Responses to Reviewer 1°’s Comments

Note to the Editor and all reviewers: We already posted six responses online and these responses will be
summarized here. Following the comments and suggestions from the Editor and reviewers, we have revised
the manuscript by
e moving the original Section 3.6 regarding the Lilly’s formula for two discretization methods into
Appendix B to avoid repeated discussions of the scale factor Jacobian,
e adding a few paragraphs, and
e making editorial changes to improve readability (see the manuscript with tracked changes).

I recommend a major revision of the paper before it can be considered for
publication. That is so because it contains only a (rather elementary)
mathematical analysis of the works by Lorenz and Lilly, without consideration
of the underlying physical processes, and also because it is rather poorly written.

We appreciate your feedback. To avoid repetition, we’ve reorganized the manuscript. To address other
concerns, we’ve provided three concise responses, each addressing a specific topic as listed below, and
summarized them in this final report. We trust our responses meet your expectations.

The paper is meant to ‘revisit’ the works by Lorenz and Lilly, which have
led to the well-known conclusion that the range of deterministic weather
forecasts has an ultimate limit of something around two or three weeks. That
conclusion has been amply confirmed by numerical experiments performed with
models of increasing spatial resolution and physical realism (see, e.g., Zhang et
al.,2019).

To address the comments, our responses (R1A) offer details showing that (1) Zhang et al.’s findings cannot
be directly applied to validate Lorenz’s and Lilly’s formulas because of differing evaluation criteria; (2)
Zhang et al. failed to provide compelling reasons for choosing a new tunable parameter in the modified
Logistic equation; and (3) Zhang et al. (2019) suggested the potential for increased predictability for certain
variables and certain low-frequency weather systems, such as MJOs.

The authors’ main point is that the works by Lorenz and Lilly, although
they lead to a similar conclusion, are actually very different from their very
starting point, and that further study is necessary as to the predictability of the
atmospheric flow.

As just said, the paper is poorly written, with lengthy developments of
secondary interest, useless repetitions and inclusion of elementary mathematical
material that should not be necessary. This confuses the reader and I had
actually some difficulty in even following the logical thread of the paper.

We’ve significantly revised the manuscript to eliminate repetitive discussions and enhance readability.



From what I understand, the significant part of the paper begins with the
introduction of the eddy turnover time «(k) (Eq. 5). That quantity is introduced
with a reference to Vallis (2006), without appropriate explanation as to its
physical significance nor on how it has been determined. The only indication in
the paper is that «(k) is the time for a parcel with velocity vi. to move a distance
of 1/k, with vi being the velocity associated with wavenumber k. (11. 298-299).
More information would be necessary, be that only to refresh the reader’s
memory. | simply note that, since v is defined as the velocity associated with
wavenumber k, the variations of v with & contain the same basic information as
the spectrum of kinetic energy, which is considered later in the paper. That
should be mentioned explicitly.

To address the comments above, our responses R1B provide detailed discussions that delve into the physical
relationship between kinetic energy, velocity, and turnover time. While it’s still uncertain whether the
physical significance of Lilly’s integral of turnover times has been widely accepted within the community,
we propose a possible interpretation for Lilly’s formulas that could serve as an alternative measure for
predicting predictability horizons. Nevertheless, it requires further effort to determine whether such
turbulence-based findings can be applied to estimate the predictability of weather patterns.

Additionally, since the concept of turnover times cannot be directly applied to analyze the data obtained
from Lorenz’s 1969 model, which was based on a conservative PDE, we simplified our discussions to focus
on the sum and integral of the turnover times in Eq. (6) and their dependence on two discretization methods
in the revised manuscript.

The authors then proceed to estimate predictability times by integrating
the turnover time over two different grids in spectral space. They find (Eqs 9a-b)
that the integral on the exponential grid (Eq. 1a) is finite while the integral on
the linear grid (Eq. 1b) is infinite. The former being sparser for large values of
the wavenumber £, it is obvious that the corresponding integral will be smaller.
From a physical point of view, what should be considered there is how fast an
uncertainty at wavenumber k propagates to larger scales, and how the
propagation relates to the turnover time. That should determine on which kind of
discretized grid an integral of the turnover time can be physically significant.
Although I presume that has been done by other authors, that basic question is

not even mentioned, nor is any reference given about it. The authors totally miss
here a critical point.

The above concerns have also been addressed in R1B response file. The Lilly’s integral with respect to In(k)
(Lilly 1990) is consistent with Lorenz’s hypothetical assumption that is not supported by data in Lorenz
(1969). While such an integral was documented in Vallis (2006), it is very challenging to have any studies
that discussed the detailed meaning of the integral with respect to In(k). In fact, in the previous round of
review, no reviewers can share additional references that provide reasons for such an integral: an integral
with respect to In(k).

