letters 104 Journal of Geophysical Research
749	94(B12) 17907–17915 https://doi.org/10.1029/ib094ib12p17907
750	Payette S. Morneau C. Sirois I. & Desnotts M (1989) Recent fire history of the Northern Quebec
751	Biomes Ecology 70(3) 656-673 https://doi.org/10.2307/1940217
752	Pico T Birch I Weisenberg J & Mitrovica I (2018) Refining the Laurentide Ice Sheet at Marine
753	Field, F., Bichi, E., weischneider, S., & Antonica, S. (2016). Remaining allocial isostatic simulations with a dynamic ice model
754	Outgrangy Sciance Regions 105 171 170 https://doi.org/10.1016/j.ougsciray.2018.07.023
755	Demussion S. O. Andersen K. H. Svansson, A. Staffansen, I. D. Vinther, B. M. Clausen, H.
756	Rashussen, S. O., Andersen, K. H., Svensson, A., Sterlensen, J. F., Vinner, D. M., Ciausen, H., Scherer, P. Signard Andersen, M. Johnsen, S. I. Jarsen, J. H. Dabi Jansen, D. Biglar, M. Bötblicherger, P.
757	Figher H. Goto Azuma K. Hansen, M. & Puth JL (2006). A pay Graphani in a para dispandary for
758	the lost alogical termination. Journal of Good National Descarate JUL(DG)
750	https://doi.org/10.1020/2005i4006070
760	https://doi.org/10.1029/2005/2005/2000/9
761	where the second
761	subgracial dynamics of the Quebec-Labrador foe dome, normeastern Quebec, Canada. Earn Surface
762	<i>Frocesses and Landjorns</i> , 42(15), 5153–5177. https://doi.org/10.1002/esp.4557
763	Rice, J. M., Ross, M., Paulen, R. C., Relley, S. E., Biller, J. P., Neudori, C. M., & Lian, O. B. (2019). Relining the
765	Shot with one operation of adaption IOS Journal of Outform Source/Journal of Outform and
765	Sincer with age constraints on degractation. J Q3. Journal of Quaternary Science Journal of Quaternary
760	Science, 34(7), 519–555. https://doi.org/10.1002/jds.5158
768	Kivers of Canada - Charchin Kiver - Can Geo Education (n.e.).
760	https://web.arcinve.org/web/20200201124026/http://www.cangeoeducation.ca/resources/fivers_of_canada/
709	churching reproduction and the second se
770	Roy, M., Heinning, S. K., & Faten, M. (2009). Sedment sources of notifien Quebec and Labrador graduat
772	deposits and the northeastern sector of the Laurentide ice Sheet during ice-rating events of the last glacial
112	cycle. Quaternary Science Reviews, $28(2/-28)$, $3230-3245$.
115	nttps://doi.org/10.1016/j.quascirev.2009.08.008
775	Spray, J. G., Keney, S. P., & Rowley, D. B. (1998). Evidence for a fate transfer multiple impact event on
115	Earth. <i>Nature</i> , $392(66/2)$, $1/1-1/3$. https://doi.org/10.1038/3239/
110	Statger, J. K. W., Gosse, J. C., Jonnson, J. V., Fastook, J. L., Gray, J., Stockil, D. F., Stockil, L. D., &
111	Finkel, R. C. (2005). Quaternary relief generation by polythermal glacier ice. <i>Earth Surface Processes and</i>
770	Lanaforms, 30(9), 1145–1159. https://doi.org/10.1002/esp.126/
790	Stalger, J. W., Marchant, D. K., Schaerer, J. M., Obernoizer, P., Johnson, J. V., Lewis, A. K., & Swanger, K.
701	M. (2006). Pho-Pleistocene history of Ferrar Glacier, Antarctica: Implications for climate and ice sheet
781	stability. Earth and Planetary Science Letters, 243(3–4), 489–503.
182	nttps://doi.org/10.1016/j.epsi.2006.01.03/
103	Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, I. M., Fisher, T. G., Gyllencreutz, R., Hattestrand, C., Heyman, J.,
705	Hindmarsh, R. C., Hugnes, A. L., Jakobsson, M., Kirchner, N., Livingstone, S. J., Margold, M., Murton, J.
185	B., Noormets, R., Pelter, W. R., Peteet, D. M., Piper, D. J., Teller, J. I. (2015). On the reconstruction
/80	of palaeo-ice sheets: Recent advances and future challenges. Quaternary Science Reviews, 125, 15–49.
101	nttps://doi.org/10.1016/j.quascirev.2013.07.016
/00	Stokes, C. K., Tarasov, L., & Dyke, A. S. (2012). Dynamics of the North American Ice Sheet Complex
/89	during its inception and build-up to the Last Glacial Maximum. <i>Quaternary Science Reviews</i> , 50, 86–104.
790 701	nttps://doi.org/10.1016/j.quascirev.2012.0/.009
791 702	Storrar, R. D., Stokes, C. R., & Evans, D. J. (2013). A map of large Canadian eskers from Landsat satellite imagery.
192	Journal of Maps, 9(3), 456–473. https://doi.org/10.1080/17445647.2013.815591

- Stroeven, A. P., Fabel, D., Hättestrand, C., & Harbor, J. M. (2002). A relict landscape in the centre of
 Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial
 cycles. *Geomorphology*, 44(1–2), 145–154. https://doi.org/10.1016/s0169-555x(01)00150-7
- 795 Cycles. Geomorphology, 44(1-2), 145–154. https://doi.org/10.1016/s0169-5553(01)00150-7
 796 Süfke, F., Gutjahr, M., Keigwin, L. D., Reilly, B. T., Giosan, L., & Lippold, J. (2022). Arctic drainage of
- Suike, F., Outjani, M., Keigwin, L. D., Keiny, B. T., Olosan, L., & Elippold, J. (2022). Arctic dramage of
 Laurentide Ice Sheet meltwater throughout the past 14,700 years. *Communications Earth & Environment*,
 3(1). https://doi.org/10.1038/s43247-022-00428-3
- Tarasov, L., Dyke, A. S., Neal, R. M., & Peltier, W. R. (2012). A data-calibrated distribution of deglacial
 chronologies for the North American ice complex from glaciological modeling. *Earth and Planetary Science Letters*, 315–316, 30–40. https://doi.org/10.1016/j.epsl.2011.09.010
- Ullman, D. (2023). The retreat chronology of the Laurentide Ice Sheet during the last 10,000 years and implications
 for deglacial sea-level rise. *Vignettes:Key Concepts in Geomorphology*. https://serc.carleton.edu/59463.
- Ullman, D., Carlson, A. E., Hostetler, S. W., Clark, P. U., Cuzzone, J., Milne, G. A., Windsor, K., & Caffe, M.
- 805 (2016). Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. *Quaternary Science*
- 806 Reviews, 152(15), 49.59. https://doi.org/10.1016/j.quascirev.2016.09.014
- 807
- 808

809