Via email discussions with Prof. Vallis, we learned that a non-uniform grid discretization might be
compatible with self-similarity through the specific energy cascade: 2"k, ... » 4k, — 2k, — k. (for
the inverse cascade) or “k; — 2k, — 4k — - 271k, ...." (for the direct cascade). However, we
contend that it hasn’t been proven that all weather systems exhibit self-similarity. For instance, baroclinic
waves at wavenumber 10 aren’t included in the aforementioned scenario. Therefore, we propose that the
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integral with respect to In(k) cannot fully capture the scale interactions in weather and climate. Furthermore,
in the revised manuscript text, we highlighted that the Lorenz 1969 linear, multiscale model was constructed
based on mode-mode interactions, resulting in each model interacting with all modes in the system. This
mode-mode interaction doesn’t align with the above cascade.

Another point (subsection 3.4.2) is relative to the coefficient 2?3, which is
present in both Lorenz’s and Lilly’s approaches. The authors show (Table 1 and
subsection 3.4.2 together with the associated Figure 4) that this coefficient is not
defined by Lorenz with any real accuracy. But they do not really mention how it
comes into Lilly’s approach through Eq. (5) and the hypothesis of a -5/3 power
law for the KE spectrum. Again, additional explanations may, be necessary
there.

The detailed responses to the above comments are provided in responses R1B. In that section, the
mathematical expression for the turnover time of the KE -5/3 power is presented, resulting in the turnover
2

time 7(k) = Cok 3. In Lilly’s formula, the use of the non-uniform grid, k; = 271k, leads to the presence
2

of the common factor of 2”3 in the turnover times. In the original Lorenz’s idea, the common factor is based
on the fixed ratio of two consecutive “saturation time differences. However, our reexamination of Lorenz’s
Table (i.e., Table 1 in the manuscript) does not support this hypothetical ratio.

Actually, the point I have found of most interest in the paper is the fact
that Lorenz, although he used in Lorenz (1969d) a lincar nonturbulent model,
found a predictability time of about the same magnitude as Lilly, who used a
nonlinear turbulent model. That fact, which is certainly of great interest, is not
further discussed in the paper, but I accept it could be considered as going
beyond its scope.

In our responses R1C, we highlighted that in simple models or formulas, the model time may not accurately
represent real-world time. Without verifying the time evolution of a specific model against observations, it
becomes difficult to determine whether such a model accurately simulates the true nature of weather.
Consequently, qualitative predictability estimates should be the primary focus when applying Lorenz’s and
Lilly’s formulas.

We acknowledged the effectiveness of using theoretical models and simple models to qualitatively estimate
predictability. For instance, the Lorenz 1963 model is widely accepted to illustrate finite predictability
within chaotic systems. However, theoretical models and simple models relied on the pre-assumption of
time scales to provide quantitative estimates, which can be challenged by falsifying the assumption of time
scales as well as the assumptions for the models (e.g., the absence of significant forcing or dynamics).

In Responses R1C, we provide a concise overview of key studies in atmospheric predictability, including
Charney et al. (1966), Lorenz (1969d), Lilly (1972, 1973, 1990), and Vallis (2006). Three different time
scales were used in these studies. They may suggest similar conclusions but with different assumptions.
(Note that different conclusions were reported in Vallis 20006).

For example, Lorenz (1969d) assumed that one model time unit represents six real-world days. Under this
assumption, while Lorenz (1969d) suggested a predictability limit of 16.8 days, Lorenz (1972) reported a
limit of 20.6 days. By comparison, as shown in Figure 3 in the main text, Lilly (1973) reported that the sum
of turnover times is 2.7 t(k;), including an “adjustable” time scale 7(k;) for quantitative predictability
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estimates. As discussed in Responses R1C and in Shen et al. (2024), extrapolating a doubling time of 5
days in a GCM to a two-week predictability limit also implies an assumption of time scale (i.e., the ratio
between 5 days and 2 weeks).

On a different aspect, the paper is full of elementary developments in
basic calculus, with which most readers can be expected to be already fully
familiar (for instance the development from Eq. (18) to Eq. (21b)). And there 1s
certainly no need to review the concept of the Jacobian (1. 393) (the Jacobian
turns out to be no more in the present case than a scalar derivative, and not a full
determinant as is usually meant by the word).

By eliminating those useless developments as well as many equally
useless repetitions, the length of the paper as it stands could be substantially
reduced.

To avoid repetitive discussions, we’ve relocated Section 3.6 to Appendix B. Based on interactions with
reviewers in the previous round, we believe it’s essential to maintain related discussions in the main text
and Appendix B for future verification. This is because it was difficult for some reviewers to recognize that
the application of the non-uniform grid yields to the scale factor of 1/k in the Lilly’s formula, which is a
Jacobian. However, we welcome further suggestions to simplify or eliminate these discussions.

I make a final remark. There is some truth in the existence of at least a
practical limit to deterministic weather forecasts. Is the fact that Lorenz and
Lilly have reached the same conclusion, with the same approximate value for
the limiting value, purely accidental, or is there a common basic truth in the two
approaches ? That question should, if not discussed, at be least explicitly
mentioned.

I suggest a major revision of the paper, with inclusion of a physical
discussion in the approaches of both Lorenz and Lilly, particularly on the
concept of eddy turnover time, and elimination of lengthy and useless
developments and repetitions.

Historically, the concept of the specific common factor first emerged from the sequence of saturation time
differences observed in Lorenz’s (1969d) work. Later, Lilly (1972, 1973, 1990) formulated the idea using
turnover times. Since Lorenz and Lilly were friends, it’s plausible that some ideas were shared between
them. However, it’s noteworthy that none of Lilly’s papers were cited in Lorenz’s book titled “The Essence
of Chaos” published in 1993 or in Lorenz’s significant predictability study published in 1996 (Lorenz 1996,
2006). Given these circumstances, it’s reasonable to question the validity of applying a geometric series
(i.e., Lorenz’s or Lilly’s formula) to predictability estimates. Furthermore, Reeves’ interview with Lorenz
in 2007 (Reeves, 2014) confirmed that a robust predictability limit was not established using Lorenz models.
Instead, both Lorenz’s book and the interview suggested that the two-week predictability limit was
determined based on a doubling time of 5 days and reported in Charney et al. (1966) (refer to a review by
Shen et al. 2024).

Additionally, we identified physical inconsistencies based on the physical definitions of saturation time
scales and turnover times. Furthermore, mathematical analysis revealed discrepancies between Lorenz’s
and Lilly’s formulas. Consequently, our study challenges the validity of applying the integral of turnover
times for the quantitative estimation of the predictability limit in weather.
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As discussed in our chaos studies (e.g., Shen 2014), Lorenz (1963b) proposed two types of predictability:
intrinsic and practical. Intrinsic predictability depends on the nature of the flow, while practical
predictability is determined by mathematical formulas and data. Ideally, a perfect determinism of intrinsic
predictability could provide an upper bound for practical predictability. However, despite over six decades
since the 1960s, while theoretical models and formulas effectively provide qualitative estimates of
predictability (e.g., finite predictability within Lorenz chaotic systems), no robust upper limit has been
established. In contrast, real-world models continuously yield improved predictions, leading to increased
practical predictability. Moreover, recent advancements in Al-powered models have outperformed
traditional PDE-based prediction models. Therefore, the absence of a robust predictability limit reiterated
in our recent studies motivates further research to explore the predictability limit using various approaches.

Links for the Posted Responses:

e  Shen, Pielke Sr., and Zeng, 2024: Responses Part 1A (R1A): “A reevaluation of Figure 3 in Zhang
et al. (2019)”. https://doi.org/10.5194/egusphere-2024-2228-AC1

e Shen, Pielke Sr., and Zeng, 2024: Responses Part 1B (R1B): “A Brief Note on Turbulence-based
Turnover Time.” https://doi.org/10.5194/egusphere-2024-2228-AC2

e Shen, Pielke Sr., and Zeng, 2024: Responses Part 1C (R1C): “Qualitative Predictability Estimates
Using Lilly’s Formula and Comparative Insights™ https://doi.org/10.5194/egusphere-2024-2228-
AC3

Relevant Responses:

o Shen, Pielke Sr., and Zeng, 2024: Responses to Editor: Additional discussions of Zhang et al.
and the validity of the revised Logistic equation. https://doi.org/10.5194/egusphere-2024-2228-
ACS5

e Shen, Pielke Sr., and Zeng, 2024: Responses Part 2A (R2A): “A Brief Note on Turbulence-based
Turnover Time” (this is different from R1B). https://doi.org/10.5194/egusphere-2024-2228-AC4

e Shen, Pielke Sr., and Zeng, 2024: Responses Part 2B (R2B): “A Brief Note on Bistability, Duality,
and Dimensional Transitions in Recent Turbulence Studies” https://doi.org/10.5194/egusphere-

2024-2228-AC6






